
Vol.:(0123456789)

The Journal of Supercomputing (2019) 75:4519–4528
https://doi.org/10.1007/s11227-019-02763-3

1 3

Miss‑aware LLC buffer management strategy based
on heterogeneous multi‑core

Juan Fang1 · Xibei Zhang1 · Shijian Liu1 · Zeqing Chang1

Published online: 20 February 2019
© The Author(s) 2019

Abstract
When multiple processor (CPU) cores and a GPU integrated together on the same
chip share the last-level cache (LLC), the competition for LLC is more serious. CPU
and GPU have different memory access characteristics, so that they have differences
in the sensitivity of LLC capacity. For many CPU applications, a reduced share of
the LLC could lead to significant performance degradation. On the contrary, GPU
applications have high number of concurrent threads and they can tolerate access
latency. Taking into account the GPU program memory latency tolerance character-
istics, we propose an LLC buffer management strategy (buffer-for-GPU, BFG) for
heterogeneous multi-core. A buffer is added on the side of LLC to filtrate stream-
ing requests of GPU. Cache-insensitive GPU messages directly access to buffer
instead of accessing to LLC, thereby filtering the GPU request and freeing up the
LLC space for the CPU application. Then, for the different characteristics of CPU
and GPU applications, an improved LRU replacement taking into account the recent
access time and access frequency of the cache block is adopted. The cache misses-
aware algorithm dynamically selects the improved LRU or LRU algorithm to fit the
current operating state by comparing the miss rate of cache in buffer so that the per-
formance of the system will be improved significantly.

Keywords Heterogeneous multi-core · LLC · Replacement strategy · Miss-aware

 * Juan Fang
 fangjuan@bjut.edu.cn

 Xibei Zhang
 s201507147@emails.bjut.edu.cn

 Shijian Liu
 s201507008@emails.bjut.edu.cn

 Zeqing Chang
 mermantsing@gmail.com

1 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

http://orcid.org/0000-0002-4542-8727
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02763-3&domain=pdf

4520 J. Fang et al.

1 3

1 Introduction

Heterogeneous multi-core systems present new challenges by introducing inte-
grated graphics processing units (GPUs) on the same die with CPU cores. In order
to reduce the data transfer between memory and video memory and improve the
efficiency of the system, researchers proposed the shared last-level cache (LLC)
architecture, which is designed to store shared data between the CPU and GPU in
the LLC to speed up program execution and reduce memory read and write times.
However, CPU and GPU core heterogeneity have also caused competition for
LLC space [1]. GPU applications can achieve more data access rates than CPU
applications, so most of the available shared cache space will be occupied by
GPU applications, leaving only a small amount of space for the CPU application.
Compared to the CPU, the number of GPU threads is larger. When a long delay
event is encountered, it is possible to switch from one thread to another, and then
switch back to the previous thread to continue execution if there is sufficient data
level parallelism, which can ignore the memory delay. Therefore, the size of the
cache has less impact on the GPU application, and the CPU application is more
sensitive than the GPU application on the cache size. From this point of view,
CPU applications theoretically require more buffer space than GPU applications
and actually get less cache space. Effective management of LLCs and improve-
ment in LLC cache utilization have important implications for optimizing the
overall performance of the system.

We propose a miss-aware LLC buffer management strategy based on hetero-
geneous multi-core. First, we create a buffer with the same structure and location
adjacent to the LLC. By analyzing the cache sensitivity of the application, cache-
insensitive GPU messages directly access the buffer without accessing the LLC,
thereby filtering the GPU requests and freeing up the LLC space for CPU appli-
cations. In addition, we have improved LRU replacement strategy and proposed a
LFRU (least frequently recently used) replacement strategy, adding a comparison
of the frequency of data blocks accessed. According to the level of the buffer
missing rate in the interval, we dynamically choose whether to use LRU or LFRU
to improve system performance.

2 Related work

The traditional cache replacement strategies include random replacement strat-
egy, FIFO, MRU, LFU, and LRU. The current cache management strategies are
mainly divided into two categories, cache partitioning and cache replacement
algorithms.

