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Abstract. As Classical Propositional Logic finds its algebraic counterpart in Boolean

algebras, the logic of Quantum Mechanics, as outlined within G. Birkhoff and J. von Neu-

mann’s approach to Quantum Theory (Birkhoff and von Neumann in Ann Math 37:823–

843, 1936) [see also (Husimi in I Proc Phys-Math Soc Japan 19:766–789, 1937)] finds its

algebraic alter ego in orthomodular lattices. However, this logic does not incorporate time

dimension although it is apparent that the propositions occurring in the logic of Quantum

Mechanics are depending on time. The aim of the present paper is to show that tense

operators can be introduced in every logic based on a complete lattice, in particular in the

logic of quantum mechanics based on a complete orthomodular lattice. If the time set is

given together with a preference relation, we introduce tense operators in a purely algebraic

way. We derive several important properties of such operators, in particular we show that

they form dynamic pairs and, altogether, a dynamic algebra. We investigate connections of

these operators with logical connectives conjunction and implication derived from Sasaki

projections in an orthomodular lattice. Then we solve the converse problem, namely to

find for given time set and given tense operators a time preference relation in order that

the resulting time frame induces the given operators. We show that the given operators

can be obtained as restrictions of operators induced by a suitable extended time frame.

Keywords: Complete orthomodular lattice, Event-state system, Logic of Quantum Me-

chanics, Tense operator, Time frame, Dynamic pair, Dynamic algebra.
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1. Introduction

It is well known that any physical theory determines an event-state sys-
tem (E ,S) where E contains the events that may occur with respect to the
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given system and S contains the states that such a physical system may as-
sume. In Quantum Physics one usually identifies E with the set of projection
operators of a Hilbert space H. This set of operators is in bijective corre-
spondence with the set C(H) of closed subspaces of H. The set C(H) ordered
by inclusion forms a complete orthomodular lattice. Such lattices were in-
troduced in 1936 by G. Birkhoff and J. von Neumann [3] and independently
in 1937 by K. Husimi [17] as a suitable algebraic tool for investigating the
logical structure underlying physical theories that, like mentioned Quan-
tum Mechanics, do not obey the laws of classical logic. For the theory of
orthomodular lattices cf. the monographs [1] and [18].

However, the logic based on orthomodular lattices does not incorporate
the dimension of time. Our goal is to find how the logic of Quantum Mechan-
ics can be considered as a tense logic (or time logic in another terminology,
see e.g. [7] and [21]). As mentioned above, we need not work directly with
projections on a Hilbert space but with the corresponding orthomodular
lattice. Hence, our task is to introduce certain tense operators P , F , H and
G on a given orthomodular lattice. The meaning of these operators is as
follows:

P ... “It has at some time been the case that”,

F ... “It will at some time be the case that”,

H ... “It has always been the case that”,

G ... “It will always be the case that”.

To obtain a suitable semantics for the above operators, a time scale is needed.
For this reason a time frame is introduced. It is a pair (T,R) consisting of
a non-empty set T of time and a non-empty binary relation R on T , the
relation of time preference, i.e. for s, t ∈ T we say that s R t means s
is before t or, equivalently, t is after s. For our purposes we will consider
sometimes serial relations R (see [7]), i.e. binary relations R such that for
each s ∈ T there exist t, u ∈ T with t R s and s R u. Every reflexive binary
relation is serial. In physical theories R is usually understood as an order or
a quasiorder.

It is worth noticing that our tense operators are in fact special sorts of
modal operators, see e.g. [10] and [19]. However, having a time frame (T,R),
the tense operators H and G can be considered as universal quantifiers over
the half sets of T and the tense operators P and F as existential operators
over these segments. The theory of tense logic has its origin in works by
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A. N. Prior (cf. [19] and [20]) and in the monographs and chapters [13–
15] and [16]. For the classical propositional calculus, these operators were
studied in [4], for MV-algebras in [8], for intuitionistic logic in [10], and
for De Morgan algebras in [11]. Let us note that for other non-classical
logics several papers on tense operators were published, see e.g. [9,12] and
[22]. It should be noticed that tense operators were already introduced and
investigated also in basic algebras, see [2], and that orthomodular lattices
can be considered as a special kind of basic algebras. However, the difference
between both is essential since in orthomodular lattices the unary operation
is a complementation and, moreover, orthomodular lattices satisfy the rather
strong orthomodular law. Due to this fact we will obtain stronger results.

2. Preliminaries

First we recall several concepts from lattice theory.
An antitone involution on a poset (P,≤) is a mapping ′ from P to P

satisfying the following conditions for all x, y ∈ P :

(i) x ≤ y implies y′ ≤ x′,

(ii) x′′ = x.

