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Abstract
The influenza problem has always been an important global issue. It not only affects 
people’s health problems but is also an essential topic of governments and health 
care facilities. Early prediction and response is the most effective control method 
for flu epidemics. It can effectively predict the influenza-like illness morbidity, and 
provide reliable information to the relevant facilities. For social facilities, it is possi-
ble to strengthen epidemic prevention and care for highly sick groups. It can also be 
used as a reminder for the public. This study collects information on the influenza-
like illness emergency department visits to the Taiwan Centers for Disease Control, 
and the  PM2.5 open-source data from the Taiwan Environmental Protection Admin-
istration’s air quality monitoring network. By using deep learning techniques, the 
relevance of short-term estimates and the outbreak calculation method can be deter-
mined. The techniques are published by the WHO to determine whether the influ-
enza-like illness situation is still in a stage of reasonable control. Finally, historical 
data and future forecasted data are integrated on the web page for visual presenta-
tion, to show the actual regional air quality situation and influenza-like illness data 
and to predict whether there is an outbreak of influenza in the region.
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1 Introduction

Human physiological disorders reflect an altered condition that interferes with 
or modifies the vital functions of various organs or body parts [1]. Kim et  al. [2] 
examined whether the severity of posttraumatic stress disorder (PTSD) symptoms 
and perceived functional impairment in firefighters with current possible PTSD are 
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correlated with the use of mental health services. Gautam et al. [3] also studied the 
treatment of medical conditions in humans, and found the rate of predictive accu-
racy obtained by ant colonyoptimization (ACO) and neural network hybridization to 
be more promising than other individual or hybrid approaches. Based on their pre-
dicted human health implications, Van der Fels-Klerx et al. [4] thoroughly reviewed 
criteria for rating risks related to food safety and dietary hazards. The method to be 
used should be selected based on the criteria of the risk manager/assessor, the qual-
ity of data, and the method’s characteristics.

Influenza is a direct and far-reaching problem. An uncontrolled flu epidemic can 
have a significant impact on all of society, for example, in the global H1N1 influ-
enza outbreak around the world in 2009. According to data released by the World 
Health Organization, there were more than 1.3 million confirmed cases of H1N1 
in the world, with a death toll of more than 14,000, presenting a significant chal-
lenge to the world’s quarantine mechanism [5]. For Taiwan, many prevention and 
control measures have been proposed for incidents of this type, such as strict border 
control, mobilization, and isolation of medical facilities, public transportation bases, 
and campuses in order to maximize anti-epidemic measures in public places. It can 
be said that the influenza epidemic has a profound and long-lasting impact on peo-
ple’s lives, the  safety of their property, human resources, material resources, and 
socioeconomic stability. If compelling trend predictions for flu-like epidemics can 
be achieved, relevant units can be provided. More reaction time allows the public to 
take prevention or treatment measures earlier, which can have a positive impact on 
the control of the flu-like epidemic. There are many medical studies confirming the 
relationship between air quality index (AQI) and influenza-like illness (ILI) through-
out the world. Increased rates of culture-negative pneumonia and influenza were 
associated with increased concentrations of particulate matter < 2.5 µm  (PM2.5) dur-
ing the previous week, which persisted despite reductions in  PM2.5 from air quality 
policies and economic changes. Though unexplained, this temporal variation may 
reflect altered toxicity of different  PM2.5 mixtures or increased pathogen virulence 
[6–15].

Influenza-like illness (ILI) is defined as a medical condition that may be caused 
by influenza or other diseases such as parainfluenza viruses or adenoviruses with 
clinical manifestation in common with the influenza virus. According to the WHO 
surveillance case definition, ILI is defined as an acute respiratory infection with 
fever more than 38 °C and with cough symptoms, as well as morbidity within the 
last 10 days. This study will collect information on the rate of influenza-like emer-
gency visits from the Department of Health and Welfare and the  PM2.5 open-source 
data from the Environmental Protection Department’s Air Quality Monitoring Net-
work [16]. Deep learning techniques are used to predict the status of future influ-
enza-like treatment and the effects of  air pollution on the respiratory tract in induc-
ing influenza-like symptoms, as well as the natural delay characteristics between a 
patient’s inhalation of excessively high levels of contaminated gases and the onset 
of flu-like symptoms [17]. This system predicts the rate of ILI after a short period 
based on the current level of air pollution.

In this paper, the long short-term memory network (LSTM) of the recurrent neural 
network (RNN) will be implemented to solve the time-series prediction case. Also, it 
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can address the shortcomings of the disappearance of the RNN gradient [18, 19], so 
that LSTM can effectively reduce the weight of the current time. Therefore, the module 
can more effectively preserve the influence of special events before the distant future 
point. In combination with the Outbreaks algorithm published by the WHO, this algo-
rithm can calculate the criteria of influenza-like outbreaks at various time points dur-
ing the past 5 years, and can be used as supplementary data for training and subse-
quent data visualization. It may also function as a benchmark to aid decisions when 
presented.

