Víctor Aranda@ Manuel Martins
María Manzano

Propositional Type Theory of Indeterminacy

Abstract

The aim of this paper is to define a partial Propositional Type Theory. Our system is partial in a double sense: the hierarchy of (propositional) types contains partial functions and some expressions of the language, including formulas, may be undefined. The specific interpretation we give to the undefined value is that of Kleene's strong logic of indeterminacy. We present a semantics for the new system and prove that every element of any domain of the hierarchy has a name in the object language. Finally, we provide a proof system and a (constructive) proof of completeness.

Keywords: Type theory, Partial logic, Three-valued logic, Kleene logic.

1. Introduction

The system of Propositional Type Theory (PT) was presented by Henkin [12]. It is a version of Church's Simple Type Theory where the set of truthvalues $\left(\mathcal{D}_{t}=\{0,1\}\right)$ is the only basic type and any complex type (say, $\mathcal{D}_{a b}$) is the set of total functions from \mathcal{D}_{a} to \mathcal{D}_{b}. Henkin gave a complete calculus for this logic taking nothing but the abstractor λ and equality as primitive symbols. In fact, the completeness proof is constructive, as it follows from the fact that every element of any domain \mathcal{D}_{a} has a name in the object language [12, pp. 328-29]. As Andrews pointed out, "the decidability of Henkin's axiomatic system for propositional types follows directly from the results in his paper" [3, p. 68].

The idea of incorporating partiality into Church's Type Theory is not new in the literature. On the one hand, Farmer $[8,9]$ has already defined a system in which partial functions are in the hierarchy of types. He distinguishes between kind e and kind t types. The former includes the type of individuals as well as the functions from elements of any type to elements of kind e, while the latter includes the type of truth values as well as the type of functions from elements of any type to elements of kind t. "Expressions of kind e may be non-denoting, but expressions of kind t must be denoting" [8, p. 1277].

[^0]On the other hand, Lepage [16] and Lapierre [15] worked on a Type Theory where functions of any domain may be partial as a consequence of the introduction of a third truth-value. In particular, Lepage [17] presented a variation of Henkin's logic containing 0,1 and the undefined as the basic type, so "the undefined becomes an object like the others and can thus be a value and an argument of a function" [17, p. 29]. In Lepage's system, connectives behave like those of Kleene's logic of indeterminacy [14, p. 153]: a disjunction, e.g., is true if one of its members is true, false if both are false and undefined otherwise.

However, neither a completeness proof nor a Nameability theorem is given in [17]. "The unavoidable problem linked to this approach is the impossibility of having a canonical name in the object language for every partial function" [17, p. 37]. For this reason, in this paper we provide an alternative to Lepage's Type Theory in which the Nameability theorem can be proved and completeness is obtained constructively. Since we keep Kleene's strong connectives, we call the new system Propositional Type Theory of Indeterminacy $\left(\mathbf{P T}_{K}\right)$. The results we publish here are part of a broader research interest in combining partiality and Type Theory $[4,19]$. We show that, in a higher-order logic, the connectives borrowed from strong Kleene logics allow us to reason about partial functions and indeterminacy in a natural way.

Our approach differs from Lepage's in that we do not allow the undefined to become an object like the others (more precisely, for any domain \mathcal{D}_{a}^{K}, $\left.* \notin \mathcal{D}_{a}^{K}\right)$. Thus, the undefined value cannot be the argument of a function and $f(x)=*$ is used to signal the undefinedness of f at certain input $(x$ in this case). The type of truth-values of $\mathbf{P} \mathbf{T}_{K}$ only contains 0 and 1 , but any complex type $\mathcal{D}_{a b}^{K}$ is the set of partial functions from \mathcal{D}_{a}^{K} to \mathcal{D}_{b}^{K}. In order to axiomatize such a hierarchy, we must take additional primitive symbols beyond the language of PT: one constant for each type always "denoting" *, infinitely many symbols $\simeq_{a\langle a t\rangle}$ for weak equality (called "quasi-equality") and Kleene's strong disjunction $(\stackrel{*}{\vee})$. We take disjunction from strong Kleene logics rather than from weak ones, as we want to avoid contamination [7, pp. 73-4], also called infectiousness [11, p. 67], staying as close to classical logic as possible.

The paper is organized as follows. The syntax of $\mathbf{P} \mathbf{T}_{K}$ is defined in Section 2.1 and the semantics is presented in Section 2.2. In Section 3, the Nameability theorem for this logic is stated and proved following Henkin's strategy. Section 4 provides a proof system for $\mathbf{P} \mathbf{T}_{K}$, while some derived rules of inference and useful metatheorems are proved in Section 5. Finally, in Section 6, we give a constructive proof of completeness. We think, as Farmer
[10] does, that having partial functions and undefinedness at our disposal in Type Theory provides high benefits at low cost, since the main computational properties of $\mathbf{P T}$ are preserved in $\mathbf{P} \mathbf{T}_{K}$.

2. Propositional Type Theory of Indeterminacy

2.1. Syntax

The syntax of $\mathbf{P} \mathbf{T}_{K}$ is based on that of $\mathbf{P T}$. Firstly, the set of type symbols is exactly the same, as we also get rid of the type of individuals:

Definition 1. (Type Symbols) We inductively define the set TYPES of type symbols as follows:

$$
\text { TYPES }:=t \mid\langle a b\rangle,
$$

with $a, b \in$ TYPES and writing $a b$ instead of $\langle a b\rangle$ when no confusion arises (a, b, c, \ldots are syntactic variables ranging over type symbols).

Secondly, $\mathcal{L}_{\mathbf{P T}}$ contains parenthesis and the abstractor λ as improper symbols, a denumerably infinite set of variables of type a for each $a \in$ TYPES $\left(f_{a}, g_{a}, h_{a}, x_{a}, y_{a}, z_{a}, \ldots\right)$ and a logical constant $\mathrm{Q}_{a\langle a t\rangle}$ for each $a \in$ TYPES. In $\mathbf{P} \mathbf{T}_{K}$, we keep all these symbols as primitive and define an extension of $\mathcal{L}_{\mathrm{PT}}$.

Definition 2. (Set of symbols of $\mathbf{P} \mathbf{T}_{K}$) The set of symbols of $\mathbf{P} \mathbf{T}_{K}$ is defined as follows:

$$
\mathcal{L}_{\mathbf{P T}_{K}}=\mathcal{L}_{\mathbf{P T}} \cup\{\stackrel{*}{\vee}, \exists\} \cup \bigcup\left\{U_{a}, \simeq_{a\langle a t\rangle}\right\}_{a \in \mathrm{TYPES}}
$$

Definition 2 can be simplified by Theorem 3 (see Corollary 4). We are now ready to define, for each $a \in$ TYPES, the set of meaningful expression of type $a\left(\alpha_{a}, \beta_{a}, \gamma_{a}, \ldots\right.$ are syntactic variables ranging over expressions of type a):

Definition 3. (Meaningful expressions of $\mathbf{P T}_{K}$) The set of meaningful expressions, ME^{K}, is defined as follows:

$$
\begin{aligned}
& x_{a} \in \mathrm{ME}_{a}^{K}\left|\mathrm{Q}_{a\langle a t\rangle} \in \mathrm{ME}_{a\langle a t\rangle}^{K}\right| U_{a} \in \mathrm{ME}_{a}^{K}\left|\gamma_{a b} \beta_{a} \in \mathrm{ME}_{b}^{K}\right| \lambda x_{a} \alpha_{b} \in \mathrm{ME}_{a b}^{K} \mid \\
& \simeq_{a\langle a t\rangle}\left(\alpha_{a}, \beta_{a}\right) \in \mathrm{ME}_{t}^{K} \mid\left\{\alpha_{t} \stackrel{*}{\vee} \beta_{t}, \stackrel{*}{\exists} x_{a} \alpha_{t}\right\} \in \mathrm{ME}_{t}^{K}
\end{aligned}
$$

We easily see that the set of meaningful expressions of PT is a subset of ME^{K}. With regard to the specific expressions of $\mathbf{P} \mathbf{T}_{K}, U_{a}$ always "denote" the undefined value in our semantics (for any type $a), \simeq_{a\langle a t\rangle}\left(\alpha_{a}, \beta_{a}\right)$ is true
iff α_{a} and β_{a} have the same denotation or both are non-denoting and \vee^{*} and $\stackrel{*}{\exists}$ are non-classical logical constants (see Definition 10).

