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Abstract. A non-Fregean framework aims to provide a formal tool for reasoning about

semantic denotations of sentences and their interactions. Extending a logic to its non-

Fregean version involves introducing a new connective ≡ that allows to separate denota-

tions of sentences from their logical values. Intuitively, ≡ combines two sentences ϕ and ψ

into a true one whenever ϕ and ψ have the same semantic correlates, describe the same

situations, or have the same content or meaning. The paper aims to compare non-Fregean

paraconsistent Grzegorczyk’s logics (Logic of Descriptions LD, Logic of Descriptions with

Suszko’s Axioms LDS, Logic of Equimeaning LDE) with non-Fregean versions of certain

well-known paraconsistent logics (Jaśkowski’s Discussive Logic D2, Logic of Paradox LP,

Logics of Formal Inconsistency LFI1 and LFI2). We prove that Grzegorczyk’s logics are

either weaker than or incomparable to non-Fregean extensions of LP, LFI1, LFI2. Further-

more, we show that non-Fregean extensions of LP, LFI1, LFI2, and D2 are more expressive

than their original counterparts. Our results highlight that the non-Fregean connective ≡
can serve as a tool for expressing various properties of the ontology underlying the logics

under consideration.

Keywords: Non-Fregean logic, The identity connective, Grzegorczyk’s logic of descrip-

tions, Paraconsistent logic, 3-Valued logic, Jaśkowski’s discussive logic.

1. Introduction

Non-Fregean logics and paraconsistent logics were introduced into the realm
of logical systems and have typically been studied with relatively
distinct motivations. The roots of non-Fregean logic can be traced back
to the seminal paper [39] by Suszko. In this work, Suszko fervently ad-
vocated for the rejection of the Fregean Principle (Frege). Intuitively, this
foundational principle states that all true (and, similarly, all false) sentences
describe the same thing, thereby sharing a common semantic reference (or
denotation). Indeed, in the classical paradigm, which has birthed many well-
established logical systems including modal logic, the universes of structures
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J. Golińska-Pilarek

that interpret a formal language do not contain semantic references of sen-
tences: they merely attribute to each sentence one of two possible logical
values. Thus, the Fregean approach treats terms and formulas of a language
in a drastically distinct manner: terms have their ontological reference in
models, while formulas are ascribed only certain abstract objects beyond
the universes of models.

A pivotal moment in the development of non-Fregean logic was the con-
struction of the Sentential Calculus of Identity SCI. The primary motivation
behind the creation of SCI was not to deny the properties of classical connec-
tives, but rather to provide a formal tool enabling reasoning about semantic
denotations of sentences and their interactions. SCI rejects the principle
(Frege), introducing a new identity connective ≡ to the language of clas-
sical logic, with the following intended interpretation: a formula ϕ ≡ ψ is
true whenever ϕ and ψ describe the same situations, that is, they have the
same semantic correlates. The semantics of SCI is based on structures with
a nonempty universe, a distinguished subset of the universe with elements
that can be interpreted as semantic correlates of true sentences, operations
interpreting classical logical connectives, and the operation ≡̃ correspond-
ing to ≡, assumed to be the identity. Consequently, SCI allows to express
that equivalent formulas have different denotations in SCI. As a result, the
formula

(FA) (ϕ ≡ ψ) ↔ (ϕ ↔ ψ),
which can be seen as a formal representation of the Fregean principle, cannot
be valid in SCI. The ontological commitments of SCI are relatively weak,
assuming only the existence of at least two elements in the universes of
structures that interpret a logical language. Indeed, as shown in [17], there
exist uncountably many non-equivalent extensions of SCI. It is noteworthy
that certain modal and many-valued logics can be interpreted as some SCI-
theories. Further details on SCI and its extensions (propositional and of
higher-order), see for instance [5,6,15,17,19,30,38,39,41].

Two properties of SCI (and any of its extensions) need to be highlighted.
First, SCI is an extension of classical logic, and hence all classical laws re-
main valid in SCI. Secondly, the connective ≡ represents the identity relation
between denotations of sentences. However, proponents of the non-Fregean
approach are not forced to accept classical logic. Furthermore, in a general
non-Fregean approach ≡ need not necessarily be interpreted as the iden-
tity. Consequently, depending on the purposes of our logic, we may impose
weaker assumptions on the interpretation of ≡ in non-Fregean structures.
For instance, it can be a congruence relation or an equivalence relation that
satisfies a form of the extensionality principle. Over the years of research on
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non-Fregean systems, it turned out that even minor changes in the axioms
of SCI and/or its semantics can yield significantly distinct formalizations of
the non-Fregean connective ≡.

A deviant version of SCI is a logic introduced by Grzegorczyk in [22]. His
main motivation for constructing a new system was to separate logical values
of sentences from their meanings. Grzegorczyk argued that classical logic,
with its paradoxes of implication, is too strong to serve as a suitable for-
mal tool for expressing descriptions of reality. Unaware of Suszko’s results,
Grzegorczyk formulated his logic LD, called the Logic of Descriptions, from
scratch. He was firmly convinced that the most primitive logical connectives,
whose meaning and role in human language are readily comprehensible, are
negation, conjunction, and disjunction. Their role in language is more fun-
damental than that of implication and equivalence connectives, which need
to be discarded. Instead of implication and equivalence connectives, a new
connective ≡ of descriptive equivalence should be adopted. In Grzegorczyk’s
framework the connective ≡ is non-Fregean in nature, aiming to express the
assertion that two descriptions of reality describe the same, share the same
meaning, refer to the same situations. Nonetheless, even though Grzegor-
czyk’s logic LD and Suszko’s logic SCI share philosophical motivation, they
significantly differ in formalization. Further results presented in [18] and
[20] have revealed that LD and SCI exhibit notably different semantics and
properties. The most remarkable property of LD is paraconsistency.

Paraconsistent logics have a slightly longer history than non-Fregean log-
ics. Their primary motivation is to allow inferences that tolerate a certain
kind of inconsistency. Classical logic does not permit any contradiction,
which is guaranteed by the Principle of Explosion, according to which from
contradictory premises anything follows. In contrast, a paraconsistent para-
digm challenges the Principle of Explosion and aims to formalize inferences
with contradictions in a controlled and judicious way, avoiding trivial sys-
tems in which everything is true. Over the years, many different systems
of paraconsistent logic have been developed, among which are the follow-
ing well-known and extensively studied logics: Logic of Paradox, Logics of
Formal Inconsistency, Jaśkowski’s Discussive Logic. It is also known that
many non-classical logics, such as relevant or many-valued logics, origi-
nally addressing other than paraconsistency aspects of inference, are also
paraconsistent. For further reading on paraconsistent logics, see for instance
[1,2,4,7,12,34,35].

In this paper, we introduce non-Fregean versions of some well-known
paraconsistent logics. We focus on Jaśkowski’s Discussive Logic D2 and
some 3-valued paraconsistent logics, including the Logic of Paradox LP. We
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also revisit Grzegorczyk’s Logic of Descriptions LD and two of its variants,
namely LDS (Logic of Descriptions with Suszko’s Axioms) and LDE (Logic
of Equime aning), which differ from LD on the formalization of the exten-
sionality property. Our goal is to address the question posed in [21]:

Is a non-Fregean Grzegorczyk’s logic L, for L ∈ {LD, LDS, LDE}, equiv-
alent to a previously known paraconsistent logic? If not, how they are
related?

The paper is organized as follows. In Section 2 we introduce definitions of
basic concepts and the notation employed throughout the paper. We also
revisit crucial ideas of the non-Fregean framework, providing its formal def-
inition. In Section 3 we present Grzegorczyk’s logics of descriptions, reca-
pitulate some of their properties, and prove minor propositions that will be
used in the subsequent sections. Section 4 considers non-Fregean versions of
3-valued logics LFI1, LFI2, and LP, along with their logical relationships to
Grzegorczyk’s logics. In particular, we show that logics LD, LDS, LDE are
either weaker than or incomparable to non-Fregean extensions of LP, LFI1,
LFI2. In Section 5, we study a non-Fregean version of Jaśkowski’s logic D2

and we show that it is incomparable with Grzegorczyk’s logics. The paper
concludes in Section 6 with a summary and prospects for further research.
To avoid cluttering the main text, details of proofs that involve extensive
calculations have been included in the “Appendix”.

2. Preliminaries

Logic is a formal system usually determined by a formal language and a de-
duction (axiomatic) system or semantics. In this paper, we examine various
logics through the lens of the non-Fregean methodology that presupposes
the existence of a universe of semantic correlates of sentences. Consequently,
we adopt a semantic (algebraic) approach.

Definition 2.1. (L-formulas) The set FORL of formulas of a propositional
logic L is the smallest set that includes propositional variables from a count-
able infinite set Prop and is closed with respect to all the connectives from
a finite set OPL.

We assume that the set OPL of each logic L studied in this paper includes
a unary connective of negation (¬) and binary connectives of conjunction
(∧), disjunction (∨), implication (→), bi-implication (↔). The set OPL may
also include a binary connective of descriptive equivalence ≡. We do not
consider any other propositional connectives.
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Definition 2.2. (L-structure) A structure M = (U, D,O) is said to be an
L-structure whenever U and D are nonempty sets such that D is a proper
subset of U , and O is a mapping which assigns to each n-ary propositional
connective # ∈ OPL, an operation #̃ : Un → U in U .

It is worth to mention that the structures defined above are often referred
to as logical matrices. Given an L-structure M = (U, D,O), the set U is
referred to as a domain of M, and D is the set of distinguished elements of
M. For simplicity of presentation, given a logic L, we will substitute O by
the list of operations interpreting the connectives of L.

Definition 2.3. (Logic L) A logic L is a pair (FORL,KL), where FORL is
the set of L-formulas and KL is a class of L-structures.

Definition 2.4. (Valuation) A valuation in an L-structure M = (U, D,O)
is a mapping v : FORL → U such that for all p ∈ Prop, for all L-formulas
ϕ1, . . . , ϕn, and for every n-ary connective # ∈ OPL, the following holds:

(v1) v(p) ∈ U ,

(v2) v(#(ϕ1, . . . , ϕn)) = #̃(v(ϕ1), . . . , v(ϕn)).

Note that a valuation in an L-structure M = (U, D,O) can be seen as
a homomorphism from the algebra of formulas of L to (U,O).

Definition 2.5. (Satisfaction, truth, validity) Let M = (U, D,O) be an
L-structure and let v be a valuation in M. An L-formula ϕ is said to be
satisfied in M by v, M, v |= ϕ in short, if and only if v(ϕ) ∈ D. A formula
ϕ is said to be true in M, denoted by M |= ϕ, whenever it is satisfied in
M by all the valuations in M. If L = (FORL,KL), then structures in KL are
referred to as L-models. We say that a formula ϕ is valid in L, denoted by
|=L ϕ, if and only if ϕ is true in every M ∈ KL.

Definition 2.6. (Semantic consequence) Let L = (FORL,KL) be a propo-
sitional logic. Let X and ϕ be a set of L-formulas and a single L-formula,
respectively. Then, a formula ϕ is said to be a semantic L-consequence of X,
denoted by X |=L ϕ, if and only if for every L-structure M ∈ KL and for
every valuation v in M, if M, v |= ψ for all ψ ∈ X, then M, v |= ϕ.

Definition 2.7. (Non-Fregean logic) A logic L = (FORL,KL) is said to be
non-Fregean if and only if there is a binary connective ≡ ∈ OPL such that
the following holds:

(nfl1) There exist M = (U,D,O) in KL and a, b ∈ U such that a �= b and
the following holds: a ≡̃ b �∈ D and either a, b ∈ D or a, b �∈ D.
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(nfl2) For every L-model M = (U,D,O) in KL and for all a, b, c ∈ U , the
following holds:

(i) a ≡̃ a ∈ D.

(ii) If a ≡̃ b ∈ D, then b ≡̃ a ∈ D.

(iii) If a ≡̃ b ∈ D and b ≡̃ c ∈ D, then a ≡̃ c ∈ D.

(iv) If a ∈ D and a ≡̃ b ∈ D, then b ∈ D.

A connective ≡ ∈ OPL that satisfies conditions (nfl1) and (nfl2) will be
referred to as a non-Fregean equivalence.

Definition 2.8. (Standard non-Fregean logic) A non-Fregean logic L =
(FORL,KL) is said to be standard if and only there exists a non-Fregean
equivalence connective ≡ ∈ OPL such that for every L-model M = (U, D,O)
in KL and for all a, b ∈ U , the following holds:

(snfl) a ≡̃ b ∈ D iff a = b.
A non-Fregean connective ≡ satisfying (snfl) will be referred to as standard.

In the light of non-Fregean methodology, elements of U are denotations
(semantical correlates) of formulas. A denotation of a formula ϕ can be
understood as a situation or a state of affairs described by ϕ, or in any
other way, depending on the intended motivation of the logic (meaning of
ϕ, a state of a machine after executing a program ϕ, etc.). Elements of
D are factual denotations (real situations, actual states, etc.), and U \ D
consists of nonfactual denotations. Intuitively, the condition (nfl1) says that
the connective of non-Fregean equivalence allows us to distinguish either
at least two distinct factual denotations or at least two distinct nonfactual
denotations. Thus, if a logic L is non-Fregean, then there must exist an L-
structure with more than two elements. The condition (nfl2) implies that ≡
represents an equivalence relation between denotations in U such that each
of its equivalence classes is included either in D or in U \ D. In a standard
non-Fregean logic, ≡ is the identity connective that combines two sentences
into a new true sentence whenever the semantic correlates of its arguments
are the same.

