J Supercomput (2011) 57: 51-64
DOI 10.1007/s11227-011-0561-0

Multi-CMP system with data communication on the fly

Marek Tudruj - Lukasz Masko - Miroslaw Thor

Published online: 4 February 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The paper concerns new communication solutions for hierarchical Chip
Multiprocessor (CMP) systems composed of many CMP modules interconnected by
a global data exchange network. New architectural solutions for internal module data
communication are presented in the presence of hierarchical data caches in CMP
modules. Inside CMP modules, dynamic shared memory core clusters are organized
around L1-L2 data cache busses. Such clusters enable a group-oriented data commu-
nication based on reads on the fly to L1 banks of data present on the busses by many
cores at a time. Dynamic switching of cores between such L1-L.2 busses is done with
porting data in core’s L1 caches. Together with data reads on the fly, it provides a
very efficient intercluster “communication on the fly,” especially useful for transfers
of strongly shared data. It provides fast cache to cache group data transmissions and
eliminates standard transactions based on shared memory in the system. Comparative
experimental results based on automatic scheduling of program data flow graphs and
execution in a simulator of the proposed architecture evaluate the assumed architec-
tural solutions. The multi-CMP system structure is assessed while taking into account
technological limitations of the size of the single CMP module.

M. Tudruj (X) - L. Masko

Institute of Computer Science of the Polish Academy of Sciences, ul. Ordona 21, 01-237 Warsaw,
Poland

e-mail: tudruj@ipipan.waw.pl

L. Masko

e-mail: masko@ipipan.waw.pl

M. Tudruj
Polish—Japanese Institute of Information Technology, ul. Koszykowa 86, 02-008 Warsaw, Poland

M. Thor

Telemark University College, Hallvard Eikas plass, 3800 Bo i Telemark, Norway
e-mail: miroslaw.thor @hit.no

@ Springer

mailto:tudruj@ipipan.waw.pl
mailto:masko@ipipan.waw.pl
mailto:miroslaw.thor@hit.no

52 M. Tudruj et al.

Keywords Modular CMP systems - Program execution control - Dynamic shared
memory clusters - Communication on the fly

1 Introduction

Cluster-based approach is an important solution, which can improve communication
efficiency in parallel shared memory systems. Distribution of memory traffic among
many Shared Memory Processor (SMP) clusters has been extensively used to allevi-
ate the memory bus saturation problem in large shared memory processor systems. In
standard implementations, the size of the SMP clusters is fixed, which can decrease
parallel program execution efficiency due to discrepancy between system structure
and program needs. A more ambitious strategy assumes modifiable cluster sizes,
which can adjust system structure to real needs of an application problem leading
to a better use of communication resources.

Parallel shared memory systems implemented in Chip Multiprocessor (CMP)
technology attract currently much of the systems architects’ attention [6, 11]. Data
communication efficiency in such systems is determined to the large extent by data
exchange latency of transfers between processor data caches, which are the actual
sources and destinations of shared data. Therefore, in current CMP systems, internal
communication between on-chip cores and elements of the hierarchy of data caches
is an important problem considered in research papers [1-6, 11, 13]. Especially, dy-
namically reconfigurable communication of strongly shared data between processor
cores and their data caches deserve high designers’ interest; however, no sufficient
attention in current papers has been paid to efficient group communication on chip.