Our experimental setup presents a visualization of the model based on historical 
data combined with the short-term forecast data predicted by the module. It allows 
the user to intuitively understand real-time air pollution data in a user-friendly sys-
tem. The user can easily understand the current rate of influenza visits and the pre-
dicted rate in the short term. Hopefully, this influenza prediction platform can serve 
as a reference for administrative decision-making and as a basis for general pub-
lic health measures, with the ultimate goal of effectively controlling and preventing 
influenza-like epidemics. The significance of our contribution lies in the ability to 
predict ILI based on the integration of the rate of influenza-like emergency visits 
and  PM2.5 data using LSTM.

2  Background review and related works

In this section, we discuss several components that are included in the approaching 
in this paper: RNN, LSTM, and the mean absolute percent error (MAPE). The fol-
lowing sections discuss each component in more detail.

2.1  Recurrent neural network (RNN)

RNN is a type of feed-forward neural network. It is simply a network type that 
returns the value output from the neural network back to the input [20–22]. In this 
way, the output value of the last time point is transmitted back to the neural network, 
so that the weight calculation of each time point of the network model is related 
to the content of the previous time point, which means that the neural network is 
included. The concept of time, through such a mechanism, makes the neural net-
work memory. Figure 1 describes recurrent neural network architecture. After each 
round of operation, the output of the web is retained up to the next transfer opera-
tion. Therefore, the time t will be t + 1 time points. The output is taken into consid-
eration, so it has the characteristics of before and after memory.

The following is the formula for RNN:

where xt is the vector of the input layer, ht is the vector of the hidden layer, yt is 
the vector of the output layer, W, U and b are the matrix or vector of the weight 

(1)ht = �h(Whxt + Uhyt−1 + bn)

(2)yt = �y(Wyht + by)
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parameter, and �h and �y are the activation functions. From this formula, it can be 
clearly observed that the output previous time unit is added to the calculation of yt−1.

2.2  Long short‑term memory network

LSTM is a deformation module constructed on the basis of RNN, but the mechanism 
of adding gate allows the LSTM to effectively save events before long-distance time 
[23]. The weights of this method solve the defect in which the RNN is prone to gradient 
disappearance. Therefore, LSTM is more suitable for processing important events with 
longer intervals or delay time units in the time series than the RNN [24, 25] (Fig. 2).

The following is the formula for LSTM:

(3)it = �(Wiht−1 + Uixt + bi)

(4)ft = �(Wfht−1 + Uf xt + bf )

(5)ot = �(Woht−1 + Uoxt + bo)

(6)ct = tanh(Wht − 1 + Uxt + b)

(7)ct = ft ⋅ ct−1 + it ⋅ ct

Fig. 1  RNN schematic diagram

Fig. 2  LSTM schematic diagram
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where it is the input gate used to determine whether the current input value is added 
to the memory state, and ft is the forget gate to determine whether the “forget” is 
previously stored. The memory state ot is the output gate that will be used to deter-
mine the amount of memory output to the hidden layer, and also represents the 
degree of memory impact on the calculation.

2.3  MAPE

The mean absolute percent error (MAPE) as a percentage of the error reflects accu-
racy. Since the MAPE is a percentage, it can be easier to understand than the other 
figures on precision measurement. For example, if the MAPE is 5, the forecast is by 
5% on average.

Nevertheless, a very large value of MAPE may sometimes be seen even though 
the model seems to suit the data well. Examine the plot to see if there are approxi-
mately 0 data values. Since MAPE divides the absolute error by the actual data, 
values close to 0 will inflate the MAPE significantly [26].

2.4  Related works

Yang et al. [27] proposed an analysis of air quality data and influenza-like illness 
(ILI) to determine the associations accurately and effectively. In their work, a novel 
integrated platform was implemented by building a cluster environment based on 
Hadoop and Spark. The experimental results showed the visualization of air quality 
and influenza-like illness data collected from 2016 to 2018 in Taichung, Taiwan. 
The association between air quality and influenza-like illness was also presented and 
discussed.

Liu et  al. [28] focused on the association between invasive aspergillosis and 
ambient fine particulate air pollution. Two data sets were leveraged for this study: 
the National Health Insurance Research Database (NHIRD) was used to define inva-
sive aspergillosis, while the Taiwan air quality index (AQI) monitoring network was 
used to profile the  PM2.5 concentration in Taiwan. The findings of this study suggest 
a positive association between  PM2.5 concentration and incidence of aspergillosis.