Note that the classical propositional logic PC over the language with
connectives ¬, ∧, ∨, →, ↔ is not non-Fregean. Indeed, the class KPC consists
of a single PC-model M = (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃), where U = {0, 1}, D = {1},
and ({0, 1}, ¬̃, ∧̃, ∨̃, →̃, ↔̃) forms a Boolean algebra. The only connective
satisfying the condition (nfl2) is the material equivalence ↔, which, however,
does not satisfy (nfl1).
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Clearly, if → and ↔ of a logic L are classical connectives of implication
and bi-implication, that is, for each L-model M = (U, D,O) and for all
a, b ∈ U the following conditions hold:

a →̃ b ∈ D if and only if either a �∈ D or b ∈ D,
a ↔̃ b ∈ D if and only if either a, b ∈ D or a, b �∈ D,

and, in addition, in L there exists a connective ≡ satisfying conditions (nfl1)
and (nfl2) as defined in Definition 2.7, then the formula (ϕ ↔ ψ) → (ϕ ≡ ψ)
is not L-valid.

The well-known example of a non-Fregean logic is SCI, Sentential Calculus
of Identity, introduced by Suszko in [37]. Connectives of SCI are ¬, ∧, ∨,
→, ↔, and the identity connective ≡. SCI-models are structures of the form
M = (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃), where U , D are any nonempty sets such that
D ⊂ U , and for all a, b ∈ U it holds that:

(SCI1) ¬̃a ∈ D iff a �∈ D,
(SCI2) a ∧̃ b ∈ D iff a ∈ D and b ∈ D,
(SCI3) a ∨̃ b ∈ D iff a ∈ D or b ∈ D,
(SCI4) a →̃ b ∈ D iff a �∈ D or b ∈ D,
(SCI5) a ↔̃ b ∈ D iff a →̃ b ∈ D and b →̃ a ∈ D,
(SCI6) a ≡̃ b ∈ D iff a = b.

Definition 2.9. (Paraconsistent logic) A logic L = (FORL,KL) is said to be
paraconsistent if and only if it has a unary connective of negation ¬ ∈ OPL

such that ϕ,¬ϕ �|=L ψ, for some L-formulas ϕ and ψ.

Definition 2.10. Let L and L′ be propositional logics such that OPL ⊆
OPL′ . We will say that L is weaker than or equal to L′, denoted by L � L′,
if and only if each L-valid formula is L′-valid. A logic L (resp. L′) is referred
to as weaker (resp. stronger) than L′ (resp. L), L ≺ L′ in short, if and only
if L � L′ and L′ �� L. Logics L and L′ are said to be incomparable, denoted
by L ≺ L′, whenever L �� L′ and L′ �� L.

3. Grzegorczyk’s Non-Fregean Logics

The first Grzegorczyk’s logic of description, denoted by LD, was introduced
in [22]. The logic LD was originally defined over the language with connec-
tives ¬,∧,∨,≡. Its Hilbert-style axiomatization consists of 17 axioms (of
which only one does not involve the connective ≡) and 4 rules of infer-
ence: substitution, introduction and elimination of conjunction, and modus
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ponens for ≡ (if ϕ ≡ ψ and ϕ are theorems, then so is ψ). In LD, the connec-
tive ≡ represents a congruence relation, but its formalization in LD is essen-
tially different than in SCI. In a comprehensive article [18], a sound and com-
plete semantics for LD has been constructed, based on a new class of algebras
named Grzegorczyk algebras. The paper [18] provides several unprovability
results for LD, showing that the descriptive equivalence ≡ of LD is indeed
different from the classical equivalence. Moreover, negation and disjunction
of LD also behave in unexpected ways. In the paper [20], a weaker seman-
tics for LD has been constructed. The new class of models was obtained
by removing the consistency condition from the original LD-models. Con-
sequently, it has been proved that the logic LD is paraconsistent. However,
three axioms of LD, intended to express the extensionality of ≡, sparked
heated controversy. In the paper [20], two new Grzegorczyk’s logics have
been introduced: LDE (Logic of Equimeaning) and LDS (Logic of Descrip-
tions with Suszko’s Axioms). Logics LDE and LDS are obtained from LD
by some modification of the axioms reflecting the extensionality principle.
Unexpectedly, it turned out that the three logics LD, LDS, and LDE are
pairwise incomparable. For more detailed results on LD, LDS, and LDE, see
the survey [21].

A reassessment of the philosophical legitimacy of LD-axioms resulted in
the logic MGL, named Minimal Grzegorczyk’s logic and presented in [16].
The discussion in [16] on the interpretations of LD, LDS, and LDE in natural
language has led to the conclusion that axioms reflecting the extensional-
ity principle lack philosophical intuitiveness, whereas the other axioms are
overly strong. In logic MGL the extensionality property is not expressed by
axioms, but by a rule of inference. Such an approach seems more warranted
from both a philosophical and linguistic standpoint. In [16], a sound and
complete semantics for MGL has been constructed. Moreover, it has been
showed that MGL is paraconsistent, decidable, and can serve as a non-trivial
generic logic that can be extended to some non-Fregean logics constructed
in Grzegorczyk or Suszko style.

In this section we study the following Grzegorczyk’s logics: WGL – Weak
Grzegorczyk’s Logic; MGL – Minimal Grzegorczyk’s Logic; LD – Logic of
Descriptions; LDS – Logic of Descriptions with Suszko’s Axioms; LDE –
Logic of Equimeaning. All these logics share their language, that is, they have
the same set FORG of formulas, which are built with the use of the following
connectives: ¬, ∧, ∨, →, ↔, ≡. Each logic L ∈ {WGL,MGL, LD, LDS, LDE}
is determined by a class of its models. Therefore, L = (FORG,KL), where KL

consists of L-models which are defined as follows.
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Definition 3.1. (WGL-model) A structure (U, D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) is said
to be a WGL-model whenever U , D are nonempty, D ⊂ U , and for all
a, b, c ∈ U the following conditions hold:

(WGL1) ¬̃(a ∧̃ ¬̃a) ∈ D,

(WGL2) a ≡̃ a ∈ D,

(WGL3) (a ∧̃ b) ∈ D if and only if a ∈ D and b ∈ D,

(WGL4) If a ∈ D and (a ≡̃ b) ∈ D, then b ∈ D,

(WGL5) If a ≡̃ b ∈ D, then b ≡̃ a ∈ D,

(WGL6) If a ≡̃ b ∈ D and b ≡̃ c ∈ D, then a ≡̃ c ∈ D.

Definition 3.2. (MGL-model) An MGL-model is a WGL-structure (U, D, ¬̃,
∧̃, ∨̃, →̃, ↔̃, ≡̃) such that ≡̃ satisfies the condition (snfl), that is, for all a, b ∈
U the following holds:

(mgl) (a ≡̃ b) ∈ D if and only if a = b.

Models of LD, LDE, and LDS are based on G-structures.

Definition 3.3. (G-structure)
A WGL-model (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) is said to be a G-structure if and only
if for all a, b, c ∈ U and # ∈ {∧,∨}, the following conditions hold:

(G1) a ≡̃ (a #̃ a) ∈ D,

(G2) (a #̃ b) ≡̃ (b #̃ a) ∈ D,

(G3) (a #̃ (b #̃ c)) ≡̃ ((a #̃ b) #̃ c) ∈ D,

(G4) (a ∧̃ (b ∨̃ c)) ≡̃ ((a ∧̃ b) ∨̃ (a ∧̃ c)) ∈ D,

(G5) (a ∨̃ (b ∧̃ c)) ≡̃ ((a ∨̃ b) ∧̃ (a ∨̃ c)) ∈ D,

(G6) (¬̃¬̃a) ≡̃ a ∈ D,

(G7) ¬̃(a ∧̃ b) ≡̃ (¬̃a ∨̃ ¬̃b) ∈ D,

(G8) ¬̃(a ∨̃ b) ≡̃ (¬̃a ∧̃ ¬̃b) ∈ D,

(G9) (a ≡̃ b) ≡̃ (b ≡̃ a) ∈ D,

(G10) (a ≡̃ b) ≡̃ (¬̃a ≡̃ ¬̃b) ∈ D.

Note that operations →̃ and ↔̃ in G-structures can be freely defined. In
the original axiomatization of Grzegorczyk’s logic LD in [22], none of its
axioms involve connectives of implication → and bi-implication ↔. Such an
approach was motivated by Grzegorczyk’s philosophical view on the need
for a logic built from the ground up to reflect the fundamental interactions
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between descriptive equivalence ≡ and the basic connectives of negation, dis-
junction and conjunction. As a result, LD introduces counterparts to many
classical laws involving equivalence while omitting others. As shown in [18],
even if the connectives → and ↔ are defined in LD in terms of ¬ and ∧ in
a classical way, many of the classical laws of implication and bi-implication
do not hold in LD. Thus, Grzegorczyk’s approach can serve as a basis for
introducing non-classical implication and bi-implication.

Definition 3.4. (De Morgan bisemilattice)A de Morgan bisemilattice is a
structure (U, ¬̃, ∧̃, ∨̃) such that ¬̃ is a unary operation on U , ∧̃, ∨̃ are bi-
nary operations on U that are commutative, associative, idempotent, and
moreover, ∧̃ distributes over ∨̃, ∨̃ distributes over ∧̃, and for all a, b ∈ U ,
¬̃¬̃a = a and ¬̃(a ∨̃ b) = ¬̃a ∧̃ ¬̃b.

Definition 3.5. (Standard G-structure)
A WGL-model (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) is said to be a standard G-structure
if and only if (U, ¬̃, ∧̃, ∨̃) is a de Morgan bisemilattice and for all a, b, c ∈ U ,
the following conditions hold:

a ≡̃ b ∈ D iff a = b (i.e., ≡̃ satisfies the condition (snfl)),
a ≡̃ b = b ≡̃ a,
a ≡̃ b = ¬̃a ≡̃ ¬̃b.

Definition 3.6. (LD-model) A standard G-structure (U, D, ¬̃, ∧̃, ∨̃, →̃, ↔̃,
≡̃) is said to be an LD-model whenever for all a, b, c ∈ U , the following
conditions hold:

(LD1) (a ≡̃ b) ≡̃ ((a ≡̃ b) ∧̃ ((a ≡̃ c) ≡̃ (b ≡̃ c))) ∈ D,
(LD2) (a ≡̃ b) ≡̃ ((a ≡̃ b) ∧̃ ((a ∧̃ c) ≡̃ (b ∧̃ c))) ∈ D,
(LD3) (a ≡̃ b) ≡̃ ((a ≡̃ b) ∧̃ ((a ∨̃ c) ≡̃ (b ∨̃ c))) ∈ D.

Definition 3.7. (LDS-model) A standard G-structure (U, D, ¬̃, ∧̃, ∨̃, →̃, ↔̃,
≡̃) is said to be an LDS-model whenever for all a, b, c, d ∈ U , the following
conditions hold:

(LDS1) (a ≡̃ b ∧̃ c ≡̃ d) ≡̃ ((a ≡̃ b ∧̃ c ≡̃ d) ∧̃ ((a ≡̃ c) ≡̃ (b ≡̃ d))) ∈ D,
(LDS2) (a ≡̃ b ∧̃ c ≡̃ d) ≡̃ (a ≡̃ b ∧̃ c ≡̃ d) ∧̃ ((a ∧̃ c) ≡̃ (b ∧̃ d))) ∈ D,
(LDS3) (a ≡̃ b ∧̃ c ≡̃ d) ≡̃ ((a ≡̃ b ∧̃ c ≡̃ d) ∧̃ ((a ∨̃ c) ≡̃ (b ∨̃ d))) ∈ D.

Thus, we have:

Theorem 3.8. All models of LD and LDS are standard G-structures.

Definition 3.9. (LDE-model) A G-structure (U, D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) is said
to be an LDE-model whenever for all a, b, c ∈ U , the following conditions
hold:
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(LDE1) (a ≡̃ b ∧̃ a ≡̃ c) ≡̃ (a ≡̃ b ∧̃ b ≡̃ c) ∈ D,
(LDE2) (a ≡̃ b ∧̃ (a ∧̃ c)) ≡̃ (a ≡̃ b ∧̃ (b ∧̃ c)) ∈ D,
(LDE3) (a ≡̃ b ∧̃ (a ∨̃ c)) ≡̃ (a ≡̃ b ∧̃ (b ∨̃ c)) ∈ D.

The logic MGL is a simple extension of WGL to its standard version in which
≡ represents the identity relation between elements of U . By Theorem 3.8,
all models of LD and LDS are models of MGL, whereas all models of LDE
are models of WGL. Therefore, we have the following:

Proposition 3.10. Let L ∈ {MGL, LD, LDS, LDE}. Every L-model is a WGL-
model.

A trivial example of a WGL-model is the two-element Boolean algebra with 1
as the only distinguished element. It is also easy to see that every SCI-model
is an MGL-model. However, SCI is much stronger than MGL. In particular,
in every SCI-model it holds that ¬̃a ∈ D iff a �∈ D, which does not hold in
all MGL-models (see [16]). In consequence, we have:

Proposition 3.11. WGL � MGL ≺ SCI.

Below we present examples of non-trivial models of logics LD, LDS, LDE.
Let M1 = (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) be such that U = {0, 1, 2}, D = {2}, →̃
and ↔̃ are any binary operations on U , and the operations ¬̃, ∧̃, ∨̃, ≡̃ are
defined as:

¬̃a =

{
2, if a = 0
0, otherwise

a ≡̃ b =

{
2, if a = b
0, otherwise

a ∧̃ b =

{
2, if a = b = 2
0, otherwise

a ∨̃ b =

{
2, if a = 2 or b = 2
0, otherwise

The structure M1 satisfies all the conditions imposed in MGL-models:

Proposition 3.12. The structure M1 is a model of WGL and MGL.