Cluster-based approach is currently in common use, but up-to now this approach
has not been ported to the area of the internal network structures of CMP systems.
This paper presents new solutions in this respect and proposes a new data communi-
cation method for parallel numerical computations in dynamic cluster-based shared
memory system architecture for the CMP technology. The new method is called com-
munication on the fly [14-16]. It enables dynamic creation of temporary shared mem-
ory core clusters (SMPs), which provide means for fast group transmission of shared
data between cores, more exactly between their L1 data caches. In this paper, the
initial solution based on a single level data caches [14], has been extended to multi-
level caches. It improves time efficiency of the proposed group communication since
it concerns now faster L1, L2 data cache memories. Dynamic SMP clusters are orga-
nized using local data networks, which connect L1 data caches with L2 cache banks
(L1-L2 packetized data busses) to enable data reads on the fly of shared data. Com-
munication on the fly is a new intercluster data exchange method. Its main idea con-
sists in switching processor cores with some relevant data in their L1 caches to new
L1-L2 bus-based clusters to pass there new data by a group-like read on the fly to L1
caches of many cores at a time. In this way, classic data exchange by deposing data in
a shared memory to be next read by many processes or threads is replaced by proces-
sor core switching and a single group transaction on a data bus. The core switching is
done during program execution for program defined time interval, longer than for a
single memory transaction, which distinguishes this solution from a standard shared

@ Springer

Multi-CMP system with data communication on the fly 53

memory access. It strongly reduces contention on memory bus lines and eliminates
many separate data transactions concerning the same data. Although current imple-
mentations use multihop packet switching on-chip networks [2, 13], it is the data bus
which provides the data and address observability features necessary for this type of
group communication.

The core switching and communication on the fly can be automatically embedded
in the application program code by special scheduling algorithms [8, 9] in a way,
which corresponds to particular program needs. In this respect, the applied commu-
nication method shows features of dynamically reconfigurable embedded system, in
which internal structures of CMP modules are adjusted to program requirements.
Such systems enable accelerated execution of typical time consuming numerical
computations in problem-oriented libraries.

Simulation experiments have shown the potential of communication on the fly
for fine grain parallel programs [14—16]. However, current CMP technology limita-
tions imposed by power dissipation, wire delays, signal cross talks and silicon area
space make that the physical system structure should be based on many cooperating
CMP modules, containing a limited number of cores and L2 cache banks, rather than
on a single large CMP module. The CMP system modular architecture also comes
from characteristics of shared memory data busses, which for a limited number of
bus customers behave in an acceptable manner, not worse than other types of net-
works [1], while showing valuable features relevant for the described efficient group
data transactions. Most of the cited experiments concerned standard parallel matrix
multiplication based on recursive data decomposition into quarters. In this paper, we
evaluate the speedups of scheduled general layered parallel program graphs executed
by simulation in the proposed architecture for different assumptions concerning the
number of dynamic CMP modules used, the speed of cache memory busses and the
speed of the global network.

The paper is composed of three main parts. In the first part, new system general
architectural features are discussed. Next, an extended macro data flow graph repre-
sentation is explained, which has been used for simulation experiments. In the last
part, efficiency of the parallel programs in the proposed architecture is evaluated by
simulation experiments with program graphs execution.

2 General system architecture

In this paper, we present a new version of a general system architecture based on dy-
namic SMP clustering, which is tailored to be implemented in the chip multiprocessor
technology. We investigate a hierarchical modular structure of many CMP modules
connected by a central global network, Fig. 1. A CMP module contains a number of
processor cores C with directly used L1 data caches, which are connected to shared
L2 data cache memory banks using CMPs local L1-L2 data networks. Each CMP
module has directly accessible fragment of the shared data main memory placed in
the address space common for all modules. The global network provides data ex-
change between shared data memory modules of CMP modules at the cost of higher
data transfer latency compared to internal transfers of data inside particular CMPs.

@ Springer

54 M. Tudruj et al.

1
Local Local |
Shared . network network | Shared
data : data
memory : memory
module | : eee °ee 1| module
Lomp cmp,!

vee : Shared
: data

Shared || vee
data 1

|
memory |1 1| memory
module |1 Local Local I'l module
- | network network | !
N— —
e e s s — T e i — — s — -