Meaningful expressions of type t are called formulas and those containing no free occurrence of a variable are called closed expressions. Closed formulas are sentences. We also introduce some abbreviations to improve readability (as Andrews does in [2, p. 212]):

- $\alpha_{a} \equiv \beta_{a}$ stands for $\left(\mathrm{Q}_{a\langle a t\rangle} \alpha_{a}\right) \beta_{a}$.
- $\alpha_{a} \simeq \beta_{a}$ stands for $\simeq_{a\langle a t\rangle}\left(\alpha_{a}, \beta_{a}\right)$.
- 1^{N} stands for $\lambda x_{t} x_{t} \equiv \lambda x_{t} x_{t}$ (Henkin's name for truth).
- 0^{N} stands for $\lambda x_{t} x_{t} \equiv \lambda x_{t} 1^{\mathrm{N}}$ (Henkin's name for falsity).
- $\neg \alpha_{t}$ stands for $\left(\lambda x_{t}\left(0^{\mathrm{N}} \equiv x_{t}\right)\right) \alpha_{t}$.
- $\alpha_{t} \stackrel{*}{\wedge} \beta_{t}$ stands for $\neg\left(\neg \alpha_{t} \stackrel{*}{\vee} \neg \beta_{t}\right)$.
- $\alpha_{t} \xrightarrow{*} \beta_{t}$ stands for $\neg \alpha_{t} \stackrel{*}{\vee} \beta_{t}$.
- $\alpha_{a} \uparrow$ stands for $\alpha_{a} \simeq U_{a}$ and $\alpha_{a} \downarrow$ stands for $\neg\left(\alpha_{a} \uparrow\right)$.
- $\stackrel{*}{\forall} x_{a} \alpha_{t}$ stands for $\neg\left({ }^{*} x_{a} \neg \alpha_{t}\right)$.
- $\stackrel{*}{\exists}!x_{a} \alpha_{t}$ stands for $\stackrel{*}{\exists} x_{a} \alpha_{t} \stackrel{*}{\wedge} \stackrel{*}{\forall} y_{a}\left(\mathrm{~S}_{y_{a}}^{x_{a}} \alpha_{t} \xrightarrow{*} x_{a} \equiv y_{a}\right)$, where $\mathrm{S}_{y_{a}}^{x_{a}} \alpha_{t}$ is the result of replacing each free occurrence of x_{a} in α_{t} by y_{a} (y_{a} is the first variable of type a not occurring in α_{t}).

Before moving to the next section, let us consider a set of formulas which correspond to formulas of the ordinary propositional logic (called P-formulas). This set is useful for proving completeness (see Theorem 15) and was isolated, for the same purposes, in [12, p. 335].

Definition 4. (P-formulas of $\mathbf{P T}_{K}$) We recursively define the set of P formulas as follows:

- $0^{\mathrm{N}}, 1^{\mathrm{N}} \in P$.
- For any $x_{t} \in \mathrm{VAR}_{t}, x_{t} \in P$.
- If $\varphi \in P$, then $\neg \varphi \in P$.
- If $\varphi, \psi \in P$, then $\varphi \stackrel{*}{\vee} \psi \in P$ and $\varphi \equiv \psi \in P$.

Clearly, no formula containing either U_{t} or \simeq belongs to this set, because we want it to resemble the propositional fragment of classical logic. In fact, in the absence of the undefined value, $\stackrel{*}{\vee}$ behaves exactly as classical disjunction.

Table 1. The set of 9 partial functions in $\mathcal{D}_{t t}^{K}$

00	$0 \longrightarrow 0$	10	$0 \longrightarrow 1$	$*$	$0 \longrightarrow *$
	$1 \longrightarrow 0$		$1 \longrightarrow 0$	$* 0$	$1 \longrightarrow 0$
01	$0 \longrightarrow 0$	11	$0 \longrightarrow 1$	$* 1$	$0 \longrightarrow *$
	$1 \longrightarrow 1$		$1 \longrightarrow 1$	$1 \longrightarrow 1$	
$0 *$	$0 \longrightarrow 0$	$1 *$	$0 \longrightarrow 1$	$* *$	$0 \longrightarrow *$
	$1 \longrightarrow *$		$1 \longrightarrow *$		
	$1 \longrightarrow$				

2.2. Semantics

Our partial semantics is based on a hierarchy of partial functions, so we first define the notion of partial propositional type hierarchy as a collection of non-empty domains satisfying the following conditions:

Definition 5. (Partial propositional type hierarchy) The partial propositional type hierarchy $\left\{\mathcal{D}_{a}^{K}\right\}_{a \in \text { TYPES }}$ is defined by:

1. $\mathcal{D}_{t}^{K}=\mathcal{D}_{t}=\{0,1\}$.
2. $\mathcal{D}_{a b}^{K}$ is the set of partial functions from \mathcal{D}_{a}^{K} to \mathcal{D}_{b}^{K}.

For any $a b \in$ TYPES, if f is a partial function in $\mathcal{D}_{a b}^{K}$ not defined at x, we write $f(x)=*$ (but $* \notin \mathcal{D}_{b}^{K}$ for any $b \in$ TYPES). We say that $\operatorname{Def}(f)$ is the set $Y \subseteq \mathcal{D}_{a}^{K}$ such that $y \in Y$ iff $f(y) \neq *$. This is usually called the domain of definition of f.

Notice that for any $a \in \operatorname{TYPES}\left|\mathcal{D}_{a}\right|<\left|\mathcal{D}_{a}^{K}\right|$. The reason is that the number of partial functions from \mathcal{D}_{a}^{K} to \mathcal{D}_{b}^{K} is $\left(\left|\mathcal{D}_{b}^{K}\right|+1\right)^{\left|\mathcal{D}_{a}^{K}\right|}$. Table 1 describes the domain $\mathcal{D}_{t t}^{K}$, making evident the difference with $\mathcal{D}_{t t}(00,01$, 10 and 11 are the only ones also in $\mathcal{D}_{t t}$).

It is important to remark that Kleene's strong disjunction is not a function in a domain of our partial hierarchy, and this is why we took \vee^{*} as a primitive. ${ }^{1}$ Table 2 shows that classical disjunction is in $\mathcal{D}_{t\langle t t\rangle}$ and also that Kleene's can be found in the corresponding domain of Lepage's partial Type Theory [17, p. 33]. Although classical disjunction is a function in $\mathcal{D}_{t\langle\langle t\rangle}^{K}$ (the one sending 0 to 01 and 1 to 11), it is pretty obvious that Kleene's cannot be in $\mathcal{D}_{t\langle t t\rangle}^{K}$. There is no $f \in \mathcal{D}_{t t}^{K}$ sending 0,1 and the undefined value to 1 , because in our approach $*$ cannot be the argument of f. In consequence, \vee^{*} must be a logical constant that behaves like Kleene's strong disjunction.

