
J Supercomput (2018) 74:1497–1509
https://doi.org/10.1007/s11227-018-2235-7

Parallelization of stochastic bounds for Markov chains
on multicore and manycore platforms

Jarosław Bylina1

Published online: 27 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract The author demonstrates the methodology for parallelizing of finding
stochastic bounds for Markov chains on multicore and manycore platforms. The
stochastic bounds algorithm for Markov chains with the sparse matrices is investi-
gated, thus needing a lot of irregular memory access. Its parallel implementations
should scale across multiple threads and characterize with a high performance and
performance portability between multicore and manycore platforms. The presented
methods are built on the usage of two parallelization extensions of the C++ language:
OpenMP and Cilk Plus. For this two extensions, we use two programming models,
namely loop parallelism and task-based parallelism. The numerical experiments show
the execution time of the implementations and the scalability on multicore and many-
core platforms. This work provides the parallel implementations and at the same time
presents an educational example of how computer science problems with irregular
memory access can be implemented for high performance using OpenMP and Cilk
Plus.

Keywords Intel Xeon Phi · Stochastic bounds of Markov chains · Sparse matrices ·
Intel Cilk Plus · Task-based parallelism · For-loop parallelism

1 Introduction

Modeling real complex systems with the use of Markov chains is a well-known and
recognized method giving good results [20]. However, in spite of its numerous merits,

B Jarosław Bylina
jaroslaw.bylina@umcs.pl; jmbylina@hektor.umcs.lublin.pl

1 Institute of Mathematics, Marie Curie-Skłodowska University, Pl. M. Curie-Skodowskiej 5,
Lublin, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2235-7&domain=pdf
http://orcid.org/0000-0002-0319-2525

1498 J. Bylina

it also has somedisadvantages.One of them is the size of themodel—to achieve needed
accuracy we often have to create a largemodel (that is, a hugematrix) and suchmodels
require quite a lot of computation time [5]. There are some ways to reduce the number
of investigated states (at the expense of some accuracy, of course) or to change the
structure of the matrix (to make it more convenient to computations). Some of the
methods [2,9–11,16] could use the Abu-Amsha–Vincent’s (AAV) Algorithm [1,12].
In previous work [3], we focused on finding stochastic bounds for Markov chains with
the use only of the loop parallelism from OpenMP on Intel Xeon Phi coprocessor.
A known algorithm was adapted to study the potential of the MIC architecture in
algorithms needing a lot of memory access and exploit it in the best way. This work
is an extension of that previous work [3].

The advance of the shared memory multicore and manycore architectures caused
a rapid development of one type of parallelism, namely the thread level parallelism.
This kind of parallelism relies on splitting the program into subprograms which can be
executed concurrently. Current parallel programming frameworks aid developers to a
great extent in implementing applications that exploit appropriate programmingmodel
for parallel hardware resources. Nevertheless, developers require additional expertise
to properly use and tune them to operate efficiently on specific parallel platforms. On
the other hand, porting applications between different parallel programming models
and platforms is not straightforward and demands considerable efforts and specific
knowledge.

In this paper, we present parallel implementations of AVV algorithm designed
for x86 based multicore manycore architecture such as Haswell CPU and Intel Knight
Corner (KNC).Wewant to create approaches that are sufficiently general to be applied
to implementations of other similar algorithms for sparse matrices which need a lot
of irregular memory access. Our contribution consists of applying two C++ language
extensions, namely OpenMP and the Intel Cilk Plus [8] framework for parallelization
of the application. OpenMP is an API that supports multi-platform shared memory
multiprocessing programming onmost processor architectures and operating systems.
It consists of a set of compiler directives, library routines, and environment variables
Intel Cilk Plus is an extension to the C++ language to support loop parallelization
and task parallelism using work-stealing policy. For these two extensions, we exploit
two programming models, namely task parallelism and loop parallelism. In this work,
we evaluate the suitability of OpenMP and Cilk Plus for both parallel programming
models: task parallelism and loop parallelism. We want to know how the task model
compares to loop parallelism model in terms of the time execution and scalability. We
try to select the most suitable programming model, framework, and architecture for
the algorithm for the sparse matrix to achieve the best performance.