A complementation on a bounded poset (P,≤, 0, 1) is a mapping ′ from P to
P satisfying x∨x′ = 1 and x∧x′ = 0 for all x ∈ P . An orthomodular lattice
is an algebra (L,∨,∧, ′, 0, 1) of type (2, 2, 1, 0, 0) such that (L,∨,∧, 0, 1) is a
bounded lattice, ′ is an antitone involution that is a complementation and
the orthomodular law holds:

If x, y ∈ L and x ≤ y then y = x ∨ (y ∧ x′).

Let us remark that according to the De Morgan’s laws the orthomodular
law is equivalent to the following condition:

If x, y ∈ L and x ≤ y then x = y ∧ (x ∨ y′).

In the following we consider a non-trivial (i.e. not one-element) complete
(possibly orthomodular) lattice L = (L,∨,∧, 0, 1) (L = (L,∨,∧, ′, 0, 1)) and
a given time frame (T,R). We can define the tense operators as quantifiers
over the time frame as follows:

P (q)(s) :=
∨

{q(t) | t R s},
F (q)(s) :=

∨
{q(t) | s R t},
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Figure 1. Orthomodular lattice

H(q)(s) :=
∧

{q(t) | t R s},
G(q)(s) :=

∧
{q(t) | s R t}

for every q ∈ LT and s ∈ T . In such a case we call the tense operators P , F ,
H and G to be derived from or induced by the time frame (T,R).

In complete orthomodular lattices there is a close connection between
the tense operators P and H and the tense operators F and G. Namely, if
these tense operators are induced by the time frame (T,R) then due to De
Morgan’s laws we have H(q) = P (q′)′ and G(q) = F (q′)′ for all q ∈ LT .
Here and in the following for every q ∈ LT , q′ denotes the mapping from T

to L assigning to every s ∈ T the element
(
q(s)

)′ of L, and P (q′)′ denotes
the mapping from T to L assigning to every s ∈ T the element

(
P (q′)(s)

)′

of L.

Example 2.1. Consider the orthomodular lattice L depicted in Figure 1:

Put (T,R) := ({1, 2, 3, 4, 5},≤) and define time depending propositions
p, q ∈ LT as follows:

t 1 2 3 4 5
p(t) c′ b′ c′ a′ b′

t 1 2 3 4 5
q(t) a b′ d a a′
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Then we have
t 1 2 3 4 5
P (p)(t) c′ 1 1 1 1
F (p)(t) 1 1 1 1 b′

H(p)(t) c′ a a 0 0
G(p)(t) 0 0 0 c b′

t 1 2 3 4 5
P (q)(t) a b′ 1 1 1
F (q)(t) 1 1 1 1 a′

H(q)(t) a a 0 0 0
G(q)(t) 0 0 0 0 a′

3. Dynamic Pairs

At first we prove that for tense operators as defined above the pairs (P,G)
and (F,H) form dynamic pairs, thus (L, P, F,H,G) is a dynamic algebra
(see [7] for details). For our reasons, the couple (X,Y ) of operators forms a
dynamic pair if they are monotone, X(0) = Y (0) = 0, X(1) = Y (1) = 1 and
XY (q) ≤ Y X(q) for every q ∈ L. If L is a complete lattice and (P,G) and
(F,H) defined on L form dynamic pairs, then the quintuple (L, P, F,H,G)
will be called a dynamic algebra. The term “dynamic” should express here
the fact that the values of tense operators for a given proposition q may
vary depending on time. This means that our system under consideration is
dynamic.

Theorem 3.1. Let (L,∨,∧, 0, 1) be a complete lattice, (T,R) a time frame
with serial relation R, P , F , H and G denote the tense operators induced
by (T,R) and p, q ∈ LT . Then the following holds:

(i) P (0) = F (0) = H(0) = G(0) = 0 and P (1) = F (1) = H(1) = G(1) = 1,

(ii) p ≤ q implies P (p) ≤ P (q), F (p) ≤ F (q), H(p) ≤ H(q) and G(p) ≤
G(q),

(iii) PG(q) ≤ q ≤ GP (q), FH(q) ≤ q ≤ HF (q).

Proof. Let s ∈ T .

(i) Since R is serial we have P (0)(s) =
∨{0 | t R s} = 0 and P (1)(s) =∨{1 | t R s} = 1. The situation for F , H and G is analogous.

(ii) Assume p ≤ q. Then

p(t) ≤ q(t) ≤
∨

{q(u) | u R s} = P (q)(s)

for all t ∈ T with t R s and hence

P (p)(s) =
∨

{p(t) | t R s} ≤ P (q)(s).
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This shows P (p) ≤ P (q). The inequality F (p) ≤ F (q) can be shown
analogously. Moreover,

H(p)(s) =
∧

{p(u) | u R s} ≤ p(t) ≤ q(t)

for all t ∈ T with t R s and hence

H(p)(s) ≤
∧

{q(t) | t R s} = H(q)(s).