[^1]Table 2. A comparison between classical and Kleene's disjunction as functions of type $t\langle t t\rangle$

Disjunction in Henkin	Disjunction in Lepage
$0 \longrightarrow 0$	$0 \longrightarrow 0$
$0 \longrightarrow 1$	$0 \longrightarrow 1 \longrightarrow 1$
$1 \longrightarrow 1$	$* \longrightarrow *$
$1 \longrightarrow 1$	$0 \longrightarrow 1$
$1 \longrightarrow 1$	$1 \longrightarrow 1$

Table 2 also shows Lepage's characterization of partial functions. According to him, the undefined value has a status inside the hierarchy [16, p. 494] and, hence, functions from the set of truth-values are also defined for $*$. As a result, a function f such that $f(0)=1, f(1)=1$ and $f(*)=1$ belongs to Lepage's system. However, in our opinion, his starting point was far from the intuitive understanding of partiality and undefinedness. A partial function from A to B is, simply stated, one that is defined for some arguments and not for others, so it may be identified with a mapping from A to $B \cup\{*\}$.

Now, we define the key semantic notions of $\mathbf{P} \mathbf{T}_{K}$.
DEfinition 6. (Interpretation function) The interpretation function \mathcal{J} is the (total) mapping

$$
\mathcal{J}: \bigcup_{a \in \text { TYPES }}\left\{Q_{a\langle a t\rangle}, U_{a}\right\} \longrightarrow \bigcup_{a \in \text { TYPES }} \mathcal{D}_{a}^{K} \cup\{*\}
$$

such that

- $\mathcal{J}\left(\mathrm{Q}_{a\langle a t\rangle}\right)$ is the function $q \in \mathcal{D}_{a\langle a t\rangle}^{K}$ such that, for any $x, y \in \mathcal{D}_{a}^{K}$, $q(x)(y)=1$ iff $x=y$ and $q(x)(y)=0$ otherwise. We say that q is the identity ${ }^{2}$ of type $a\langle a t\rangle$.
- $\mathcal{J}\left(U_{a}\right)=$ *.

Definition 7. ($\mathbf{P} \mathbf{T}_{K}$ model) The structure, or model, for $\mathbf{P} \mathbf{T}_{K}$ is the pair

$$
\mathcal{M}=\left\langle\left\{\mathcal{D}_{a}^{K}\right\}_{a \in \text { TYPES }}, \mathcal{J}\right\rangle
$$

[^2]where $\left\{\mathcal{D}_{a}^{K}\right\}_{a \in \text { TYPES }}$ is the partial propositional type hierarchy and \mathcal{J} the interpretation function.

Definition 8. (Assignment) An assignment g is a (total) function

$$
g: \bigcup_{a \in \text { TYPES }} \operatorname{VAR}_{a} \longrightarrow \bigcup_{a \in \text { TYPES }} \mathcal{D}_{a}^{K}
$$

such that $g\left(x_{a}\right) \in \mathcal{D}_{a}^{K}$ for any $a \in$ TYPES.
An assignment g^{\prime} is a x_{a}-variant of g if it coincides with g on all values except, perhaps, the value assigned to $x_{a} \in \mathrm{VAR}_{a}$. We will use $g_{\theta}^{x_{a}}$ to denote the x_{a}-variant assignment g whose value for x_{a} is θ.

Definition 9. (Interpretation) An interpretation for $\mathbf{P} \mathbf{T}_{K}$ is a pair $\langle\mathcal{M}, g\rangle$, where \mathcal{M} is the structure for $\mathbf{P} \mathbf{T}_{K}$ and g is an assignment.

Definition 10. Let \mathcal{M} be a structure such that $* \notin \mathcal{D}_{a}^{K}$ for any $a \in$ TYPES and let g be any assignment on this structure. We recursively define, for each $\alpha_{a} \in \mathcal{M E}_{a}^{K}$, an interpretation $\left[\left[\alpha_{a}\right]\right]^{\mathcal{M}, g}$ of α_{a} with respect to $\langle\mathcal{M}, g\rangle$ as follows:

1. $\left[\left[x_{a}\right]\right]^{\mathcal{M}, g}=g\left(x_{a}\right)$.
2. $\left[\left[\mathrm{Q}_{a\langle a t\rangle}\right]\right]^{\mathcal{M}, g}=\mathcal{J}\left(\mathrm{Q}_{a\langle a t\rangle}\right)$.
3. $\left[\left[U_{a}\right]\right]^{\mathcal{M}, g}=\mathcal{J}\left(U_{a}\right)$.
4. $\left[\left[\lambda x_{a} \alpha_{b}\right]\right]^{\mathcal{M}, g}=f$, where f is the partial function in $\mathcal{D}_{a b}^{K}$ such that, for each $\theta \in \mathcal{D}_{a}^{K}, f(\theta)=\left[\left[\alpha_{b}\right]\right]^{\mathcal{M}, g_{\theta}^{x_{a}}}$. Thus,

$$
\operatorname{Def}(f)=\left\{\theta \in \mathcal{D}_{a}^{K} \mid\left[\left[\alpha_{b}\right]\right]^{\mathcal{M}, g_{\theta}^{x a}} \neq *\right\}, \text { which may be } \varnothing .
$$

5.

$\left[\left[\gamma_{a b} \beta_{a}\right]\right]^{\mathcal{M}, g}= \begin{cases}{\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}\left(\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\right),} & \text { if }\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g} \neq *,\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g} \neq * \text { and } \\ *, & {\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g} \text { is defined at }\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g} ;} \\ *, & \text { otherwise. }\end{cases}$
6.

$$
\left[\left[\alpha_{a} \simeq \beta_{a}\right]\right]^{\mathcal{M}, g}= \begin{cases}1, & \text { if }\left[\left[\alpha_{a}\right]\right]^{\mathcal{M}, g}=\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}=* \text { or both are } \neq * \\ \text { and }\left[\left[\alpha_{a}\right]\right]^{\mathcal{M}, g}=\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g} \\ 0, & \text { if }\left[\left[\alpha_{a}\right]\right]^{\mathcal{M}, g} \neq\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\end{cases}
$$

7.

$$
\left[\left[\alpha_{t} \stackrel{*}{\vee} \beta_{t}\right]\right]^{\mathcal{M}, g}= \begin{cases}1, & \text { if }\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}=1 \text { or }\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}=1 \\ 0, & \text { if }\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}=0 \text { and }\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}=0 \\ *, & \text { otherwise }\end{cases}
$$

8.

$\left[\left[\exists_{a}^{*} x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}= \begin{cases}1, & \text { if there is some } x \in \mathcal{D}_{a}^{K} \text { s.t. }\left[\left[\lambda x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}(x)=1 ; \\ 0, & \text { if for all } x \in \mathcal{D}_{a}^{K} \text { it holds that }\left[\left[\lambda x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}(x)=0 ; \\ *, & \text { otherwise. }\end{cases}$
Notice that from Definition 10 it follows that, for each $\alpha_{a} \in \mathrm{ME}_{a}^{K}$, $\left[\left[\alpha_{a}\right]\right]^{\mathcal{M}, g} \in \mathcal{D}_{a}^{K}$ or $\left[\left[\alpha_{a}\right]\right]^{\mathcal{M}, g}=*$.

