
Vol.:(0123456789)

The Journal of Supercomputing (2020) 76:3129–3154
https://doi.org/10.1007/s11227-019-03135-7

1 3

A memory scheduling strategy for eliminating memory
access interference in heterogeneous system

Juan Fang1 · Mengxuan Wang1 · Zelin Wei1

Published online: 10 January 2020
© The Author(s) 2020

Abstract
Multiple CPUs and GPUs are integrated on the same chip to share memory, and
access requests between cores are interfering with each other. Memory requests
from the GPU seriously interfere with the CPU memory access performance.
Requests between multiple CPUs are intertwined when accessing memory, and its
performance is greatly affected. The difference in access latency between GPU cores
increases the average latency of memory accesses. In order to solve the problems
encountered in the shared memory of heterogeneous multi-core systems, we propose
a step-by-step memory scheduling strategy, which improve the system performance.
The step-by-step memory scheduling strategy first creates a new memory request
queue based on the request source and isolates the CPU requests from the GPU
requests when the memory controller receives the memory request, thereby pre-
venting the GPU request from interfering with the CPU request. Then, for the CPU
request queue, a dynamic bank partitioning strategy is implemented, which dynami-
cally maps it to different bank sets according to different memory characteristics of
the application, and eliminates memory request interference of multiple CPU appli-
cations without affecting bank-level parallelism. Finally, for the GPU request queue,
the criticality is introduced to measure the difference of the memory access latency
between the cores. Based on the first ready-first come first served strategy, we imple-
mented criticality-aware memory scheduling to balance the locality and criticality of
application access.

Keywords Heterogeneous multi-core · Shared memory · Memory scheduling

 * Juan Fang
 fangjuan@bjut.edu.cn

 Mengxuan Wang
 mengxuanw13@emails.bjut.edu.cn

1 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

http://orcid.org/0000-0002-4542-8727
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-03135-7&domain=pdf

3130 J. Fang et al.

1 3

1 Introduction

Increasing computing demand has caused more and more attention to heterogene-
ous computing in recent years. Although a GPU-accelerated system consisting of
an independent CPU and an independent GPU can perform computational accel-
eration well for large loads, data transmission between the CPU and GPU is slow,
and the advantages of GPU computing require expert-level programming to take
advantage. In order to further leverage the computing power of GPUs, the intro-
duction of GPUs on the same chip with multiple CPU cores, known as a hetero-
geneous multi-core architecture, has attracted researchers’ attention [1]. When the
core on the same processor shares processor resources (cache, memory, on-chip
network resources [2], etc.), multiple applications running in parallel may inter-
fere with each other. Memory resources are the most critical shared resources. As
the number of cores increases, the memory access requests from different cores
are intertwined, interfere with each other, compete for limited memory resources,
and affect application and system performance.

Existing multi-core memory scheduling usually improves the system through-
put and fairness by arbitrating memory accesses and prioritizing memory
accesses [3–5]. The key to implementing an arbiter is to determine the priority
of memory requests by analyzing application characteristics and memory access
behavior. In addition, some researchers proposed to eliminate bank interference
by modifying the address mapping scheme [6, 7], where bank is the smallest divi-
sion of data read and written in parallel in the memory structure.

By using the CPU + GPU heterogeneous multi-core architecture, the competi-
tion for memory resources becomes more serious due to the completely different
characteristics of the CPU and GPU. The starting point of GPU design is that
GPUs are more suitable for compute-intensive and highly parallel applications.
The CPU is sensitive to memory latency, and its memory requests need to be
provided in a short amount of time. The GPU executes multiple threads by con-
currently using a single instruction multiple data pipeline. A thread within a warp
(GPU application execution scheduling unit) executes the same instruction with
different data resources. When the executing warp memory instruction stalls,
GPU hides the latency by switching to another warp to continue execution. Rela-
tive to CPU, each warp in GPU may have a large number of unfinished memory
requests, and GPU memory requests will occupy a large portion of the request
buffer. The existing multi-core memory scheduling determines the priority by
analyzing the memory request in the request buffer. Due to the competition of
GPU requests, there is less CPU memory in the request buffer. Previous memory
scheduling strategies analyzed the memory access behavior of CPU applications
based on the memory requests in the buffer. GPU requests affect the effectiveness
of the memory strategy, which affects memory performance.

In addition, GPU-only memory access policies are often implicitly assumed
to be equally important for memory requests from different cores. The GPU is
insensitive to latency but sensitive to memory bandwidth. The existing access
strategy focuses on improving bandwidth utilization and maximizing memory

3131

1 3

A memory scheduling strategy for eliminating memory access…

data throughput [8–10]. In fact, when executing a CUDA (Compute Unified
Device Architecture) application, different cores have different numbers of stalled
warps and different tolerances for delays. In particular, when the core contains
more warps waiting for data to be returned from DRAM, it is unlikely to tolerate
unfinished memory request delays, which means that these core requests are more
important than others.

For the interference between memory access and different latency tolerance
of the GPU core, we propose a step-by-step memory access strategy. The key
idea is to take into account the problems encountered in memory access in the
CPU + GPU heterogeneous architecture and solve them step by step. The strategy
consists of three steps: (1) the interference of the access request between CPU
and GPU. GPU memory requests occupy most of the memory request buffer,
limiting the visibility of CPU application memory behavior. Create two memory
request queues in the MC. When receiving memory requests, we put the access
requests into different queues to isolate CPU access requests and GPU access
requests according to the memory request source; (2) interference with access
requests between multiple CPU cores. By analyzing the application’s memory
access behavior, including access intensity and row buffer hit ratio, we classify
applications into different classes based on the application access behavior. We
limited different classes of application access to different bank to eliminate inter-
ference from memory requests when multiple applications are executing in par-
allel; (3) different latency tolerances between GPU cores. We introduced criti-
cality to represent the core latency tolerance, which is highly critical to cores
that are unacceptable for latency, giving high priority to critical requests. The
step-by-step memory access strategy can reduce the interference of GPU access
requests on CPU access requests and bank conflicts, and at the same time improve
the bank-level parallelism, and memory access latency differences between GPU
cores. The main contributions of our work are the following:

• This paper introduced the challenges encountered by the memory access sched-
uling in heterogeneous multi-core systems due to the introduction of GPU. A
large number of CPU memory requests limit the visibility of existing schedul-
ing algorithms to CPU application access behavior and the difference in memory
access latency among GPU cores.

• We proposed a step-by-step memory scheduling strategy, which consists of
three parts and is progressive. First, we simply isolate CPU requests from GPU
requests based on the memory request source in MC. For the CPU request, we
combined with the different needs of each application for the number of banks
according to the characteristics of multiple application access requests executed
in parallel and develop a dynamic appropriate bank partitioning rule for them.
For GPU requests, we introduced criticality to measure core latency tolerance
and reduce access request latency based on criticality, which is used to determine
the priority of the request.