The outline of the article is following. Section 2 gives some mathematical back-
ground of the problem and presents the original version of AAVAlgorithm and shows
its parallel version (for densematrices). Section 3 discusses some aspects of thematrix
representations and the parallel implementations that allow us to achieve better per-
formance in our parallel version of the algorithm. Section 4 describes our experiments
and Sect. 5 analyzes its results. Finally, Sect. 6 concludes the paper and gives some
perspectives for further works.

123

Parallelization of stochastic bounds for Markov chains on… 1499

Fig. 1 AAV Algorithm finding
the upper bound—the input
matrix P and the result matrix V
are of the size N × N

Fig. 2 Three steps of parallel
AAV Algorithm

2 Stochastic bounds for Markov chains

Finding stochastic bounds is an idea widely used in modeling with Markov chains
[7,14,17,19,21]. Some of its basics and examples can be found also in [3,7].

The main problem is to find a lower (upper) stochastic bound V of a probabilistic
matrix P—that is, a matrix V which is less (greater) in the stochastic sense than P.

The crucial operation in the sequential AAV algorithm is the stochastic maximum
function defined as (p, q, r are stochastic vectors of the size N):

r = max st (p,q) ⇐⇒ ∀i ∈ {1, . . . , N } :
N∑

j=i

r j = max

⎛

⎝
N∑

j=i

p j ,

N∑

j=i

q j

⎞

⎠ .

With the use of this function, we can obtain the upper stochastic bound in a straight-
forward manner—the sequential AAV algorithm—see Fig. 1 (both the matrices are
stochastic ones of the size N × N and Mk,∗ is the kth row of a matrix).

The sequential AAV algorithm is also quite easy to parallelize when we divide it
into three steps defined as the following operations—see Fig. 2 which shows these
operations as in-place algorithms. Two of these routines can be parallelized row-wise
(D and S) and the third one—column-wise (M) as they work on rows or on columns,
respectively.

3 Parallel implementations

3.1 Representation of matrices

Because of large sizes of the probabilistic matrices, we cannot store them in a usuall,
uncompressed manner. Fortunately, the Markov chains matrices are sparse matrices
and there are a lot of storage schemes for such matrices [4,6]. We use a well-known

123

1500 J. Bylina

format CSR (compressed sparse rows)—because we focus on the row-wise operations
(S and M). However, after the first operation, the matrix becomes dense, although
regular—and for such a matrix we use a novel format, namely VCSR [3,7].

The CSR format stores only information about nonzero entries of the matrix in
three arrays (values in val, sorted left-to-right-then-top-to-bottom by their position
in the original matrix; their corresponding column indices in col_ind; the indices
of the start of every row in row_ptr). The VCSR format is analogous; however,
we do not store each nonzero element, but only the first ones in a constant sequence.
Moreover, both the investigated operations (S and D) preserve two of the three input
arrays (changing only val).

Thus, storing the input matrix P in the CSR format and the first intermediate matrix
S(P) in the VCSR format, the operation S does not change the structure nor the
memory requirements of the matrix. Moreover, no auxiliary arrays are needed for
this operation. The same we can say about the operation D and storing the second
intermediate matrix M(S(P)) in the VCSR format and the output matrix D(M(S(P)))
in the CSR format.

3.2 Loop-level parallelism programming model

Loop-level parallelism denotes a kind of parallel computations for multiple proces-
sors with the use of a technique for distributing the data across different parallel
processor nodes which operate on some data in parallel. Parallelization of loops is
strongly connected to data-based parallelism. Parallelizing loops with OpenMP is
very simple with the use of #pragma omp parallel for directives. This lets
the OpenMP scheduler choose the default mode for cutting loop iterations in chunks
and distribute them on available resources. The user can set the strategy for the sched-
uler to specify the size of chunks that can be executed statically or dynamically. For
our experiments, we use the static scheduler because it gave us the best results.
Parallelizing loops with Intel Cilk Plus is also very simple with the use of the keyword
cilk_for instead of the standard C++ for keyword giving thus a hint that parallel
execution is possible in this loop. Intel Cilk Plus does not give any way to choose a
scheduler.