Lee et  al. [29] demonstrated analysis and automated air pollution forecasting 
using RNN. A distributed computing environment was deployed based on RHadoop, 
which analyzed air pollution and presented a visualization using HBase from his-
torical data. The short-term prediction of  PM2.5  was presented, and the prediction 
accuracy based on the MAPE was measured.

Tang et al. [30] performed an integrated data analysis for the period from Novem-
ber 15, 2010, to November 14, 2016, to quantify the connection between AQI, 

(8)ht = ot ⋅ Tanh(ct)

(9)yt = ht
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meteorological variables, and risk of respiratory infection in China’s Shaanxi prov-
ince. Their assessment showed a statistically significant positive correlation between 
the number of instances of ILI and AQI, and with a time lag of 0–3 days, the risk of 
pulmonary disease gradually improved with enhanced AQI.

Liu et al. [31] applied RNNs of LSTM to predict influenza patterns. They were 
the first to use various novel data sources to forecast influenza patterns, including 
virological surveillance, the geographic spread of influenza, trends in Google, the 
environment, and air pollution. They also discovered that there are several environ-
mental and climatic variables that have an important correlation with the frequency 
of ILI.

Zhang et  al. [32] used four distinct LSTM multi-step prediction algorithms to 
predict influenza outbreaks in multiple steps. The results showed that the greatest 
precision was attained by applying various single-output predictions in a six-layer 
LSTM framework. The MAPE for the US ILI rates from 2 to 13 steps forward were 
all less than 15%, with an average of 12.930%.

Huang and Kuo [33] integrated and applied a convolutional neural network 
(CNN) and LSTM to the  PM2.5   prediction method for controlling and predicting 
 PM2.5 concentration. Four measurement indexes, including mean absolute error 
(MAE), root mean square error (RMSE), Pearson correlation coefficient, and index 
of agreement (IA), were applied to the experiments to compare the overall perfor-
mance of each algorithm. The experimental results confirmed that the predictive 
accuracy of the proposed CNN-LSTM model (APNet) was the highest in compari-
son with other machine learning models. The feasibility and practicability of the 
CNN-LSTM model in predicting the  PM2.5 concentration was also checked.

Tsai et al. [34] suggested an approach for predicting the concentration of  PM2.5 
with LSTM using RNN. They leveraged Keras, a high-level neural network applica-
tion programming interface (API) written in Python and able to run on top of Ten-
sorFlow, to construct a neural network and run RNN via TensorFlow with LSTM. 
Training data used in the network was collected from Taiwan’s Environmental Pro-
tection Administration (EPA) from 2012 to 2016 and converted into 20-dimensional 
data at 66 stations across Taiwan. They conducted experiments to determine the 
importance of the predicted  PM2.5 concentration for the next 4 h. The results showed 
that the proposed method could effectively forecast the  PM2.5 value.

Qin et  al. [35] introduced a new method for predicting pollutant concentration 
based on vast amounts of environmental data and deep learning techniques. The 
approach incorporated big data using two forms of deep networks. The method is 
based on a design that uses a convolutional neural network as the base layer, extract-
ing input data features automatically. For the output layer, a long-term memory net-
work was used to determine the time dependence of pollutants. With performance 
optimization, as a time series, the model was able to predict future concentrations 
of  PM2.5. Eventually, the outcomes of the forecasts were correlated with numerical 
model tests. The model’s applicability and benefits were also analyzed. The experi-
mental results indicated that it increased the accuracy of predictions compared with 
traditional models.
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3  System design and architecture

3.1  TensorFlow

TensorFlow is an open-source code library that uses data flow graphs to express 
numerical operations. TensorFlow can help users easily construct models of machine 
learning and deep learning, reducing users’ learning threshold [36]. TensorFlow also 
supports distributed computing and can run well on a variety of platforms. It can 
be supported from a single CPU to a multi-GPU system. In addition, it supports 
multiple programming languages. Both Python and C++ can be used to write Ten-
sorFlow programs.

3.2  Keras

Keras is a neural network library written entirely in Python and fully compatible 
with TensorFlow. Using Keras to write TensorFlow programs, building a neural net-
work architecture will be simple and fast, allowing users to skip complex operations 
[18, 37]. The details of the complex module construction reduce the learning thresh-
old in the field of machine learning. Keras supports most of the model solutions, 
supports multi-input and multi-output training, and can be used under the CPU and 
GPU system base. Its wide compatibility enables Keras to work on different operat-
ing systems such as Windows, Linux, and MacOS, and it can be used normally.