• In the CPU + GPU heterogeneous system built by the gem5-gpu [11], we evalu-
ated the memory access scheduling strategy and experimental results showing
that the step-by-step memory scheduling strategy improves system performance.

3132 J. Fang et al.

1 3

The rest of this paper is organized as follows: Sect. 2 introduces the DRAM struc-
ture, which is used to analyze GPU and CPU access behavior and GPU core latency
differences. Section 3 discusses modern memory scheduling related work. Section 4
describes the challenges encountered in heterogeneous multi-core memory systems.
Section 5 introduces the dynamic bank partitioning strategy. Section 6 introduces
core criticality and proposes a criticality-aware scheduling strategy. Section 7 ana-
lyzes the experimental results. Finally, Sect. 8 contains experimental conclusions
and ideas for future work.

2 Background and motivation

2.1 Memory organization

DRAM usually contains one or more memory channels, and multiple different chan-
nels are executed in parallel. Each channel has an independent address, data, and
instruction bus. Each memory channel contains one or more ranks, and all ranks in
the same channel share resources. The MC can select a corresponding rank accord-
ing to the chip select signal to give a corresponding response to the memory access
command. Each rank contains multiple banks, and all banks in a rank share the com-
mand bus and address bus, reading and writing data in parallel at the same time.
A bank is a two-dimensional structure containing rows and columns, as shown in
Fig. 1. Generally, the line that selects the number of rows in the horizontal direc-
tion becomes the row, and the line that selects the transmission signal in the ver-
tical direction becomes the column. Each bank has a row buffer, and when read-
ing or writing data, it is required to put the contents of the row into the row buffer

Fig. 1 Bank structure

Column mux

Row buffer

Ro
w

 d
ec

od
er

Columns

rows

Data

3133

1 3

A memory scheduling strategy for eliminating memory access…

for temporary storage. The row buffer is required because the behavior of reading
or writing rows directly destroys the contents of the row. After the memory access
request reaches the MC, the MC parses the physical address into a correspond-
ing DRAM address including the channel id, rank id, bank id, row id, column id
according to a certain address mapping rule. The data to be accessed are at a spe-
cific location in the bank. Figure 2 shows the mapping rules in the Intel Xeon server
[12], which is a static address mapping that resolves a 32-bit physical address into a
DRAM address. Dynamic address mapping is commonly used in modern DRAM.

The latency caused by a basic DRAM operation includes the transfer time of the
memory request to the MC, the MC latency, and the DRAM bank operation latency.
MC latency includes queuing, scheduling latency, and the latency of converting
memory accesses into basic command. DRAM bank latency is determined by the
row buffer state. When the buffer is open, the latency only includes column access
operation latency (CAS), and when the row buffer is idle, the delay includes column
access operation latency (CAS) and row activation operation latency (RAS). In the
worst case, the row buffer is occupied, needs to be cleared by a precharge operation,
latency includes precharge operation latency, row activation latency, and column
access latency.

Column access: Read and write directly to the data in the target row in the row
cache based on the column address.

Row activation: Activates the target row in the data area based on the row address
and writes the entire row of the target row to the row cache. The row buffer must be
guaranteed to be idle before writing data; otherwise, it must be precharged.

Precharge: Write the data in the line buffer back to the data area of the bank and
clear the line buffer when the line buffer is idle.

2.2 CPU and GPU memory access behavior analysis

CPU and GPU applications have very different access characteristics [13]. GPU
applications contain a large number of parallel threads. By switching the warp to
hide the latency caused by memory stalls, GPU applications have more memory
requests than CPU. The experiment specifically shows the difference in memory
access behaviors between CPU and GPU applications through three metrics, namely
memory intensity, row buffer hit ratio, and bank-level parallelism. Select CPU appli-
cation from the SPEC CPU2006 benchmark [14] and select GPU application from
the Rodinia benchmark [15].

Row

Bank Bank

Row Column Byte
addr

Rank
Channel

Column

031 22 21 20 19 1615 14 1312 7 6 5 3 2

Column

Fig. 2 Intel xeon5645 address mapping

3134 J. Fang et al.

1 3

Figure 3 shows the comparison of memory intensity, defined as the number of
memory requests per thousand instructions (MPKI). It is apparent from the figure
that the memory intensity of the GPU application is much higher than that of the
CPU application. Figure 4 shows the comparison of row buffer hit ratio. The row
buffer hit ratio directly reflects the memory locality of the application. The figure
shows that the GPU application row buffer hit ratio is always high, while that of
the CPU is quite different. GPU applications have a high level of spatial locality
and are typically access patterns associated with sequential memory access. Figure 5
shows the bank-level parallelism, which refers to the parallel execution of multiple
access requests for different banks. Pipeline execution of multiple access requests
can hide the latency caused by serial execution. As shown in Fig. 5, the GPU appli-
cation bank-level parallelism is slightly higher than the CPU application. Compared
with the low memory intensity and low row buffer hit ratio of CPU applications,
GPU applications usually show high memory intensity and high row buffer hit ratio.
When the CPU and GPU compete for shared memory resources, GPU applications
will inevitably interfere with CPU applications. In the heterogeneous multi-core sys-
tem built by gem5-gpu, the default memory access scheduling policy determines the
priority based on the row buffer hit ratio, which seriously affects the memory access
of the CPU application.

Fig. 3 CPU and GPU application memory intensity comparison

Fig. 4 CPU and GPU application row buffer hit ratio comparison

3135

1 3

A memory scheduling strategy for eliminating memory access…

2.3 Memory access latency differences between GPU cores

Adwait [16] is the first to propose a latency difference between GPU cores and
improve the GPU memory scheduling strategy according to the core latency differ-
ence. Previous GPU access scheduling implicitly assumed that all requests from dif-
ferent cores were equally important, with the goal of increasing bandwidth utiliza-
tion and maximizing system throughput. The GPU focuses on improving the overall
performance of multiple concurrent execution threads by overlapping execution,
rather than minimizing the latency of a particular request or core. Adwait observed
that when a CUDA application is executed, the memory requests of different cores
compete for shared memory, regardless of the latency difference between cores,
resulting in uneven resource allocation. Different cores have different tolerances for
latency. In particular, if there are more warps in the core that are waiting for data
to be returned from DRAM, it is unlikely to tolerate unfinished memory request
latency. These core requests are more important than others.