However, M1 is not a model of logics LD, LDS, LDE, as it does not satisfy
the condition (G6) of G-structures. Indeed, ¬̃¬̃1 = 2 �= 1. Note also that
the operation ¬̃ does not behave in M1 as the classical negation: 1 �∈ D
and ¬̃1 = 0 �∈ D. Furthermore, M1 does not satisfy the semantic version
of the excluded middle law, that is a ∨̃ ¬̃a does not hold for all a ∈ U , as
(1 ∨̃ ¬̃1) = (1 ∨̃ 0) = 0 �∈ D. Hence, the formula p ∨ ¬p is not valid in WGL
and MGL. However, it should be noted that the formula ¬(p ∧ ¬p) is valid
in each logic L ∈ {WGL,MGL, LD, LDS, LDE}. Indeed, its semantic version
¬̃(a ∧̃ ¬̃a) ∈ D holds in each L-model, for all a ∈ U .
Let M2 = (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) be such that U = {0, 1, 2}, D = {1, 2},
→̃ and ↔̃ are any binary operations on U , and the operations ¬̃, ∧̃, ∨̃, ≡̃
are defined as:
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¬̃a = 2 − a a ≡̃ b =

{
1, if a = b
0, otherwise

a ∧̃ b = min(a, b) a ∨̃ b = max(a, b)

The following can be easily verified (cf. [20] and [21]):

Proposition 3.13. The structure M2 is an L-model, for every L ∈
{WGL,MGL, LD, LDS, LDE}.
The structure M2 enjoys the following property: 1 ∈ D and ¬̃1 ∈ D. Thus,
the operation ¬̃ in M2 is not classical. Indeed, if v is a valuation in M2

such that v(p) = 1 and v(q) = 0, then M2, v |= p and M2, v |= ¬p, but
M2, v �|= q. Hence, p,¬p �|=L q, for every L ∈ {WGL,MGL, LD, LDS, LDE}.

Theorem 3.14. Let L ∈ {WGL,MGL, LD, LDS, LDE}. The logic L is para-
consistent.

Clearly, the model M2 satisfies the condition (nfl1). Furthermore, every
logic L ∈ {WGL,MGL, LD, LDS, LDE} satisfies the condition (nfl2) of Defini-
tion 2.7. Therefore, we obtain:

Theorem 3.15. Let L ∈ {WGL,MGL, LD, LDS, LDE}. The logic L is non-
Fregean. Moreover, MGL, LD, and LDS are standard non-Fregean logics.

MGL was originally defined in [16] by the Hilbert-style axiomatization which
consists of axioms of the form ¬(ϕ∧¬ϕ) and ϕ ≡ ϕ, for all formulas ϕ, and
the following four inference rules:

(MP≡)
ϕ,ϕ ≡ ψ

ψ
(ext)

ϕ ≡ ψ

α(ϕ) ≡ α(ϕ/ψ)

(∧1)
ϕ,ψ

ϕ ∧ ψ
(∧2)

ϕ ∧ ψ

ϕ,ψ
The following properties of MGL are proved in [16]:

Theorem 3.16. (Strong Soundness and Completeness of MGL) Let X be a
set of MGL-formulas and ϕ be a single MGL-formula. Then, the following
conditions are equivalent:

1. X �MGL ϕ

2. X |=MGL ϕ.

Theorem 3.17. (Decidability of MGL) The logic MGL is decidable.

In what follows, a rule ϕ1,...,ϕn

ψ1,...,ψk
, n, k ≥ 1, is said to be strongly correct in

a logic L whenever for every L-structure M and for every valuation v in M,
if M, v |= ϕi, for all i ∈ {1, . . . , n}, then M, v |= ψj , for all j ∈ {1, . . . , k}.
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In [16], it has been proved that all the MGL-rules are strongly correct
in MGL. Now, it can be easily seen that WGL is a weaker version of MGL.
Indeed, the connective ≡ represents a congruence relation in MGL, but not
in WGL. In particular, we have:

{p ≡ q} �|=WGL (p ∧ r) ≡ (q ∧ r).
Thus, the rule (ext) is not strongly correct in WGL, since there is a WGL-
model M and a valuation v in M such that M, v |= p ≡ q, but M, v �|=
(p ∧ r) ≡ (q ∧ r). The structure MLDE defined on page 15 is an example of
such a WGL-model.

In fact the rule (ext) plays an important philosophical role. As argued in
[16], if we read a formula ϕ ≡ ψ as ‘ϕ and ψ have equal meaning (have the
same content or are the same descriptions)’, then the rule (ext) can be seen
as a formal representation of the following Extensionality Property :

(EXT) Sentences that have equal meaning (have the same content or are
the same descriptions) are interchangeable in all possible contexts.

In [20] it has been proved that the rule (ext) holds in LD and LDS, but not
in LDE. Consequently, logics WGL and LDE are beyond the expressive power
of (ext). However, we may easily obtain WGL from MGL by replacing (ext)
with the following two rules expressing symmetry and transitivity of ≡:

(sym)
ϕ ≡ ψ

ψ ≡ ϕ
(tran)

ϕ ≡ ψ,ψ ≡ ϑ

ϕ ≡ ϑ
Then, we obtain the soundness and completeness theorem for WGL, which
can be proved essentially in the same way as Theorem 3.12 in [16], but
without taking equivalence classes.

Hilbert-style axiomatizations of logics LD, LDS, and LDE can be found
in [21] (cf. [18,20]). The inference rules of LD, LDS, and LDE are (MP),
(∧1), and (∧2). All the logics LD, LDS, and LDE share most of their axioms
that correspond to conditions imposed in G-structures. However, they differ
on the last three axioms that are intended to express the extensionality
of ≡, which is also manifested in the semantics: conditions (LD1)–(LD3),
(LDS1)–(LDS3), and (LDE1)–(LDE3) are semantic counterparts of the three
specific axioms of the logics LD, LDS, and LDE, respectively, listed below.
For simplicity of presentation, we admit the following shorthand notation
for the connective of the descriptive implication:

(ϕ ⇒ ψ) df= (ϕ ≡ (ϕ ∧ ψ)).
The three specific axioms of LD, LDS, and LDE are:

(AxLD1) (ϕ ≡ ψ) ⇒ ((ϕ ≡ ϑ) ≡ (ψ ≡ ϑ))
(AxLD2) (ϕ ≡ ψ) ⇒ ((ϕ ∧ ϑ) ≡ (ψ ∧ ϑ))
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(AxLD3) (ϕ ≡ ψ) ⇒ ((ϕ ∨ ϑ) ≡ (ψ ∨ ϑ))
(AxLDS1) ((ϕ ≡ ψ) ∧ (ϑ ≡ ζ)) ⇒ ((ϕ ≡ ϑ) ≡ (ψ ≡ ζ))
(AxLDS2) ((ϕ ≡ ψ) ∧ (ϑ ≡ ζ)) ⇒ ((ϕ ∧ ϑ) ≡ (ψ ∧ ζ))
(AxLDS3) ((ϕ ≡ ψ) ∧ (ϑ ≡ ζ)) ⇒ ((ϕ ∨ ϑ) ≡ (ψ ∨ ζ))
(AxLDE1) ((ϕ ≡ ψ) ∧ (ϕ ≡ ϑ)) ≡ ((ϕ ≡ ψ) ∧ (ψ ≡ ϑ))
(AxLDE2) ((ϕ ≡ ψ) ∧ (ϕ ∧ ϑ)) ≡ ((ϕ ≡ ψ) ∧ (ψ ∧ ϑ))
(AxLDE3) ((ϕ ≡ ψ) ∧ (ϕ ∨ ϑ)) ≡ ((ϕ ≡ ψ) ∧ (ψ ∨ ϑ))

As proved in [20], logics LD, LDS, and LDE are pairwise incomparable (see
[20,21]), that is, their models generate essentially different classes of valid
formulas. Therefore, the specific conditions of LD, LDS, and LDE formalize
extensionality of ≡ in an essentially different way.

Many non-trivial examples of models of logics LD, LDE, and LDS can be
found in [18,20,21]. Below we present non-Fregean structures that are used
to show incomparability of LD, LDE, and LDS: an LD-model MLD which is
not a model of LDS nor LDE, an LDS-model MLDS which is not a model of
LD nor LDE, and an LDE-model MLDE which is not a model of LD nor LDS.
Let A = {0, 1} and let MLD = (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) be such that U =
{∅, {0}, {1}, A}, D = {A}, →̃ and ↔̃ are any binary operations on U , and
the operations ¬̃, ∧̃, ∨̃, ≡̃ are defined as:

¬̃a = A \ a a ≡̃ b =

⎧⎨
⎩

A, if a = b
∅, if a = A \ b
{0}, otherwise

a ∧̃ b = a ∩ b a ∨̃ b = a ∪ b

It is known that MLD is an LD-model (see [20]). However, the following can
be proved (see the “Appendix” at the end of the paper):

Proposition 3.18. The conditions (LDS1)–(LDS3) and (LDE1)–(LDE3) do
not hold in MLD. Consequently, formulas (AxLDS1)–(AxLDS3) and (AxLDE1)–
(AxLDE3) are not valid in LD.

Let MLDS = (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) be such that U = {0, 1, 2, 3}, D =
{2, 3}, →̃ and ↔̃ are any binary operations on U , and the operations ¬̃, ∧̃,
∨̃, ≡̃ are defined as:

¬̃a = 3 − a a ≡̃ b =

⎧⎨
⎩

a ∨̃ ¬̃a, if a = b
0, if {a, b} = {0, 3}
1, otherwise

a ∧̃ b = min(a, b) a ∨̃ b = max(a, b)

A structure MLDS is an LDS-model (for details, see [20]), but it does not
satisfy conditions (LD1)–(LD3) and (LDE1)–(LDE3) (see the “Appendix”).
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Proposition 3.19. The model MLDS does not satisfy the conditions (LD1)–
(LD3) and (LDE1)–(LDE3). Hence, the formulas (AxLD1)–(AxLD3)
and (AxLDE1)–(AxLDE3) are not valid in LDS.

Now, we will study an LDE-model from [20].
Let MLDE = (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) be such that U = {0, 1, 2} × {0, 1},
D = {0, 1, 2} × {1}, →̃ and ↔̃ are any binary operations on U , and the
operations ¬̃, ∧̃, ∨̃, ≡̃ are defined as:

¬̃(a, b) = (2 − a, 1 − b)

(a, b) ∧̃ (c, d) = (min(a, c), min(b, d)) (a, b) ∨̃ (c, d) = (max(a, c), max(b, d))

(a, b) ≡̃ (c, d) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 1), if a = b
or {(a, b), (c, d)} = {(0, 0), (1, 0)}
or {(a, b), (c, d)} = {(1, 1), (2, 1)}

(0, 0), otherwise

In the “Appendix”, we prove that MLDE is not an LD-model nor LDS-model.

Proposition 3.20. The model MLDE does not satisfy the conditions (LD2)–
(LD3) and (LDS2)–(LDS3). Consequently, (AxLD2)–(AxLD3) and (AxLDS2)–
(AxLDS3) are not valid in LDE.

Propositions 3.18, 3.19, and 3.20 imply:

Proposition 3.21. Logics LD, LDS, and LDE are pairwise incomparable.

Observe that the original Suszko’s logic SCI is beyond the expressive power
of logics LD, LDS, LDE. Indeed, SCI does not impose any special conditions
on the operations ¬̃, ∧̃, ∨̃. In particular, ¬¬p ≡ p and p ≡ (p∨p) are not valid
in SCI. On the other hand, every SCI-model satisfies the condition ¬̃a ∈ D
iff a �∈ D, which does not hold for every model of L ∈ {LD, LDS, LDE}.
Therefore, we obtain:

Proposition 3.22. Let L ∈ {LD, LDS, LDE}. Then, L and SCI are incom-
parable.

Due to Propositions 3.11, 3.21, and 3.22, we obtain the following:

Theorem 3.23.

1. WGL ≺ L, for each L ∈ {MGL, LD, LDS, LDE,SCI}.
2. MGL ≺ L, for each L ∈ {LD, LDS,SCI}.
3. Logics LD, LDS, LDE,SCI are pairwise incomparable.

The proofs of properties of Grzegorczyk’s logics, listed in the next proposi-
tion, can be found in [18,20,21].
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Proposition 3.24.

1. (ϕ ≡ ψ) ⇒ (ψ ≡ ψ) is valid in LDE, but not in LD.

2. (p ≡ q) ⇒ [(p ≡ (p ≡ (p ≡ p))) ≡ (q ≡ (q ≡ (q ≡ q)))] is valid in LDS,
but not in LD.

3. The following formulas are not valid in LD, LDS, and LDE:

¬(ϕ ≡ ¬ϕ)

(ϕ ∨ ¬ϕ) ≡ (ψ ∨ ¬ψ)

(ϕ ≡ ϕ) ≡ (ψ ≡ ψ)

(ϕ ∧ (ϕ ∨ ψ)) ≡ ϕ

(ϕ ∨ (ϕ ∧ ψ)) ≡ ϕ

(ϕ ∧ ¬ϕ) ⇒ ψ

ψ ⇒ (ϕ ∨ ¬ϕ)

(ϕ ≡ ψ ∧ ϕ) ≡ (ϕ ≡ ψ ∧ ψ)

(ϕ ≡ ψ ∧ ψ ∧ ϑ) ⇒ (ϕ ≡ ϑ).

Below we present some further properties of Grzegorczyk’s logics which will
be used in the subsequent sections. For proofs, see the “Appendix”.

Proposition 3.25. Let L ∈ {LD, LDS, LDE}. Then, ϕ ∨ ¬ϕ is L-valid.

Proposition 3.26. Let L ∈ {LD, LDS, LDE}. If ϕ ≡ ψ is valid in L, then
¬ϕ ∨ ψ and ¬ψ ∨ ϕ are L-valid.