This shows H(p) ≤ H(q). The inequality G(p) ≤ G(q) can be shown
analogously.

(iii) The following are equivalent:

PG(q)(s) ≤ q(s),
∨

{G(q)(t) | t R s} ≤ q(s),

G(q)(t) ≤ q(s) for all t ∈ T with t R s,
∧

{q(u) | t R u} ≤ q(s) for all t ∈ T with t R s.

Since the last statement is true, the same holds for the first statement.
Analogously, one can prove FH(q) ≤ q. Now the following are equiva-
lent:

q(s) ≤ GP (q)(s),

q(s) ≤
∧

{P (q)(t) | s R t},
q(s) ≤ P (q)(t) for all t ∈ T with s R t,

q(s) ≤
∨

{q(u) | u R t} for all t ∈ T with s R t.

Since the last statement is true, the same holds for the first statement.
Analogously, one can prove q ≤ HF (q).

If the operators P , F , H and G on the complete lattice L satisfy (i), (ii)
and (iii) of Theorem 3.1 then the quintuple (L, P, F,H,G) will be referred
to as a dynamic algebra.

Example 3.2. For p and q of Example 2.1 we obtain

t 1 2 3 4 5
p(t) c′ b′ c′ a′ b′

PG(p)(t) 0 0 0 c b′

GP (p)(t) c′ 1 1 1 1

t 1 2 3 4 5
q(t) a b′ d a a′

PG(q)(t) 0 0 0 0 a′

GP (q)(t) a b′ 1 1 1
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showing that PG(p) ≤ p ≤ GP (p) and PG(q) ≤ q ≤ GP (q) and, moreover,
that these inequalities are strict.

In the following we establish several properties of tense operators on
complete lattices that are in accordance with the general approach presented
in [7] and [21].

Theorem 3.3. Let (L,∨,∧, 0, 1) be a complete lattice, (T,R) a time frame
with serial relation R, P , F , H and G denote the tense operators induced
by (T,R) and q ∈ LT . Then the following hold:

(i) H(q) ≤ P (q) and G(q) ≤ F (q),

(ii) if R is reflexive then H(q) ≤ q ≤ P (q) and G(q) ≤ q ≤ F (q).

Proof. Let s ∈ T .

(i) Since R is serial there exists some u ∈ T with u R s and we have

H(q)(s) =
∧

{q(t) | t R s} ≤ q(u) ≤
∨

{q(t) | t R s} = P (q)(s).

The proof for G and F is analogous.

(ii) We have

H(q)(s) =
∧

{q(t) | t R s} ≤ q(s) ≤
∨

{q(t) | t R s} = P (q)(s).

The proof for G and F is analogous.

We define A ≤ B for A,B ∈ {P, F,H,G} by A(q) ≤ B(q) for all q ∈ LT .

Theorem 3.4. Let (L,∨,∧, 0, 1) be a complete lattice, (T,R) a time frame
with reflexive R, P , F , H and G denote the tense operators induced by
(T,R), A ∈ {P, F,H,G}, B ∈ {P, F} and C ∈ {H,G}. Then the following
hold:

(i) A ≤ AB and AC ≤ A,

(ii) if R is, moreover, transitive then AA = A.

Proof.

(i) This follows from Theorems 3.3 and 3.1.

(ii) According to (i) we have P ≤ PP . Let q ∈ LT and s ∈ T . Then the
following are equivalent:

PP (q)(s) ≤ P (q)(s),
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∨
{P (q)(t) | t R s} ≤ P (q)(s),

P (q)(t) ≤ P (q)(s) for all t ∈ T with t R s,
∨

{q(u) | u R t} ≤ P (q)(s) for all t ∈ T with t R s,

q(u) ≤
∨

{q(w) | w R s} for all t ∈ T with t R s and all u ∈ T with

u R t.

Since, due to transitivity of R, t R s and u R t together imply u R s, the
last statement is true and hence the same holds for the first statement.
Therefore PP ≤ P , and together we obtain PP = P . The proof of
FF = F is analogous. According to (i) we have HH ≤ H. Now the
following are equivalent:

H(q)(s) ≤ HH(q)(s),

H(q)(s) ≤
∧

{H(q)(t) | t R s},
H(q)(s) ≤ H(q)(t) for all t ∈ T with t R s,

H(q)(s) ≤
∧

{q(u) | u R t} for all t ∈ T with t R s,
∧

{q(w) | w R s} ≤ q(u) for all t ∈ T with t R s

and all u ∈ T with u R t.

Since, due to transitivity of R, t R s and u R t together imply u R s, the
last statement is true and hence the same holds for the first statement.
This shows H ≤ HH, and together we obtain HH = H. The proof of
GG = G is analogous.