3.3  System design

Influenza is an acute respiratory disease that can easily lead to pneumonia and death. 
Early prediction and response to influenza epidemics is the most effective method of 
control. This paper intends to determine the relevance of  PM2.5 to influenza pneu-
monia death cases by using the government’s open database to further build predic-
tive modules through machine learning. The research method is to use the flu pan-
demic death database of the Department of Health and Welfare [38] and link to the 
EPA Air Quality Monitoring Network for  PM2.5 [39] open data to visualize the data 
in determining the correlation between  PM2.5 and influenza pneumonia death. The 
machine deep learning method is used for the prediction module of  PM2.5 causing 
death from influenza pneumonia, applied to the epidemic prevention policy. Figure 3 
depicts the system design.

• Step 1: National Health Insurance Research Database and Air Quality Monitor-
ing Network

  The diagnostic data for Aspergillus infection was analyzed by Taichung Vet-
eran General Hospital [28] with the National Health Insurance Research Data-
base (NHIRD). AQI and  PM2.5 data obtained from the Environmental Protection 
Agency Air Quality Monitoring Network in Taiwan, combined with the above 
long-term big data, was used to prove the correlation between air pollution and 
respiratory diseases.
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• Step 2: Use of visual data to build a visualization system and monitoring plat-
form

  Information on the rate of weekly emergency visits due to influenza-like ill-
ness, pneumonia, and enterovirus was gathered from the Department of Health 
and Welfare. This information was then combined to establish an associated vis-
ualization system and monitoring platform for air pollution and disease.

• Step 3: Establishing a predictive model
  The 95% (confidence interval) upper limit was calculated as the prevalence 

threshold using the rate of weekly visits for the past 5 years. The LSTM model 
was used to predict the rate of visits in the next 4 weeks, and the threshold was 
used as an early warning.

3.4  System architecture

The architecture of the present study is shown in Fig. 4. The data set is collected 
from Taiwan Ministry of Health and Welfare. The data consist of influenza emer-
gency department visits and the EPD data rate.  PM2.5 open air quality monitoring 
network data is stored in a MySQL database, and preliminary data cleaning is com-
pleted. The LSTM model is then built and trained through the TensorFlow library 
and using Keras’ high-level tools, and the results of future short-term predictions are 
passed back to the MySQL repository. Finally, the data is visually presented on the 
web page by linking MySQL and PHP.

This study uses a linear method and a k-nearestneighbor (KNN) method, 
two methods for obtaining missing values. The linear compensation method 
is effective at filling missing values of fragmented time. However, when long-
term continuous time values are missing, the linear complement method cannot 
accurately fill in missing values. Therefore, this study adopts two complemen-
tary methods of linear and KNN in parallel. If the missing value is fragmented, 
the linear complement method to is used fill in the missing value. Otherwise, if 

Fig. 3  System design
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the value is missing for more than 6 consecutive hours, the KNN complement 
method is used to fill in the value.

On the topic of data cutting, this study uses a ratio of 6:2:2 to cut the original 
data into three parts: the training set, the validation set, and the testing set. This 
arrangement is adopted in the hope that a part of the data can be completely 
excluded After training, one can use the testing set as brand-new data to objec-
tively verify the model, and to determine whether the training effectiveness has 
reached the same level as the training data.

3.5  Provided services

This cloud system provides real-time air quality index information and popula-
tion statistics of each city with various kinds of graphs on the dashboard. This 
data can be exported to Excel for further analysis. In addition, more detail of the 
AQI data formula is as follows:

• O3 , 8 h: average of the last 8 h
• O3 : real-time
• PM2.5: 0.5 × average of the last 12 h + 0.5 × the last 4 h
• PM10: 0.5 × average of the last 12 h + 0.5 × the last 4 h
• CO: average of the last 8 h
• SO2 : real-time
• NO2 : real-time

Table 1 describes the normal value index of ozone  (O3), fine aerosol  (PM2.5), 
aerosol  (PM10), carbon monoxide (CO), sulfur dioxide  (SO2), and nitrogen diox-
ide  (NO2).

Fig. 4  System architecture
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3.6  System implementation

• The software deployment server that we use for experiments comprises five 
servers: one name node server, two data node servers, one ELK stack server, 
and one web service server. More detail for each server is presented in 
Table 2.

• Cluster deployment has become a well-known architecture design in the sci-
ence of big data, because it can be more efficient in data processing. In this 
study, we created a Cloudera Manager cluster server.