3.3 Task-based programming model

Task-based parallelism contrasts to both loop-level parallelism and data-based par-
allelism as another form of parallelism. It offers the programmer other ways of
expressing parallelism than in data parallelism. A task is an abstract concept which
defines some work to do but does not specify ant agent or scheduling. Asynchronous
tasks are a powerful programming abstraction that offers flexibility in conjunctionwith
great expressivity. Research involving standardized tasking models like OpenMP and
non-standardized models like Cilk facilitate improvements in many tasking imple-
mentations.

This paradigm will make applications generate a great number of fine-grain tasks.
The success of such an approach for parallelizing applications will greatly depend on

123

Parallelization of stochastic bounds for Markov chains on… 1501

the runtime systems ability to map the tasks to the physical threads. The execution of
the new task can be instant or delayed according to the task schedule and availability
of threads. The OpenMP runtime provides a dynamic scheduler of the tasks while
avoiding data hazards by keeping track of dependencies. The dynamic schedulermeans
that the tasks are queued and executed as quickly as possible.

We employ both the standard in our task-based implementations—the OpenMP
#pragma omp task directives and Intel Cilk Plus cilk_spawn keyword.

Intel Cilk Plus support task parallelism using work-stealing policy. The
cilk_spawn keyword is used to launch a task represented by a function (or any
callable object, like lambdas—as in our implementations) in parallel with the current
program.

3.4 Details of implementations

Listings 1–6 show the details of parallelization techniques used in tested implemen-
tations. For clarity, there are no function headers (except the last one, where there
are some additional helper functions because of the recursion); however, they all are
similar and take: N as the number of rows (and columns) of the matrix, NZ as the
number of nonzero elements of the matrix, and val, col_ind, row_ptr as the
pointers to the respective arrays of the CSR/VCSR storage schemes; some of them
also use PER_TASK which is the number of rows processed in one task (and which
also determines the number of tasks).

The listings present various models of parallelization and various C++ language
extensions. Namely, Listings 1 and 2 show loop-level parallelism and Listings 3–6
show the task parallelism. On the other hand, Listings 1 and 3 utilize the OpenMP
standard, and Listings 2, 4, 5/6 use Cilk Plus. And finally, Listing 5/6 presents a
recursive approach to generating tasks.

Listing 1 The omp-for version

// step_S

#pragma omp parallel for default(none)\
shared(N, row_ptr , val) schedule(static)

for(int row = 0; row < N; ++row) {
for(int ci_ind = row_ptr[row +1]-1;

ci_ind > row_ptr[row];
--ci_ind) {

val[ci_ind -1] += val[ci_ind];
}

}

// step_D

#pragma omp parallel for default(none)\
shared(N, row_ptr , val) schedule(static)

for(int row = 0; row < N; ++row) {
for(int ci_ind = row_ptr[row];

ci_ind < row_ptr[row +1]-1;
++ ci_ind) {

val[ci_ind] -= val[ci_ind +1];
}

}

123

1502 J. Bylina

Listing 2 The cilk-for version

// step_S

cilk_for(int row = 0; row < N; ++row) {
for(int ci_ind = row_ptr[row +1]-1;

ci_ind > row_ptr[row];
--ci_ind) {

val[ci_ind -1] += val[ci_ind];
}

}

// step_D

cilk_for(int row = 0; row < N; ++row) {
for(int ci_ind = row_ptr[row];

ci_ind < row_ptr[row +1]-1;
++ ci_ind) {

val[ci_ind] -= val[ci_ind +1];
}

}

Listing 3 The omp-task version

// step_S

#pragma omp parallel
{

#pragma omp single
{

for(int row_ = 0; row_ < N; row_ += PER_TASK) {
#pragma omp task
{

for(int row=row_;
row < min(N, row_+PER_TASK);
++row)