4. Connections with Logical Connectives

Considering the logic based on an orthomodular lattice (L,∨,∧, ′, 0, 1) one
can ask for logical connectives. One way how to introduce the conjunction
� and the implication → is based on the Sasaki projections (see [1]). This
method was successfully used by the authors in [5] and [6] for investigating
left adjointness. Let us recall the corresponding definitions:

x � y := (x ∨ y′) ∧ y,
x → y := (y ∧ x) ∨ x′ (1)

for all x, y ∈ L. The Sasaki projection py on [0, y] is given by py(x) :=
(x∨y′)∧y for all x ∈ L. Hence we have x�y = py(x) and x → y =

(
px(y′)

)′

for all x, y ∈ L.



Algebraic Structures Formalizing the Logic...

The following result was proved in [5] and [6].

Proposition 4.1. Let (L,∨,∧, ′, 0, 1) be an orthomodular lattice, � and →
defined by (1) and a, b, c ∈ L. Then the following holds:

(i) a � 1 = 1 � a = a,

(ii) a � b ≤ c if and only if a ≤ b → c (left adjointness),

(iii) a′ = a → 0.

The following lemma will be used in the next proof.

Lemma 4.2. Let (L,∨,∧, ′, 0, 1) be an orthomodular lattice, � and → de-
fined by (1) and a, b ∈ L. Then the following holds:

(i) (a → b) � a = a ∧ b,

(ii) a ≤ b → (a � b).

Proof.

(i) Using the orthomodular law we obtain

(a → b) � a =
(
(b ∧ a) ∨ a′ ∨ a′) ∧ a = a ∧ (

(a ∧ b) ∨ a′) = a ∧ b.

(ii) Using again the orthomodular law we obtain

a ≤ a ∨ b′ = b′ ∨ (
(a ∨ b′) ∧ b

)
=

(
(a ∨ b′) ∧ b ∧ b

) ∨ b′ = b → (a � b).

Our next task is to show connections of tense operators with logical con-
nectives � and →. Using Proposition 4.1 and Lemma 4.2 we can prove the
following theorem.

Theorem 4.3. Let (L,∨,∧, ′, 0, 1) be a complete orthomodular lattice, (T,R)
a time frame, P , F , H and G denote the tense operators induced by (T,R)
and A ∈ {P, F,H,G}. Then the following two assertions are equivalent:

(i) A(x) � A(y) ≤ A(x � y) for all x, y ∈ LT ,

(ii) A(x → y) ≤ A(x) → A(y) for all x, y ∈ LT .

Proof. Let p, q ∈ LT . First assume (i). According to (i) we have

A(p → q) � A(p) ≤ A
(
(p → q) � p

)

Now

(p → q) � p = p ∧ q
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because of Lemma 4.2 and hence

A
(
(p → q) � p

)
= A(p ∧ q).

Applying Theorem 3.1 to p ∧ q ≤ q yields

A(p ∧ q) ≤ A(q).

Altogether, we obtain

A(p → q) � A(p) ≤ A(q).

Thus, by Proposition 4.1 we conclude

A(p → q) ≤ A(p) → A(q)

showing (ii). Conversely, assume (ii). According to Lemma 4.2 we have

p ≤ q → (p � q).

Applying Theorem 3.1 we conclude

A(p) ≤ A
(
q → (p � q)

)
.

Using (ii) we obtain

A
(
q → (p � q)

) ≤ A(q) → A(p � q).

Altogether, we have

A(p) ≤ A(q) → A(p � q).

Thus, by Proposition 4.1 we conclude

A(p) � A(q) ≤ A(p � q)

showing (i).

However, we can prove also further interesting connections between these
operators.

Theorem 4.4. Let (L,∨,∧, ′, 0, 1) be a complete orthomodular lattice, (T,R)
a time frame with reflexive R, P , F , H and G denote the tense operators
induced by (T,R), A,A1, A2 ∈ {P, F}, B,B1, B2 ∈ {H,G} and p, q ∈ LT .
Then the following holds:

(i) p ≤ q → A1

(
A2(p) � q

)
,

(ii) B(p � q) ≤ A(p) � q,

(iii) B(p) ≤ q → A(p � q),

(iv) B1

(
B2(p) � q

) ≤ p � q,
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(v) p → q ≤ A1

(
p → A2(q)

)
,

(vi) B(p → q) � p ≤ A(q),

(vii) p → B(q) ≤ A(p → q),

(viii) B1

(
p → B2(q)

) � p ≤ q.

Proof. We use Theorems 3.1 and 3.3, (1) and Proposition 4.1.