2.4 Motivation

The integration of multi-core CPU and GPU on the same chip is because while
using the powerful computing power of the GPU, the impact of data communica-
tion has to be considered. However, the problems caused by integrating the CPU and
GPU on the same chip cannot be ignored, especially the competition for memory
resources. As analyzed in Sect. 2.2, there is a big difference between the memory
access behavior of the CPU and GPU. This asymmetric memory behavior seriously
affects the effect of the memory scheduling strategy applied by traditional multi-core
CPU systems. When the GPU is released on the same chip with a CPU core, in order
to maximize the computing power of the GPU, research on GPU memory request
scheduling is also urgent. In Sect. 2.3, we discussed that latency differences between
GPU cores can also affect system performance. Based on this, we have designed a
new CPU-GPU heterogeneous memory scheduler.

Fig. 5 CPU and GPU application bank-level parallelism comparison

3136 J. Fang et al.

1 3

3 Related work

3.1 Memory partitioning

Muralidhara et al. [17] proposed an application-based memory channel partition-
ing (MCP). According to the memory access behavior of different threads, different
memory channels are allocated for each application, and the memory access inter-
ference between threads is reduced. Relatively speaking, the MCP partition granu-
larity is too large. Since the growth rate of the number of threads in the system is
much higher than the increase of the number of memory channels, there will still be
a situation of shared memory channels, and the interference problem of the memory
access requests between the threads still exists. Some scholars [18, 19] proposed to
use the bank as the granularity, the memory access requests of different threads are
mapped to different banks, and the interference between multiple memory access
requests is truly eliminated. Our work uses a dynamic bank partitioning strategy
to develop the best bank partitioning rules for each thread, taking into account the
locality and parallelism of the memory access request.

3.2 Multi‑core memory scheduling

Mutlu et al. [20] proposed a parallel scheduling of memory access requests based on
parallelism (PAR-BS). PAR-BS mainly consists of two steps, batch scheduling and
memory access request parallelism. Batch scheduling refers to grouping memory
access requests according to the order in which the memory access requests arrive.
Parallelism refers to the parallel execution of access requests that access different
rows of different banks. The size of the group directly affects system performance.
PAR-BS does not consider the access requirements of different threads, and the
effect of improvement is limited.

3.3 GPU memory scheduling

Wang [21] proposed a GPU DRAM scheduling program that utilizes the last level
cached inter-core location information detected in the MSHR. The main reason for
the inter-core location is that multiple cores access shared read-only data in the same
cache line, and more threads resume execution by prioritizing memory requests at
high core locations. Our work leverages the core criticality concepts presented in
[16] to describe the difference in latency between cores, reducing core latency with-
out affecting access locality.

3.4 Heterogeneous multi‑core memory scheduling

Most of the scheduling algorithms analyze the request flow in the request buffer and
analyze the application characteristics to determine the core priority [22]. Rachata
[23] proposes that the GPU request seriously interferes with the CPU request,

3137

1 3

A memory scheduling strategy for eliminating memory access…

because the GPU request occupies the request buffer. Most of the space limits the
analysis of memory access behavior for CPU applications. In order to solve this
problem, we need to isolate CPU and GPU requests.

4 Memory scheduling challenge

4.1 GPU interference with CPU memory requests

As discussed in Sect. 2.2, GPU applications always maintain high memory inten-
sity and high row buffer hit ratios. The high memory access intensity shown by the
GPU makes GPU memory requests in the row buffer much more than CPU memory
requests. In the multi-core architecture, the memory scheduling policy is directed
to scenarios where there are only CPU memory requests in the row buffer. Usually,
the memory request scheduling policy determines the memory characteristics of the
application by analyzing the request flow of the request buffer, thereby determin-
ing the priority of the core or memory request. Figure 6a shows that in a multi-core
architecture, the row buffer contains only CPU access requests, and the MC analyzes
the information of these requests to determine the memory behavior of the applica-
tion. Figure 6b shows that under the CPU + GPU heterogeneous architecture, due
to the memory access density of the GPU application, a large number of requests
from the GPU occupy most of the MC request buffer, and there are few CPU access
requests. The CPU access request provides insufficient information to analyze the
memory behavior of the CPU application by the MC. This is one of the specific
manifestations of GPU interference with CPU memory access. On the other hand,
due to the high row buffer hit ratio of the GPU, according to the locality, the mem-
ory scheduling policy with the priority of the row buffer hit rate prioritizes the GPU
request and also interferes with the CPU memory access. In order to solve this prob-
lem, we simply created two request memory queues in the MC. According to the
request source, we divide it into CPU memory requests and GPU memory requests
and place them in two different request queues to isolate CPU and GPU memory

X X X X X X X X X X X X

X X X X X X X X X X X XX X X X

(a)

(b)

(c)

CPU

GPU X

Fig. 6 a CPU-only case, b MC’s visibility when CPU and GPU are combined, c Isolate CPU and GPU
memory requests

3138 J. Fang et al.

1 3

requests, as shown in Fig. 6c. For CPU request queue and GPU request queue, we
use different memory scheduling strategies, which are dynamic bank partitioning in
Sect. 5 and core critical scheduling in Sect. 6.

At runtime, the current processing queue needs to be selected. Our principle is
to prioritize CPU memory requests while ensuring that GPU applications can still
make reasonable progress. Therefore, we use a simple method to decide whether
the memory request is currently selected from the CPU queue or the GPU queue for
processing. When both queues have memory requests, we determine based on a con-
figurable threshold T–P and a randomly generated probability rp within the period.
If rp is less than T–P, then select the CPU queue, otherwise select the GPU queue.
To ensure that the CPU request has a high priority, the threshold T–P selection is
important. After the memory request is selected, different scheduling policies are
adopted according to the request type.

4.2 Memory access request interference between CPU cores

Even if the CPU and GPU memory requests are isolated, the memory access requests
between multiple CPU cores still interfere with each other. Memory systems mainly
rely on locality principles to increase bandwidth and reduce access latency. When
multiple CPU cores share memory, memory access requests from different cores are
intertwined and interfere with each other to compete for limited memory resources.
Request interference seriously destroys the characteristics of the original memory
access request, making the randomness of the memory access request increase.
Therefore, it is difficult to optimize the memory system by using the principle of
locality of memory access requests or improving the parallelism of memory access
requests. The locality of lbm is very high, and the row buffer hit rate is as high as
98% when running alone. When 4 lbm is executed in parallel, the row buffer hit
rate is reduced to 50%, which verifies that the memory access interference between
multiple threads destroys the locality of the application. Figure 7 is an example of a
memory access request interference between multiple cores. When a single thread is
executed in Fig. 7a, because the two memory accesses are in the same row, the sec-
ond memory access can directly perform column access operations. In Fig. 7b, there
are memory access interferences from other threads. Memory access requests that
are not in the same row need to be precharged, row activated, and column accessed
to read and write data. The lack of locality leads to an increase in latency and in sys-
tem power consumption that affects system performance.