for(int ci_ind = row_ptr[row +1]-1;
ci_ind > row_ptr[row];
--ci_ind) {

val[ci_ind -1] += val[ci_ind];
}

}
}

}
}

// step_D

#pragma omp parallel
{

#pragma omp single
{

for(int row_ = 0; row_ < N; row_ += PER_TASK) {
#pragma omp task
{

for(int row=row_;
row < min(N, row_+PER_TASK);
++row)

for(int ci_ind = row_ptr[row];
ci_ind < row_ptr[row +1]-1;
++ ci_ind) {

val[ci_ind] -= val[ci_ind +1];
}

}
}

}
}

123

Parallelization of stochastic bounds for Markov chains on… 1503

Listing 4 The cilk-spawn version

// step_S

for(int row_ = 0; row_ < N; row_ += PER_TASK) {

cilk_spawn [&] {
for(int row=row_;

row < min(N, row_+PER_TASK);
++row)

for(int ci_ind = row_ptr[row +1]-1;
ci_ind > row_ptr[row];
--ci_ind) {

val[ci_ind -1] += val[ci_ind];
}

} ();
}

// step_D

for(int row_ = 0; row_ < N; row_ += PER_TASK) {

cilk_spawn [&] {
for(int row=row_;

row < min(N, row_+PER_TASK);
++row)

for(int ci_ind = row_ptr[row];
ci_ind < row_ptr[row +1]-1;
++ ci_ind) {

val[ci_ind] -= val[ci_ind +1];
}

} ();
}

Listing 5 The cilk-rek version (S)

void aux_S(int n0 , int n1) {
if (n1 - n0 <= PER_TASK) {

for (int row = n0; row < n1; ++row) {
for(int ci_ind = row_ptr[row +1]-1;

ci_ind > row_ptr[row];
--ci_ind) {

val[ci_ind -1] += val[ci_ind];
}

}
} else {

int n_mid = (n1+n0)/2;
cilk_spawn aux_S(n0 , n_mid);
aux_S(n_mid , n1);

}
}

void step_S () {
aux_S(0, N);

}

Listing 6 The cilk-spawn version (D)

void aux_D(int n0 , int n1) {
if (n1 - n0 <= PER_TASK) {

for (int row = n0; row < n1; ++row) {
for(int ci_ind = row_ptr[row];

ci_ind < row_ptr[row +1]-1;
++ ci_ind) {

val[ci_ind] -= val[ci_ind +1];
}

}
} else {

int n_mid = (n1+n0)/2;
cilk_spawn aux_D(n0 , n_mid);
aux_D(n_mid , n1);

}
}

void step_D () {
aux_D(0, N);

}

123

1504 J. Bylina

4 Details of experiments

The whole AAV algorithm consists of the three steps (S, M , and D). In the work [3],
we had shown the tests for the first step only, namely S steps on coprocessor Intel
Xeon Phi. The results of the numerical experiments of the first and the third steps are
presented here. We investigated the execution time and the scalability of our parallel
implementations on CPU and coprocessor Intel Xeon Phi under Linux. We used two
metrics to compare the computing performance: time and relative speedup. Time is
the time spent in the first and the third steps of the AAV algorithm. Relative speedups
are calculated by dividing the time of work with a single thread by the time with n
threads.

We compared five parallel implementations of the first and the third step of the
AAV algorithm (and a sequential implementation as a baseline), namely:

– the omp-for implementation using #pragma omp parallel for from
OpenMP standard based on the fork-join paradigm with static scheduler (List-
ing 1);

– the cilk-for implementation using the cilk_for keyword from Intel Cilk
Plus (Listing 2);

– the omp-task implementation using #pragma omp task from OpenMP
standard based on the task paradigm (Listing 3);

– the cilk-spawn implementation using the cilk_spawn keyword from Intel
Cilk Plus (Listing 4);

– the cilk-req implementation using the cilk_spawn keyword with the recur-
sive manner (Listing 5/6).