(i) We have

p � q ≤ A1(p � q) by Theorem 3.3,

p ≤ A2(p) by Theorem 3.3,

p � q ≤ A2(p) � q by (1),

A1(p � q) ≤ A1

(
A2(p) � q

)
by Theorem 3.1,

p � q ≤ A1

(
A2(p) � q

)
by transitivity,

p ≤ q → A1

(
A2(p) � q

)
by Proposition 4.1.

The other statements follow in an analogous way.

(ii) follows from B(p � q) ≤ B
(
A(p) � q

) ≤ A(p) � q,

(iii) follows from B(p) � q ≤ A
(
B(p) � q

) ≤ A(p � q) by applying Propo-
sition 4.1,

(iv) follows from B1

(
B2(p) � q

) ≤ B1(p � q) ≤ p � q,

(v) follows from p → q ≤ A1(p → q) ≤ A1

(
p → A2(q)

)
,

(vi) follows from B(p → q) ≤ B
(
p → A(q)

) ≤ p → A(q) by applying
Proposition 4.1,

(vii) follows from p → B(q) ≤ A
(
p → B(q)

) ≤ A(p → q),

(viii) follows from B1

(
p → B2(q)

) ≤ B1(p → q) ≤ p → q by applying
Proposition 4.1.

5. A Construction of the Time Frame

A tense logic is established if for a given logic a time frame (T,R) exists
such that the lattice together with the tense operators forms a dynamic
algebra and the logical connectives are related with tense operators in the
way shown in Section 4. Hence, if such a logic incorporating time dimension
is created, we can define tense operators P , F , H and G. The question is
whether, conversely, for given time set T and given tense operators there
exists a suitable time frame (T,R) such that the given tense operators are
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derived from it. In other words, we ask if for given tense operators P , F , H
and G on a time set T one can find some time preference relation R such
that these operators are induced by (T,R). To show that this is possible is
the goal of Section 5.

If P , F , H and G are tense operators on a complete lattice (L,∨,∧, 0, 1)
with time set T then the relations

R1 := {(s, t) ∈ T 2 | q(s) ≤ P (q)(t) and q(t) ≤ F (q)(s) for all q ∈ LT },
R2 := {(s, t) ∈ T 2 | H(q)(t) ≤ q(s) and G(q)(s) ≤ q(t) for all q ∈ LT },
R3 := R1 ∩ R2

are called the relation induced by P and F , the relation induced by H and
G and the relation induced by P , F , H and G, respectively.

Observe that whenever tense operators P , F , H and G on a complete
lattice L are induced by an arbitrarily given time frame then (L, P, F,H,G)
forms a dynamic algebra, and if, moreover, L is a complete orthomodular
lattice then Theorems 4.3 and 4.4 hold for these operators.

At first we show the relationship between given tense operators P and
F and the corresponding operators P ∗ and F ∗ induced by the time frame
(T,R) where R is induced by P and F .

Theorem 5.1. Let P and F be tense operators on a complete lattice (L,∨,∧,
0, 1) with time set T , R denote the relation induced by these operators and
P ∗ and F ∗ denote the tense operators induced by the time frame (T,R).
Then P ∗ ≤ P and F ∗ ≤ F .

Proof. If q ∈ LT and s ∈ T then

P ∗(q)(s) =
∨

{q(t) | t R s} ≤ P (q)(s),

F ∗(q)(s) =
∨

{q(t) | s R t} ≤ F (q)(s).

Analogously, one can prove

Theorem 5.2. Let H and G be tense operators on a complete lattice (L,∨,∧,
0, 1) with time set T , R denote the relation induced by these operators and
H∗ and G∗ denote the tense operators induced by the time frame (T,R).
Then H ≤ H∗ and G ≤ G∗.

From Theorems 5.1 and 5.2 we obtain

Corollary 5.3. Let P , F , H and G be tense operators on a complete
lattice (L,∨,∧, 0, 1) with time set T , R denote the relation induced by these
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operators and P ∗, F ∗, H∗ and G∗ denote the tense operators induced by the
time frame (T,R). Then P ∗ ≤ P , F ∗ ≤ F , H ≤ H∗ and G ≤ G∗.

Example 5.4. Consider the lattice L and the time set T = {1, 2, 3, 4, 5}
from Example 2.1. Define new tense operators P , F , H and G as follows:

P (q)(t) :=
{
q(t) if t = 2,
1 otherwise F (q)(t) :=

{
q(t) if t = 1,
1 otherwise

H(q)(t) :=
{
q(t) if t = 1,
0 otherwise G(q)(t) :=

{
q(t) if t = 2,
0 otherwise

for all q ∈ LT and all t ∈ T . Note that these operators satisfy the conditions

H(q) ≤ q ≤ P (q) and G(q) ≤ q ≤ F (q)

for all q ∈ LT which were considered in Theorem 3.3. Let R denote the
relation induced by P , F , H and G. Then R = {1}2 ∪ {2}2 ∪ {3, 4, 5}2.
This can be seen as follows: Obviously, {1}2 ∪{2}2 ∪{3, 4, 5}2 ⊆ R. Now let
(s, t) ∈ R.
s = 1 �= t would imply q(t) ≤ F (q)(1) = q(1) for all q ∈ LT , a contradiction.
s = 2 �= t would imply q(2) = G(q)(2) ≤ q(t) for all q ∈ LT , a contradiction.
s �= 1 = t would imply q(1) = H(q)(1) ≤ q(s) for all q ∈ LT , a contradiction.
s �= 2 = t would imply q(s) ≤ P (q)(2) = q(2) for all q ∈ LT , a contradiction.
This shows R = {1}2 ∪ {2}2 ∪ {3, 4, 5}2. For p from Example 2.1 we have

t 1 2 3 4 5
p(t) c′ b′ c′ a′ b′

P (p)(t) 1 b′ 1 1 1
F (p)(t) c′ 1 1 1 1
P ∗(p)(t) c′ b′ 1 1 1
F ∗(p)(t) c′ b′ 1 1 1

showing P ∗ ≤ P and F ∗ ≤ F in accordance with Corollary 5.3, but P ∗ �= P
and F ∗ �= F , thus this inequality is strict.

Remark 5.5. Although the new tense operators P ∗, F ∗, H∗ and G∗ con-
structed as shown in Corollary 5.3 satisfy only the inequalities P ∗ ≤ P ,
F ∗ ≤ F , H ≤ H∗ and G ≤ G∗ and, by Example 5.4, these inequalities
may be strict, it is almost evident from the construction of these operators
that (L, P ∗, F ∗, H∗, G∗) forms a dynamic algebra and that these operators
are connected with the logical connectives � and → in the way shown in
Theorems 4.3 and 4.4 provided L is a complete orthomodular lattice.

Conversely, if a time frame (T,R) on a complete lattice is given and
we consider the tense operators P , F , H and G induced by (T,R) then
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the relation induced by these operators coincides with R, see the following
result.

Theorem 5.6. Let (L,∨,∧, 0, 1) be a complete lattice, (T,R) a time frame,
P , F , H and G denote the tense operators induced by (T,R) and R∗ denote
the relation induced by these operators. Then R = R∗ and hence the tense
operators induced by the time frame (T,R∗) coincide with those induced by
the time frame (T,R).

Proof. If s R t then

H(q)(t) =
∧

{q(u) | u R t} ≤ q(s) ≤
∨

{q(u) | u R t} = P (q)(t),

G(q)(s) =
∧

{q(u) | s R u} ≤ q(t) ≤
∨

{q(u) | s R u} = F (q)(s)

for all q ∈ LT and hence s R∗ t. This shows R ⊆ R∗. Now assume R �= R∗.
Then there exists some (s, t) ∈ R∗ \ R. For every u ∈ T let qu denote the
following element of LT :

qu(t) :=
{

1 if t = u,
0 otherwise

(t ∈ T ). Now we would obtain

1 = qs(s) ≤ P (qs)(t) =
∨

{qs(u) | u R t} =
∨

{0 | u R t} = 0,

a contradiction. This shows R = R∗.

Remark 5.7. Assume that tense operators P , F , H and G on a complete
lattice with time set T are given. We want to know if such operators are
induced by a suitable time frame with possibly unknown time preference
relation. We construct the relation R on T induced by these operators and
then we construct the tense operators P ∗, F ∗, H∗ and G∗ induced by the
time frame (T,R). Now two cases can happen: Either P ∗ = P , F ∗ = F ,
H∗ = H and G∗ = G or at least one of these equalities is violated, it means
it is a proper inequality. In the first case the given operators P , F , H and
G are induced by the time frame (T,R) whereas in the second case P , F ,
H and G are not induced by any time frame because of Theorems 5.6.

In Theorem 5.6 we showed that if a complete lattice (L,∨,∧, 0, 1) and a
time frame (T,R) are given and P , F , H and G denote the tense operators
induced by this time frame then the relation R∗ induced by these operators
coincides with R. If, conversely, the tense operators P and F are given on
a complete lattice with a given time set T , we can ask whether we can
construct a relation inducing these operators. In Theorem 5.1 we showed
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that if R is induced by given tense operators P and F on a given time set
T in the complete lattice L then the operators P ∗ and F ∗ induced by the
time frame (T,R) need not coincide with P and F , respectively, they satisfy
only the inequalities P ∗ ≤ P and F ∗ ≤ F . However, such tense operators
P ∗ and F ∗ are still related with the logical connectives � and → as shown
in Theorems 4.3 and 4.4 provided the complete lattice L is orthomodular.
We are going to show that the given time set T can be extended to some
set T̄ and R can be extended to some binary relation R̄ on T̄ such that the
tense operators induced by the time frame (T̄ , R̄) can be considered in some
sense as extensions of the given tense operators P and F , respectively. Put