  Hadoop or Spark memory configuration recommendation
  This part describes the way to configure YARN and MapReduce memory 

allocation settings depending on the hardware component specifications.
  When we determine the appropriate YARN and MapReduce memory con-

figurations for a cluster node, we have to start with the available hardware 
resources. The following are the values of each node:

• Random access memory (amount of memory)
• Cores (number of CPU cores)
• Disk storage (number of disks)

Table 1  The concentration of pollutants and air quality index value

Air poll. O3, 8 h O3 PM2.5 PM10 CO SO2 NO2

Unit ppm ppm μg/m3 μg/m3 ppm ppb ppb
0–50 0.000–0.054 – 0.0–15.4 0–54 0–4.4 0–35 0–53
51–100 0.055–0.070 – 15.5–35.4 55–125 4.5– 9.4 36–75 54–100
101–150 0.071–0.085 0.125–0.164 35.5–54.4 126–254 9.5–12.4 76–185 101–360
151–200 0.086–0.105 0.165–0.204 54.5–150.4 255–354 12.5–15.4 186–304 (3) 361–649
201–300 0.106–0.200 0.205–0.404 150.5–250.4 355–424 15.5–30.4 305–604 (3) 650–1249
301–400(2) – 0.405–0.504 250.5–350.4 425–504 30.5–40.4 605–804 1250–1649
401–500(2) – 0.505–0.604 350.5–500.4 505–604 40.5–50.4 805–1004 1650–2049

Table 2  Software version No. Description Version

1 Apache Hadoop 2.7.3
2 Cloudera 5.10
3 Apache Spark 2.0
4 ELK Stack 5.2
5 PHP 7.0
6 MySQL 7.0
7 Alluxio 1.4
8 Ceph 10.2.0 (Jewel)
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  General Formula Container

  If Hbase is included, the following formula is used:
  #Container = min(2 × Cores, 1.8 × Disks, (Total available RAM − Reserved 

system memory  −  Reserved HBase memory)/Minimum container size) = 
min(2 × 8, 1.8 × 1, (16 − 2 − 2)∕1) = (16, 1.8, 12) = 1.8 = 2

  #RAM per Container = max(Minimum container size, (Total available RAM-
Reserved system memory  −  Reserved HBase memory)/Containers) = max(1, 
(16 − 2 − 2)/2) = max(1, 6) = 6

  Reserved HBase memory is the RAM needed by system processes and HBase 
processes. The recommendation of reserve memory is described in Table 3.

  Minimum container size recommendations is described in Table 4.

• yarn.node.manager.resource.memory_mb:
  Containers × RAM per container = 2 × 6 = 12 × 1024 = 12288MB

• yarn.scheduler.minimum_allocation-mb:
  RAM per container = 6 × 1024 = 6144MB

• yarn.scheduler.maximum_allocation_mb:
  Containers × RAM per container = 2 × 1024 = 2048MB

• mapreduce.map.memory.mb:
  RAM per container = 6 × 1024 = 6144MB

• mapreduce.reduce.memory.mb:
  2 × RAM per container = 2 × 6 × 1024 = 12288MB

• mapreduce.map.java.opts:
  0.8 times RAM per container = 0.8 × 6 × 1024 = 4915.2MB

• mapreduce.reduce.java.opts:
  0.8 × 2 × RAM per container = 0.8 × 2 × 6 × 1024 = 9830.4MB

(10)#Container = min(2 × Cores, 1.8 × Disks, (Total Available RAM)∕MinimumContainer Size)

Table 3  Reserved memory 
recommendations

RAM per node (GB) Rec. reserved memory 
(GB)

Rec. reserved 
Hbase RAM 
(GB)

4 1 1
8 2 1
16 2 2
24 4 4
48 6 8
64 8 8
72 8 8
96 12 16
128 24 24
256 32 32
512 64 64
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• yarn.app.mapreduce.am.resource.mb:
  2 × RAM per Container = 2 × 6 × 1024 = 12288MB

• yarn.app.mapreduce.am.command.opts:
  0.8 × 2 × RAM per container = 0.8 × 2 × 6 × 1024 = 9830.4MB

   YARN and MapReduce configuration setting value calculations are showed in 
Table 5.

  This Cloudera Manager is used to build related package services like Hadoop, 
HDFS, MapReduce, Spark, HBase, and Hive. The website can be used to moni-
tor CPU usage, disk I/O, network I/O, and HDFS status.

3.7  Data preprocessing

This study collected information on the rate of influenza-like emergency visits 
from the Ministry of Health and Welfare and the  PM2.5 Air Quality Monitoring 
Network. The total number in the six districts was more than 3600, collecting 
weekly averages from 2007 to 2019. The current data set is still in continuous 
collection in real time. This work uses 6:2:2 to divide the original data into three 
parts: training set, test set, and verification set, respectively. After the training is 
done, the test and verification sets are used as new data to verify the module in 
order to determine whether the training effect is correct. This method is used to 

Table 4  Minimum container 
size recommendations

RAM per node Rec. minimum 
container size

Less than 4 GB 256 MB
Between 4 GB and 512 MB 2 GB
Between 8 GB and 1024 MB 2 GB
Above 24 GB 2048 MB