Observe that, according to the corresponding abbreviations and Definition 10(5), negation behaves as expected (classically for 0 and 1, yielding * for an undefined argument). Taking Definition $10(7)$ and negation, we easily see that a conjunction is true iff both conjuncts are true, false whenever one of them is false and undefined in any other case. Finally, by Definition 10(8), we have:

$$
\left[\left[\exists \stackrel{*}{*} x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}= \begin{cases}1, & \text { if there is a unique } x \in \mathcal{D}_{a}^{K} \text { s.t }\left[\left[\lambda x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}(x)=1 \\ 0, & \text { if }\left[\left[\exists x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}=0 \text { or there are } x, y \in \mathcal{D}_{a}^{K} \text { s.t } \\ x \neq y,\left[\left[\lambda x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}(x)=1 \text { and }\left[\left[\lambda x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}(y)=1 \\ *, & \text { otherwise. }\end{cases}
$$

With regard to the concept of validity, Lepage [17, p. 34] introduced two notions of validity: being different from 0 for every assignment (weak validity) and being equal to 1 for every assignment. Since we do not want U_{t} to be valid, we restrict ourselves to the latter.

Definition 11. (Validity) For any $\alpha_{t} \in \mathrm{ME}_{t}^{K}, \alpha_{t}$ is valid iff, for every assignment $g,\left[\left[A_{t}\right]\right]^{\mathcal{M}, g}=1$, written $\models A_{t}$. If α_{t} is valid and $\alpha_{t} \in P$, we say that α_{t} is a tautology.

3. The Nameability Theorem

The Nameability theorem states the possibility of finding, for every element of any domain of the hierarchy, a closed expression in the object language whose interpretation is that particular element. To prove this result
for $\mathbf{P T}_{K}$, we will follow Henkin's strategy in [12, 328-329]. The first step towards the Nameability theorem is to define an election function for each type, as follows (this function is marked in bold):

Definition 12. For any $a \in$ TYPES, let \mathbf{t}^{a} be a function in $\mathcal{D}_{\langle a t\rangle a}^{K}$ such that, for any $f \in \mathcal{D}_{a t}^{K}, \mathbf{t}^{a}(f)$ is the unique $x \in \mathcal{D}_{a}^{K}$ for which $f(x)=1$ or $\mathbf{t}^{a}(f)=*$ if there is no such an x or if there are more than one.

Then, the next step is to show that it is possible to find a name (a closed expression of the corresponding type) for each of these election functions (see Lemma 1). After this, the desired result is obtained for any $a \in$ TYPES and every element in \mathcal{D}_{a}^{K} (Theorem 2), so let us start by proving the Lemma.

LEMMA 1. For every $a \in$ TYPES, there exists a closed expression $\iota_{\langle a t\rangle a}$ such that $\left[\left[\iota_{\langle a t\rangle a}\right]\right]^{\mathcal{M}, g}=\mathbf{t}^{a}$.

Proof. The proof is by induction.

1. Base case: \mathcal{D}_{t}^{K}. By definition of \mathbf{t}^{t} :

- $\mathbf{t}^{t}(01)=\mathbf{t}^{t}(* 1)=1$,
- $\mathbf{t}^{t}(10)=\mathbf{t}^{t}(1 *)=0$,
- $\mathbf{t}^{t}(11)=\mathbf{t}^{t}(* *)=\mathbf{t}^{t}(* 0)=\mathbf{t}^{t}(0 *)=\mathbf{t}^{t}(00)=*$.

We want to prove that $\left[\left[\iota_{\langle t t\rangle t}\right]\right]^{\mathcal{M}, g}=\mathbf{t}^{t}$, where $\iota_{\langle t t\rangle t}:=$

$$
\begin{aligned}
& \lambda f_{t t}\left(\left(U_{t} \stackrel{*}{\vee}\left(f_{t t} \equiv \lambda x_{t} x_{t}\right) \stackrel{*}{\vee}\left(f_{t t} \equiv \lambda x_{t}\left(x_{t} \stackrel{*}{\vee} U_{t}\right)\right)\right) \stackrel{*}{\wedge} \neg\left(f_{t t} \equiv\left(\lambda x_{t}\left(0^{\mathrm{N}} \equiv x_{t}\right)\right)\right)\right. \\
& \left.\quad \stackrel{*}{\wedge} \neg\left(f_{t t} \equiv\left(\lambda x_{t}\left(\neg x_{t} \stackrel{*}{\vee} U_{t}\right)\right)\right)\right) .
\end{aligned}
$$

We see that $\left[\left[\lambda f_{t t}\left(f_{t t} \equiv \lambda x_{t} x_{t}\right)\right]\right]^{\mathcal{M}, g}(01)=1$ and hence $\left[\left[\lambda f_{t t}\left(U_{t}{ }^{*}\left(f_{t t} \equiv\right.\right.\right.\right.$ $\left.\left.\left.\left.\lambda x_{t} x_{t}\right) \stackrel{*}{\vee}\left(f_{t t} \equiv \lambda x_{t}\left(x_{t} \stackrel{*}{\vee} U_{t}\right)\right)\right)\right]\right]^{\mathcal{M}, g}(01)=1$. Since $\left[\left[\lambda f_{t t} \neg\left(f_{t t} \equiv\left(\lambda x_{t}\left(0^{\mathbb{N}} \equiv\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.x_{t}\right)\right)\right)\right]\right]^{\mathcal{M}, g}(01)=1$ and $\left[\left[\lambda f_{t t} \neg\left(f_{t t} \equiv\left(\lambda x_{t}\left(\neg x_{t} \stackrel{*}{\vee} U_{t}\right)\right)\right)\right]\right]^{\mathcal{M}, g}(01)=1$, it follows that $[[\iota\langle t t\rangle t]]^{\mathcal{M}, g}(01)=1$. The same argument works analogously for $* 1$, as $\left[\left[\lambda f_{t t}\left(f_{t t} \equiv \lambda x_{t}\left(x_{t} \stackrel{*}{\vee} U_{t}\right)\right)\right]\right]^{\mathcal{M}, g}(* 1)=1$, so $[[\iota\langle t t\rangle t]]^{\mathcal{M}, g}(* 1)=1$. We can also check that $\left[\left[\lambda f_{t t} \neg\left(f_{t t} \equiv\left(\lambda x_{t}\left(0^{\mathrm{N}} \equiv x_{t}\right)\right)\right)\right]\right]^{\mathcal{M}, g}(10)=0$ and $\left[\left[\lambda f_{t t} \neg\left(f_{t t} \equiv\left(\lambda x_{t}\left(\neg x_{t} \stackrel{*}{\vee} U_{t}\right)\right)\right)\right]\right]^{\mathcal{M}, g}(1 *)=0$, which is enough to conclude that $[[\iota\langle t t\rangle t]]^{\mathcal{M}, g}(10)=0$ and $[[\iota\langle t t\rangle t]]^{\mathcal{M}, g}(1 *)=0$.
Finally, $\left[\left[\lambda f_{t t}\left(U_{t} \stackrel{*}{\vee}\left(f_{t t} \equiv \lambda x_{t} x_{t}\right) \stackrel{*}{\vee}\left(f_{t t} \equiv \lambda x_{t}\left(x_{t} \stackrel{*}{\vee} U_{t}\right)\right)\right)\right]\right]^{\mathcal{M}, g}(11)=*$, $\left[\left[\lambda f_{t t} \neg\left(f_{t t} \equiv\left(\lambda x_{t}\left(0^{\mathrm{N}} \equiv x_{t}\right)\right)\right)\right]\right]^{\mathcal{M}, g}(11)=1$ and $\left[\left[\lambda f_{t t} \neg\left(f_{t t} \equiv\left(\lambda x_{t}\left(\neg x_{t} \vee^{*}\right.\right.\right.\right.\right.$ $\left.\left.U_{t}\right)\right)$) $\left.]\right]^{\mathcal{M}, g}(11)=1$. Hence, $\left[\left[\iota_{\langle t t\rangle t}\right]\right]^{\mathcal{M}, g}(11)=*$. The same argument
works analogously for $* *, * 0,0 *$ and 00 , so:

$$
\begin{aligned}
{\left[\left[\iota_{\langle t t\rangle t}\right]\right]^{\mathcal{M}, g}(* *) } & =[[\iota\langle t t\rangle t]]^{\mathcal{M}, g}(* 0)=[[\iota\langle t t\rangle t]]^{\mathcal{M}, g}(0 *) \\
& =[[\iota\langle t t\rangle t]]^{\mathcal{M}, g}(00)=* .
\end{aligned}
$$