Fig. 1 The general system structure

The internal structure of a CMP module is shown in Fig. 2. Processor cores C;
(each connected with its local L1 data cache and shared L2 cache banks) can be dy-
namically interconnected in dynamic clusters through local communication network
composed of L2 busses (local busses, L1-L2 busses). Additional instruction caches
are also provided, but discussing them is beyond the scope of this paper. A new collec-
tive data communication in clusters of cores can be organized inside CMP modules. It
consists in dynamic switching of cores with data cache contents between SMP clus-
ters organized on L2 bank busses. This method converts data transmissions through
memory and/or some global network into dynamic cluster reconfiguration with data
transfers performed directly between data caches. Such a conversion enables, multi-
ple parallel reads of data by many processors to their L1 data caches from L2 bank
busses (reads on the fly, similar to cache injection [10]) while a processor writes data
from its L1 cache to the cluster L2 bank. It is based on address snooping of L2 bank
bus by a core Bus Request Controller (BRC) in which read on the fly requests are
queued when issued from the application programs. Reads on the fly combined with
processor switching, called “communication on the fly,” provide a very fast way of
data exchange between processor clusters. During reads on the fly, the data copies
can be written with new memory addresses if are to be later subject to modification,
thus avoiding cache coherence problems.

Local busses used for local data transmission inside CMP modules, provide a
very efficient intra-cluster communication on the fly especially useful for transfers
of shared data. Operations on data include: data prefetch from L2 cache to a core
L1, write from L1 to L2, read on the fly from a L2 bank bus to many L1s in paral-
lel, core switching between L2 busses (core clusters), data pre-fetches from shared
memory modules to L2 banks, data updates of memory modules from L2 banks, inter-
CMP module data exchange accomplished as transfers between shared data memory

@ Springer

Multi-CMP system with data communication on the fly 55

! Local communication network " L2 data !
1 cache ;
1 Cluster 1 Shared
1
i | ar?)lijtser —Local bus—— Bank 1 d:I:
BR C e
: . N | memory
. H :
1 HH
1 Bus | iR
. = T T"lLocalbus—— — Bank M e
Vi f=—tarbiter Y ha
i 4. | —
: L1 Data cac v—I L1 Data cacy
i BRC _1 L1 Data cache | BRC 1 L1 Data cache |
| — | I — ! —J
1 X-Bar
: | Core C I _see Core C |
1 1 N
| 1
| | Instruction cache | | ese [Instruction cache |
: I I
: Instruction Instruction
! memory bt memory |
LAt 0
1
. | | 1
ICMP Module | Synchronization path K —> To other
1 ! modules

Fig. 2 Internal structure of a CMP module

modules. Before prefetches of data to L1, the corresponding data blocks must be pre-
loaded to L2 from the respective memory modules in a programmed way. Current
task computing results are sent from L1 to the L2 data cache module only after a task
completes.

The global data exchange is performed between shared memory modules attached
to CMPs. It is done under control of the Network Interface Controller (NIC), which
collects global data transfer requests from the CMP cores. The NIC creates connec-
tions in the global network (which can be a crossbar switch or a multi-layer Closs
connection network). The shared memory modules are dual-ported, so that it is pos-
sible to perform simultaneously a data read/write on the “shared memory-L2” bus
and a read from the shared data memory for a global network transmission.

The local communication networks inside CMP modules are provided with very
advanced data exchange features. They consist in multiported data caches L1 that
enable parallel prefetching of arguments of subsequent numerical operations and
many communications on the fly performed at a time for a processor core. The mul-
tiported data cache L1 provides much better functionality and performance than a
cache shared by many processors based on address interleaving among multiple cache
banks since it ensures many parallel copies of shared data available to processors.

The L1 and L2 data caches are used in this architecture in many cases as ‘““scratch-
pad memories” rather than with the functionality of classic cache memory. It is be-
cause the cache-controlled macro data flow program execution paradigm enforces
strong data prefetching to L1 caches, which can be also extended on the L2 data cache
behavior. Following special data cache functionality, the system ensures L1 and L2
data caches synchronization in the context of processor core switching and reads on
the fly. If a processor core is switched from one L2 module to another and is to write