Table 5  YARN and MapReduce configuration setting value calculations

Configuration file Configuration setting Value calculation

yarn-site.xml yarn.nodemanager.resource.memory-mb = containers × RAM per container

yarn-site.xml yarn.scheduler.minimum-allocation-mb = RAM per container
yarn-site.xml yarn.scheduler.maximum-allocation-mb = containers × RAM per container

mapred-site.xml mapreduce.map.memory.mb = RAM per container
mapred-site.xml mapreduce.reduce.memory.mb = 2 × RAM per container

mapred-site.xml mapreduce.map.java.opts = 0.8 × RAM per container

mapred-site.xml mapreduce.reduce.java.opts = 0.8 × 2 × RAM per container

mapred-site.xml yarn.app.mapreduce.am.resource.mb = 2 × RAM per container

mapred-site.xml yarn.app.mapreduce.am.command-opts = 0.8 × 2 × RAM per container
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avoid over-fitting on the data set and underestimating the module performance 
evaluation data.

3.8  The outbreak calculation method

The outbreak calculation is based on the Outbreaks calculation method published 
by the World Health Organization [40]. Historical data of the past 5 years can be 
used to obtain the threshold of the influenza-like visit data for the current year. This 
means that the current influenza-like epidemic can be obtained through this calcula-
tion method. The criteria for judging and the data will be added to the data set of the 
training model, and at the same time, when the web page is visualized, it is the most 
direct criterion for the user to judge the current epidemic. The Outbreaks formula is 
as follows:

where X is the average and Z is the confidence level coefficient. Taking this study as 
an example, when the confidence level is 95%, Z is 1.96, s is the standard deviation, 
and n is the sample size.

3.9  The LSTM model

In order to effectively predict influenza-like trends, this study will construct the 
LSTM model and use the air pollution index  PM2.5 and influenza-like visit rates. 
Outbreaks calculates values as supplementary data to train the model. There is 
no correct answer to the neural network model design, which must be determined 
according to the researcher’s hardware environment, data characteristics, data set 
size, and user response time requirements. If the number of neural layers or the 
number of neurons are blindly increased, it may make the training effect worse, and 
also waste a lot of time and computing efficiency.

This research uses trial and error to find the best model architecture. The content 
includes the number of neural layers, the number of neurons, the design of the input 
and output layers, the activate function, and so on. The judgement criterion is of 
the highest accuracy. The MAPE evaluation index is used to select the architecture 
parameter with the lowest error. Therefore, after many experiments and adjustments, 
it was decided to set the membrane structure to four input layer neurons, four output 
layer neurons, 256 neurons in two layers of LSTM layers, and 128 hidden layers in 
two layers. Sixty-four neurons, that is, four future time units are predicted in four 
consecutive time units.

The input layer is set to four neurons according to trial and error results, which 
represents four data as an input for a single training. The output layer neurons are 
set to four according to the needs of the topic, which represents the prediction of 
the rate of ILI consultations in the next 4 weeks. The activate function of the output 
layer uses linear as an approximation prediction of the true value. The structure of 

(11)X ± Z
s

√
n
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the input data set is the historical ILI consultation rate and  PM2.5 value for 4 weeks, 
and the data dimension is (2208, 4, 2). The output data is structured to predict the 
ILI consultation rate for the next 4 weeks. The data dimension is (2208, 4).

In order to avoid the problem of overfitting, the early stopping mechanism and 
the design of the dropout layer are added to the model. Early stopping monitors 
the error value of the training during the training, if it is under a certain time. If 
the error value does not continue to be effectively reduced, the training will be 
terminated early, and this method can be used to avoid over-learning. In addition 
to the addition of the dropout layer design, the dropout layer randomly stops the 
neurons of some hidden layers temporarily during training. Since the neurons that 
are paused during each training are randomly selected, it can be imagined. Each 
training is on a new model, and since the relevant neurons cannot appear at the 
same time each time, it is also possible to avoid the fact that there are joint fea-
tures that are only retained when they appear with each other.

3.10  Model performance evaluation

After completion of the neural network module training, the model evaluation is 
carried out to understand the effectiveness of the model learning, which serves as 
the basis for the experiment and is also an important evaluation criterion for the 
model performance. In this study, the mean absolute percentage error (MAPE) 
was chosen as the criterion for the prediction performance of this module. The 
formula for the MAPE value is as follows:

3.11  Web visualization

This study presents data analysis results through web pages. In the operation 
and display of web pages, the system is constructed based on the current main-
stream HTML5 + JavaScript + CSS3. Users can connect web pages with multiple 
devices. In addition, the concept of responsive web design (RWD) and a boot-
strap framework are added to the interface design. In this case, the implementa-
tion of a bootstrap grid system interface is to make the system interface work at 
different resolutions. With this environment running on the device, including on 
smart mobile devices and tablets, a good user experience can be achieved.