Therefore, $\left[\left[\iota_{\langle t t\rangle t}\right]\right]^{\mathcal{M}, g}=\mathbf{t}^{t}$.
2. Inductive step: $\mathcal{D}_{a b}^{K}$. By induction hypothesis, we assume that $\iota_{\langle b t\rangle b}$ and ${ }_{7} x_{b} \alpha_{t}$ have been defined and have the desired properties ($1 x_{b} \alpha_{t}$ stands for $\left.\iota_{\langle b t\rangle b}\left(\lambda x_{b} \alpha_{t}\right)\right)$. Fix $\iota_{\langle\langle a b\rangle t\rangle a b}:=$

$$
\begin{aligned}
& \lambda f_{\langle a b\rangle t}\left(\lambda x _ { a } (\urcorner y _ { b } \left(\stackrel { * } { \exists } ! z _ { a b } (f _ { \langle a b \rangle t } z _ { a b }) \stackrel { * } { \wedge } \stackrel { * } { \forall } z _ { a b } \left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right) \xrightarrow{*}\right.\right.\right. \\
& \left.\left.\left.\left.\quad\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right)\right) .
\end{aligned}
$$

We must show that $\left[\left[\iota_{\langle\langle a b\rangle t\rangle a b}\right]\right]^{\mathcal{M}, g}=\mathbf{t}^{a b}$. Let $h \in \mathcal{D}_{\langle a b\rangle t}^{K}$. There are five possibilities:
(a) h is a function such that there is exactly one $x \in \mathcal{D}_{a b}^{K}$, say d, such that $h(d)=1$. Let g be an assignment such that $g\left(f_{\langle a b\rangle t}\right)=h$ and take

$$
\begin{aligned}
& {\left[\left[\exists \exists _ { \exists } ! z _ { a b } (f _ { \langle a b \rangle t } z _ { a b }) \stackrel { * } { \wedge } \stackrel { * } { \forall } z _ { a b } \left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right)\right.\right.\right.} \\
& \left.\left.\left.\left.\quad \xrightarrow{*}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right]\right]^{\mathcal{M}, g} .
\end{aligned}
$$

We see immediately that $\left.\left[\left[\exists{ }^{*}!z_{a b}\left(f_{\langle a b\rangle t} z_{a b}\right)\right)\right]\right]^{\mathcal{M}, g}=1$. Let $g\left(z_{a b}\right) \neq d$. Then, $\left[\left[f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right]\right]^{\mathcal{M}, g}=0$, because $\left[\left[f_{\langle a b\rangle t} z_{a b}\right]\right]^{\mathcal{M}, g}=*$ (and hence $\left.\left[\left[f_{\langle a b\rangle t} z_{a b} \downarrow\right]\right]^{\mathcal{M}, g}=0\right)$ or $\left[\left[f_{\langle a b\rangle t} z_{a b}\right]\right]^{\mathcal{M}, g}=0$. Thus, $\left[\left[\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge}\right.\right.\right.$ $\left.\left.\left.\left.f_{\langle a b\rangle t} z_{a b} \downarrow\right) \xrightarrow{*}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right]\right]^{\mathcal{M}, g}=1$ in that case. Now, if $g\left(z_{a b}\right)=$ $d,\left[\left[f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right]\right]^{\mathcal{M}, g}=1$. Since $\left[\left[\left(z_{a b} x_{a} \equiv y_{b}\right]\right]^{\mathcal{M}, g}\right.$ is 1 iff $g\left(y_{b}\right)=d\left(g\left(x_{a}\right)\right)$, it holds that $\left[\left[\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right) \xrightarrow{*}\left(z_{a b} x_{a} \equiv\right.\right.\right.$ $\left.\left.\left.\left.y_{b}\right)\right)\right]\right]^{\mathcal{M}, g}=1$ iff $g\left(y_{b}\right)=d\left(g\left(x_{a}\right)\right)$, what also works for $\left[\left[\forall \forall_{a b}\left(\left(f_{\langle a b\rangle t} z_{a b}{ }^{*}\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.f_{\langle a b\rangle t} z_{a b} \downarrow\right) \xrightarrow{*}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right]\right]^{\mathcal{M}, g}$. Thus:

$$
\begin{aligned}
& {\left[\left[\gamma y _ { b } \left(\stackrel { * } { \exists } z _ { a b } (f _ { \langle a b \rangle t } z _ { a b }) \stackrel { * } { \wedge } \stackrel { * } { \forall } z _ { a b } \left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right) \stackrel{*}{\rightarrow}\right.\right.\right.\right.} \\
& \left.\left.\left.\left.\left.\quad\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right)\right]\right]^{\mathcal{M}, g}=d\left(g\left(x_{a}\right)\right)
\end{aligned}
$$

and consequently $\left[\left[\iota_{\langle\langle a b\rangle t\rangle a b}\right]\right]^{\mathcal{M}, g}(h)=d$ for this h.
(b) h is a total function in $\mathcal{D}_{\langle a b\rangle t}^{K}$ with constant value 0 . Let g be an assignment such that $g\left(f_{\langle a b\rangle t}\right)=h$ and take

$$
\begin{aligned}
& {\left[\left[\exists \exists \stackrel { * } { 2 } _ { a b } (f _ { \langle a b \rangle t } z _ { a b }) \stackrel { * } { \wedge } \stackrel { * } { \forall } z _ { a b } \left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right)\right.\right.\right.} \\
& \left.\left.\left.\left.\quad \stackrel{*}{\rightarrow}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right]\right]^{\mathcal{M}, g} .
\end{aligned}
$$

Clearly, $\left.\left[\left[\exists!{ }^{*}!z_{a b}\left(f_{\langle a b\rangle t} z_{a b}\right)\right)\right]\right]^{\mathcal{M}, g}=0$ and hence $\left[\left[\lambda y_{b}\left(\stackrel{*}{\exists} z_{a b}\left(f_{\langle a b\rangle t} z_{a b}\right) \stackrel{*}{\wedge}\right.\right.\right.$ $\left.\left.\stackrel{*}{\forall} z_{a b}\left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right) \xrightarrow{*}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right]\right]^{\mathcal{M}, g}$ is the function in $\mathcal{D}_{b t}^{K}$ with constant value 0 . Therefore:

$$
\begin{aligned}
& {\left[\left[7 y _ { b } \left(\stackrel { * } { \exists } ! z _ { a b } (f _ { \langle a b \rangle t } z _ { a b }) \stackrel { * } { \wedge } \stackrel { * } { \forall } z _ { a b } \left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right)\right.\right.\right.\right.} \\
& \left.\left.\left.\left.\left.\quad \stackrel{*}{\rightarrow}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right)\right]\right]^{\mathcal{M}, g}=*,
\end{aligned}
$$

and consequently $[[\iota\langle\langle a b\rangle t\rangle a b]]^{\mathcal{M}, g}(h)=*$ for this h.
(c) h is a function in $\mathcal{D}_{\langle a b\rangle t}^{K}$ such that $h(u)=1$ and $h(s)=1$, with $u, s \in \mathcal{D}_{a b}^{K}$ and $u \neq s$. Let $g\left(f_{\langle a b\rangle t}\right)=h$ and take

$$
\begin{aligned}
& {\left[\left[\exists \exists ! z _ { a b } (f _ { \langle a b \rangle t } z _ { a b }) \stackrel { * } { \wedge } { } ^ { * } z _ { a b } \left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right)\right.\right.\right.} \\
& \left.\left.\left.\left.\quad \xrightarrow{*}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right]\right]^{\mathcal{M}, g} .
\end{aligned}
$$