Recent research has employed page coloring mechanism to realize cache
partitioning on real system. Zhang et al. [2] proposed a page coloring dynamic
cache partitioning mechanism based on malloc allocator. Malloc allocator can be
dynamically partitioned among different applications according to partitioning

4521

1 3

Miss‑aware LLC buffer management strategy based on…

policy. Only coloring the dynamically allocated pages can remit memory pres-
sure and reduce page copying overhead led by re-coloring compared to all-page
coloring. Data prefetching is a well-known technique to hide the memory latency
in LLC. Mahmood and Hamid [3] separate the pattern length from the prefetch-
ing degree and design an aggressive prefetcher that can generate more addresses
with a given pattern length. This adaptive method is suitable for CMP proces-
sors where the prefetcher resides in the shared LCC. Li et al. [4] and others used
the GPU’s memory delay tolerance feature to propose a buffer filter strategy for
sharing LLC. This strategy adds a buffer filter to the memory. When the GPU
application caches the data or the instruction is missing, it sends the GPU request
message to LLC and buffer filter. If there is a hit in LLC, the message is directly
returned; if hit in the buffer filter, the data block needs to be sent to LLC; Hao
et al. [5] and others considered the memory delay tolerance of GPU programs
and proposed a new bypass mechanism. The bypass technology forwards a part
of the application’s access requests to the memory, leaving cache space for other
applications, which can alleviate the application contention for LLC. This method
changes the cache coherence protocol MESI_Two_Level so that the GPU applica-
tion can directly access the memory and separate the CPU and GPU applications
from the shared cache access. Results show that when the CPU application is
cache sensitive and the GPU application is cache insensitive, the overall perfor-
mance of the system is significantly improved.

3 Buffer‑for‑GPU

3.1 Memory access behavior

In general, the number of GPU cores is far more than the number of CPU cores,
so the number of GPU application accesses will be much larger than the num-
ber of CPU application accesses [6, 7]. The average number of LLC accesses
per 1000 clock cycles of benchmarks was statistically calculated. The number of

0
2
4
6
8

10
12
14

CP
U

 c
ac

he
 a

cc
es

s c
ou

nt

pe
r t

ho
us

an
d

cl
oc

k
cy

cl
es

Benchmarks

0
200
400
600
800

1000
1200

ba
ck
pr
op

pa
r�
cl
efi

lte
r

bf
s

pa
th
fin

de
r

sr
ad nn

ho
ts
po

t

ga
us
sia

n

st
re
am

cl
us
te
r

km
ea
ns

GP
U

 c
ac

he
 a

cc
es

s c
ou

nt
 p

er

th
ou

sa
nd

 c
lo

ck
 c

yc
le

s

Benchmarks

(a) (b)

Fig. 1 CPU and GPU cache access count per 1000 clock cycles

4522 J. Fang et al.

1 3

LLC memory accesses per 1000 clock cycles of the CPU is shown in Fig. 1a and
GPU is shown in Fig. 1b.

From the results of Fig. 1a, b, the average number of LLC memory accesses
per 1000 clock cycles of the CPU is 5, and the maximum number is 12. The
average number of accesses to the GPU for each 1000 clock cycles is 341, and
the maximum number is 1100.

It is obvious that the number of GPU accesses is much higher than the num-
ber of CPU accesses. According to the rules of the LRU, when CPU and GPU
applications share the LLC, LRU implicitly allocates most of the LLC space
to applications that have a large number of accesses, whereas CPU applica-
tions that have fewer accesses only can share a small part of the shared LLC
resources, leading to a decline in overall performance.

3.2 Cache sensitivity

Cache sensitivity indicates how much application performance can benefit from
increased cache capacity. For GPU applications, multiple threads form a warp,
the unit of scheduling [8, 9]. When a memory access block occurs, there will be
a quick context switch without affecting the normal operation of the program.
Therefore, the number of concurrent threads of the GPU application can be used
as a criterion for judging the cache sensitivity.

The experiment adopts Fermi [10] architecture. The maximum number of
warps in each GPU core is 48. We selected a threshold as a criterion for judging
whether the GPU application is cache sensitive. By a large number of experi-
ments, set the threshold to 40. Obtain the average number of warps in the cur-
rent interval while the GPU application is running, and compare it to the thresh-
old. If it is greater than the threshold, it is determined that the GPU application
is cache insensitive, otherwise the GPU application is determined to be cache
sensitive.