The primary problem with memory scheduling is how to effectively eliminate
interference from access requests between applications and threads. The use of
resource partitioning to eliminate access interference is an effective solution. By
dividing the granularity of bank, the memory access requests between different
cores are isolated by mapping the memory access requests of different cores to dif-
ferent banks, and the original memory access request characteristics of each core are
retained to the greatest extent. The problem with keeping the local isolation bank is
to reduce the bank-level parallelism of the thread or application. In this experiment,
when scheduling queue requests for CPU memory, balancing locality and bank-level

3139

1 3

A memory scheduling strategy for eliminating memory access…

parallelism are problems that needs to be solved by using a dynamic bank partition-
ing strategy.

4.3 Latency difference between GPU cores

In Sect. 2.3, there is a difference in memory access latency between GPU cores.
When there is a large amount of stalling warp in a core, it will take more time to
wait for data to be returned from memory due to the lack of warp switching to hide
the memory latency. FR-FCFS [10] prioritizes locally, does not distinguish between
memory request sources, treating different core requests equally, so that the prob-
lems caused by latency differences between cores cannot be solved. When consider-
ing the difference in latency between cores, a simple idea is that the more stalling
warp exists in a core, the higher the core memory latency will be, and we give the
core higher priority. This idea breaks the access locality of the application when
considering the latency difference. How to consider the access locality and core
latency difference of an application at the same time is an urgent problem to be
coped with.

5 Dynamic bank partitioning strategy

Bank partitioning refers to limiting the access of different applications to different
banks and isolating memory access between multiple cores. In order to satisfy the
bank-level parallelism of the application while ensuring the locality of the program,
for the CPU request queue, we implemented a dynamic bank partitioning strategy.

According to the memory behavior analysis of the application in Sect. 2.2, dif-
ferent CPU applications have different memory intensity, row buffer hit ratio, and
bank-level parallelism. Regardless of the application memory characteristics, each
application is divided into equal banks, and the memory partition cannot be used.
Applications with high memory access are most affected by the performance of the

Commands

Data

A R

D

R

D

[1:0:0] [1:0:2]

Commands

Data

A R

D D

[1:0:0] [1:0:2]

[1:2:0]

P A R P A R

D

Addr:[bank:row:column]

A

R

P

Ac�vate

Read

Precharge

(a)

(b)

Fig. 7 Example of a memory access request interference between multiple cores

3140 J. Fang et al.

1 3

memory system. Applications with fewer access requests also have less memory
bandwidth and do not interfere too much with other applications with high memory
access intensity. The experiment focused on workloads with high memory access
intensity.

For access-intensive applications, we considered row buffer hit ratios. Applica-
tions with high buffer hit ratios have the greatest impact on receiving row buffer
local interference, which means that they benefit the most from bank partitioning.
For applications with high memory intensity and high row buffer hit ratios, an exclu-
sive bank is allocated to isolate interference. On the other hand, applications with
low row buffer hit ratios rely on bank-level parallelism, allowing such applications
to share multiple banks, stream access to different banks, and reduce access latency
for serial execution. According to the two key characteristics of application memory
intensity and row buffer hit ratio, different partitioning rules are dynamically applied
for different applications, and the locality of the memory and the parallelism of the
bank level is balanced.

5.1 Dynamic bank partition strategy design

The dynamic bank partitioning strategy is a cyclical dynamic strategy. During an
interval, the application access behavior information during the interval is first col-
lected, including the row buffer hit ratio and the number of memory accesses. At the
beginning of the next period, the application is grouped according to the memory
access information collected in the previous period, and different bank partitioning
rules are allocated for each type of application according to the grouping situation,
and the execution is continued according to the partitioning rule in this period, as
shown in Fig. 8.

The feasibility of setting the bank partitioning rule in the next period is the phase
of the application accessing behavior based on the application access behavior infor-
mation in the previous. Although the memory access of the application is difficult
to predict, experimental analysis shows that many programs are executed as phases,
and the memory behavior of each phase may be very different from other phases,
but in one phase, the memory behavior is similar. Figure 9 selects the similarity of
the four CPU application verification phases. The partitioning rules are discussed in

Interval Interval Interval

(1) Monitor access info

(2) Application grouping

(3) Assign bank partitioning rules

Bank partitioning

i i+1 i+2 i+3

Time

Fig. 8 Dynamic bank partition periodic process

3141

1 3

A memory scheduling strategy for eliminating memory access…

Sect. 5.1.2 and are divided into three categories. According to the application mem-
ory access behavior in the previous period, it is effective to set the bank partitioning
rule in the next period, and then, it will be wrong when the program classification
changes. In particular, this error will be corrected in the next period.

5.1.1 Monitoring application access behavior

Firstly, differentiate the request source and add a core id field for each memory
request. When the core issues a memory request, the memory request id field is
assigned and packaged and passed to the MC according to the core. The MC sets
two counters for each bank, a memory access counter and a row address counter,
which are, respectively, recorded in an interval, the number of memory access
requests received by each bank, and the row address of the last memory access.
Thus, the number of accesses and the hit ratio of each application during this period
are calculated.

5.1.2 Application grouping

Group applications are based on collected application access counts and row hit
ratio information. We set two thresholds, access intensity threshold (T-AI) and row
hit ratio threshold (T-RH). First, according to the T-AI, the application is divided
into two types: memory intensive and non-intensive. For access non-intensive appli-
cations, since there is little memory access for such applications, we do not need
to consider their hit ratio. For memory-intensive applications, it is divided into
two categories according to the T-RH: high hit ratio and low hit ratio. Finally, the
CPU applications that are executed in parallel are divided into three groups, that
is, the memory is non-intensive(NI), the memory access is intensive and hit rate
is low(ILH), the access intensive and the hit rate is high (IHH). The thresholds for
the access intensity and the row hit ratio are all set according to a large number of
experimental results (Table 1).

Fig. 9 Runtime program grouping

3142 J. Fang et al.

1 3

5.1.3 Bank partition rules

The bank partitioning rules for each type of application vary according to the access
characteristics of each group. Equation 1 defines a bank partition unit, BPU. In the
memory hierarchy in Eq. 1, the system has Nchannel channels, each channel has Nrank
ranks, and each rank has Nbank memory banks in the memory system, and NIntensive
represents the number of applications that access memory intensive.

The partitioning rules are reflected in the different BPUs assigned by different
applications.

1. Access non-intensive (NI), since this type of application has fewer access
requests, it will not interfere with other applications. At the same time, the num-
ber of banks is limited, so that such applications are not processed, and all banks
in the memory can be directly accessed.