T̄ := T1 ∪ T ∪ T2 where T1 := T × {1} and T2 := T × {2}. (2)

We extend our “world” LT by adding two of its copies, “parallel worlds”,
namely the “past” LT1 and the “future” LT2 . In this way we obtain our “new
world” LT̄ over the extended time set T̄ . We also extend our time depending
propositions q ∈ LT to q̄ ∈ LT̄ by defining

q̄
(
(s, 1)

)
:= P (q)(s),

q̄(s) := q(s),
q̄
(
(s, 2)

)
:= F (q)(s)

for all s ∈ T.

(3)

Now we show that the given operators P and F can be considered in some
sense as restrictions of the operators P̄ and F̄ induced by the time frame
(T̄ , R̄), respectively.

Theorem 5.8. Let P and F be tense operators on a complete lattice (L,∨,∧,
0, 1) with time set T and R denote the relation induced by these operators.
Define T̄ by (2), put

R̄ := {(
(s, 1), s

) | s ∈ T} ∪ R ∪ {(
s, (s, 2)

) | s ∈ T}.
and let P̄ and F̄ denote the tense operators induced by the time frame (T̄ , R̄).
Moreover, for every q ∈ LT let q̄ ∈ LT̄ denote the extension of q defined by
(3). Then R̄|T = R and

(
P̄ (q̄)

)|T = P (q) and
(
F̄ (q̄)

)|T = F (q)

for all q ∈ LT .

Proof. We have R̄|T = R̄ ∩ T 2 = R. If q ∈ LT and s ∈ T then q(t) ≤
P (q)(s) for all t ∈ T with t R s and hence

∨{q(t) | t R s} ≤ P (q)(s) which
implies

P̄ (q̄)(s) =
∨

{q̄(t̄) | t̄R̄s} = q̄
(
(s, 1)

) ∨
∨

{q̄(t) | t R s}
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= P (q)(s) ∨
∨

{q(t) | t R s} == P (q)(s)

showing
(
P̄ (q̄)

)|T = P (q). Analogously, one can prove
(
F̄ (q̄)

)|T = F (q).

An analogous result holds for H and G instead of P and F , respectively,
but the extensions of q ∈ LT to q̄ ∈ LT̄ must be slightly modified.

Theorem 5.9. Let H and G be tense operators on a complete lattice (L,∨,
∧, 0, 1) with time set T and R denote the relation induced by these operators.
Define T̄ by (2), put

R̄ := {(
(s, 1), s

) | s ∈ T} ∪ R ∪ {(
s, (s, 2)

) | s ∈ T}.
and let H̄ and Ḡ denote the tense operators induced by the time frame (T̄ , R̄).
Moreover, for every q ∈ LT let q̄ ∈ LT̄ denote the extension of q defined by

q̄
(
(s, 1)

)
:= H(q)(s),

q̄(s) := q(s),

q̄
(
(s, 2)

)
:= G(q)(s)

for all s ∈ T . Then R̄|T = R and
(
H̄(q̄)

)|T = H(q) and
(
Ḡ(q̄)

)|T = G(q)

for all q ∈ LT .

Example 5.10. Consider the time set T , the proposition p and the tense
operators P and F from Example 2.1 and write ti instead of (t, i) for t ∈ T
and i = 1, 2. Let R denote the relation induced by P and F . Then

R = {(s, t) ∈ {1, 2, 3, 4, 5}2 | s ≤ t},
R̄ = {(s1, s) | s ∈ T} ∪ R ∪ {(s, s2) | s ∈ T}.

Let P̄ and F̄ denote the tense operators induced by the time frame (T̄ , R̄).
Then we have

t̄ 11 21 31 41 51 1 2 3 4 5 12 22 32 42 52
p(t) c′ b′ c′ a′ b′

P (p)(t) c′ 1 1 1 1
F (p)(t) 1 1 1 1 b′

p̄(t̄) c′ 1 1 1 1 c′ b′ c′ a′ b′ 1 1 1 1 b′

P̄ (p̄)(t̄) 0 0 0 0 0 c′ 1 1 1 1 c′ b′ c′ a′ b′

F̄ (p̄)(t̄) c′ b′ c′ a′ b′ 1 1 1 1 b′ 0 0 0 0 0

where

T1 = {11, 21, 31, 41, 51}, T = {1, 2, 3, 4, 5} and T2 = {12, 22, 32, 42, 52}.
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Evidently, R̄|T = R,
(
P̄ (p̄)

)|T = P (p) and
(
F̄ (p̄)

)|T = F (p) in accordance
with Theorem 5.8.