We see again that $\left.\left[\left[\exists{ }^{*}!z_{a b}\left(f_{\langle a b\rangle t} z_{a b}\right)\right)\right]\right]^{\mathcal{M}, g}=0$, so the $\operatorname{argument}$ in (b) works here. Thus:

$$
\begin{aligned}
& {\left[\left[7 y _ { b } \left(\stackrel { * } { \exists } ! z _ { a b } (f _ { \langle a b \rangle t } z _ { a b }) \stackrel { * } { \wedge } { } ^ { \forall } z _ { a b } \left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right)\right.\right.\right.\right.} \\
& \left.\left.\left.\left.\left.\quad \stackrel{*}{\rightarrow}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right)\right]\right]^{\mathcal{M}, g}=*,
\end{aligned}
$$

and consequently $\left[\left[\iota_{\langle\langle a b\rangle t\rangle a b}\right]\right]^{\mathcal{M}, g}(h)=*$ for this h.
(d) h is the function in $\mathcal{D}_{\langle a b\rangle t}^{K}$ such that $\operatorname{Def}(h)=\varnothing$ (empty function). Let $g\left(f_{\langle a b\rangle t}\right)=h$ and take

$$
\begin{aligned}
& {\left[\left[\exists \stackrel { * } { \exists } z _ { a b } (f _ { \langle a b \rangle t } z _ { a b }) \stackrel { * } { \wedge } \stackrel { * } { \forall } z _ { a b } \left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right)\right.\right.\right.} \\
& \left.\left.\left.\left.\quad \stackrel{*}{\rightarrow}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right]\right]^{\mathcal{M}, g} .
\end{aligned}
$$

In this case, $\left.\left[\left[\exists{ }^{*}!z_{a b}\left(f_{\langle a b\rangle t} z_{a b}\right)\right)\right]\right]^{\mathcal{M}, g}=*$. On the other hand, we know that $\left[\left[f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right]\right]^{\mathcal{M}, g}=0$, because $\left[\left[f_{\langle a b\rangle t} z_{a b} \downarrow\right]\right]^{\mathcal{M}, g}=0$. Thus, $\left[\left[\forall \forall^{\forall} z_{a b}\left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right) \xrightarrow{*}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right]\right]^{\mathcal{M}, g}=1$, and hence $\left[\left[\lambda y_{b}\left(\stackrel{*}{\exists}!z_{a b}\left(f_{\langle a b\rangle t} z_{a b}\right) \stackrel{*}{\wedge} \stackrel{*}{\forall} z_{a b}\left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right) \xrightarrow{*}\left(z_{a b} x_{a} \equiv\right.\right.\right.\right.\right.$
$\left.\left.y_{b}\right)\right)$) $\left.]\right]^{\mathcal{M}, g}$ is the empty function in $\mathcal{D}_{b t}^{K}$. Therefore:

$$
\begin{aligned}
& {\left[\left[7 y _ { b } \left(\stackrel { * } { \exists } z _ { a b } (f _ { \langle a b \rangle t } z _ { a b }) \stackrel { * } { \wedge } \forall ^ { \forall } z _ { a b } \left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right)\right.\right.\right.\right.} \\
& \left.\left.\left.\left.\left.\quad \stackrel{*}{\rightarrow}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right)\right]\right]^{\mathcal{M}, g}=*,
\end{aligned}
$$

and consequently $\left[\left[\iota_{\langle\langle a b\rangle t\rangle a b}\right]\right]^{\mathcal{M}, g}(h)=*$ for this h.
(e) h is the proper partial function from $\mathcal{D}_{a b}^{K}$ to \mathcal{D}_{t}^{K} such that, for every $x \in \mathcal{D}_{a b}^{K}$, if $x \in \operatorname{Def}(h)$, then $h(x)=0$. Let $g\left(f_{\langle a b\rangle t}\right)=h$ and take

$$
\begin{aligned}
& {\left[\left[\exists \stackrel { * } { } ! z _ { a b } (f _ { \langle a b \rangle t } z _ { a b }) \stackrel { * } { \wedge } \stackrel { * } { \forall } z _ { a b } \left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right)\right.\right.\right.} \\
& \left.\left.\left.\left.\quad \xrightarrow{*}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right]\right]^{\mathcal{M}, g} .
\end{aligned}
$$

Obviously, $\left[\left[\exists \exists^{*} z_{a b}\left(f_{\langle a b\rangle t} z_{a b}\right)\right]\right]^{\mathcal{M}, g}=*$. Now, notice that $\left[\left[\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge}\right.\right.\right.$ $\left.\left.\left.f_{\langle a b\rangle t} z_{a b} \downarrow\right)\right]\right]^{\mathcal{M}, g}$ is 0 in case $\left[\left[f_{\langle a b\rangle t} z_{a b}\right]\right]^{\mathcal{M}, g}=0$, as well as in case $\left[\left[f_{\langle a b\rangle t} z_{a b}\right]\right]^{\mathcal{M}, g}=*$. Thus, $\left[\left[\forall^{*} z_{a b}\left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right) \xrightarrow{*}\left(z_{a b} x_{a} \equiv\right.\right.\right.\right.$ $\left.\left.\left.\left.y_{b}\right)\right)\right]\right]^{\mathcal{M}, g}=1$, so the argument in (d) also works here. Hence:

$$
\begin{aligned}
& {\left[\left[7 y _ { b } \left(\stackrel{*}{\exists}!z_{a b}\left(f_{\langle a b\rangle t} z_{a b}\right) \stackrel{*}{\wedge}{\stackrel{*}{\forall} z_{a b}\left(\left(f_{\langle a b\rangle t} z_{a b} \stackrel{*}{\wedge} f_{\langle a b\rangle t} z_{a b} \downarrow\right)\right.}^{\left.\left.\left.\left.\left.\quad \stackrel{*}{\rightarrow}\left(z_{a b} x_{a} \equiv y_{b}\right)\right)\right)\right)\right]\right]^{\mathcal{M}, g}=*,}\right.\right.\right.}
\end{aligned}
$$

and consequently $[[\iota\langle\langle a b\rangle t\rangle a b]]^{\mathcal{M}, g}(h)=*$ for this h.
Thus, we showed that $\left[\left[\iota_{\langle\langle a b\rangle t\rangle a b}\right]\right]^{\mathcal{M}, g}(h)=\mathbf{t}^{a b}(h)$ for every $h \in \mathcal{D}_{\langle a b\rangle t}^{K}$, so $[[\iota\langle\langle a b\rangle t\rangle a b]]^{\mathcal{M}, g}=\mathbf{t}^{a b}$, as claimed.