Proposition 3.27. Let L ∈ {LD, LDS, LDE}. If ϕ ≡ ψ is valid in L, then
¬(ϕ ∧ ¬ψ) and ¬(ψ ∧ ¬ϕ) are L-valid.

4. Non-Fregean 3-Valued Paraconsistent Logics

In this section we consider non-Fregean extensions of 3-valued paraconsistent
logics LP, LFI1, and LFI2, which belong to the family LFI of Logics of Formal
Inconsistency as introduced in [9]. LFI-logics are paraconsistent logics that
enable to express the notion of consistency within the object language in such
a way that consistency may be logically independent of non-contradiction.
For a detailed survey on LFI-logics, refer to [8]. The logic LP, named Logic
of Paradox by Priest in [34], was first proposed by Asenjo in [3] and later
popularized and developed by Priest and others (see [35,36]). As its name
suggests, the main motivation of LP is to deal with logical paradoxes. The
logic LFI1 is functionally equivalent to a 3-valued modal logic J3, whereas
LFI2 provides a sound and complete semantics for the logic Ciore, as shown
by Carnielli and others (see [7]).
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We assume that the language of LFI1, LFI2, and LP contains the following
connectives: negation ¬, conjunction ∧, disjunction ∨, implication →, and
bi-implication ↔. Models of LFI1, LFI2, and LP are defined as follows.

Definition 4.1. (LP-model) An LP-model is a structure
(U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃) such that U = {f, n, t}, D = {n, t}, and the operations
¬̃, ∧̃, ∨̃, →̃, ↔̃ are defined as:

¬̃
f t
n n
t f

∧̃ f n t
f f f f
n f n n
t f n t

∨̃ f n t
f f n t
n n n t
t t t t

→̃ f n t
f t t t
n n n t
t f n t

↔̃ f n t
f t n f
n n n n
t f n t

Definition 4.2. (LFI1-model) An LFI1-model is a structure (U, D, ¬̃, ∧̃,
∨̃, →̃, ↔̃) such that U = {f, n, t}, D = {n, t}, and the operations ¬̃, ∧̃, ∨̃, →̃, ↔̃
are defined as follows:

¬̃
f t
n n
t f

∧̃ f n t
f f f f
n f n n
t f n t

∨̃ f n t
f f n t
n n n t
t t t t

→̃ f n t
f t t t
n f n t
t f n t

↔̃ f n t
f t f f
n f n n
t f n t

Definition 4.3. (LFI2-model) An LFI2-model is a structure (U, D, ¬̃, ∧̃,
∨̃, →̃, ↔̃) such that U = {f, n, t}, D = {n, t}, and the operations ¬̃, ∧̃, ∨̃, →̃, ↔̃
are defined as:

¬̃
f t
n n
t f

∧̃ f n t
f f f f
n f n t
t f t t

∨̃ f n t
f f t t
n t n t
t t t t

→̃ f n t
f t t t
n f n t
t f t t

↔̃ f n t
f t f f
n f n t
t f t t

Clearly, for every L ∈ {LFI1, LFI2, LP} there is exactly one model of L (up to
isomorphism). We will denote the model of L by ML. Note also that LP and
LFI1 differ in their interpretations of → and ↔, whereas LFI2 differs from
both LP and LFI1 in the interpretations of the binary connectives ∧, ∨, →,
↔. The following is well known (see eg., [35]):

Proposition 4.4. Let L ∈ {LFI1, LFI2}. Then, for every formula ϕ:

1. ϕ is valid in LP iff ϕ is valid in classical propositional logic.

2. If ϕ is valid in L, then ϕ is valid in classical propositional logic.

The above easily implies:

Proposition 4.5. Let L ∈ {LFI1, LFI2}. Then, every formula valid in L is
valid in LP.

The next proposition shows that LP is stronger than LFI1 and LFI2.

Proposition 4.6.



J. Golińska-Pilarek

1. The formula (p ∧ ¬q) → ¬(p → q) is valid in LP and LFI1, whereas it is
not valid in LFI2.

2. The formula (¬(p∧¬q)∧¬(q ∧¬p)) → (p ↔ q) is valid in LP and LFI2,
whereas it is not valid in LFI1.

Proof. Let ϕ be the formula (p ∧ ¬q) → ¬(p → q). Its possible values in
the models MLP, MLFI1, MLFI2 are presented in Example 6.1 (“Appendix”).
Thus, it follows that v(ϕ) ∈ D in the models MLP and MLFI1, for every
valuation v. However, for a valuation v such that v(p) = t and v(q) = n, we
have v(ϕ) = f, which implies that ϕ is not LFI2-valid.
Let ϕ be the formula (¬(p ∧ ¬q) ∧ ¬(q ∧ ¬p)) → (p ↔ q). Its possible values
are presented in Example 6.2 (see “Appendix”). Clearly, v(ϕ) ∈ D in MLP

and MLFI2, for every valuation v. Nonetheless, if v is a valuation in MLFI1

such that v(p) = f and v(q) = n, then v(ϕ) = f, which implies that ϕ is not
LFI1-valid.

By Propositions 4.5 and 4.6, we obtain:

Theorem 4.7.

1. LFI1 ≺ LP and LFI2 ≺ LP.

2. LFI1 ≺ LFI2.

In order to obtain a non-Fregean version of a logic L, we need to extend
its language with a connective ≡ and its structures with a properly defined
operation ≡̃ that satisfies Definition 2.7. In the case of a three valued logic
with U = {f, n, t} and D = {n, t}, an operation ≡̃ corresponding to the con-
nective ≡ must be defined on U in such a way that the following conditions
hold: n ≡̃ t �∈ D (as required by condition (nfl1)) and both f ≡̃ n �∈ D and
f ≡̃ t �∈ D (as required by condition (nfl2)). Hence, in every non-Fregean
extension of a three valued logic L with U = {f, n, t} and D = {n, t}, the
operation ≡̃ must satisfy condition (snfl). Thus, such an extension of L be-
comes a standard non-Fregean logic. It can be easily verified that none of
the binary connectives in logics LFI1, LFI2, LP satisfy (snfl). We will consider
two natural possible ways of defining ≡̃ on U = {f, n, t}.

Definition 4.8. (L≡-model) Let L ∈ {LP, LFI1, LFI2}. A structure ({f, n, t},
{n, t}, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) is said to be an L≡-model whenever (U, D, ¬̃, ∧̃, ∨̃, →̃,
↔̃) is an L-model and ≡̃ is defined on U as:

≡̃ f n t
f t f f
n f n f
t f f t
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Definition 4.9. (sL≡-model) Let L ∈ {LP, LFI1, LFI2}. A structure
({f, n, t}, {n, t}, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) is said to be an sL≡-model (strong L≡-
model) whenever (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃) is an L-model and ≡̃ is defined on
U as:

≡̃ f n t
f t f f
n f t f
t f f t

Clearly, for every L ∈ {LP, LFI1, LFI2}, there exists exactly one L≡-model
(up to isomorphism) and exactly one sL≡-model (up to isomorphism). By
L≡ and sL≡ we denote the non-Fregean extensions of L with their respective
L≡-model and sL≡-model.

Proposition 4.10. Let L ∈ {LP, LFI1, LFI2}. Then, L≡ and sL≡ are stan-
dard non-Fregean logics.

Curiously, for each L ∈ {LP, LFI1, LFI2}, sets of valid formulas of L≡ and sL≡
are essentially different. In the “Appendix”, we prove the following:

Proposition 4.11. For every L ∈ {LP, LFI1, LFI2}, the following holds:

1. The formula (p ≡ ¬p) ≡ p ∨ (p ≡ ¬p) ≡ ¬p is valid in L≡, whereas it is
not valid in sL≡.

2. The formula (p ∧ ¬p) ∨ (p → ((q ≡ q) ≡ p)) is valid in sL≡, whereas it
is not valid in L≡.

The language of logics LP, LFI1, LFI2 has significantly less expressive power
than its extension with the connective ≡ that satisfies the condition (snfl).
In particular, the connective ≡ allows to express certain properties of LFI1
and LFI2 which do not hold in LP.

Proposition 4.12. Let L ∈ {LFI1, LFI2}. The formula
(p ∧ ¬p) ∨ (p → ((q → (p ∧ ¬p)) ≡ p) ∨ ((q → (p ∧ ¬p)) ≡ ¬p)))

is valid in L≡ and sL≡, whereas it is not valid in LP≡ and sLP≡.

Proof. See the “Appendix”.

Due to Propositions 4.6, 4.11, and 4.12, we obtain:

Theorem 4.13. Let L, L′ ∈ {LP≡, sLP≡, LFI1≡, sLFI1≡, LFI2≡, sLFI2≡}. If
L �= L′, then it holds that L ≺ L′.

Let us compare non-Fregean 3-valued paraconsistent logics with Grzegor-
czyk’s logics. Recall that the formula ¬(p ∧ ¬p) is L-valid, for all L ∈
{LP, LFI1, LFI2}. Hence, we obtain:
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Proposition 4.14. Let L ∈ {LP, LFI1, LFI2}. Then, models of L≡ and sL≡
are MGL-models.

As we showed in the previous section, the formula p ∨ ¬p is not MGL-valid,
whereas it is L-valid, for every L ∈ {LP, LFI1, LFI2}. Therefore, we have:

Theorem 4.15. Let L ∈ {LP, LFI1, LFI2}. Then, MGL ≺ L≡ and MGL ≺
sL≡.

The above theorem is not particularly surprising, given the inherent weak-
ness of the logic MGL. More intriguing results could emerge from a compar-
ison between our non-Fregean extensions of 3-valued paraconsistent logics
and the logics LD, LDS, LDE.

Proposition 4.16. Let L ∈ {LP≡, sLP≡, LFI1≡, sLFI1≡, LFI2≡, sLFI2≡} and
L′ ∈ {LD, LDS, LDE}. Then, there exists a formula valid in L, but not valid
in L′.

Proof. Let ϕ be the formula
∨

i,j∈{0,...,3},i 	=j pi ≡ qj . It is easy to verify
that ϕ is valid in L≡ and sL≡, for every L ∈ {LP, LFI1, LFI2}. Indeed, suppose
ϕ does not hold in the model of L≡ or sL≡. Then, there exists a valuation
v such that for all i, j ∈ {0, . . . , 3}, if i �= j, then (v(pi) ≡̃ v(pj)) = f.
However, (v(pi) ≡̃ v(pj)) = f iff v(pi) �= v(pj). In consequence, we obtain
that for all i, j ∈ {0, . . . , 3}, if i �= j, then v(pi) �= v(pj). It is known that
the latter implies the existence of at least 4 elements, which cannot hold in
any structure of L≡ and sL≡, for L ∈ {LP, LFI1, LFI2}. On the contrary, it
is well known that logics LD, LDS, and LDE have models with more than
3 elements in which the formula ϕ cannot hold (for specific examples see
examples in [18]).

Recall that the connectives → and ↔ can be interpreted in logics LD,
LDS, and LDE in any way, whereas in logics LP, LFI1, LFI2 they have
fixed meaning. Consequently, for a trivial reason, there are many formu-
las of LP, LFI1, LFI2, which are valid in these logics, but not valid in any
L′ ∈ {LD, LDS, LDE}.

Proposition 4.17. Let L ∈ {LD, LDS, LDE}. The formula ¬(p∧ q) ≡ (¬p∨
¬q) is valid in L, but not in LFI2≡ and sLFI2≡.

Proof. Let M be the model of LFI2≡ or sLFI2≡ v. Let v be a valuation in
M such that v(p) = n and v(q) = t. Then, v(¬(p∧q)) = f and v(¬p∨¬q) = t.
Therefore, v(¬(p ∧ q)) �= v(¬p ∨ ¬q), and so M does not satisfy ¬(p ∧ q) ≡
(¬p ∨ ¬q). On the other hand, the formula ¬(p ∧ q) ≡ (¬p ∨ ¬q) must be
valid in every logic L ∈ {LD, LDS, LDE}, as it corresponds to condition (G7)
of G-structures.
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Due to the semantics of ¬, ∧, and ∨ in LP and LFI1, we obtain:

Proposition 4.18. Let L ∈ {LP≡, sLP≡, LFI1≡, sLFI1≡}. Then, the model
of L is a G-structure.

Proof. See the “Appendix”.

Proposition 4.19. Let L ∈ {LP, LFI1} and L′ ∈ {LD, LDS, LDE}. Then,
the following holds:

1. The model of sL≡ is a model of L′.

2. The model of L≡ is a model of LDS and LDE, but it is not an LD-model.

Proof. Let L ∈ {LP, LFI1} and L′ ∈ {LD, LDS, LDE}. By Proposition 4.18,
it holds that each L≡-model and each sL≡-model is a G-structure. Thus, it
suffices to show that the specific conditions of L′-models hold in each sL≡-
model, the specific conditions of LDS-models and LDE-models hold in each
L≡-model, while at least one of the specific conditions of LD-models does
not hold in LP≡ and LFI1≡. For a detailed proof see the “Appendix”.

Finally, we obtain:

Theorem 4.20.

1. LD ≺ LP≡ and LD ≺ LFI1≡.

2. LD ≺ sLP≡ and LD ≺ sLFI1≡.

3. L ≺ L′, for all L ∈ {LDS, LDE}, L′ ∈ {LP≡, sLP≡, LFI1≡, sLFI1≡}.
4. L ≺ LFI2≡ and L ≺ sLFI2≡, for every L ∈ {LD, LDS, LDE}.