@ Springer

56 M. Tudruj et al.

Connect
Core with L1 Core with L1 & snoop
circuits

Shared
memory

Arbiter

Arbiter|

Toother
modules

Core with L1 e Core with L1

Fig. 3 Floor-plan of the proposed CMP module

some data from its L1 to this new L2 module (for instance to enable other processors
to read these data through reads on the fly or simply to do a cache block flush), a re-
spective new line in the target L2 data cache must be provided. This operation is not
performed in a standard manner (by transmitting proper data from the shared mem-
ory), but instead, just before the L2 write operation, an empty line in L2 is generated
together with the address tag and a special validity mask. The mask controls in terms
of L1 blocks which data will be moved in by the considered data transfer on the fly
from the L1-L2 bus. When necessary, the operating memory will be updated using
only the valid parts of the L2 lines. Similar actions are performed in L1 caches, when
data are prefetched into L1 under new addresses to comply with the assumed single-
assignment principle, which eliminates consistency problems for multiple copies of
modified shared data (data read for subsequent modification are stored under new
addresses). This imposes new dummy lines in L1 data caches provided with similar
control fields. Only on L1 to L2 flushing or reads on the fly through the L2 busses the
corresponding L2 dummy lines will be generated (a lazy synchronization is used).

The floor-plan of the proposed CMP module is shown in Fig. 3. The active ele-
ments of a CMP module (cores, L1 caches, L2 caches, bus arbiters, NIC controller)
can be placed around the local communication network which implements switched
connections and reads on the fly with address snooping.

3 Extended macro-data-flow graph representation

An application program for the proposed architecture is built following the structure
of its Macro Data Flow Graph (MDFG). The macro nodes in this graph are sequences
of program instructions meant for execution in a single core. They are defined by a
programmer according to the policy he uses for program parallelization. The macro
nodes are atomic entities executed in parallel in the system. To describe activities
of processor cores in dynamic clusters, we propose an Extended Macro Data Flow

@ Springer

Multi-CMP system with data communication on the fly 57

Module CMP1 Module CMP2

Module CMP1 Module CMP2

a) b)

Fig. 4 (Right) Figure presents an EMDFG (b) of a simple program whose MDFG is shown in (a) meant
for execution

Graph notation (EMDFG) in which special kinds of nodes are used in the program
graph: data prefetch (read) nodes to the data cache L1 from L2 (R1), data write nodes
from processor’s L1 data cache to L2 (W2), write of some data from L2 to the shared
memory of the CMP module (WM), L2 data cache prefetch from shared memory
(RL2), write from the shared memory of a CMP module to the memory of another
CMP module (MMW), read from a distant CMP module shared memory to the mem-
ory of a CMP module (R2), processor switch nodes between L2 data cache banks,
barriers used to synchronize reads on the fly with the write which supplies data (B),
intracluster (local) bus arbiter nodes, the intercluster global bus arbiter node. The read
and write nodes weights correspond to volumes of data measured in L1 data cache
blocks. EMDFGs can be generated manually by programmers but it is complicated
and error prone. What we recommend is that EMDFGs are generated automatically
by a scheduling program [8, 9] whose input is a program MDFG and which takes into
account the parameters of the target system with the proposed architecture. A sched-
uled EMDFG will be then transformed into an executive code in which special in-
structions, representing the described above special elements of the extended graph,
will be automatically inserted.

Figure 4 (right) presents an EMDFG of a simple the program MDFG shown in
Fig. 4 (left) meant for execution in a system without processor core switching nor
reads on the fly. In these graphs, program macro nodes (TO...T5) are assigned to
processor cores (C1...C5) in CMP modules (CMP1, CMP2). There are the following
new nodes in the graph: W2—write of data from core’s C3 data cache L1 to L2 inside
CMP1, R11—data prefetch from L2 to L1 in CMP1, WM—write of some data from
the L2 to the shared memory of CMP1, MMW—write from the shared memory of a
CMP1 to the memory of CMP2, R22—prefetch of data from shared memory to 1.2
banks in CMP2, R12—prefetch of data from L2 to L1 in CMP2.