Table 1 shows details of the specification of the hardware and software used in the
numerical experiment.

The tested implementations were written in the language C++ language (with the
use of the OpenMP pragmas and Intel Cilk Plus framework for parallelization) and
compiled with Intel C++ Compiler (icc) with optimization flag -O3. All the results
are presented for the double data type and the nativemode forMIC. Carrying out the
numerical experiments, we were changing the number of available threads. For CPU,
we studied the number of the threads from 1 to 24 (the number of the physical cores).
For MIC in our tests, we used 60 cores in native mode. In case of native execution
model, when the application is started directly on Xeon Phi card, we can use 60 cores
(with all 4 threads on each). For MIC, the numbers of threads studied were up to
120—bigger numbers of threads degraded the performance.

The tests were performed with the use of random matrices. Their size was
40000×40000 with different numbers of nonzero elements on CPU and MIC. There
were also some other tests (not presented here) for other sizes and densities of the
matrix; however, their results were very similar to the results shown below—the num-
ber of the nonzero elements was crucial.

A single run of our operations was quite short, so to measure the performance time
accurately we run every test repeatedly and average the time. Every run covered every
action needed in the algorithm from the very beginning—initialization, allocation,
etc., to the very end.

123

Parallelization of stochastic bounds for Markov chains on… 1505

Table 1 Hardware and software used in the experiments

CPU MIC

2 × Intel Xeon E5-2670 v.3 Intel Xeon Phi 7120
(Haswell) (Knights Corner)

Cores 24 (12 per socket) 61

Threads 48 (2 per core) 244 (4 per core)

Clock 2.30 GHz 1.24 Ghz

Level 1 instruction cache 32 kB per core 32 kB per core

Level 1 data cache 32 kB per core 32 kB per core

Level 2 cache 256 kB per core 512 kB per core

Level 3 cache 30 MB –

RAM memory 128 GB 16 GB

Compiler Intel ICC 16.0.0 Intel ICC 16.0.0

BLAS/LAPACK libraries MKL 2016.0.109 MKL 2016.0.109

Max. mem. bandwidth 68 GB/s 352 GB/s

SIMD register size 256 b 512 b

Fig. 3 Execution time for various number of tasks on CPU (left: 100 205 nonzeros; right: 6 099 843
nonzeros)

5 Experimental results

All the processing times are reported in seconds.The time ismeasuredwith anOpenMP
function omp_get_wtime().

5.1 Time

Figures 3 and 4 present the execution time of our tests for different numbers of tasks for
two matrices with the same matrix size and a different number of nonzeros elements
on CPU andMIC, respectively. Left, we have results for a very sparse matrix (100 205
nonzeros; that is about 2.5 elements per row on average). Right, we have results for a
denser matrix (6 099 843; about 152 elements per row on average).

After these tests, we chose 24 tasks and 24 threads for further investigations onCPU.
Similarly, we chose 120 tasks and 120 threads for further investigations on MIC.

123

1506 J. Bylina

Fig. 4 Execution time for various number of tasks on MIC (left: 100 205 nonzeros; right: 6 099 843
nonzeros)

Fig. 5 Execution time for various matrices on CPU (left: up to about 1 000 000 nonzeros; right: up to about
6 000 000 nonzeros)

Fig. 6 Execution time for various matrices onMIC (left: up to about 1 000 000 nonzeros; right: up to about
6 000 000 nonzeros)

Figures 5 and 6 show the execution time of our tests for different numbers of
nonzeros for the constant size of the matrix (40000 × 40000) on CPU and MIC,
respectively.

Numerical experiments show that:

– the omp-for version has the shortest execution time—both on CPU and onMIC;
however, it acts strange because it jumps on CPU;

– the omp-task version has the longest execution time on CPU;
– the cilk-spawn version has the longest execution time on MIC;
– the omp-for version is better than cilk-for—that is, loop-level parallelism
is better in OpenMP;

123

Parallelization of stochastic bounds for Markov chains on… 1507

Fig. 7 Speedup for various number of threads on CPU (left: 100 205 nonzeros; right: 6 099 843 nonzeros)

Fig. 8 Speedup for various number of threads on MIC (left: 100 205 nonzeros; right: 6 099 843 nonzeros)

– on the other hand, task-based parallelism is not implemented very efficiently in
OpenMP—in comparison with Intel Cilk Plus;

– CPU runs faster than MIC.