Proof. By Proposition 4.16, there is a formula valid in L ∈ {LP≡, LFI1≡},
which is not valid in LD. Clearly, (AxLD2) is valid in LD. However, we know
from the proof of Proposition 4.19 (see the “Appendix”) that (AxLD2) is not
valid in L ∈ {LP≡, LFI1≡}. Thus, LD is incomparable with L ∈ {LP≡, LFI1≡}.
Now, let ϕ be a formula valid in LD. Then, Proposition 4.19 implies that
it is valid in sLP≡ and sLFI1≡. Consequently, due to Proposition 4.16, we
have that LD ≺ sLP≡ and LD ≺ sLFI1≡. Furthermore, if ϕ is valid in L ∈
{LDS, LDE}, then it is valid in the model of L′ ∈ {LP≡, sLP≡, LFI1≡, sLFI1≡}.
Thus, by Proposition 4.16, the item 3. follows. Finally, Propositions 4.16
and 4.17 imply the item 4.

We conclude this section with a comparison between our non-Fregean para-
consistent 3-valued logics and Suszko’s logic SCI.

Theorem 4.21. Let L ∈ {sLP≡, LFI1≡, sLFI1≡, LFI2≡, sLFI2≡}. Then, L ≺
SCI, whereas SCI ≺ LP≡.



J. Golińska-Pilarek

Proof. First, note that the formula
∨

i,j∈{0,...,3},i 	=j pi ≡ qj , expressing the
fact that there are at most three denotations of formulas, is valid in all
non-Fregean 3-valued logics in question (see the proof of Proposition 4.16).
However, it is not valid in SCI, as SCI has models of arbitrary cardinality.
Thus, L �≺ SCI, for any L ∈ {LP≡, sLP≡, LFI1≡, sLFI1≡, LFI2≡, sLFI2≡}.

Clearly, SCI is not paraconsistent. In particular, models of SCI satisfy the
condition: ¬̃a ∈ D iff a �∈ D, for all a ∈ U . Hence, the formula ¬(p ≡ ¬p) is
valid in SCI. Nonetheless, it is not valid in any L ∈ {sLP≡, sLFI1≡, sLFI2≡}.
Indeed, for a valuation v such that v(p) = n, the formula ¬(p ≡ ¬p) takes
the value f. Now, let us note that the formula (p ∧ ¬p) → (q ∧ ¬q) is valid
in SCI, while it is not true in the models of LFI1≡ and LFI2≡ for a valuation
v such that v(p) = n and v(q) ∈ {f, t}. Hence, SCI and L are incomparable,
for every L ∈ {sLP≡, LFI1≡, sLFI1≡, LFI2≡, sLFI2≡}. However, no formula
valid in SCI is invalid in LP≡. All classical tautologies are valid in the logics
SCI and LP≡. Moreover, the logic SCI does not impose specific conditions
on the structure of its models, except for (snfl), which also holds in LP≡.
Consequently, we obtain SCI ≺ LP≡.

5. Non-Fregean Jaśkowski’s Discussive Logic

Discussive (discursive) logic D2, introduced by Jaśkowski in [23] and [24],
aims to formalize discussions involving contradictory opinions. According to
Jaśkowski ( [25]), “if a thesis T is recorded in a discussive system, its intuitive
meaning ought to be interpreted so as if it were preceded by the symbol Pos,
that is, the sense: ’it is possible that T.’ This is how an impartial arbiter
might understand the theses of the various participants in the discussion”.
To obtain a non-trivial system capable of handling contradictory opinions,
Jaśkowski interprets the connectives of conjunction ∧ and implication →
within the modal language with the possibility operator:

τ(ϕ ∧ ψ) df= ϕ ∧ ♦ψ and τ(ϕ → ψ) df= ♦ϕ → ψ.

Then, a formula ϕ of the new language is a theorem of D2 whenever ♦τ(ϕ)
is a theorem of the modal logic S5, where τ is a translation of the classical
language into the modal one. Jaśkowski and his continuators have shown
that such an approach yields a paraconsistent system that can be applied
to classically inconsistent propositions without leading to overfullness.

One of the main problems in the study of D2 has been its axiomatization
within a propositional language not involving modality ([10,13,27,28,40])
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A comprehensive survey on this issue is available in [33]. Various algebraic-
style semantics for D2 have been studied in [11,14,29]. Further (metalogical)
properties and other issues related to Jaśkowski’s logic have been presented
in [26,31,32] Notably, it is known that the logic D2 is not finite-valued ([29]).
Hence, Jaśkowski’s framework essentially differs from 3-valued approach to
paraconsistency.

Subsequently, we assume that the set of propositional connectives of logic
D2 consists of negation ¬, conjunction ∧, disjunction ∨, implication →, and
bi-implication ↔, where ∧, →, and ↔ are discussive connectives, in other
works often denoted as ∧d, →d, ↔d. The logic D2 is defined semantically
through the translation of its formulas into formulas of the propositional
modal logic S5.

Definition 5.1. (D2) A D2-formula ϕ is said to be D2-valid if and only
if ♦τ(ϕ) is S5-valid, where τ : ForD2 → ForS5 is the translation defined as
follows:

τ(p) = p, for p ∈ Prop τ(¬ϕ) = ¬τ(ϕ)
τ(ϕ ∧ ψ) = τ(ϕ) ∧ ♦τ(ψ) τ(ϕ ∨ ψ) = τ(ϕ) ∨ τ(ψ)
τ(ϕ → ψ) = ♦τ(ϕ) → τ(ψ) τ(ϕ ↔ ψ) = (♦τ(ϕ) → τ(ψ)) ∧ ♦(♦τ(ψ) → τ(ϕ)).

Proposition 5.2. The formulas ¬(p ∧ ¬p) and ¬(p ∨ ¬p) → q are valid in
D2.

Proof. Let M = (U,R,m) be a Kripke S5-model. If there exists s ∈ U
such that s �∈ m(p), then M, s |= ¬(p ∧ ♦¬p), and so M, s |= ♦¬(p ∧ ♦¬p).
If for all s ∈ U it holds that s ∈ m(p), then for all t ∈ U we have that
M, t �|= ♦¬p, and so M, t |= ¬(p ∧ ♦¬p). Thus, if s ∈ m(p) for all s ∈ U ,
then there exists t ∈ U such that M, t |= ¬(p ∧ ♦¬p). Therefore, we have
proved that for every Kripke S5-model M = (U, R, m) and for every s ∈ U
it holds that M, s |= ♦¬(p ∧ ♦¬p). Since τ(¬(p ∧ ¬p)) = ¬(p ∧ ♦¬p), we
obtain that ♦τ(¬(p ∧ ¬p)) is valid in S5.

Now, we will show that the translation of ¬(p∨¬p) → q, that is, the modal
formula ♦(♦¬(p ∨ ¬p) → q), is true in every Kripke S5-model. Let M =
(U,R,m) be a Kripke S5-model. Then, M, s �|= ¬(p ∨ ¬p), for every s ∈ U ,
and so it also holds that M, s �|= ♦¬(p∨¬p). Thus, M, s |= ♦¬(p∨¬p) → q,
for every s ∈ U , which implies that M |= ♦(♦¬(p ∨ ¬p) → q). Hence, the
translation of ¬(p ∨ ¬p) → q is true in every S5-model, and so it is valid in
D2.

Proposition 5.3. The formulas p → (¬p → ¬(p ∨ ¬p)) and ¬((p ∧ q) ∧
¬(q ∧ p)) are not valid in logic D2.
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Proof. Denote the formulas p → (¬p → ¬(p∨¬p)) and ¬((p∧q)∧¬(q∧p))
by ϕ and ψ, respectively. The translations of ϕ and ψ are:

τ(ϕ) = ♦p → (♦¬p → ¬(p ∨ ¬p)),
τ(ψ) = ¬((p ∧ ♦q) ∧ ♦¬(q ∧ ♦p)).

We will show that ♦τ(ϕ) and ♦τ(ψ) are not valid in S5, that is they are not
true in some Kripke S5-models.

Let M = (U,R,m) be such that U = {a, b}, R = U2, and m(p) = {a}.
Clearly, M is a model of S5. First, note that M, s �|= ¬(p ∨ ¬p), for every
s ∈ {a, b}. Since (a, a), (b, a) ∈ R and a ∈ m(p), we obtain that M, s |= ♦p,
for every s ∈ U . Similarly, (a, b), (b, b) ∈ R and b �∈ m(p) imply that M, s |=
♦¬p, for every s ∈ U . Thus, each s ∈ U satisfies ♦p and ♦¬p, while it does
not satisfy ¬(p∨¬p). Hence, for every s ∈ U it holds that M, s �|= τ(ϕ), and
so M, s �|= ♦τ(ϕ). Therefore, ϕ is not D2-valid.

Now, let M = (U,R,m) be a Kripke S5-model such that U = {a, b},
R = U2, m(p) = {a, b}, and m(q) = {b}. Clearly, M, s |= p, for every s ∈ U .
Moreover, M, a �|= q, and so M, a |= ¬(q ∧ ♦p). Since R is the universal
relation, we obtain that M, s |= ♦¬(q ∧ ♦p) and M, s |= ♦q, for every
s ∈ U . Thus, M, s |= (p ∧ ♦q) ∧ ♦¬(q ∧ ♦p), for every s ∈ U , which implies
that M, s �|= ¬((p ∧ ♦q) ∧ ♦¬(q ∧ ♦p)), for every s ∈ U . Therefore, there is
no s ∈ U such that M, s |= τ(ψ), and hence M, s �|= ♦τ(ψ), for every s ∈ U .
Consequently, ♦τ(ψ) is not S5-valid, and so ψ is not valid in D2.

Proposition 5.4. Let L ∈ {LFI1, LFI2}. Then, L ≺ D2 and D2 ≺ LP.

Proof. Let L ∈ {LFI1, LFI2}. By Proposition 5.2, the formula ¬(p∨¬p) → q
is valid in D2. However, it is not valid in L. Indeed, let v be a valuation in
the model of L such that v(p) = n and v(q) = f. Clearly, v(¬(p ∨ ¬p)) = n,
which implies that v(¬(p ∨ ¬p) → q) = (n → f) = f. Furthermore, by
Proposition 5.3, the formula ϕ = (p → (¬p → ¬(p∨¬p))) is not valid in D2.
Let us consider the possible values of ϕ in L. It can be easily checked that
v(ϕ) = t whenever v is a valuation in the model of L such that v(p) ∈ {f, t}.
So let v be a valuation in the model of L such that v(p) = n. Then, each
subformula of ϕ takes the value n, and so v(ϕ) = n. Hence, v(ϕ) ∈ {n, t},
for all valuations v in the model of L. Consequently, we have proved that L
and D2 are incomparable.

The formula (p → (¬p → ¬(p ∨ ¬p))) is a classical tautology, and so by
Proposition 4.4, it is valid in LP. As it is not valid in D2, we obtain that
LP �� D2. On the other hand, it is known (see Theorem 3 in [29]) that if ϕ
is valid in D2, then it is valid in classical propositional logic. Therefore, by
Proposition 4.4, ϕ is valid in LP, from which it follows that D2 ≺ LP.



Paraconsistency in Non-Fregean Framework

Various sound and complete algebraic semantics for D2 have been presented
in [29] and [11]. For the sake of simplicity of the presentation, we will use
the semantics from [11].

Definition 5.5. (D2-model) A D2-model is a tuple M = (U, D, ¬̃, ∧̃, ∨̃,
→̃, ↔̃) such that 1, 0 ∈ U , 1 �= 0, (U, ¬̃, ∨̃, 1, 0) is a Boolean algebra, U\D =
{0}, and the following conditions hold for all a, b ∈ U :

a ∧̃ b =

{
0, if b = 0
a, otherwise

a →̃ b =

{
1, if a = 0
b, otherwise

a ↔̃ b =

⎧⎨
⎩

1, if a = b = 0
0, if a = 0 �= b
b, otherwise.

The notions of satisfaction, truth, and validity are defined for D2 as in
Section 2. As stated in [11], the class of all D2-models provides a sound and
complete algebraic-style semantics for D2.

Theorem 5.6. For every formula ϕ, ϕ is D2-valid if and only ϕ is true in
all D2-models.

Observe that D2 is not non-Fregean in the sense of Definition 2.7. Indeed,
none of its binary connectives can serve as a connective ≡ satisfying (nfl1)
and (nfl2). In particular, none of the connectives ∧, ∨, → fullfils the condition
(nfl2): in any model of D2, it holds that 0 ∧̃ 0 �∈ D, 0 ∨̃ 0 �∈ D, 0 →̃ 1 ∈ D,
while 1 →̃ 0 �∈ D. Moreover, in any model of D2, the connective ↔̃ does
not satisfy (nfl1), as a ↔̃ b ∈ D for all a, b ∈ D = U \ {0}. In other words,
the connective ↔ of D2 identifies all true formulas: if ϕ and ψ are true in a
model of D2, then ϕ ↔ ψ is also true.

A non-Fregean version of D2, denoted by D≡
2 , is obtained by adding ≡ to

the language of D2 and imposing the condition (snfl) on its interpretations.

Definition 5.7. (D≡
2 -model) A structure M = (U, D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) is

said to be a D≡
2 -model whenever (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃) is a D2-model and ≡̃

is a binary operation on U such that a ≡̃ b ∈ D if and only if a = b, for all
a, b ∈ U .

Theorem 5.8. MGL ≺ D≡
2 .

Proof. Let M = (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) be a D≡
2 -model. By Proposi-

tion 5.2, ¬̃(a ∧̃ ¬̃a) ∈ D, for every a ∈ D. Hence, the condition (WGL1)
holds in M. Since the operation ≡̃ satisfies (snfl), the conditions (WGL2)
and (WGL4)–(WGL6) are true in M. Now, observe that a ∧̃ b = 0 �∈ D iff
a = 0 �∈ D or b = 0 �∈ D. Thus, for all a, b ∈ U it holds that a ∧̃ b ∈ D iff
a ∈ D and b ∈ D. Consequently, the condition (WGL3) holds in M. Hence,
every model of D≡

2 is an MGL-model. Therefore, if a formula is valid in MGL,
then its is valid in D≡

2 . On the other hand, the formula ϕ ∨ ¬ϕ is valid in
D≡

2 , while it is not valid in MGL.
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It is easy to verify that D≡
2 satisfies the condition (nfl1) of Definition 2.7.