6. Concluding Remarks

It is well-known that the logic of Quantum Mechanics based on orthomodu-
lar lattices forms an algebraizable logic. We have shown that also the tense
operators introduced on a complete orthomodular lattice can be formalized
in a purely algebraic way. However, the study of algebraizable tense logic
based on orthomodular lattices would be beyond the scope of this paper and
hence it is postponed to a subsequent paper. We encourage the readers to
go on in this direction.
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[2] Botur, M., I. Chajda, R. Halaš, and M. Kolař́ık, Tense operators on basic alge-

bras, International Journal of Theoretical Physics 50:3737–3749, 2011.

[3] Birkhoff, G., and J. von Neumann, The logic of quantum mechanics, Annals of

Mathematics 37:823–843, 1936.

http://creativecommons.org/licenses/by/4.0/


I. Chajda, H. Länger

[4] Burgess, J.P., Basic tense logic, in D. Gabbay, and F. Guenthner, (eds.), Handbook

of Philosophical Logic, Vol. II, Reidel, Dordrecht, 1984, pp. 89–133.

[5] Chajda, I., and H. Länger, Orthomodular lattices can be converted into left resid-

uated l-groupoids, Miskolc Mathematical Notes 18:685–689, 2017.

[6] Chajda, I. and H. Länger, Residuation in orthomodular lattices, Topological Algebra

and its Applications 5:1–5, 2017.

[7] Chajda, I., and J. Paseka, Algebraic Approach to Tense Operators, Heldermann,

Lemgo 2015.

[8] Diaconescu, D., and G. Georgescu, Tense operators on MV-algebras and

�Lukasiewicz-Moisil algebras, Fundamenta Informaticae 81:379–408, 2007.

[9] Dzik, W., J. Järvinen, and M. Kondo, Characterizing intermediate tense logics in

terms of Galois connections, Logic Journal of the IGPL 22:992–1018, 2014.

[10] Ewald, W.B., Intuitionistic tense and modal logic, Journal of Symbolic Logic

5(1):166–511, 1986.

[11] Figallo, A.V., and G. Pelaitay, Tense operators on De Morgan algebras, Logic

Journal of the IGPL 22:255–267, 2014.

[12] Figallo, A.V., and G. Pelaitay, An algebraic axiomatization of the Ewald’s intu-

tionistic tense logic, Soft Computing 18:1873–1883, 2014.

[13] Fisher, M., D. Gabbay, and L. Vila, (eds.), Handbook of Temporal Reasoning in

Artificial Intelligence, Elsevier, Amsterdam, 2005.

[14] Gabbay, D.M., I. Hodkinson, and M. Reynolds, Temporal Logic. Vol. 1. Mathe-

matical Foundations and Computational Aspects, Oxford University Press, New York

1994.

[15] Galton, A., Temporal logic and computer science: an overview. in Temporal Logics

and Their Applications, Academic Press, London, 1987, pp. 1–52.

[16] Hodkinson, I., and M. Reynolds, Temporal logic, in P. Blackburn, J.F.A.K. van

Benthem, and F. Wolter, (eds.), Handbook of Modal Logic, Vol. III, Elsevier, Amster-

dam, 2007, pp. 655–720.

[17] Husimi, K., Studies on the foundation of quantum mechanics. I, Proceedings of the

Physico-Mathematical Society of Japan 19:766–789, 1937.

[18] Kalmbach, G., Orthomodular Lattices, Academic Press, London, 1983.

[19] Prior, A.N., Time and Modality, Oxford University Press, Oxford, 1957.

[20] Prior, A.N., Past, Present and Future, Clarendon Press, Oxford, 1967.

[21] Rescher, N., and A. Urquhart, Temporal Logic, Springer, New York, 1971.

[22] Segura, C., Tense De Morgan S4-algebras, Asian-European Journal of Mathematics

15, Paper No. 2250014 (9 pp.), 2022.

I. Chajda, H. Länger

Faculty of Science
Department of Algebra and Geometry
Palacký University Olomouc
17. listopadu 12
771 46 Olomouc
Czech Republic

ivan.chajda@upol.cz



Algebraic Structures Formalizing the Logic...

H. Länger

TU Wien
Faculty of Mathematics and Geoinformation
Institute of Discrete Mathematics and Geometry
Wiedner Hauptstraße 8-10
1040 Vienna
Austria
helmut.laenger@tuwien.ac.at


	Algebraic Structures Formalizing the Logic of Quantum Mechanics Incorporating Time Dimension
	Abstract
	1. Introduction
	2. Preliminaries
	3. Dynamic Pairs
	4. Connections with Logical Connectives
	5. A Construction of the Time Frame
	6. Concluding Remarks
	Acknowledgement
	References