@ Springer

58 M. Tudruj et al.

o
| 2 3 :
‘ :

switch1C1 | Cl
==

¢ TS| c2 |T6 | C3

Fig. 5 EMDFG with communication on the fly: (a) standard MDFG, (b) equivalent EMDFG with com-
munication on the fly, (¢) simplified EMDFG notation

switch C1 to ;
the cluster |
of C2,C3

Dbayrier

An example of the extended macro data flow program graph for a program with
communication on the fly is shown in Fig. 5. The graph is composed of program
nodes T1-T6. Nodes T4, TS5, T6 receive data through communication on the fly from
node T1 in a system composed of cores C1, C2, C3 placed in the same CMP module.
To represent a synchronized read on the fly, a read on the fly node can be decomposed
into two nodes, (Fig. 5b): the read on the fly request deposing in a BRC (R1, R2)
performed before the barrier working for the “write” node and the read on the fly
execution (double circle node) performed when the barrier is reached. A special node
marked in Fig. 5 as a crossed rectangle (with L2 module specification), represents
switching of a core to a new dynamic cluster. The write node execution time depends
on the bus access acknowledge sent from the bus arbiter. In communication on the fly,
processor cores can read parts of data on the bus, which differentiates this solution
from a standard multicast or broadcast. In read on the fly instructions, delimiters are
specified which determine read starting addresses (a; in Fig. 5) and data volumes
(fractions of the total data volume sent on the bus can be captured). Since in a cache
memory environment the transactions on the memory busses concern entire cache
blocks, the delimiters are expressed in terms of the cache blocks.

A section in a program graph (denoted by a dotted oval rectangle in Fig. 5) is a
subgraph executed by a fixed subset of processor cores connected to the same local
L2 bus, i.e., belonging to the same cluster. Cores are notified about newly starting
sections to activate all program parallel threads specified for them. By the mechanism
of sections, communication (data read and write) requests sending to BRCs can be
adjusted to current sections, i.e., to the use of the right busses and the composition of
core clusters.

4 Experimental results

The efficiency of parallel program execution in the proposed architecture has been
verified by experiments with artificially generated program graphs. Since the assumed
system is strongly modular and the communication on the fly requires strict synchro-

nization of the participating cores, the structures of the examined program graphs

@ Springer

Multi-CMP system with data communication on the fly 59

were selected to be of modular and synchronous character. It means that the graphs
have layered structures in which some roughly regular subgraphs with intensive com-
munication can be identified. These graphs have similar structure and granularity to
graphs of many regular parallel numerical programs like parallel matrix multiplica-
tion or parallel FFT computations.

The graphs have been automatically scheduled for execution in the proposed archi-
tecture with and without communication on the fly for different assumptions regard-
ing time and structural parameters of the executive system. The number and struc-
ture of the CMP modules, the speed of L1-L2 busses and the latency of the global
networks (a crossbar switch) were considered. Next, the scheduled graphs were sym-
bolically performed using a simulator, which is cycle accurate if the communication
control is concerned, using the approach similar to [12]. The simulator was written by
the authors in C++ language. It determined program execution times based on which
parallel speedups were computed against execution on a single processor.

Programs have been structured by a heuristic scheduling algorithm [9] based on
the use of the notion of moldable tasks [7]. This algorithm assigns tasks to proces-
sor cores and communication to L1-L2 busses in CMP modules in a way which
reduces application program execution time. A moldable task is a part of a program,
whose structure can be tailored for execution on different numbers of processors, as-
suming that for each number of processors a best execution time can be determined.
The moldable task approach enables a hierarchical approach to program scheduling
in which first characteristics of moldable tasks, as building program components, are
found and then an optimal program structuring of these building elements is designed.
The macro data flow graph representation of programs is used for this optimization.
The algorithm first builds a graph of admissible moldable tasks (it was assumed not
wider than 4 nodes) for a given program and then moldable tasks are scheduled for
a given number of CMP modules with particular characteristics. To find moldable
tasks, the algorithm schedules program tasks for execution inside the CMP modules
with communication on the fly. Next, it schedules the global communication between
the CMP modules. As a result, a scheduled program moldable task graph is pro-
duced in which computation and internal moldable task communication are assigned
to resources inside CMP modules and global communication between the tasks is
assigned to links of the global network.