5.2 Speedup

Figures 7 and 8 show the speedup on CPU and MIC, respectively—also for various
matrices of the same size (40000 × 40000).

For a small number of nonzeros, all the implementations are poorly scalable—
both on CPU and onMIC. For a bigger number of nonzeros, the loop-level parallelism
gives the best scalability. However,cilk-for is more stable on CPU thanomp-for
which jumps. OnMIC, the situation is opposite (omp-for is more stable). The worst
scalability is achieved by cilk-spawn and cilk-rek both on CPU and MIC. It
seems that the overhead grows with the growth of the number of threads because the
scalability is better for fewer threads.

The poor speedup was caused by noneffective vectorization due to sparsity, the
overhead due to irregular memory access in the VCSR format, and load-imbalance
due to the nonuniform matrix structure—such problems were also indicated in [15].

6 Conclusion and future works

In this article, we have presented an approach for parallelization of stochastic bounds
for Markov chains on CPU and Intel Xeon Phi. The parallelization of the matrix

123

1508 J. Bylina

operations, where matrices are sparse and there is a lot of irregular memory access,
is the difficult issue. We have shown the abilities of two parallel extensions of C++
language, namely OpenMP and Cilk Plus in the terms of the loop parallelism and task
parallelization. Based on the conducted experiments, we can clearly state that:

– the better results were obtained for CPU than Intel Xeon Phi;
– the use of #pragma omp parallel for from the OpenMP standard per-
formed better than the cilk_for constructs from Cilk Plus;

– the use of #pragma omp task from the OpenMP standard performed worse
than the cilk_spawn constructs from Cilk Plus;

– the best results were obtained for #pragma omp parallel for from the
OpenMP standard;

– the poorest results were achieved for #pragma omp task from the OpenMP
standard.

This paper presents the strength of the OpenMP standard for parallelizing with the
use of #pragma omp parallel for. While the Intel Cilk Plus standard offers
similar functionality, in our applications we were not able to achieve satisfactory
performance results with Cilk Plus despite investing a greater development effort than
we did with OpenMP. The results depend on the number of nonzeros elements in
sparse matrices for Intel Cilk Plus.

MIC (KNC) performed worse than CPU, so we should focus on the ways to exploit
the performance potential of not only many cores but also wide vector units in each
core and data locality [13]. We are also going to utilize other extensions like OmpSs
[18] and Intel Threading Building Blocks (TBB) [22] and then to compare new results
with the current ones.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abu-Amsha O, Vincent J.-M (1998) An algorithm to bound functionals on Markov chains with
large state space. In: 4th INFORMS Conference on Telecommunications, Boca Raton, Floride, E.U,
INFORMS

2. BusicA, Fourneau J.-M (2005)Amatrix pattern compliant strong stochastic bound. In: 2005 IEEE/IPSJ
international symposiumon applications and the internetworkshops (SAINT2005Workshops), Trento,
Italy, pages 260263. IEEE Computer Society

3. Bylina J (2018) Stochastic bounds for Markov chains on Intel Xeon Phi coprocessor. PPAM 2017.
LNCS, Springer [in print]

4. Bylina B, Bylina J, Karwacki M (2011) Computational aspects of GPU-accelerated sparse matrix-
vector multiplication for solvingMarkovmodels. Theor Appl Inform 23(2):127–145, ISSN 1896-5334

5. Bylina J, Bylina B, Karwacki M (2012) A Markovian model of a network of two wireless devices. In:
Proceedings of computer networks 2012, pp. 411–420. https://doi.org/10.1007/978-3-642-31217-5_
43