2. The access intensive and the hit rate is low (ILH), and every two applications
in the group share 2 BPU. Although there are many application accesses in this
group, the row buffer conflict ratio is still high. The memory access latency causes
increasing memory access requests to be blocked in the memory request buffer,
and even the memory access request is starved. For this type of application, if
multiple applications access different banks, they can be executed in a pipeline,
making full use of bank-level parallelism to reduce the delay caused by serial
execution access. In this experiment, every two applications in the group share 2
BPU.

3. The access intensive and the hit ratio (IHH), and each application in the group is
assigned a BPU. The mutual interference between the applications in the group

(1)BPU =
Nchannel ∗ Nrank ∗ Nbank

NIntensive

Table 1 The rule of application grouping

3143

1 3

A memory scheduling strategy for eliminating memory access…

is serious, and the locality of the single application is also the highest. Therefore,
each application in the group is allocated a BPU to isolate the memory access
request between application requests, taking advantage of memory locality to
improve memory power consumption and access latency.

As shown in Fig. 10, the system channel = 1, rank = 2, bank = 8, and 4 applica-
tions are executed in parallel, where bench0 and bench1 are ILH, bench2 is IHH, and
bench3 is NI. N(channel) = 1, N(rank) = 2, N(bank) = 8, N(intensive) = 3, BPU = 5.
Bench2 has one BPU, bench1 and bench2 share two BPUs, and bench3 is uncon-
strained and is able to access all banks.

5.2 Workload

The bank partitioning strategy proposed by the experiment is effective for memory-
intensive applications and does not specifically deal with non-intensive applica-
tions. Obviously, when multiple applications are executed in parallel, the more non-
intensive applications are accessed, the less obvious the experimental results are.
To implement this, we need to choose the right application to verify the policy. We
chose CPU application from SPEC CPU 2006 [14], and according to the memory
intensity, it is classified into two types: memory access intensity and memory access
non-intensive. When the memory intensity is higher than 4, the memory access
is dense; otherwise, the memory access is non-intensive. Table 2 shows the CPU
benchmark classification, Class A indicates that the memory is intensive, and Class
B indicates that the memory is non-intensive.

bank0

bank1

bank2

bank3

bank4

bank5

bank6

bank7

bank0

bank1

bank2

bank3

bank4

bank5

bank6

bank7

Rank0 Rank1

bench2

bench0/bench1

Column

Row

Bank

Fig. 10 Bank partition example

3144 J. Fang et al.

1 3

6 Core criticality‑aware memory scheduling

6.1 Core criticality

We introduced core criticality to describe the difference in latency between cores,
and after storing CPU and GPU requests in different request queues, we imple-
mented core criticality-aware scheduling for GPU requests. When the core contains
more stalling warps waiting for data to be returned from DRAM, it is difficult to
tolerate unfinished memory request delays. We define the core tolerance for memory
latency as core tolerance. The quantification of core tolerance is divided into two
steps. First, when the MC receives a memory request, it distinguishes the source
of the memory request and counts the number of memory requests per core. When
there is no staling warp in the core, in other words, the warp in this core is execut-
ing the calculation instruction or the required data already exist in the private cache,
the core has no pending memory request. There is also no memory request from the
core in the memory request queue. It is expected that this core can provide latency
tolerance for memory. On the other hand, when the core has a long-waiting warp,
the memory request issued by the core remains in the memory request queue. The
next step is to, for each core, periodically calculate the ratio of memory requests
issued by the core to the total number of memory requests in the memory request
queue. The memory request issued by all cores is equal to the number of requests
in the memory request queue, so the ratio takes a value between 0 and 1. We use
this ratio to measure core latency tolerance. The higher the ratio, the more memory
requests the core is waiting to process, the lower the core latency tolerance.

Next, we need to determine if the core is critical based on core latency toler-
ance. The latency tolerance is a fraction from 0 to 1, which is quantized into 8 equal
parts for more convenient representation. For example, if the ratio is greater than
7/8, indicating that the core has a large number of pending memory requests, then
the core is considered to be the most critical, and set a criticality level of 0 for the
core. Ratio less than 1/8 means that the core has few memory requests to be pro-
cessed and the core has high latency tolerance. It is also considered that this core is

Table 2 CPU benchmark
classification

Application MPKI Class Application MPKI Class

400.perlbench 0.08 B 450.soplex 13.21 A
401.bzip2 4.10 A 454.calculix 0.04 B
410.bwaves 5.21 A 456.hmmer 2.82 B
416.games 0.12 B 458.sjeng 0.37 B
429.mcf 74.35 A 459.GemsFDTD 24.70 A
435.gromacs 1.12 B 462.libquantum 26.24 A
436.cactusADM 4.74 A 464.h264ref 1.22 B
437.leslie3d 14.79 A 470.lbm 28.30 A
444.namd 0.11 B 473.astar 5.19 A
445.gobmk 0.51 B 481.wrf 0.12 B

3145

1 3

A memory scheduling strategy for eliminating memory access…

the least critical, and the criticality level is set to 7. The core criticality level is from
0 to 7, divided into 8 levels. Whether a core is critical is determined by the level and
a Criticality rank Threshold (T-CR). When the T-CR is set to 4, the core is consid-
ered critical only if the core criticality level is less than or equal to 4, and the core
memory request is a critical request.

6.2 Criticality request percentage

After determining the value of T-CR, the memory requests in the memory request
buffer queue are divided into critical requests and non-critical requests. Use Criti-
cality Request Percentage (PCR) to indicate the percentage of critical requests in
the memory request buffer. High PCR means that most of the requests in the cur-
rent request buffer are considered critical and need to be prioritized. The competi-
tion between critical requests is still fierce, and the scheduler will prioritize critical
requests for a long time, seriously affecting the locality of the application. A low
PCR value means that only a small percentage of requests in the current request
buffer are considered critical, and critical memory-based requests are of little use.
If the PCR value is 100% or 0%, the core criticality will become less important.
What’s more, the value of PCR is very important since it is used to distinguish
between critical and non-critical requests and improve the effectiveness of critical-
based memory scheduling strategies.

(1) PCR changes with T-CR

The value of the T-CR determines the value of the PCR. In order to visually show
the effect of T-CR on PCR, Fig. 11 is represented by an example. The current core
number is 4, and Fig. 11a shows the criticality rank of the four cores, which are
2, 4, 5, and 7. Figure 11b shows that under the condition of Fig. 11a, the value of
T-CR is from 0 to 7, and the PCR also changes with T-CR. When TCRa > TCRb ,
[PCR(TCRa) ≥ PCR(TCRb)].