Moreover, straightforwardly by the definition of D2-models, we obtain that
p,¬p �|= q, which by Proposition 5.8 yields the following:

Theorem 5.9. The logic D≡
2 is non-Fregean and paraconsistent.

Let us compare D≡
2 with the logics LD, LDS, and LDE.

Theorem 5.10. Let L ∈ {LD, LDS, LDE}. Then, L ≺ D≡
2 .

Proof. Let L ∈ {LD, LDS, LDE}. Due to the condition (G2) of G-structures,
the formula (p ∧ q) ≡ (q ∧ p) is valid in L. Thus, by Proposition 3.27, the
formula ¬((p∧ q)∧¬(q ∧p)) is also valid in L, for every L ∈ {LD, LDS, LDE}.
However, by Proposition 5.3, the formula ¬((p∧ q)∧¬(q ∧p)) is not valid in
D2, and consequently, it is not valid in D≡

2 . On the other hand, models of D≡
2

assume some Boolean laws which do not hold in LD, LDS, LDE. In particular,
(U, ¬̃, ∨̃, 1, 0) is a Boolean algebra, and so the formula (p ∨ ¬(¬p ∨ q))) ≡ p
expressing the absorption law must be true in all D≡

2 -models. However, it is
not valid in L. Indeed, for each L ∈ {LD, LDS, LDE}, it can be easily verified
that the structure defined in Example 34 from [18] is an L-model in which
there exist a, b ∈ U such that (a ∨̃ ¬̃(¬̃a ∨̃ b))) ≡̃ a �∈ D. Hence, for every
L ∈ {LD, LDS, LDE}, there is a formula valid in L which is not valid in D≡

2 ,
and there is a formula valid in D≡

2 which is not valid in L, which ends the
proof.

A comparison between D≡
2 and the non-Fregean 3-valued logics discussed in

the previous section yields the following:

Theorem 5.11. Let L ∈ {LP≡, sLP≡, LFI1≡, sLFI1≡, LFI2≡, sLFI2≡}. Then,
L ≺ D≡

2 .

Proof. By Proposition 5.4, D2 is incomparable with LFI1 and LFI2. In con-
sequence, D≡

2 is incomparable with each L ∈ {LFI1≡, sLFI1≡, LFI2≡, sLFI2≡}.
By Proposition 5.4, there exists a formula valid in LP, which is not valid
in D2. Hence, LP≡ �� D≡

2 and sLP≡ �� D≡
2 . On the other hand, the for-

mula ((p ∨ ¬p) ∧ (q ∨ ¬q)) ≡ (p ∨ ¬p) is valid in D≡
2 , since for every

valuation v in a D≡
2 -model, it holds that v(p ∨ ¬p) = v(q ∨ ¬q) = 1,

which implies that v((p ∨ ¬p) ∧ (q ∨ ¬q)) = v(p ∨ ¬p). Nonetheless, the
formula ((p ∨ ¬p) ∧ (q ∨ ¬q)) ≡ (p ∨ ¬p) is not valid in LP≡ and sLP≡.
Indeed, if v is a valuation such that v(p) = t and v(q) = n, we have
v((p ∨ ¬p) ∧ (q ∨ ¬q)) = (t ∧ n) = n �= t = v(p ∨ ¬p). Therefore, D≡

2 is
incomparable with LP≡ and sLP≡.
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Figure 1. Dependencies among the considered non-Fregean logics

We conclude this section with the theorem showing incomparability of D≡
2

with the classical non-Fregean logic SCI.

Theorem 5.12. SCI ≺ D≡
2 .

Proof. We know from the proof of Theorem 5.10 that (p∨¬(¬p∨ q))) ≡ p
is valid in D≡

2 . Clearly, models of SCI do not impose any Boolean laws, and
consequently (p ∨ ¬(¬p ∨ q))) ≡ p is not SCI-valid. Moreover, it is quite
obvious that all formulas valid in classical propositional logic are valid in
SCI. Therefore, the formulas from Proposition 5.3 are valid in SCI, whereas
they are not valid in D≡

2 . Hence, SCI and D≡
2 are incomparable.

6. Conclusions

We have considered several non-Fregean paraconsistent logics: Grzegorczyk’s
logics of descriptions, non-Fregean extensions of 3-valued logics LP, LFI1,
LFI2, and the non-Fregean extension of Jaśkowski’s discussive logic D2. We
have proved that Grzegorczyk’s logics LD, LDS, LDE are either weaker than
or incomparable to other non-Fregean paraconsistent logics. Due to Theo-
rems 3.23, 4.7, 4.13, 4.15, 4.20, 4.21, 5.8, 5.10, 5.11, and 5.12, the logical
dependencies among the non-Fregean logics under considerations are as de-
picted in Figure 1, where L → L′ represents L ≺ L′.

Hence, the results presented in the paper provide a partial negative an-
swer to the question raised in [21]: Is L, for L ∈ {LD, LDS, LDE}, equivalent
to a previously known paraconsistent logic?
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It is worth emphasizing that the non-Fregean extensions of LP, LFI1,
LFI2, and D2 are more expressive than their original counterparts. Indeed,
LP is the strongest logic among LP, LFI1, LFI2, D2, and so we are not able
to express any property of LFI1, LFI2, D2 that does not hold in LP. The
connective ≡ significantly alters this landscape: all non-Fregean extensions
of LP, LFI1, LFI2, D2 considered in the paper become mutually incomparable.
Hence, the connective ≡ serves as a means to express diverse properties of
the ontology underlying the logics under consideration.

Our results prompt further questions. Firstly, it is worth noting that the
relation ≺ depends solely on valid formulas of logics under consideration.
However, we can strengthen ≺ to ≺∗, defined as follows: L ≺∗ L′ if and only
if (i) for any set X of formulas and any formula ϕ, if X |=L ϕ, then X |=L′ ϕ,
and (ii) there is a set X of formulas and a formula ϕ such that X |=L′ ϕ and
X �|=L ϕ. Clearly, if L ≺ L′, then L′ �≺∗ L. Certainly, ≺∗ allows to separate
SCI and LP≡, as for instance p,¬p |=SCI q, while p,¬p �|=LP≡ q. However, the
general question of whether L ≺ L′ implies L ≺∗ L′ remains open.

Secondly, it would be interesting to investigate extensions of D≡
2 that

introduce additional, yet philosophically natural, conditions on the inter-
pretation of ≡ in models of D≡

2 (for instance, conditions like (a ≡̃ b) = 1
for all a, b ∈ U such that a = b). Could we then express a property of the
ontology of D2 that is not expressible in D≡

2 ?
Finally, the potential for future research extends to a comparison between

Grzegorczyk’s logics LD, LDS, LDE and other paraconsistent logics not ad-
dressed in this paper, such as relevant or connexive logics. A comprehensive
map of dependencies among Grzegorczyk’s logics and other paraconsistent
logics would offer a definite answer to Grzegorczyk’s original question of
whether LD is a new logic.
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Appendix

Proof of Proposition 3.18. (LDS1) does not hold in MLD for a = c = ∅,
b = {0}, and d = {1}:
((a ≡̃ b) ∧̃ (c ≡̃ d)) = ((∅ ≡̃ {0}) ∩ (∅ ≡̃ {1})) = ({0} ∩ {0}) = {0}, but
((a ≡̃ c) ≡̃ (b ≡̃ d)) = ((∅ ≡̃ ∅) ≡̃ ({0} ≡̃ {1})) = (A ≡̃ ∅) = ∅, and so (((a ≡̃
b) ∧̃ (c ≡̃ d)) ∧̃ ((a ≡̃ c) ≡̃ (b ≡̃ d))) = ({0} ∩ ∅) = ∅.
(LDS2) does not hold in MLD for a = d = A, b = {1}, and c = {0}:
((a ≡̃ b) ∧̃ (c ≡̃ d)) = ((A ≡̃ {1}) ∩ ({0} ≡̃ A)) = ({0} ∩ {0}) = {0}, but
((a ∧̃ c) ≡̃ (b ∧̃ d)) = ((A ∩ {0}) ≡̃ ({1} ∩ A)) = ({0} ≡̃ {1}) = ∅, and so
(((a ≡̃ b) ∧̃ (c ≡̃ d)) ∧̃ ((a ∧̃ c) ≡̃ (b ∧̃ d))) = ({0} ∩ ∅) = ∅.
(LDS3) does not hold in MLD for a = d = ∅, b = {1}, and c = {0}:
((a ≡̃ b) ∧̃ (c ≡̃ d)) = ((∅ ≡̃ {1}) ∩ ({0} ≡̃ ∅)) = ({0} ∩ {0}) = {0}, but
((a ∨̃ c) ≡̃ (b ∨̃ d)) = ((∅ ∪ {0}) ≡̃ ({1} ∪ ∅)) = ({0} ≡̃ {1}) = ∅, and so
(((a ≡̃ b) ∧̃ (c ≡̃ d)) ∧̃ ((a ∨̃ c) ≡̃ (b ∨̃ d))) = ({0} ∩ ∅) = ∅.
(LDE1) does not hold in MLD for a = ∅, b = {1}, and c = {0}:
((a ≡̃ b) ∧̃ (a ≡̃ c)) = ((∅ ≡̃ {1}) ∧̃ (∅ ≡̃ {0})) = ({0} ∩ {0}) = {0}, but
((a ≡̃ b) ∧̃ (b ≡̃ c)) = ((∅ ≡̃ {1}) ∧̃ ({1} ≡̃ {0})) = ({0} ∩ ∅) = ∅.
(LDE2) does not hold in MLD for a = ∅ and b = c = {0}:
((a≡̃b) ∧̃(a ∧̃c)) = ((∅≡̃{0}) ∧̃(∅∧̃{0})) = ({0}∩(∅∩{0})) = ({0}∩∅) = ∅,
but ((a ≡̃ b) ∧̃ (b ∧̃ c)) = ((∅ ≡̃ {0}) ∧̃ ({0} ∧̃ {0}) = ({0} ∩ ({0} ∩ {0})) =
({0} ∩ {0}) = {0}.
(LDE3) does not hold in MLD for a = c = ∅ and b = {0}:
((a ≡̃b) ∧̃ (a ∨̃c)) = ((∅≡̃{0}) ∧̃ (∅ ∨̃∅)) = ({0}∩ (∅∪∅)) = ({0}∩∅) = ∅, but
((a ≡̃ b) ∧̃ (b ∨̃ c)) = ((∅ ≡̃ {0}) ∧̃ ({0} ∨̃ ∅)) = ({0} ∩ ({0} ∪ ∅)) = ({0} ∩ {0})
= {0}.

Proof of Proposition 3.19. (LD1) does not hold in MLDS for a = b = 0
and c = 1:
(a ≡̃ b) = (0 ≡̃ 0) = 3, but ((a ≡̃ c) ≡̃ (b ≡̃ c)) = ((0 ≡̃ 1) ≡̃ (0 ≡̃ 1)) = (1 ≡̃ 1) =
(1 ∨̃ 2) = 2, and so ((a ≡̃ b) ∧̃ ((a ≡̃ c) ≡̃ (b ≡̃ c))) = (3 ∧̃ 2) = 2
(LD2) does not hold in MLDS for a = b = 3 and c = 1:

http://creativecommons.org/licenses/by/4.0/
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(a ≡̃ b) = (3 ≡̃ 3) = 3, but ((a ∧̃ c) ≡̃ (b ∧̃ c)) = ((3 ∧̃ 1) ≡̃ (3 ∧̃ 1)) = (1 ≡̃ 1) =
(1 ∨̃ 2) = 2, and so ((a ≡̃ b) ∧̃ ((a ∧̃ c) ≡̃ (b ∧̃ c))) = (3 ∧̃ 2) = 2
(LD3) does not hold in MLDS for a = b = 0 and c = 1:
(a ≡̃ b) = (0 ≡̃ 0) = 3, but ((a ∨̃ c) ≡̃ (b ∨̃ c)) = ((0 ∨̃ 1) ≡̃ (0 ∨̃ 1)) = (1 ≡̃ 1) =
(1 ∨̃ 2) = 2, and so ((a ≡̃ b) ∧̃ ((a ∨̃ c) ≡̃ (b ∨̃ c))) = (3 ∧̃ 2) = 2
(LDE1) does not hold in MLDS for a = 1, b = 0, and c = 3:
((a ≡̃ b) ∧̃ (a ≡̃ c)) = ((1 ≡̃ 0) ∧̃ (1 ≡̃ 3)) = (1 ∧̃ 1) = 1, but ((a ≡̃ b) ∧̃ (b ≡̃ c)) =
((1 ≡̃ 0) ∧̃ (0 ≡̃ 3)) = (1 ∧̃ 0) = 0.
(LDE2) does not hold in MLDS for a = 1, b = 0, and c = 3:
((a ≡̃ b) ∧̃ (a ∧̃ c)) = ((1 ≡̃ 0) ∧̃ (1 ∧̃ 3)) = (1 ∧̃ 1) = 1, but ((a ≡̃ b) ∧̃ (b ∧̃ c)) =
((1 ≡̃ 0) ∧̃ (0 ∧̃ 3)) = (1 ∧̃ 0) = 0.
(LDE3) does not hold in MLDS for a = 1 and b = c = 0:
((a ≡̃ b) ∧̃ (a ∨̃ c)) = ((1 ≡̃ 0) ∧̃ (1 ∨̃ 0)) = (1 ∧̃ 1) = 1, but ((a ≡̃ b) ∧̃ (b ∨̃ c)) =
((1 ≡̃ 0) ∧̃ (0 ∨̃ 0)) = (1 ∧̃ 0) = 0.