(12)MAPE =

(
n∑

i=1

(|Yi − Ŷ|)
Yi

)
⋅ 100.
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4  Experimental results

In this section, we describe our experimental results obtained from the designed 
methods.

4.1  Data collection

The data set is obtained from the weekly average influenza-like emergency visit rate 
information of the six major subdistricts of Taiwan. The  PM2.5 open data is col-
lected from the Environmental Protection Department’s air quality monitoring net-
work with 77 air pollution stations. The data is organized into six district average 
weekly data sets that are consistent with the needs of the present study. The MySQL 
database stores these data set with a specific data format, as shown in Figs. 5 and 6.

This study also organizes historical air pollution data into air quality index (AQI), 
which is set by the Taiwan Environmental Protection Agency. The data set consists 
of ozone ( O3 ), fine aerosol  (PM2.5), suspended particulates  (PM10), carbon monox-
ide (CO), sulfur dioxide ( SO2 ), and nitrogen dioxide ( NO2 ) in the air. The degree 
of health impact is converted into the sub-indicator values of different pollutants, 
and the maximum value is taken as the AQI value for the day. This study uses a full 
six-zone AQI value and ILI binding to influenza treatment. A line graph is displayed 

Fig. 5  Schematic diagram of  PM2.5 data

Fig. 6  Schematic diagram of ILI data in six districts
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on a web page system, as shown in Fig.  7, for a user to clearly observe the real-
time AQI value and the relationship of AQI and ILI value. From the graph, one can 
observe the association of AQI and ILI weekly status in six areas: Taipei, North, 
Central, South, Kaoping, and East. The maximum value index indicator of AQI also 
can be shown in the balloon symbol.

4.2  Training result

In this section, the training module process is presented to visualize the loss value 
data. It will help researchers to understand whether the module training process has 
smooth convergence, and whether there is an excessive situation or not. Figure  8 
shows the change of the loss value of the LSTM modules in the six districts. The 
six-zone model shows good performance during the training process. The training 
and verification loss values are consistent. There is no indication of over-fitting, and 
a stable error value is reached at the specified number of training times.

In addition, the training set, the test set, and the verification set are respectively 
implemented in the module to verify the prediction effect of the module. The cen-
tral area data is taken as an example, and the actual values of the three data sets are 
respectively taken. The visualized graphs display the predicted values, as shown in 
Figs. 9, 10, and 11. The training effect of the observation module and the data set 
with the training can have the same prediction performance.

4.3  The evaluation results

This study selected MAPE as the standard for model evaluation, and MAPE val-
ues of the six major divisions of the whole station according to the planning of this 

Fig. 7  AQI, ILI line chart
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study were calculated. The model predicts the next 4 h to calculate the individual 
MAPE values in various hours. This calculation method can more clearly convey the 
change of model accuracy under the shorter and longer prediction time gap. Table 6 
summarized the MAPE value comparison based on each area in Taiwan.

In this study, the LSTM model was better than the RNN model in predicting ILI 
consultation rates. The central area data for ILI consultation rate data were selected 
for training and to compare the effects of model predictions. Three model evaluation 
indicators, MAPE, RMSE, and MAE, are used to calculate the model errors, with 
results summarized in Table 7. According to the contents of the table, the evalua-
tion results of the LSTM model have errors that are lower than those of the RNN 
model from the first week to the sixth week. This experiment confirms that LSTM 
has more advantages than RNN for the issue of ILI consultation rate prediction.

Fig. 8  The change of the loss value of the six-zone model
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4.4  Outbreak calculation method

The Outbreaks value and influenza-like treatment rate value are visualized on the 
web system to determine whether the influenza-like disease control status is still in a 
safe state. Figures 12 and 13 present the ILI visit rate and Outbreaks value for 2017 
and 2018, respectively.

Fig. 9  The plotting of training

Fig. 10  The plotting of testing
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Fig. 11  The plotting of validation

Table 6  MAPE value comparison

Region Data set First hour Second hour Third hour Fourth hour

Taipei Training set 9.64 9.83 10.7 12.66
Validation set 11.30 12.87 13.88 14.08

North Training set 11.21 12.26 13.23 14.8
Validation set 18.92 14.19 14.93 16.95

Central Training set 7.97 9.45 10.12 11.08
Verification set 1048 11.76 12.62 13.56

South Training set 6.02 7.55 8.47 9.39
Verification set 9.61 10.77 10.8 11.08

Kaoping Training set 8.92 9.76 10.74 11.87
Verification set 9.48 10.79 11.25 12.31