(2) PCR is related to the application

Fig. 11 PCR changes with T-CR

3146 J. Fang et al.

1 3

The difference in latency between cores is different from applications. If the value of
T-CR is fixed during the scheduling process, regardless of the change in core latency
difference, the appropriate PCR cannot be obtained, so that the critical request and
other requests coexist. We chose the Rodinia benchmark [15] to test the difference
in criticality rank of different applications. As shown in Fig. 12, the critical rank dif-
ference “diff” is defined as the range of core critical rank in the current MC. Diff-7
indicates that the current highest core criticality rank is 7 and the lowest is 0, which
also means that the criticality differences of the current core are very large, and it is
more suitable to use criticality to improve performance. Diff-0 means that the cur-
rent critical rank of all cores is the same, so that the core criticality is not important.
The ordinate of Fig. 12 is the percentage of DRAM cycles, which represents the
percentage of the cycle of difference in the different critical levels during the entire
execution of the application. Combining with the definition of diff, the more DRAM
cycle ratio of diff-7, the more obvious the latency difference between cores in the
whole execution process, and the effect based on criticality memory scheduling will
be more obvious. When the proportion of DRAM cycles of diff-0 is more, it means
that the core latency difference of this application is trivial, and the memory sched-
uling effect based on the locality of memory access will be good.

6.3 Balanced access locality and criticality

In the process of selecting the appropriate T-CR to allow critical requests and other
requests in the current memory request queue to coexist, we still need to balance
the locality and core criticality of the memory. We introduced a scheduling mode
threshold (T-MS), which dynamically switches based on the critical-based memory
scheduling policy and the local-based memory scheduling policy based on T-MS.
This dynamic switching scheduling strategy becomes a criticality-aware memory
scheduling (CAMS). As shown in Eq. 2, when the PCR is lower than the T-MS, the
critical-based memory scheduling strategy is selected. The use of critical ordering

Fig. 12 Core latency difference for different applications

3147

1 3

A memory scheduling strategy for eliminating memory access…

of memory requests gives priority to critical cores and their requests, resulting in
core priority services with low latency tolerance. When the PCR is higher than the
T-MS, it means that there are too many critical requests that are prioritized over
other requests, and the request is no longer important. Switching to the memory
scheduling policy FR-FCFS maximizes the row buffer hit ratio.

6.4 Algorithm design

The CAMS focus on the setting of T-CR and T-MS, which directly affects the per-
formance of the scheduling strategy. One of the simplest algorithms is to set an ini-
tial value for the T-CR and T-MS at the beginning of the run and fix it during execu-
tion, called static-CAMS. According to the discussion in Sect. 6.3, we know that the
latency differs from applications. The latency difference of the same application dur-
ing the execution is also changed, so the T-CR needs to dynamically change accord-
ing to the currently executed application. The T-MS is fixed, and the T-CR dynamic
update memory scheduling strategy is called semi-CAMS. According to the discus-
sion in Sect. 6.2, it is understood that T-MS dynamically changes with T-CR accord-
ing to the CAMS. Table 3 is criticality-aware memory scheduling pseudo-algorithm.

7 Simulations and results

7.1 Experimental methodology

7.1.1 Experimental environment

We used the gem5-gpu [11] and gem5-gpu internal DRAM simulators to evaluate
our proposed solution. gem5-gpu is a simulator that models tightly integrated CPU-
GPU systems. It builds on gem5 [24], a modular full-system CPU simulator, and

(2)PCR

⎧
⎪⎨⎪⎩

≤ TMS, criticality

> TMS, locality

= 0, criticality = locality

Table 3 Criticality-aware memory scheduling pseudo-algorithm

3148 J. Fang et al.

1 3

GPGPUSim [25], a detailed GPGPU simulator. Gem5-gpu is a configurable emula-
tor. We model a quad-core CPU, and a GPU heterogeneous multi-core system. The
system configuration is shown in Table 4. The simulation system is a multi-level
cache structure with a first-level cache (L1 Cache) and a second-level cache (L2
Cache). L1 Cache is fast but has high manufacturing cost and limited capacity. L2
Cache is equivalent to the buffer of L1 Cache. It stores data that the processor needs
but cannot hold in L1 Cache.

The size of L2 and L1 has a great impact on performance and will also affect the
memory scheduling effect, as shown in Fig. 13. In Fig. 13a, the L2 size increases
and the performance increases. However, when the L2 size increases from 2 to 4 M,
it can be seen that the increase in performance is not obvious. Obviously, the L2 size
increases to a certain extent, and the performance no longer changes significantly.
In addition, when the L2 size is set to 512 KB, our step-by-step scheduling strategy
has the highest performance improvement compared to the default policy. When L2
increases, the performance gap between the two decreases. The effect of L1 size in
Fig. 13b is similar to L2 size. Based on the above discussion, we configured both L1
and L2 size with smaller values, 32 KB and 512 KB, respectively.

7.1.2 Performance metrics

We use the speedup to measure system throughput. The formula is calculated as
3,IPCshared and IPCalone refer to the average number of instructions executed per
cycle(IPC)of the parallel application and the separate application, respectively. In

Table 4 Simulated system
parameters

Parameter Setting

CPU processor 4 cores, 3.25 GHZ, X86, out-of-order
GPU processor 4SM, 800 MHZ, X86, out-of-order
L1 Cache 32 KB private, 128b line, 2 way, LRU
L2 Cache 512 KB shared, 128b line, 8 way, LRU
DRAM 8 gb, channel/rank/bank: 1/2/8, Row

buffer size: 2 KB

Fig. 13 Impact of L2 cache size and L1 Cache size on system performance

3149

1 3

A memory scheduling strategy for eliminating memory access…

gem5-gpu, IPC can be obtained in stat.txt generated after the application is exe-
cuted. By integrating the McPAT power model and the GPUWattch model into the
gem5-gpu, it is also possible to collect system power consumption in the application
execution.

7.2 Individual CPU performance

First, after implementing a dynamic bank partitioning strategy for the CPU request
queue, we compare it with the FR-FCFS memory scheduling strategy. The bank par-
titioning strategy proposed is only effective for the memory-intensive application.
By currently running 4 CPU applications and 1 GPU application at the same time,
the proportion of memory-intensive applications is 100% and 50%, respectively. 4
CPU applications, which are all memory-intensive applications, hold 100%. 4 CPU
applications running at the same time hold 50%, with 2 memory-intensive appli-
cations, and 2 non-intensive applications. The experimental results are shown in
Figs. 14 and 15.