Proof of Proposition 3.20.

(LD2) does not hold in MLDE for a = (1, 1), b = (2, 1), and c = (2, 0):
(a ≡̃ b) = ((1, 1) ≡̃ (2, 1)) = (0, 1), but ((a ∧̃ c) ≡̃ (b ∧̃ c)) = (((1, 1) ∧̃ (2, 0)) ≡̃
((2, 1)∧̃(2, 0))) = ((1, 0)≡̃(2, 0)) = (0, 0), and so ((a≡̃b)∧̃((a∧̃c)≡̃(b∧̃c))) =
((0, 1) ∧̃ (0, 0)) = (0, 0).
(LD3) does not hold in MLDE for a = (1, 1), b = (2, 1), and c = (0, 2):
(a ≡̃ b) = ((1, 1) ≡̃ (2, 1)) = (0, 1), but ((a ∨̃ c) ≡̃ (b ∨̃ c)) = (((1, 1) ∨̃ (0, 2)) ≡̃
((2, 1)∨̃(0, 2))) = ((1, 2)≡̃(2, 2)) = (0, 0), and so ((a≡̃b)∧̃((a∨̃c)≡̃(b∨̃c))) =
((0, 1) ∧̃ (0, 0)) = (0, 0).
(LDS2) does not hold in MLDE for a = (1, 1), b = (2, 1), and c = d = (2, 0):
((a≡̃b)∧̃(c≡̃d)) = (((1, 1)≡̃(2, 1))∧̃((2, 0)≡̃(2, 0))) = ((0, 1)∧̃(0, 1)) = (0, 1),
but ((a ∧̃c) ≡̃ (b ∧̃d)) = (((1, 1) ∧̃(2, 0)) ≡̃((2, 1) ∧̃ (2, 0))) = ((1, 0) ≡̃(2, 0)) =
(0, 0), and so ((a ≡̃ b) ∧̃ ((a ∧̃ c) ≡̃ (b ∧̃ d))) = ((0, 1) ∧̃ (0, 0)) = (0, 0).
(LDS3) does not hold in MLDE for a = (1, 1), b = (2, 1), and c = d = (0, 2):
((a≡̃b)∧̃(c≡̃d)) = (((1, 1)≡̃(2, 1))∧̃((0, 2)≡̃(0, 2))) = ((0, 1)∧̃(0, 1)) = (0, 1),
but ((a ∨̃c) ≡̃ (b ∨̃d)) = (((1, 1) ∨̃(0, 2)) ≡̃((2, 1) ∨̃ (0, 2))) = ((1, 2) ≡̃(2, 2)) =
(0, 0), and so ((a ≡̃ b) ∧̃ ((a ∨̃ c) ≡̃ (b ∨̃ c))) = ((0, 1) ∧̃ (0, 0)) = (0, 0).

Proof of Proposition 3.25. Let L ∈ {LD, LDS, LDE} and let M = (U, D,
¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) be an L-model. Take any a ∈ U . Then, in all G-structures
the following holds:
(1) ¬̃(a ∧̃ ¬̃a) ∈ D (WGL1)
(2) ¬̃(a ∧̃ ¬̃a) ≡̃ (¬̃a ∨̃ ¬̃¬̃a) ∈ D (G7)
(3) (¬̃a ∨̃ ¬̃¬̃a) ≡̃ (¬̃¬̃a ∨̃ ¬̃a) ∈ D (G2)
(4) (¬̃a ∨̃ ¬̃¬̃a) ∈ D (WGL4), (1), and (2)
(5) (¬̃¬̃a ∨̃ ¬̃a) ∈ D (WGL4), (3), and (4)
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(6) ¬̃¬̃a ≡̃ a ∈ D (G6)
Now, we have three cases.

Case: L = LD
(7LD) (¬̃¬̃a ≡̃ a) ≡̃ ((¬̃¬̃a ≡̃ a) ∧̃ ((¬̃¬̃a ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a))) ∈ D (LD3)
(8LD) ((¬̃¬̃a ≡̃ a) ∧̃ ((¬̃¬̃a ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a))) ∈ D (WGL4), (6), (7LD)
(9LD) (¬̃¬̃a ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a) ∈ D (WGL3) and (8LD)
(10LD) (a ∨̃ ¬̃a) ∈ D (WGL4), (5), and (9LD).
Case: L = LDS
(7LDS) ((¬̃¬̃a ≡̃ a) ∧̃ (¬̃a ≡̃ ¬̃a))≡̃

(((¬̃¬̃a ≡̃ a) ∧̃ (¬̃a ≡̃ ¬̃a)) ∧̃ ((¬̃¬̃a ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a))) ∈ D (LDS3)
(8LDS) (¬̃a ≡̃ ¬̃a) ∈ D (WGL2)
(9LDS) (¬̃¬̃a ≡̃ a) ∧̃ (¬̃a ≡̃ ¬̃a)) ∈ D (WGL3), (6), and (8LDS)
(10LDS) ((¬̃¬̃a ≡̃ a) ∧̃ (¬̃a ≡̃ ¬̃a)) ∧̃ ((¬̃¬̃a ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a)) ∈ D

(WGL4), (7LDS), and (9LDS)
(11LDS) (¬̃¬̃a ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a) ∈ D (WGL3) and (10LDS)
(12LDS) (a ∨̃ ¬̃a) ∈ D (WGL4), (5), and (11LDS).
Case: L = LDE
(7LDE) ((¬̃¬̃a ≡̃ a) ∧̃ (¬̃¬̃a ∨̃ ¬̃a)) ≡̃ ((¬̃¬̃a ≡̃ a) ∧̃ (a ∨̃ ¬̃a)) ∈ D (LDE3)
(8LDE) (¬̃¬̃a ≡̃ a) ∧̃ (¬̃¬̃a ∨̃ ¬̃a) ∈ D (WGL3), (6), and (5)
(9LDE) (¬̃¬̃a ≡̃ a) ∧̃ (a ∨̃ ¬̃a) ∈ D (WGL4), (7LDE), (8LDE)
(10LDE) (a ∨̃ ¬̃a) ∈ D (WGL3) and (9LDE).
Hence, we have proved that for every L ∈ {LD, LDS, LDE}, for every L-model
M = (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃), and for every a ∈ U it holds that a∨¬̃a ∈ D,
which means that a formula ϕ ∨ ¬ϕ is valid in L.

Proof of Proposition 3.26. Let L ∈ {LD, LDS, LDE} and let M = (U, D,
¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) be a model of L. We will show that for all a, b ∈ U the
following holds:

(*) If (a ≡̃ b) ∈ D, then (¬̃a ∨̃ b) ∈ D.
Let a, b ∈ U be such that a ≡̃ b ∈ D. Then, we have:
(1) a ≡̃ b ∈ D assumption
(2) b ≡̃ a ∈ D (WGL5) and (1)
(3) a ∨̃ ¬̃a ∈ D Proposition 3.25
(4) (b ∨̃ ¬̃a) ≡̃ (¬̃a ∨̃ b) ∈ D (G2)

Now, three cases are possible:
Case: L = LD
(5LD) (b ≡̃ a) ≡̃ ((b ≡̃ a) ∧̃ ((b ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a))) ∈ D (LD3)
(6LD) (b ≡̃ a) ∧̃ ((b ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a)) ∈ D (WGL4), (2), (5LD)
(7LD) (b ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a) ∈ D (WGL3) and (6LD)
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(8LD) (a ∨̃ ¬̃a) ≡̃ (b ∨̃ ¬̃a) ∈ D (WGL5) and (7LD)
(9LD) (b ∨̃ ¬̃a) ∈ D (WGL4), (3), and (8LD)
(10LD) (¬̃a ∨̃ b) ∈ D (WGL4), (4), and (9LD)
Case: L = LDS
(5LDS) ((b ≡̃ a) ∧̃ (¬̃a ≡̃ ¬̃a))≡̃

(((b ≡̃ a) ∧̃ (¬̃a ≡̃ ¬̃a)) ∧̃ ((b ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a))) ∈ D (LDS3)
(6LDS) ¬̃a ≡̃ ¬̃a ∈ D (WGL2)
(7LDS) (b ≡̃ a) ∧̃ (¬̃a ≡̃ ¬̃a) ∈ D (WGL3), (2), and (6LDS)
(8LDS) (((b ≡̃ a) ∧̃ (¬̃a ≡̃ ¬̃a)) ∧̃ ((b ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a))) ∈ D

(WGL4), (5LDS), (7LDS)
(9LDS) (b ∨̃ ¬̃a) ≡̃ (a ∨̃ ¬̃a) ∈ D (WGL3) and (8LDS)
(10LDS) (a ∨̃ ¬̃a) ≡̃ (b ∨̃ ¬̃a) ∈ D (WGL5) and (9LDS)
(11LDS) (b ∨̃ ¬̃a) ∈ D (WGL4), (3), and (10LDS)
(12LDS) (¬̃a ∨̃ b) ∈ D (WGL4), (4), and (11LDS)
Case: L = LDE
(5LDE) ((a ≡̃ b) ∧̃ (a ∨̃ ¬̃a)) ≡̃ ((a ≡̃ b) ∧̃ (b ∨̃ ¬̃a)) (LDE3)
(6LDE) (a ≡̃ b) ∧̃ (a ∨̃ ¬̃a) ∈ D (WGL3), (1), and (3)
(7LDE) (a ≡̃ b) ∧̃ (b ∨̃ ¬̃a) ∈ D (WGL4), (5LDE), (6LDE)
(8LDS) (b ∨̃ ¬̃a) ∈ D (WGL3) and (7LDE)
(9LDS) (¬̃a ∨̃ b) ∈ D (WGL4), (4), and (8LDE)
Suppose ¬ϕ ∨ ψ is not L-valid. Then, there is an L-model M = (U, D, ¬̃, ∧̃,
∨̃, →̃, ↔̃, ≡̃) and a valuation v in M such that (¬̃v(ϕ) ∨̃ v(ψ)) �∈ D. Thus,
by the property (*), we obtain that v(ϕ) ≡̃ v(ψ) �∈ D, which means that
ϕ ≡ ψ is not L-valid. Suppose ¬ψ ∨ ϕ is not L-valid. Then, as we already
have proved, ψ ≡ ϕ is not L-valid. However, if ψ ≡ ϕ is not L-valid, then by
the condition (WGL5), ϕ ≡ ψ is also not L-valid.

Proof of Proposition 3.27. By way of example, we will prove the propo-
sition for LD, as proofs for LDS and LDE are similar. Let M = (U, D,
¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) be a model of LD. We will show that for all a, b ∈ U the
following holds:

(*) If (a ≡̃ b) ∈ D, then ¬̃(a ∧̃ ¬̃b) ∈ D.
Let a, b ∈ U be such that a ≡̃ b ∈ D. Then, we have:
(1) a ≡̃ b ∈ D assumption
(2) ¬̃a ∨̃ b ∈ D Proposition 3.26
(3) b ∨̃ ¬̃a ∈ D (G2)
(4) ¬̃¬̃b ≡̃ b ∈ D (G6)
(5) b ≡̃ ¬̃¬̃b ∈ D (WGL5) and (4)
(6) ¬̃(a ∧̃ ¬̃b) ≡̃ (¬̃a ∨̃ ¬̃¬̃b) ∈ D (G7)
(7) (¬̃a ∨̃ ¬̃¬̃b) ≡̃ ¬̃(a ∧̃ ¬̃b) ∈ D (WGL5) and (6)



Paraconsistency in Non-Fregean Framework

(8) (b ≡̃ ¬̃¬̃b) ≡̃ ((b ≡̃ ¬̃¬̃b) ∧̃ ((b ∨̃ ¬̃a) ≡̃ (¬̃¬̃b ∨̃ ¬̃a))) ∈ D (LD3)
(9) (b ≡̃ ¬̃¬̃b) ∧̃ ((b ∨̃ ¬̃a) ≡̃ (¬̃¬̃b ∨̃ ¬̃a)) ∈ D (WGL4), (5), (8)
(10) (b ∨̃ ¬̃a) ≡̃ (¬̃¬̃b ∨̃ ¬̃a) ∈ D (WGL3) and (9)
(11) (¬̃¬̃b ∨̃ ¬̃a) ∈ D (WGL4), (3), and (10)
(12) ¬̃a ∨̃ ¬̃¬̃b ∈ D (WGL5) and (11)
(13) ¬̃(a ∧̃ ¬̃b) ∈ D (WGL4), (7), and (12)
Now, assume that ϕ ≡ ψ is LD-valid, while ¬(ϕ∧¬ψ) is not LD-valid. Then,
there is an LD-model M = (U,D, ¬̃, ∧̃, ∨̃, →̃, ↔̃, ≡̃) and a valuation v in M
such that ¬̃(v(ϕ) ∧̃ ¬̃v(ψ)) �∈ D. Thus, by the property (*), v(ϕ) ≡̃v(ψ) �∈ D,
which implies that ϕ ≡ ψ is not L-valid, a contradiction. Note that if ϕ ≡ ψ
is LD-valid, then the formula ψ ≡ ϕ is also LD-valid. Thus, LD-validity of
¬(ψ ∧ ¬ϕ) easily follows from the property we have already proved.

Tables with Possible Valuations

In Examples 6.1 and 6.2, we present possible values of given formulas in the
models MLP, MLFI1, MLFI2. Each row of a table indicates the value of the
initial formula and all its subformulas under a valuation that assigns to each
propositional variable of the initial formula the value entered in a column
named with that variable. The value of a complex formula is entered under
the main connective of that formula. If a given valuation does not yield the
same value of ϕ in all three logics, the possible values of ϕ are marked under
its main connective as xyz, where x, y, z are the values of ϕ in LP, LFI1,
LFI2, respectively.