Private
L1 Cache

Private
L1 Cache

Private
L1 Cache

Private
L1 Cache

Private
L1 Cache

Private
L1 Cache

LLC DRAM
Controller

CPU0 CPU1 GPU0 GPU1 GPU3GPU2

On-chip Interconnection Network

Buffer

Fig. 2 Heterogeneous architecture with LLC buffer

4523

1 3

Miss‑aware LLC buffer management strategy based on…

3.3 Implementation of BFG

The CPU and GPU have different access behaviors. The LLC is dominated by thou-
sands of memory accesses from GPU application threads, and the GPU has high
memory latency tolerance, resulting in existing cache sharing strategy that is ben-
eficial to the GPU core. CPU cannot reasonably use resources to cause performance
degradation.

In response to the GPU application’s occupation of LLC, we limit the GPU
access to the LLC by creating a GPU-exclusive buffer (buffer) to the memory sys-
tem. As shown in Fig. 2, we modify the configuration file to create a GPU-exclusive
buffer with the same structure as the LLC. It is stipulated that the IDs of LLC and
buffer are different, and the size of the buffer can be dynamically modified (the size
is initially set to 6% of the LLC size). The memory access request is tracked, and the
0/1 flag is used to distinguish between different core memory access requests. The
number of concurrent threads of the GPU application is obtained at the upper-level
cache, and the cache sensitivity of the GPU application is determined in compari-
son with the threshold. When the access request message in the upper-level cache
reaches the last-level cache, the message type is first judged in the port, and differ-
ent address space mapping is performed on the request from the CPU core or the
GPU core. Request from the CPU application directly accesses the LLC. For GPU
access requests, it is necessary to determine the cache sensitivity of the application.
If it is cache insensitive, then access the buffer and do not access the LLC; if it is
cache sensitive, directly access the LLC. By this method, the purpose of filtering
the GPU stream request is achieved, and the LLC application space is freed for CPU
application.

4 Miss‑aware LLC buffer management strategy

LRU replacement strategy only considers the recent access information of the data
block and does not consider the frequency of access to the data block. When the cache
capacity is less than the working set of the program, cache will exhibit jitter phenom-
enon, which will lead to a decrease in the performance of the computer [11]. Based on
BFG, we propose least frequently recently used (LFRU) replacement strategy for dif-
ferent features of CPU applications and GPU applications. LFRU adds a comparison
of the frequency of data blocks to be accessed when selecting a sacrificial block. If the
access frequency is high, the data block has a high priority; otherwise, the data block
has a low priority. If the access frequency of adjacent data blocks is the same, then
whether or not the access block is a relatively recent access block is considered. Among
the access blocks with the same frequency, the priority value of the most recently
accessed data block is higher. When there is no data block to be accessed in the queue,
the block with the lowest priority needs to be selected as a victim block and swapped
out. Combined with LRU and LFRU, we propose missing-aware LLC buffer manage-
ment strategy (miss-aware buffer-for-GPU, MBFG). MBFG monitors its performance
indicators during program execution based on the state of GPU application execution
and dynamically switches the replacement strategy that favor the current operating

4524 J. Fang et al.

1 3

state. The performance judging index is measured based on the GPU cache miss rate.
At run time, the missing rate threshold and time interval are set to periodically moni-
tor the running status of the application. If the current use of the replacement strategy
results in a higher buffer miss rate, it is switched to another alternative strategy.

The L2 cache receives the cache request from the L1, uses the LRU replacement
strategy in the initial state, and then monitors the GPU access information at each time
interval. The buffer missing rate evaluation index is calculated according to the number
of missing GPU accesses and is compared with the previous stage. The buffer missing
rate is compared to dynamically switch the replacement strategy that is beneficial to the
current operating state, thereby reducing the buffer missing rate.

Missing perception-based dynamic replacement strategy needs to calculate the
buffer miss rate in the interval and set the interval to 100 k clock cycles. According to
the GPU accesses miss information and GPU access hit information collected during
the interval, the GPU miss rate is calculated. The formula is shown in Eq. 1. Among
them, cur_miss_rate represents the buffer missing rate, cur_misses represents the GPU
access missing number, and cur_hits represents the GPU access hits.

In order to dynamically compare the missing rate of buffer, the missing rate of the
previous stage needs to be calculated. The missing rate in the previous phase is defined
as the total missing rate of buffer in consecutive time intervals that used different
replacement strategies.