(3)Speedup =

n∑
i=1

IPCshared
i

IPCalone
i

Fig. 14 Performance and power of different schemes with 4 CPU applications

Fig. 15 Performance and power of different schemes with 8 CPU applications

3150 J. Fang et al.

1 3

Figure 14a shows the impact of dynamic bank partitioning strategies on per-
formance. Workloads 1–5, 4 memory-intensive CPU applications are executed in
parallel, and competing for shared memory is fierce. DBP isolates memory access
requests from different applications without affecting bank-level parallelism,
eliminating memory access interference between cores. In this case, performance
increased by up to 15.8% and the average increase of 13%. The applications of
workloads 6–10 executed in parallel have non-intensive applications. The experi-
mental results are not obvious, and the performance is improved by 6%. The change
in system energy consumption is shown in Fig. 14b in which workloads 1–5 reduce
power consumption by up to 9%. The proportion of memory-intensive applications
is different, as well as the effect of the strategy. We continued to select 8 CPU appli-
cations and 1 GPU application to execute in parallel, and application competed for
shared memory more intensively. In this case, performance is increased by up to
19%, with an average increase of 17%, and the power consumption goes down by
8%.

7.3 Individual GPU performance

After implementing a core criticality-aware memory scheduling for the GPU request
queue, we compare it with the FR-FCFS memory scheduling strategy. As shown
in Fig. 16, we compared four scheduling strategies, static-cams, semi-cams, cams,
and FR-FCFS. In fact, the first three scheduling strategies are improved on the
basis of FR-FCFS. The benchmark was taken from Rodinia benchmark [15], and
the experiment executed a GPU application separately. For static-cams, we set the
T-CR to 4 and the T-MS to 20%. Performance increased by 3% in average, with
the upper bound of to 1. For application nn, although performance did not improve,
there is in line with expectations. For semi-cams, we fixed the T-MS to 40%,

Fig. 16 System throughput of different schemes

3151

1 3

A memory scheduling strategy for eliminating memory access…

and the performance increased by 5% in average, and up to 14%. Compared with
static-cams, the effect has been improved. Finally, the observation of cams main-
tains the link between T-CR and T-SM, with an average performance increase of
9% and upper bound of 16%, and the effect is also improved compared with semi-
cams. Compared with FR-FCFS, cams sacrificed partial access locality in order to
reduce access latency for specific cores. We used the row buffer hit ratio to repre-
sent the locality of the application, and the core average latency represents a critical
scheduling effect, as shown in Fig. 17. Figure 17a collects the row buffer hit ratio
of the application. It can be seen that comparing with FR-FCFS, cams determine
the impact on the locality of the application memory access. At the same time, it is
observed from Fig. 17b that cams reduce the average core latency of the application,
which proves that cams balance the locality and criticality of the application.

7.4 Combined CPU‑GPU performance

Sections 7.3 and 7.4, respectively, select different memory scheduling strategies
for isolated CPU request queues and GPU request queues to improve their perfor-
mance. The step-by-step memory scheduling strategy combines the two strategies,
and the results are shown in Fig. 18. Four memory-intensive applications and one
GPU application form a workload. For example, workload1 refers to four CPU
applications and a GPU application streams. Performance increased by an average
of 17% and increased by up to 19%. Dynamic bank partitioning strategies for CPU
queues and core criticality-aware memory strategies effects for GPU queues can be
superimposed.

7.5 Hardware overhead

Set access count counter for each core to record the number of fetches per applica-
tion. In addition, we need to set the hit rate counter for the CPU core to record the
hit rate of the application. In order to achieve bank partitioning, two counters need
to be set for each bank. In order to implement criticality awareness strategies, the
critical to each core needs to be preserved. The biggest overhead is to create a mem-
ory request queue for isolating CPU and GPU fetches (Table 5).

Fig. 17 DRAM row buffer hit ratio and memory latency of critical requests

3152 J. Fang et al.

1 3

8 Conclusion

Introducing the GPU into a multi-core system, and being able to take advantage
of the computing power of the GPU to improve system performance, has brought
new challenges, especially resource competition between cores. In order to solve the
problem of shared memory contention, we proposed a step-by-step memory access
scheduling strategy. Our strategy also considered the memory interference of GPU
applications on CPU applications, the memory interference between multiple CPU
applications, and further considers the delay differences between GPU cores. Firstly,
the MC isolates CPU and GPU memory requests while receiving memory requests
depending on the source of the request. For the CPU memory request, the dynamic
bank partitioning strategy is adopted to dynamically allocate different banks for dif-
ferent types of applications, effectively eliminating the memory request interference
between applications without affecting the bank-level parallelism of the applica-
tion. Secondly, for the GPU request, considering the latency difference between the

Fig. 18 Impact of step-by-step scheduling strategy on system performance

Table 5 Hardware overhead

Name Function Size

Access-counter Periodically calculate the number of memory
access requests

(Ncpucore + Ngpucore) * log2 accessmax

hitRate-counter Periodically calculate hit rate Ncpucore * log2 hitRatemax

Bank pre-address Bank address of previous memory access Nch * Nrank * Nbank * log2 Nbank

Bank access Bank access per interval Nch * Nrank * Nbank * log2 Nbank

mc buffer size Request a copy of the buffer, isolating the
CPU and GPU request queue

300

Rank-counter Periodically calculate the critical level Ncpucore * log2 rankmax

3153

1 3

A memory scheduling strategy for eliminating memory access…

application cores, we introduced the core criticality, maintained a balance between
the two goals of maximizing the row buffer hit rate and reducing the core access
latency, and designed the criticality-aware scheduling strategy. CAMS balances
application access locality and criticality. The experiment was done in a heteroge-
neous multi-core system constructed by gem5-gpu. As for future work, we need to
consider how to apply this solution on real machines, since the experimental results
show that, compared with the default FR-FCFS strategy of gem5-gpu, the step-by-
step scheduling strategy improves the performance by an average of 17%, and the
maximum is 19%. We conclude that our method can effectively provide system per-
formance and the introduction of core criticality in heterogeneous memory systems
is a creative idea and a promising approach to improving the performance of hetero-
geneous systems in the future.