Example 6.1. The formula (p∧¬q) → ¬(p → q) takes the following values
in logics LP, LFI1, and LFI2:

(p ∧ ¬ q) → ¬ (p → q)
(f f t f) t f (f t f)
(f f n n) t f (f t n)
(f f f t) t f (f t t)
(n nnt t f) ntt ntt (n nff f)
(n n n n) n n (n n n)
(n f f t) t f (n t t)
(t t t f) t t (t f f)
(t nnt n n) nnf nnf (t nnt n)
(t f f t) t f (t t t)

Example 6.2. The formula (¬(p ∧ ¬q) ∧ ¬(q ∧ ¬p)) → (p ↔ q) take the
following values in logics LP, LFI1, and LFI2:



J. Golińska-Pilarek

(¬ (p ∧ ¬ q) ∧ ¬ (q ∧ ¬ p)) → (p ↔ q)
t (f f t f) t t (f f t f) t (f t f)
t (f f n n) nnf nnf (n nnt t f) nft (f nff n)
t (f f f t) f f (t t t f) t (f f t)

nnf (n nnt t f) nnf t (f f n n) nft (n nff f)
n (n n n n) n n (n n n n) n (n n n)
t (n f f t) nnf nnf (t nnt n n) nnt (n nnt t)
f (t t t f) f t (f f f t) t (t f f)

nnf (t nnt n n) nnf t (n f f t) nnt (t nnt n)
t (t f f t) t t (t f f t) t (t t t)

Proof of Proposition 4.11. Let L ∈ {LP, LFI1, LFI2}. Then, in every
model ML≡ :
((n ≡̃ ¬̃n) ≡̃ n) ∨̃ ((n ≡̃ ¬̃n) ≡̃ ¬̃n) = (n ≡̃ n) ∨̃ (n ≡̃ n) = (n ∨̃ n) = n.
For x ∈ {f, t}, it holds that (x ≡̃ ¬̃x) = f. Thus, we have:

((x ≡̃ ¬̃x) ≡̃ x) = (f ≡̃ x) =

{
t, if x = f
f, if x = t

((x ≡̃ ¬̃x) ≡̃ ¬̃x) = (f ≡̃ ¬̃x) =

{
t, if x = t
f, if x = f

Consequently, for x ∈ {f, t}, we have (((x ≡̃ ¬̃x) ≡̃ x) ∨̃ ((x ≡̃ ¬̃x) ≡̃ ¬̃x)) = t.
Thus, v((p ≡ ¬p) ≡ p ∨ (p ≡ ¬p) ≡ ¬p) ∈ {n, t}, for every valuation v in
ML≡ , which implies that the formula is valid in L≡.

Let MsL≡ be the model of sL≡. Recall that in sL≡, the operation ≡̃ takes
either the value f or t. Let v be a valuation in MsL≡ such that v(p) = n.
Then, we have:

((n ≡̃ ¬̃n) ≡̃ n) ∨̃ ((n ≡̃ ¬̃n) ≡̃ ¬̃n) = (t ≡̃ n) ∨̃ (t ≡̃ n) = (f ∨̃ f) = f.
Hence, v((p ≡ ¬p) ≡ p ∨ (p ≡ ¬p) ≡ ¬p) = f, and so the formula is not

valid in sL≡, which ends the proof of the item 1. of Proposition 4.11.
Now, let us note that the model of sL≡ satisfies the following conditions:

(x ∧̃ ¬̃x) ∈ {f, n} and (y ≡̃ y) = t, for all x, y ∈ {f, n, t}. Let x, y ∈ {f, n, t}.
Then, we have:

(x →̃ ((y ≡̃ y) ≡̃ x)) = (x →̃ (t ≡̃ x)) =

⎧⎨
⎩

t, if x ∈ {f, t} and L ∈ {LP, LFI1, LFI2}
n, if x = n and L = LP
f, if x = n and L ∈ {LFI1, LFI2}

Therefore, for all x, y ∈ {f, n, t}, it holds that:

(x ∧̃ ¬̃x) ∨̃ (x →̃ ((y ≡̃ y) ≡̃ x)) =

⎧⎨
⎩

t, if x ∈ {f, t} and L ∈ {LP, LFI1, LFI2}
t, if x = n and L = LFI2
n, if x = n and L ∈ {LP, LFI1}

Hence, v((p ∧ ¬p) ∨ (p → ((q ≡ q) ≡ p))) ∈ {n, t}, for every valuation v in
MsL≡ , and so the formula is valid in sL≡, for every L ∈ {LP, LFI1, LFI2}.

On other hand, if v is a valuation in the model of L≡ such that v(p) = t
and v(q) = n, then we have:
v((p∧¬p)∨(p → ((q ≡ q) ≡ p))) = (f∨̃(t→̃(n≡̃t))) = (f∨̃(t→̃f)) = (f∨̃f) = f.
Hence, the formula (p ∧ ¬p) ∨ (p → ((q ≡ q) ≡ p)) is not valid in L≡.
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Proof of Proposition 4.12. Let L ∈ {LFI1, LFI2}. Let ϕ be the formula
(p ∧ ¬p) ∨ ψ, where ψ has the following form:

p → ((q → (p ∧ ¬p)) ≡ p) ∨ ((q → (p ∧ ¬p)) ≡ ¬p)).
If v is a valuation in the model of L≡ or sL≡ such that v(p) = f, then
v(ψ) = t, and so v(ϕ) = t. If v(p) = n, then v(p ∧ ¬p) = n, which implies
that v(ϕ) ∈ {n, t}. Thus, let v be a valuation such that v(p) = t. Then,
possible values of v(ψ) are:

p → (((q → (p ∧ ¬p)) ≡ p) ∨ ((q → (p ∧ ¬p)) ≡ ¬p))
t t ((f t f) t t t (f t f) f f)
t t ((n f f) f t t (n f f) t f)
t t ((t f f) f t t (t f f) t f)

Therefore, if v(p) = t, then v(ψ) = t, which yields v(ϕ) = t. Hence, we
have proved that v(ϕ ∈ {n, t}) in each of the following logics: LFI1≡, sLFI1≡,
LFI2≡, sLFI2≡. In contrary, it does not hold in LP≡ and sLP≡. Indeed, let v
be a valuation such that v(p) = t and v(q) = n. Then, the following holds
in both logics LP≡ and sLP≡:
v(ϕ) = (f ∨̃ (t →̃ (((n →̃ f) ≡̃ f) ∨̃ ((n →̃ f) ≡̃ t)))) =

(f ∨̃ (t →̃ ((n ≡̃ f) ∨̃ (n ≡̃ t)))) = (f ∨̃ (t →̃ (f ∨̃ f))) = (f ∨̃ (t →̃ f)) = f.
Hence, if v is a valuation such that v(p) = t and v(q) = n, then v(ϕ) = f in
the model of LP≡ and in the model of sLP≡. Consequently, ϕ is not valid in
LP≡ and sLP≡.

Proof of Proposition 4.18. Let L ∈ {LP≡, LP∗
≡, LFI1≡, LFI1∗

≡}. Let ML

be the model of L. By Proposition 4.14, ML is an MGL-model. The oper-
ations ∧̃ and ∨̃ are defined in LFI1 and LP in the same way and can be
interpreted as max and min operations on {0, 1

2 , 1}. Thus, they are asso-
ciative, commutative, idempotent, and distributive over each other, which
implies that conditions (G1)–(G5) of G-structures hold in ML. Moreover, it
can be easily verified that all a, b ∈ {f, n, t} satisfy the following conditions:
¬̃¬̃a = a, ¬̃(a ∧̃ b) = (¬̃a ∨̃ ¬̃b), and ¬̃(a ∨̃ b) = (¬̃a ∧̃ ¬̃b). Consequently,
the conditions (G6)–(G8) hold in ML. Finally, since ≡̃ is symmetric and ¬̃
is involution, conditions (G9) and (G10) also hold in ML.

Proof of Proposition 4.19. In every logic L ∈ {LP≡, sLP≡, LFI1≡,
sLFI1≡}, the operation ≡̃ satisfies the condition: a ≡̃ b ∈ D iff a = b.
Thus, we can simplify the specific conditions of LD, LDS, LDE as follows,
for #̃ ∈ {≡̃, ∧̃, ∨̃}:
(LD#̃) (a ≡̃ b) = ((a ≡̃ b) ∧̃ ((a #̃ c) ≡̃ (b #̃ c))),

(LDS#̃) ((a ≡̃ b) ∧̃ (c ≡̃ d)) = (((a ≡̃ b) ∧̃ (c ≡̃ d)) ∧̃ ((a #̃ c) ≡̃ (b #̃ d))),

(LDE#̃) (a ≡̃ b ∧̃ (a #̃ c)) = (a ≡̃ b ∧̃ (b #̃ c)).
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Clearly, for every L ∈ {LP≡, sLP≡, LFI1≡, sLFI1≡}, it holds that a ≡̃ b = f
iff a �= b. Therefore, if a �= b, then ((a ≡̃ b) ∧̃ c) = f, for all c ∈ {f, n, t}.
Hence, the conditions (LD#̃) and (LDE#̃) hold in the model of L, for all
a, b ∈ {f, n, t} such that a �= b, and the conditions (LDS#̃) hold in the model
of L, for all a, b, c, d ∈ {f, n, t} such that either a �= b or c �= d (as the left
side and the right side of each equality equals f).
Recall that for all a, b ∈ {f, n, t}, if a = b, then it holds that (a ≡̃ b) = t
whenever L ∈ {sLP≡, sLFI1≡}, and (a ≡̃ b) ∈ {n, t}, if L ∈ {LP≡, LFI1≡}.
Moreover, if a = b, then (a #̃ c) = (b #̃ c), for all c ∈ {f, n, t}. Similarly, if
a = b and c = d, then (a #̃ c) = (b #̃ d).
Case: L ∈ {sLP≡, sLFI1≡}
Let (a #̃ c) = (b #̃ c) = x. Then, the following holds:
t = (a ≡̃ b) = ((a ≡̃ b) ∧̃ ((a #̃ c) ≡̃ (b #̃ c))) = (t ∧̃ (x ≡̃ x)) = (t ∧̃ t) = t.
Thus, the conditions (LD#̃) hold in the model of L. Next, we have:
(t ∧̃ x) = (a ≡̃ b ∧̃ (a #̃ c)) = (a ≡̃ b ∧̃ (b #̃ c)) = (t ∧̃ x).
The above shows that the conditions (LDE#̃) are satisfied in the model of
L. Now, let (a #̃ c) = (b #̃ d) = x. Then, the conditions (LDS#̃) hold in L:
t = ((a≡̃b)∧̃(c≡̃d)) = (((a≡̃b)∧̃(c≡̃d))∧̃((a#̃c)≡̃(b#̃d))) = (t∧̃(x≡̃x)) =
(t ∧̃ t) = t.
Therefore, we have proved that the conditions (LD#̃), (LDS#̃), (LDE#̃) hold
in the model of L ∈ {sLP≡, sLFI1≡}.
Case: L ∈ {LP≡, LFI1≡}
Assume (a ≡̃ b) = x ∈ {n, t}. Since a = b, it holds that (a #̃ c) = (b #̃ c) =
y ∈ {f, n, t}, for all c ∈ {f, n, t}. Then, the conditions (LDE#̃) hold in the
model of L, which can be easily verified:
(x ∧̃ y) = (a ≡̃ b ∧̃ (a #̃ c)) = (a ≡̃ b ∧̃ (b #̃ c)) = (x ∧̃ y).
Now, assume that (a ≡̃ b), (c ≡̃ d) ∈ {n, t}. Since a = b and c = d, we obtain
that (a#̃c) = (b#̃d). Therefore, (a#̃c)≡̃(b#̃d) ∈ {n, t}. If ((a≡̃b)∧̃(c≡̃d)) =
t, then (a, b), (c, d) ∈ {(f, f), (t, t)}, and in consequence (a #̃ c) ≡̃ (b #̃ d) = t,
which means that the conditions (LDS#̃) are satisfied in this case. Now,
suppose that ((a≡̃b) ∧̃(c≡̃d)) = n. Then, since (a#̃c)≡̃(b#̃d) = x ∈ {n, t},
the following holds:
(((a ≡̃ b) ∧̃ (c ≡̃ d)) ∧̃ ((a #̃ c) ≡̃ (b #̃ d))) = (n ∧̃ x) = n = ((a ≡̃ b) ∧̃ (c ≡̃ d)).
Hence, the conditions (LDS#̃) hold in the model of L ∈ {LP≡, LFI1≡}.
Nonetheless, the model of L ∈ {LP≡, LFI1≡} does not satisfy the condition
(LD∧̃). Indeed, if a = b = t and c = n, then:
t = (a ≡̃ b) �= ((a ≡̃ b) ∧̃ ((a ∧̃ c) ≡̃ (b ∧̃ c))) = (t ∧̃ (n ≡̃ n)) = (t ∧̃ n) = n.
Therefore, the model of L ∈ {LP≡, LFI1≡} is not an LD-model.
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[21] Golińska-Pilarek, J., and T. Huuskonen, A mystery of Grzegorczyk’s logic of

descriptions, in A. Garrido, and U. Wybraniec-Skardowska, (eds.), The Lvov-Warsaw

School. Past and Present, Studies in Universal Logic, Springer Nature, 2018, pp. 731–

745.

[22] Grzegorczyk, A., Filozofia logiki i formalna logika niesymplifikacyjna, Zagadnienia

Naukoznawstwa 47(4):445–450, 2012.
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