The general structure of experimental program graphs is shown in Fig. 6. The
graphs have the following parameters—the number of levels: 10; number of inten-
sive communication subgraphs: 8; the width of a level in a subgraph: 4; the total
graph width: 32, the computing node weight: 100; the communication edge weight:
20-30, 100—-150; the node output degree: 1-2, 3—4. Up to 25 additional edges of inter-
subgraph data transfers have been added to the graphs. Both the internal data com-
munication in CMP modules and global inter-module communication were placed
at the application program levels (neither communication libraries nor the operating
systems support were used). The width of the moldable tasks generated by the task
scheduling algorithm was in all cases limited to 4. Thus, the moldable tasks could be
embedded inside single CMP modules.

The relation between the speed of processor cores and local communication speed
(i.e. the frequency of the L1-L2 bus) was assumed 2:1, 4:1, 8:1 (2:1 is equivalent to

@ Springer

60 M. Tudruj et al.

Fig. 6 Experimental program graph structure

1.6 GFLOPS processor with L1 cache co-operating with L2 cache via 800 MHz bus).
The latency of the global network was assumed to be 2, 8 or 16 times bigger than that
of the L1-L2 bus. The following cache memory bus and global network speeds con-
figurations were examined: 8_2, 8_8, 8_16, 16_2, 16_8, 16_16. The number of cores
in the system was always equal to 32. However, the cores were embedded in 1, 2, 4,
and 8 CMP modules with communication on the fly, containing 32, 16, 8, and 4 cores,
respectively. Additionally, a system with 32 single-core processors interconnected by
a global network without communication on the fly was considered. Therefore, the
following configurations of the numbers of CMP modules and core numbers in mod-
ules were considered: 1_32, 2_16, 4_8, 8_4, 32_1. The total system configuration
description (for example 4_8_8_2) is composed of the number of CMP modules (4),
the number of cores in a CMP module (8), the L1-L2 bus speed coefficient (8) and
the global network speed coefficient (2).

In figures below, the average parallel execution speedup against sequential execu-
tion of programs in different system configurations as explained above is presented
in whose macro data flow graphs the computational node degree was 3—4 or 1-2 and
the data transaction volume was 100-150 or 20-30. The local communication time
(inside a CMP module) was measured as a product of the data volume and the L.1-L.2
bus speed coefficient and the global communication time was determined as the prod-
uct of the local communication time and the global network speed coefficient. The
experiments correspond to programs with intensive (frequent) local data communi-
cation whose latency is much larger than the computation time of nodes. We can
observe that for fast global networks the obtained speedup was the highest for the
single large CMP module. This is due to communication on the fly and the absence
of the global network.

However, the technology reasons enforce the use of multiple smaller CMP mod-
ules to avoid large values of the signal propagation time on long bus wires and the
diversity of this time depending on the physical placement of the bus customer. For
high global network speed, Fig. 7, the speedup of execution on 2 CMP modules for
dense communication with big data volumes was close to the results for the system
with a single CMP module. For 4 and 8§ CMP modules with a top global network
speed, the speedup decreased from 23 to 20 and 17, respectively, due to global com-
munication. It shows that the use of smaller CMP modules for not very frequent

@ Springer

Multi-CMP system with data communication on the fly 61

25
20

Speedup

1.32_8_32 2.16.8_2 48382 8482 32.1.82
(# of CMPs_# of proc per CMP_local network speed_global network speed)

Speedup

1.32.16_2 2.16_16_2 4.8 162 84162 32.1.16_2
(# of CMPs_# of proc per CMP_local network speed_global network speed)

®3-4_100-150 m3-4_20-30 ®1-2_100-150 m1-2_20-30
(min-max width of a subgraph_min-max weight of a communication node)

Fig. 7 Parallel speedup for fast global network

global communication in programs can be advantageous. For less intensive commu-
nication (node degree 1-2 and small communication volume), the speedup decrease
was from 15 to 11. The system configuration with 32 single-core processors con-
nected exclusively by the global network (configurations 32_1_8_2 and 32_1_16_2,
where all data transfers were global) has provided the small speedup which increased
for the programs with less intensive communication.