Acknowledgments This work is supported by Beijing Natural Science Foundation (4192007) and sup-
ported by the National Natural Science Foundation of China (61202076), along with other government
sponsors. The authors would like to thank the reviewers for their efforts and for providing helpful sugges-
tions that have led to several important improvements in our work. We would also like to thank all teach-
ers and students in our laboratory for helpful discussions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

 1. Lee JH, Shi W, Gil JM (2018) Accelerated bulk memory operations on heterogeneous multi-core
systems. J Supercomput 74(12):6898–6922

 2. Fang J, Lu Y, Liu S, Lu J, Chen T (2015) KL_GA: an application mapping algorithm for mesh-of-
tree (MoT) architecture in network-on-chip design. J Supercomput 71(11):4056–4071

 3. Kim Y, Han D, Mutlu O, Harchol-Balter M (2010) ATLAS: a scalable and high-performance sched-
uling algorithm for multiple memory controllers. In: HPCA—16 2010 the Sixteenth International
Symposium on High-Performance Computer Architecture, Bangalore, pp 1–12

 4. Subramanian L, Lee D, Seshadri V, Rastogi H, Mutlu O (2014) The blacklisting memory scheduler:
achieving high performance and fairness at low cost. IEEE 32nd International Conference on Com-
puter Design (ICCD), Seoul, pp 8–15

 5. Kim Y, Papamichael M, Mutlu O, Harchol-Balter M (2010) Thread cluster memory scheduling:
exploiting differences in memory access behavior. In: 43rd Annual IEEE/ACM International Sym-
posium on Microarchitecture, Atlanta, GA, pp 65–76

 6. Liu L, Cui Z, Xing M, Bao Y, Chen Y, Wu C (2012) A software memory partition approach for
eliminating bank-level interference in multicore systems. In: 21st International Conference on Paral-
lel Architectures and Compilation Techniques (PACT), Minneapolis, MN, pp 367–375

 7. Wei M, Feng X, Xue J, Jia Y (2014) Software-hardware cooperative dram bank partitioning for chip
multiprocessors. In: Ifip International Conference on Network and Parallel Computing. Springer

 8. Jog A, Kayiran O, Nachiappan NC, Mishra AK, Kandemir M, Mutlu O, Iyer R, Das C (2013) OWL:
cooperative thread array aware scheduling techniques for improving GPGPU performance. In:

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

3154 J. Fang et al.

1 3

Proceedings of the Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM

 9. Lakshminarayana NB, Lee J, Kim H, Shin J (2012) DRAM scheduling policy for GPGPU architec-
tures based on a potential function. IEEE Comput Archit Lett 11(2):33–36

 10. Rixner S, Dally WJ, Kapasi UJ, Mattson P, Owens JD (2000) Memory Access Scheduling. ACM
Sigarch Comput Archit News 28(2):128–138

 11. Power J, Hestness J, Orr MS, Hill MD, Wood DA (2015) gem5-gpu: a heterogeneous CPU–GPU
simulator. IEEE Comput Archit Lett 14(1):34–36

 12. Gao K, Fan D, Wu J, Liu Z (2015) Decoupling contention with victim row-buffer on multicore
memory systems. In: 2015 IEEE international parallel and distributed processing symposium work-
shop, Hyderabad, pp 454–463

 13. Fang J, Zhang X, Liu S, Chang Z (2019) Miss-aware LLC buffer management strategy based on
heterogeneous multi-core. J Supercomput 2019:1–10

 14. SPEC CPU2006. http://www.spec.org/spec2 006
 15. Che S, Boyer M, Meng J, Tarjan D, Sheaffer WJ, Lee S, Skadron K (2009) Rodinia: a benchmark

suite for heterogeneous computing. In: 2009 IEEE International Symposium on Workload Charac-
terization (IISWC), Austin, TX, pp 44–54

 16. Jog A, Kayiran O, Pattnaik A, Kandemir MT, Mutlu O, Iyer R, Das C (2016) Exploiting core criti-
cality for enhanced GPU performance. In: The 2016 ACM SIGMETRICS International Conference.
ACM

 17. Muralidhara SP, Subramanian L, Mutlu O, Kandemir M, Moscibroda T (2011) Reducing memory
interference in multicore systems via application-aware memory channel partitioning. In: 44th
annual IEEE/ACM international symposium on microarchitecture (MICRO), Porto Alegre, pp
374–385

 18. Jeong MK, Yoon DH, Sunwoo D, Sullivan M, Lee I, Erez M (2012) Balancing DRAM locality and
parallelism in shared memory CMP systems. In: IEEE International Symposium on High-Perfor-
mance Comp Architecture, New Orleans, LA, pp 1–12

 19. Xie M, Tong D, Huang K, Cheng X (2014) Improving system throughput and fairness simultane-
ously in shared memory CMP systems via dynamic bank partitioning. In: 20th International Sympo-
sium on High Performance Computer Architecture (HPCA), Orlando, FL, pp 344–355

 20. Mutlu O, Moscibroda T (2008) Parallelism-aware batch scheduling: enhancing both performance
and fairness of shared DRAM systems. In: 2008 International Symposium on Computer Architec-
ture, Beijing, pp 63–74

 21. Li D, Tor MA (2016) Inter-core locality aware memory scheduling. IEEE Comput Archit Lett
15(1):25–28

 22. Wang H, Singh R, Schulte M, Kim NS (2014) Memory scheduling towards high-throughput coop-
erative heterogeneous computing. In: 23rd International Conference on Parallel Architecture and
Compilation Techniques (PACT), Edmonton, AB, pp 331–341

 23. Ausavarungnirun R, Chang KKW, Subramanian L, Loh GH, Mutlu O (2012) Staged memory sched-
uling: Achieving high performance and scalability in heterogeneous systems. In: 39th Annual Inter-
national Symposium on Computer Architecture (ISCA), Portland, OR, pp 416–427

 24. Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR, Krishna
T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood DA (2011) The gem5 simula-
tor. ACM SIGARCH Comput Archit News 39(2):1–7

 25. GPGPU-Sim. http://www.gpgpu -sim.org. Accessed 25 Jan 2018

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://www.spec.org/spec2006
http://www.gpgpu-sim.org

	A memory scheduling strategy for eliminating memory access interference in heterogeneous system
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Memory organization
	2.2 CPU and GPU memory access behavior analysis
	2.3 Memory access latency differences between GPU cores
	2.4 Motivation

	3 Related work
	3.1 Memory partitioning
	3.2 Multi-core memory scheduling
	3.3 GPU memory scheduling
	3.4 Heterogeneous multi-core memory scheduling

	4 Memory scheduling challenge
	4.1 GPU interference with CPU memory requests
	4.2 Memory access request interference between CPU cores
	4.3 Latency difference between GPU cores

	5 Dynamic bank partitioning strategy
	5.1 Dynamic bank partition strategy design
	5.1.1 Monitoring application access behavior
	5.1.2 Application grouping
	5.1.3 Bank partition rules

	5.2 Workload

	6 Core criticality-aware memory scheduling
	6.1 Core criticality
	6.2 Criticality request percentage
	6.3 Balanced access locality and criticality
	6.4 Algorithm design

	7 Simulations and results
	7.1 Experimental methodology
	7.1.1 Experimental environment
	7.1.2 Performance metrics

	7.2 Individual CPU performance
	7.3 Individual GPU performance
	7.4 Combined CPU-GPU performance
	7.5 Hardware overhead

	8 Conclusion
	Acknowledgments
	References