Now, before generalizing this result to each element of every domain of our partial propositional type hierarchy, let us introduce the following convention concerning our primitive constants for the undefined (see also Definition 5):

DEFINITION 13. For any $a b \in \operatorname{TYPES}$, if $f \in \mathcal{D}_{a b}^{K}, x \in \mathcal{D}_{a}^{K}$ and $x \notin \operatorname{Def}(f)$, then we define $(f(x))^{\mathrm{N}}$ as U_{b}.

Thus, we are now ready to prove the theorem for $\mathbf{P} \mathbf{T}_{K}$.
Theorem 2. (Nameability Theorem) For any $a \in$ TYPES and each $x \in \mathcal{D}_{a}^{K}$, there exists a closed formula x^{N} of type a such that $\left[\left[x^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}=x$.

Proof. The proof is by induction.

1. Base case: \mathcal{D}_{t}^{K}. Clearly, $\left[\left[\lambda x_{t} x_{t} \equiv \lambda x_{t} x_{t}\right]\right]^{\mathcal{M}, g}=1$, so $1^{\mathrm{N}}:=\lambda x_{t} x_{t} \equiv$ $\lambda x_{t} x_{t}$. In addition to this, $\left[\left[\lambda x_{t} x_{t} \equiv \lambda x_{t} 1^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}=0$, so $0^{\mathrm{N}}:=\lambda x_{t} x_{t} \equiv$ $\lambda x_{t} 1^{\mathrm{N}}$.
2. Inductive step: $\mathcal{D}_{a b}^{K}$. Suppose that y_{1}, \ldots, y_{q} are distinct and are all the elements of \mathcal{D}_{a}^{K}. By induction hypothesis, we assume that to every x of \mathcal{D}_{a}^{K} and of \mathcal{D}_{b}^{K} we have already assigned a name. Let f be any function in $\mathcal{D}_{a b}^{K}$. Take $f^{\mathrm{N}}:=$
$\lambda x_{a}\left(\neg z_{b}\left(\left(x_{a} \equiv y_{1}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f\left(y_{1}\right)\right)^{\mathrm{N}}\right) \stackrel{*}{\vee} \ldots \stackrel{*}{\vee}\left(\left(x_{a} \equiv y_{q}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f\left(y_{q}\right)\right)^{\mathrm{N}}\right)\right)\right)\right.$
and consider an assignment g such that $g\left(x_{a}\right)=y_{i}$. Since $\left[\left[x_{a} \equiv y_{j}^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}$ $\neq *$ for every $j \in\{1, \ldots, q\},\left[\left[x_{a} \equiv y_{j}^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}$ will be 1 or 0 according as $\{i=j\}$ or $i \neq j$. It follows that, for any $i \neq j,\left[\left[\left(x_{a} \equiv y_{j}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\right.\right.\right.$ $\left.\left.\left.\left(f\left(y_{j}\right)\right)^{\mathrm{N}}\right)\right]\right]^{\mathcal{M}, g}=0$. Now, there are two possibilities:
(a) f is defined at y_{i}. In this case,

$$
\left[\left[\left(\left(x_{a} \equiv y_{1}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f\left(y_{1}\right)\right)^{\mathrm{N}}\right) \stackrel{*}{\vee} \ldots \stackrel{*}{\vee}\left(\left(x_{a} \equiv y_{q}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f\left(y_{q}\right)\right)^{\mathrm{N}}\right)\right)\right]\right]^{\mathcal{M}, g}\right.
$$

$=1$ iff $g\left(z_{b}\right)=f\left(y_{i}\right)$ and consequently
 $=f\left(y_{i}\right)$.
(b) $f\left(y_{i}\right)=*$. In this case,
$\left[\left[\left(\left(x_{a} \equiv y_{1}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f\left(y_{1}\right)\right)^{\mathrm{N}}\right) \stackrel{*}{\vee} \ldots \stackrel{*}{\vee}\left(\left(x_{a} \equiv y_{q}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f\left(y_{q}\right)\right)^{\mathrm{N}}\right)\right)\right]\right]^{\mathcal{M}, g}=*\right.$, for $\left[\left[x_{a} \equiv y_{i}^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}=1$ and $\left[\left[z_{b} \equiv\left(f\left(y_{i}\right)\right)^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}=*$ (independently of $\left.g\left(z_{b}\right)\right)$, so $\left[\left[\left(x_{a} \equiv y_{1}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f\left(y_{1}\right)\right)^{\mathrm{N}}\right)\right]\right]^{\mathcal{M}, g}=*$. Thus, we know that $\left[\left[\left(\lambda z_{b}\left(\left(x_{a} \equiv y_{1}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f\left(y_{1}\right)\right)^{\mathrm{N}}\right) \stackrel{*}{\vee} \ldots \stackrel{*}{\vee}\left(\left(x_{a} \equiv y_{q}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left(f\left(y_{q}\right)\right)^{\mathrm{N}}\right)\right)\right)\right]\right]^{\mathcal{M}, g}$ is the empty function in $\mathcal{D}_{b t}^{K}$. Hence:
$\left[\left[1 z_{b}\left(\left(x_{a} \equiv y_{1}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f\left(y_{1}\right)\right)^{\mathrm{N}}\right) \stackrel{*}{\vee} \ldots \stackrel{*}{\vee}\left(\left(x_{a} \equiv y_{q}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f\left(y_{q}\right)\right)^{\mathrm{N}}\right)\right)\right)\right]\right]^{\mathcal{M}, g}=*$. Therefore, $\left[\left[f^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}\left(y_{i}\right)=f\left(y_{i}\right)$ iff f is defined at y_{i} and $\left[\left[f^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}\left(y_{i}\right)=$ * otherwise. Since this fact holds for each $i=\{1, \ldots, q\}$, we get $\left[\left[f^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}$ $=f$, as claimed.

Table 3. The names of all the functions in $\mathcal{D}_{t t}^{K}$

$00 \lambda x_{t} 0^{\mathrm{N}}$	$10 \lambda x_{t}\left(0^{\mathrm{N}} \equiv x_{t}\right)$	$* 0 \lambda x_{t}\left(\neg x_{t} \stackrel{*}{\wedge} U_{t}\right)$
$01 \lambda x_{t} x_{t}$	$11 \lambda x_{t} 1^{\mathrm{N}}$	$* 1 \lambda x_{t}\left(x_{t} \stackrel{*}{\vee} U_{t}\right)$
$0 * \lambda x_{t}\left(x_{t} \wedge U_{t}\right)$	$1 * \lambda x_{t}\left(\neg x_{t} \stackrel{*}{\vee} U_{t}\right)$	$* * \lambda x_{t} U_{t}$

Table 3 illustrates the simplest closed expressions of type $t t$ corresponding to each function in $\mathcal{D}_{t t}^{K} .{ }^{3}$

Once the Nameability theorem has been stated, we explore its consequences to show how the set of primitive symbols of $\mathbf{P} \mathbf{T}_{K}$ can be simplified (Definition 2). In the present (finitary) context, existential statements can be equivalently re-written as disjunctions, i.e. ${ }^{*}$ can be defined in terms of $\stackrel{*}{V}$. This is stated in the following theorem:

THEOREM 3. Let y_{1}, \ldots, y_{q} be a list of all the distinct elements of \mathcal{D}_{a}^{K} and consider $\alpha_{t} \in \mathrm{ME}_{t}^{K}$. Let $\mathrm{S}_{\left(y_{i}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t}$ be the result of replacing each free occurrence of x_{a} in α_{t} by $\left(y_{i}\right)^{\mathrm{N}}$. Then, $\left[\left[\exists \exists_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}=\left[\left[\mathrm{S}_{\left(y_{1}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t} \stackrel{*}{\vee} \ldots \stackrel{*}{\vee}^{*}\right.\right.$ $\left.\left.\mathrm{S}_{\left(y_{q}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t}\right]\right]^{\mathcal{M}, g}$.