According to the GPU accesses miss information and GPU access hit information
collected in the previous stage, the miss rate of the GPU in the previous stage is calcu-
lated, and the initial value is set to 80%. The formula is shown in Eq. 2. last_miss_rate
represents the missing rate of the previous stage, last_misses represents the GPU miss-
ing number, and last_hits represents the GPU access hits of the previous stage.

The missing rate of the GPU can reflect the utilization efficiency of the GPU for
the buffer space in the interval. If it is detected that the missing rate of the GPU is in
a relatively high state, it means that the currently used replacement strategy may not
be suitable for the current running state. The key of MBFG is to switch replacement
algorithms by comparing the missing rate of the buffer. In order to prevent the previous
stage from becoming more and more in the process of replacing the policy switching,
when the missing rate in the previous stage is greater than the threshold, it is manu-
ally modified to 80%. Based on a large number of experimental, we set a missing rate
threshold of 90%.

5 Experimental results

We use the gem5-gpu simulator [12] to simulate a heterogeneous processor with 2
CPU cores, 4 GPU cores, each with its own L1 cache, and a shared L2 cache. Each
workload consists of a SPEC CPU2006 benchmark and a GPU application selected
from Rodinia. This paper uses the instruction per cycle (IPC) executed in the unit

(1)cur_miss_rate = cur_misses ÷
(

curmisses + cur_hits
)

.

(2)last_miss_rate = last_misses ÷ (last_misses + last_hits).

4525

1 3

Miss‑aware LLC buffer management strategy based on…

period as the main performance evaluation indicator. The IPC formula is shown in
Eq. 3.

The experiment compares the performance measured based on MBFG with the
traditional architecture, the 0.25-fold increase in the LLC capacity architecture,
and the BFG architecture. CPU IPC comparison of LLC buffer management policy
based on missing-aware replacement algorithm is shown in Fig. 3 and GPU IPC in
Fig. 4. CPU LLC hit rate is shown in Fig. 5.

Analyzing the experimental data, the average IPC of the BFG architecture com-
pared to the traditional heterogeneous multi-core architecture has increased by
2.48% up to 3.80%. CPU application hit rate increased by an average of 70.45%.

(3)IPC =

n−1
∑

i=0

Instructions
i
∕Cycles.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

C
PU

 IP
C

Benchmarks

without buffer

1.25MB unified
LLC

with buffer

Buffer with
missing-aware

Fig. 3 CPU IPC comparison of LLC buffer management policy based on missing-aware replacement
algorithm

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

G
PU

 IP
C

Benchmarks

without buffer

1.25MB unified LLC

LRU in buffer

Buffer with missing-
aware

Fig. 4 GPU IPC comparison of BFG

4526 J. Fang et al.

1 3

Compared with the heterogeneous LLC buffer management mechanism architecture
based on multicore, CPU IPC and CPU LLC hit rates remain unchanged. There-
fore, using a missing-aware-based dynamic replacement strategy in buffer does not
affect the performance of the CPU application. Compared with traditional heteroge-
neous multi-core architectures, MBFG improves GPU performance by an average
of 11.10%. Among them, the GPU performance improvement from the benchmark
nn in the data mining field is the best and the improvement is as high as 13.52%.
Compared with the increase in the 0.25-fold LLC capacity architecture, the GPU
performance is improved by 12.36%. The GPU performance of streamcluster, which
also comes from the data mining field, increased by 13.18%. The GPU performance
of the hotspot in the field of physical simulation increased by 13.32%, which was
higher than the average of the performance improvement. The BFG was used in the
buffer architecture. After the strategy, the performance of the test procedures in the
above areas has improved.

6 Conclusions

This paper proposes a heterogeneous cache-based LLC buffer management mecha-
nism. This strategy attempts to free up the LLC space for CPU applications by creat-
ing GPU-exclusive buffers and achieve separation of memory access by CPU and
GPU applications. In addition, this paper applies the dynamic replacement strategy
based on the missing perception to the buffer. According to the missing rate of the
buffer in the comparison time interval, it can dynamically switch the replacement
strategy that is beneficial to the current operating state and further improve the sys-
tem performance.