6. Bylina J, Bylina B, Karwacki M (2014) An efficient representation on GPU for transition rate matrices
for Markov chains. PPAM 2013, Part I, Lecture Notes in Computer Science 8384, pp. 663–672. https://
doi.org/10.1007/978-3-642-55224-3_62

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-31217-5_43
https://doi.org/10.1007/978-3-642-31217-5_43
https://doi.org/10.1007/978-3-642-55224-3_62
https://doi.org/10.1007/978-3-642-55224-3_62

Parallelization of stochastic bounds for Markov chains on… 1509

7. Bylina J, Fourneau J.-M, Karwacki M, Pekergin N, Quessette F (2015) Stochastic bounds for Markov
chains with the use of GPU. In: Proceedings of computer networks 2015, CN 2015, CCIS 522, pp.
357–370. https://doi.org/10.1007/978-3-319-19419-6_34

8. Cilk Plus. https://software.intel.com/en-us/intel-cilk-plus
9. Dayar T, Pekergin N, Youns S (2006) Conditional steady-state bounds for a subset of states in Markov

chains. In: Structured Markov chain (SMCTools) workshop in the 1st International Conference on
Performance Evaluation Methodolgies and Tools, VALUETOOLS 2006, Pisa, Italy. ACM

10. Fourneau J-M, Le Coz M, Quessette F (2004) Algorithms for an irreducible and lumpable strong
stochastic bound. Linear Algebra Appl 386:167185

11. Fourneau J.-M, Le Coz M, Pekergin N, Quessette F (2003) An open tool to compute stochastic bounds
on steady-state distributions and rewards. In: 11th international work-shop on modeling, analysis,
and simulation of computer and telecommunication systems (MASCOTS 2003), Orlando, FL, IEEE
Computer Society

12. Fourneau J.-M, Pekergin N (2002) An algorithmic approach to stochastic bounds. In: Performance
evaluation of complex systems: techniques and tools, performance 2002, tutorial lectures, volume
2459 of LNCS, pages 6488. Springer

13. Jeffers J, Reinders J (2013) Intel Xeon Phi coprocessor high performance programming, 1st edn.
Morgan Kaufmann Publishers Inc., San Francisco

14. Kijima M (1997) Markov processes for stochastic modeling. Chapman & Hall, London
15. Liu X, Smelyanskiy M, Chow E, Dubey P (2013) Efficient sparse matrix-vector multiplication on

x86-based many-core processors. In: Proceedings of the 27th International ACM Conference on Inter-
national Conference on Supercomputing, pp 273–282

16. Mamoun M Ben, Busic A, Pekergin N, Pekergin N (2007) Generalized class C Markov chains and
computation of closed-form bounding distributions. Probab Eng Inf Sci 21:235260

17. Muller A, Stoyan D (2002) Comparison methods for stochastic models and risks. Wiley, New York
18. OmpSs Specification: Barcelona Supercomputing Center https://pm.bsc.es/ompss-docs/spec/
19. ShakedM, Shantikumar JG (1994) Stochastic orders and their applications. Academic Press, SanDiego
20. Stewart WJ (1995) Introduction to the numerical solution of Markov chains. Princeton University

Press, New Jersey
21. Stoyan D (1983) Comparison methods for queues and other stochastic models. Wiley, Berlin
22. Threading Building Blocks (Intel TBB). https://www.threadingbuildingblocks.org/

123

https://doi.org/10.1007/978-3-319-19419-6_34
https://software.intel.com/en-us/intel-cilk-plus
https://pm.bsc.es/ompss-docs/spec/
https://www.threadingbuildingblocks.org/

	Parallelization of stochastic bounds for Markov chains on multicore and manycore platforms
	Abstract
	1 Introduction
	2 Stochastic bounds for Markov chains
	3 Parallel implementations
	3.1 Representation of matrices
	3.2 Loop-level parallelism programming model
	3.3 Task-based programming model
	3.4 Details of implementations

	4 Details of experiments
	5 Experimental results
	5.1 Time
	5.2 Speedup

	6 Conclusion and future works
	References