Figure 8 presents program execution speedups when the global network was very
slow (8 times slower than the L1-L2 bus) programs contained a much less commu-
nication, however, for large data volumes. Due to weak global communication, the
speedup for dense communication for 2, and 4 CMP modules is still not so much
lower than for a single module, but it degrades below 15 when communication is
not intensive nor large, which gives the parallelization efficiency below 0.5. This ef-
ficiency is above 0.5 for voluminous and dense communication with 4 and 8 CMP
modules and small L1-L2 bus speed, due to the positive influence of the communi-
cation on the fly.

In all discussed cases of the relatively weak global communication, the best
speedups were obtained for small number of CMP modules and for dense and vo-
luminous communication. Based on other research not shown in this work, we can
state that more dense global communication gives smaller speedups for larger num-
bers of CMP modules and low global network speed. Therefore, the speed and the
architecture of the global network are crucial in such cases.

Figures 9 and 10 present improvements of speedups due to application of com-
munication on the fly corresponding to large and small communication volumes (20—
30 and 100-150), for different configurations of system parameters. In these experi-
ments, a list scheduling algorithm combined with a genetic algorithm was used [9]. It

@ Springer

62 M. Tudruj et al.

Speedup

1.32_8_16 2_16_8_16 4.8 8 16 8.4 8 16 32.1.8.16
(# of CMPs_# of proc per CMP_local network speed_global network speed)

Speedup

1.32.16_16 2_16_16_16 4.8 16_16 8.4_16_16 32.1.16_16
(# of CMPs_# of proc per CMP_local network speed_global network speed)

m3-4_100-150 m3-4_20-30 m1-2_100-150 m1-2_20-30
{min-max width of a subgraph_min-max weight of a communication node)

Fig. 8 Parallel speedup for very slow global network

1.32 2.16 4.8 8_a (#of CMPs_# of proc per CMP)
®20-30_8 2 mW100-150 8_2 m20-30_8_ 8 m100-150_8 8 m20-30_8_16 m100-150_8_16
(min-max weight of a communication node_local network speed_global network speed)

Fig. 9 Parallel speedup improvement due to communication on the fly for fast L2 busses

enables better examination of the influence of communication on the fly on parallel
speedup since the structuring of the program is simpler than in the case of moldable
tasks approach. We can see that communication on the fly gives an average speedup
improvement of 1.44 for faster L1-L2 busses (8 times slower than the core-L1 com-
munication) and 1.22 for slower L1-L2 busses (16 times slower than the processor
core-L1 bus), comparing the scheduling without communication on the fly.

5 Conclusions
In the paper, we have presented and examined system architecture based on multiple

CMP modules interconnected by a global network with a special new feature of the
communication on the fly inside the CMP modules. Communication on the fly can be

@ Springer

Multi-CMP system with data communication on the fly 63

1.32 216 4.8 8 4 (#of CMPs_# of proc per CMP)
®20-30_16_2 ®100-150_16_2 ®20-30_16_8 m100-150_16_8 m 20-30_16_16 = 100-150_16_16
(min-max weight of a communication node_local network speed_global network speed)