The experimental results show that the heterogeneous cache management mecha-
nism based on heterogeneous LLC can effectively relieve CPU and GPU applica-
tions’ contention for shared cache, ensure the efficiency of CPU utilization for
LLC, and improve the performance of CPU applications; buffer performs effective

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

CP
U

 L
LC

 h
it

ra
te

Benchmarks

without buffer

with buffer

Buffer with
missing-aware

Fig. 5 CPU LLC hit rate comparison of MBFG

4527

1 3

Miss‑aware LLC buffer management strategy based on…

management, uses a dynamic replacement strategy based on missing awareness,
optimizes the buffer management scheme, improves the performance of GPU appli-
cations, and improves the overall performance of the system.

Benchmark used in the experiment covers different fields. According to the
results, the proposed cache management strategy has different effects on different
applications, and the performance of applications in the fields of data mining and
physical simulation is greatly improved. Efficient cache management technology can
help data center to perform better. Our proposed cache management strategy can be
applied to high-performance data center instead of traditional methods.

Acknowledgements This work is supported by the National Natural Science Foundation of China (Grant
No. 61202076), along with other government sponsors. The authors would like to thank the reviewers
for their efforts and for providing helpful suggestions that have led to several important improvements in
our work. We would also like to thank all teachers and students in our laboratory for helpful discussions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

 1. Le TT, Ning R, Zhao D, Wu H, Bayoumi M (2017) Optimizing the heterogeneous network on-chip
design in manycore architectures. In: 2017 30th IEEE International System-on-Chip Conference
(SOCC), pp 184–189

 2. Zhang L, Liu Y, Wang R, Qian D (2014) Lightweight dynamic partitioning for last-level cache of
multicore processor on real system. J Supercomput 69(2):547–560

 3. Mahmood NT, Hamid SA (2014) Adaptive prefetching using global history buffer in multicore pro-
cessors. J Supercomput 68(3):1302–1320

 4. Li S, Meng J, Yu L, Ma J, Chen T, Wu M (2015) Buffer filter: a last-level cache management policy
for CPU-GPGPU heterogeneous system. In: IEEE International Conference on High Performance
Computing and Communications IEEE, pp 266–271

 5. Fang J, Hao X, Fan Q, Chang Z, Song S (2017) Improving the performance of heterogeneous multi-
core processors by modifying the cache coherence protocol. In: International Conference on Materi-
als Science AIP Publishing LLC, pp 1–29

 6. Ausavarungnirun R, Chang K, Subramanian L, Loh GH, Mutlu O (2012) Staged memory schedul-
ing: achieving high performance and scalability in heterogeneous systems. In: International Sympo-
sium on Computer Architecture ACM, pp 416–427

 7. Coşkun Ç, Cüneyt FB (2013) Energy and buffer aware application mapping for networks-on-chip
with self similar traffic. J Syst Archit 59(10):1364–1374

 8. Ausavarungnirun R, Ghose S, Kayiran O, Loh GH, Das CR, Kandemir MT, Multu O (2015)
Exploiting inter-warp heterogeneity to improve GPGPU performance. In: International Conference
on Parallel Architecture and Compilation IEEE, pp 25–38

 9. Yu L, Chen T, Wu M, Liu L (2014) Buffer on last level cache for CPU and GPGPU data sharing.
In: 2014 IEEE International Conference on High Performance Computing and Communications, pp
417–420

 10. Heinecke A, Klemm M, Bungartz HJ (2012) From GPGPU to many-core: Nvidia fermi and intel
many integrated core architecture. Comput Sci Eng 14(2):78–83

 11. Lee J, Kim H (2012) TAP: A TLP-aware cache management policy for a CPU-GPU heterogeneous
architecture. In: IEEE International Symposium on High-Performance Comp Architecture, pp 1–12

 12. Power J, Hestness J, Orr MS, Hill MD, Wood DA (2015) gem5-gpu: A Heterogeneous CPU-GPU
Simulator. IEEE Comput Archit Lett 14(1):34–36

http://creativecommons.org/licenses/by/4.0/

4528 J. Fang et al.

1 3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Miss-aware LLC buffer management strategy based on heterogeneous multi-core
	Abstract
	1 Introduction
	2 Related work
	3 Buffer-for-GPU
	3.1 Memory access behavior
	3.2 Cache sensitivity
	3.3 Implementation of BFG

	4 Miss-aware LLC buffer management strategy
	5 Experimental results
	6 Conclusions
	Acknowledgements
	References