East Training set 9.15 10.53 11.82 12.97
Verification set 12.98 14.82 15.02 15.6

Table 7  Comparison of central area model evaluation

Model Evaluation Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

RNN MAPE 0.479861111 0.513194444 0.566666667 13.48 14.43 14.04
LSTM 10.05 0.471527778 0.464583333 12.04 13.35 14.07
RNN RMSE 02.33 02.49 0.128472222 0.134722222 0.146527778 0.150694444
LSTM 02.14 02.03 02.33 02.49 0.129861111 0.140277778
RNN MAE 01.47 01.58 0.091666667 0.096527778 0.104861111 0.105555556
LSTM 01.36 01.45 01.45 01.58 0.092361111 0.099305556
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4.5  Web visualization

Figure  14 presents the Outbreaks value in 2019, in which the middle region 
demonstrates the actual influenza-like visit rate; the next 4 weeks of influenza-
like visits are presented in predicted values. Figure  15 shows the actual influ-
enza-like visit rate in the six districts of the country and the predicted value of 
the next 4 weeks of influenza-like visits. This visualization allows users to know 
the future trend of influenza-like epidemics and whether it will occur or not. It 
can forecast the possibility of an ILI outbreak.

Figure 16 demonstrates the real-time monitoring system per area.
Figure 17 shows the real-time ILI time-series data.
The web visualization also has an additional feature to give the early warning. 

If the predicted visit rate is more than the threshold, then it is an early warning 
of influenza outbreak. Figure 18 describes the graph of an early warning system.

Fig. 12  2017 ILI visit rate and Outbreak threshold

Fig. 13  2018 ILI visit rate and Outbreak threshold
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5  Conclusion and future work

This study collected data on air pollution and rates of doctor visitation due to 
ILI. After the air pollution and ILI treatment rate data were integrated with 
quality control and time units applied, the data from 2007 to the present were 
divided into weekly average values for six regions of Taiwan, and the Outbreaks 
algorithm was used to calculate the influenza-like epidemic. A threshold value 
was used as the auxiliary data for training and the decision basis for the user to 

Fig. 14  Real-time ILI forecast data visualization

Fig. 15  Real-time ILI forecast data visualization for six districts
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read the data. It also solved the problem with the large differences between the 
influenza-like out-of-control standard in the outbreak period and the non-perfect 
period, which can easily cause misunderstanding. The flu-like epidemic provides 
a more comprehensive and accurate understanding. We generated a simple linear 
regression model to estimate the correlation coefficient between AQI and ILI in 
previous papers. According to the model, we observed a significant correlation 
between  PM2.5 and risk of ILI (p value = 0.04) after adjusting for confounders.

Fig. 16  Real-time monitoring system per area

Fig. 17  Real-time ILI time-series data
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This paper also implemented deep learning techniques to find correlations 
between data. The TensorFlow library and Keras tools were applied to construct 
neural network models for experiments. Long-term and short-term memory models 
(LSTM) were used to deal with time-series problems occurring in time-series data. 
The analysis of the influenza-like epidemic demonstrated very good performance 
based on the experiments. The analysis obtained a valid prediction of the rate of 
influenza-like visits in the next 4 weeks. The MAPE values for the module evalua-
tion were all below 20, which is a valid result.

The web page system platform was built as a visual presentation interface. The 
integration of the AQI and the ILI treatment data demonstrated an interactive rela-
tionship between the two trends. The historical data of influenza-like visits and the 
Outbreaks threshold were graphically presented to observe the past epidemic control 
status of ILI, the yearly Outbreaks threshold, and real-time ILI visit rate data plus 
forecasts for the next 4 weeks. It showed the estimation of future flu-like epidemics 
and whether there would be an outbreak epidemic. This information will provide 
government agencies, medical-related units, and general users a clear and concise 
data reference for epidemic trends. The concept of responsive web design (RDD) 
was added to the web system design, and therefore the system interface can be con-
nected with  devices of different resolution, including smart mobile devices and tab-
lets, and all users can achieve a good user experience.

In the future, it is possible to predict influenza-like epidemic trends with shorter 
historical data without sacrificing too much accuracy. In other words, it is possible 
to more rapidly predict outbreaks, and so the system can aid in achieving a faster 
response. This system can be combined with meteorological data, in which the daily 
maximum temperature difference and humidity data are highly correlated with influ-
enza induction. In addition, past outbreaks of influenza have often been accompa-
nied by variants of the influenza virus. The causes of recent pandemics have been 

Fig. 18  Early warning of influenza outbreaks
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related to pigs, influenza, and avian flu mutations. Combining this data with data 
regarding poultry epidemics, such as rates of culling rate or diagnosis, as well as 
poultry transport flow data, might be helpful for early prediction of flu occurrence 
and the risk of spreading. Moreover, comparative experiments of similar algorithms 
can also be performed in the future.
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