Fig. 10 Parallel speedup improvement due to communication on the fly for slow L2 busses

an important data exchange mechanism for execution of computational algorithms in
which strong data sharing appears among parallel fragments of programs. It enables
strong reduction of data traffic on busses which lead from processor cores to shared
L2 data caches and main memory modules. This type of communication should be
embedded in special CMP modules meant for execution of numerical fragments of
parallel programs. Its positive impact on efficiency of parallel computations grows
if the degrees of data sharing and the synchronous layer-based data processing in
parallel programs are higher. The use of many smaller size¢ CMP modules intercon-
nected by a global network can be enforced by technology limitations. The speedups
of execution of computational programs with layered graph structures composed of
communicating subgraphs with relatively low inter-subgraph communication were
examined. We can see that for such assumptions this architecture behaves in a sat-
isfactory way for fast global networks and for a relatively small number of CMP
modules; so, the use of several CMP modules for programs as examined, provides
not much worse results than the use of a single large CMP module. With multiple
CMP modules applied for programs with more intensive global communication, high
global network speed and proper architectural properties of the network to reduce the
global communication influence are of big importance.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Adriahantenaina et al (2003) SPIN: a scalable, packet switched on-chip micro-network. In: Proceed-
ings of the design, automation and test in Europe, DATE’03, Munich, March, vol 2, pp 2070-2081

2. Dally W, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In: 38-th DAC,
Las Vegas, June, pp 684—689

3. Hossain H et al (2008) Improving support for locality and fine-grain sharing in chip multiprocesors.
In: PACT’08, Toronto. ACM Press, New York, pp 155-165

4. Hsu L et al (2005) Exploring the cache design space for large scale CMPs. SIGARCH Comput Archit
News 33(4), November

5. Huh J (2007) A NUCA substrate for flexible CMP cache sharing. IEEE Trans Parallel Distrib Syst
18(8):1028-1040

6. Kundu S, Peh LS (2007) On-chip interconnects for multicores. In: IEEE MICRO, Sept-Oct, pp 3-5

@ Springer

64

M. Tudruj et al.

10.

11.

12.

14.

15.

16.

. Lepere R, Trystram D, Woeginger GJ (2001) Approximation algorithms for scheduling malleable

tasks under precedence constraints. In: 9th annual European symposium on algorithms. LNCS,
vol 2161. Springer, Berlin, pp 146-157

. Masko L, Tudruj M (2008) Task scheduling for SoC-based dynamic SMP clusters with communi-

cation on the fly. In: 7th int symp on parallel and distributed computing, ISPDC 2008, Krakow, pp
99-106

. Masko L et al (2005) Scheduling moldable tasks for dynamic SMP clusters in SoC technology, parallel

processing and applied mathematics. In: PPAM 2005, Poznan, Poland, Sept 2005. LNCS, vol 3911.
Springer, Berlin, pp 879-887

Milenkovic, Milutinovic V (2000) Cache injection: a novel technique for tolerating memory latency
in bus-based SMPs. In: Proceedings of the euro-par. LNCS, vol 1900. Springer, Berlin

Owens JD et al (2007) Research challenges for on-chip interconnection networks. In: IEEE MICRO,
Sept—Oct, pp 96-108

Parisha S, Dutt N, Ben-Romdhane M (2008) Fast exploration of bus-based communication architec-
tures at CCATB abstraction. ACM Trans Embed Comput Syst 7(2)

. Terry TY et al (2004) Packetization and routing analysis of on-chip multiprocessor networks. J Sys-

tems Archit 50:81-104

Tudruj M, Masko L (2004) Dynamic SMP clusters with communication on the fly in NoC technology
for very fine grain computations. In: 3rd int symp on parallel and distributed computing, ISPDC 2004,
Cork, July, pp 97-104

Tudruj M, Masko L (2005) Towards massively parallel computations based on dynamic SMP clusters
with communication on the fly. In: 4th int symp on parallel and distributed computing, ISPDC 2005,
Lille, France. IEEE CS Press, Los Alamitos, pp 155-162

Tudruj M, Masko L (2006) Fast matrix multiplication in dynamic SMP clusters with communica-
tion on the fly in systems on chip technology. In: PARELEC 2006, September. IEEE CS Press, Los
Alamitos, pp 77-82

@ Springer

	Multi-CMP system with data communication on the fly
	Abstract
	Introduction
	General system architecture
	Extended macro-data-flow graph representation
	Experimental results
	Conclusions
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