Proof.

1. Suppose that $\left[\left[\exists x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}=1$. We have to show that $\left[\left[\mathrm{S}_{\left(y_{1}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t} \stackrel{*}{\vee} \ldots \vee^{*}\right.\right.$ $\left.\left.\mathrm{S}_{\left(y_{q}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t}\right]\right]^{\mathcal{M}, g}=1$. By Definition $10(8)$, it follows that there is a $j \in$ $\{1, \ldots, q\}$ such that $\left[\left[\lambda x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}\left(y_{j}\right)=1$. Thus, $\left[\left[\mathrm{S}_{\left(y_{j}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t}\right]\right]=1$, what is enough to conclude that $\left[\left[\mathrm{S}_{\left(y_{1}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t} \stackrel{*}{\vee} \ldots{\left.\left.\stackrel{*}{\vee} \mathrm{~S}_{\left(y_{q}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t}\right]\right]^{\mathcal{M}}, g}^{\mathrm{S}^{2}} 1\right.\right.$.
2. Suppose that $\left[\left[\exists x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}=0$. We have to show that $\left[\left[\mathrm{S}_{\left(y_{1}\right)^{N}}^{x_{a}} \alpha_{t} \vee^{*}\right.\right.$ $\ldots \stackrel{*}{V}_{\left.\left.\mathrm{S}_{\left(y_{q}\right)^{N}}^{x_{a}} \alpha_{t}\right]\right]^{\mathcal{M}, g}=0 \text {. By Definition } 10(8) \text {, it follows that, for every }}$ $k \in\{1, \ldots, q\},\left[\left[\lambda x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}\left(y_{k}\right)=0$ and hence $\left[\left[\mathrm{S}_{\left(y_{k}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t}\right]\right]=0$. Thus, $\left[\left[\mathrm{S}_{\left(y_{1}\right)^{\mathbb{N}}}^{x_{a}} \alpha_{t} \stackrel{*}{\vee} \ldots \vee^{*} \mathrm{~S}_{\left(y_{q}\right)^{\mathbb{N}}}^{x_{a}} \alpha_{t}\right]\right]^{\mathcal{M}, g}=0$.

[^3]3. Suppose that $\left[\left[\exists \exists_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}=*$. We have to show that $\left[\left[\mathrm{S}_{\left(y_{1}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t} \stackrel{*}{\vee}\right.\right.$
 ery $k \in\{1, \ldots, q\},\left[\left[\lambda x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}\left(y_{k}\right) \neq 1$ and hence $\left[\left[\mathrm{S}_{\left(y_{k}\right)^{N}}^{x_{a}} \alpha_{t}\right]\right] \neq 1$. We also know that there exists at least a $j \in\{1, \ldots, q\}$ such that $\left[\left[\lambda x_{a} \alpha_{t}\right]\right]^{\mathcal{M}, g}\left(y_{j}\right)=*$, so $\left[\left[\mathrm{S}_{\left(y_{j}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t}\right]\right]=*$. Therefore, $\left[\left[\mathrm{S}_{\left(y_{1}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t} \stackrel{*}{\vee} \ldots \stackrel{*}{\vee}^{\text {. }}\right.\right.$ $\left.\left.\mathrm{S}_{\left(y_{q}\right)^{N}}^{x_{a}} \alpha_{t}\right]\right]^{\mathcal{M}, g}=*$, as required.

Corollary 4. The set of symbols of $\mathbf{P} \mathbf{T}_{K}$ is simplified to

$$
\mathcal{L}_{\mathbf{P T}_{K}}=\mathcal{L}_{\mathbf{P T}} \cup\left\{\bigvee^{*}\right\} \cup \bigcup\left\{U_{a}, \simeq_{a\langle a t\rangle}\right\}_{a \in \mathrm{TYPES}}
$$

Finally, let us introduce two more Definitions which depend essentially on Theorem 2 and which play a very important role in proving both Theorem 17 and Lemma 20:
Definition 14. For any $a \in$ TYPES, if $\alpha_{a} \in \operatorname{ME}_{a}^{K}$ and $\left[\left[\alpha_{a}\right]\right]^{\mathcal{M}, g}=*$, then we define $\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$ as U_{t}.

Next we define a uniform way of replacing free variables in α_{c} by the name of their denotations (in a way analogous to Henkin) without changing the meaning of function abstractions (where variables may occur bound).
Definition 15. Let $\alpha_{c} \in \mathrm{ME}_{c}^{K}$ and let g be an assignment. Take $V \subset$ $\bigcup V A R_{a}$.
$a \in$ TYPES
We define $\alpha_{c}^{\left(g_{V}\right)}$ as follows:

$$
x_{a}^{\left(g_{V}\right)}= \begin{cases}x_{a}, & \text { if } x_{a} \in V \\ \left(g\left(x_{a}\right)\right)^{\mathrm{N}}, & \text { if } x_{a} \notin V\end{cases}
$$

- $\mathrm{Q}_{a\langle a t\rangle}^{\left(g_{V}\right)}=\mathrm{Q}_{a\langle a t\rangle}$
- $U_{a}^{\left(g_{V}\right)}=U_{a}$
- $\left(\gamma_{a b} \beta_{a}\right)^{\left(g_{V}\right)}=\gamma_{a b}^{\left(g_{V}\right)} \beta_{a}^{\left(g_{V}\right)}$
- $\left(\lambda x_{a} \alpha_{b}\right)^{\left(g_{V}\right)}=\lambda x_{a}\left(\alpha_{b}\right)^{\left(g_{V} \cup\left\{x_{a}\right\}\right)}$
- $\left(\alpha_{a} \simeq \beta_{a}\right)^{\left(g_{V}\right)}=\alpha_{a}^{\left(g_{V}\right)} \simeq \beta_{a}^{\left(g_{V}\right)}$
- $\left(\alpha_{a} \stackrel{*}{\vee} \beta_{a}\right)^{\left(g_{V}\right)}=\alpha_{a}^{\left(g_{V}\right)} \stackrel{*}{\vee} \beta_{a}^{\left(g_{V}\right)}$

We will use $\alpha_{c}^{(g)}$ to denote $\alpha_{c}^{(g \varnothing)}$.

4. Proof System

In this section, we present the proof system of $\mathbf{P} \mathbf{T}_{K}$, which finds its inspiration in Henkin [12], Farmer [9], Blackburn et al. [6] and Manzano et al . [19]. Let y_{1}, \ldots, y_{q} be a list of all the distinct elements of \mathcal{D}_{a}^{K}. The axioms and axiom schemes of $\mathbf{P} \mathbf{T}_{K}$ are the following:

1. Partial propositional types:
a. $\vdash\left(\alpha_{t} \equiv 1^{\mathrm{N}}\right) \simeq \alpha_{t}$.
b. $\vdash\left(g_{t t} 1^{\mathrm{N}} \stackrel{*}{\wedge} g_{t t} 0^{\mathrm{N}}\right) \simeq \stackrel{*}{\forall} x_{t}\left(g_{t t} x_{t}\right)$.
c. $\vdash\left(f_{a b} \equiv g_{a b}\right) \simeq \stackrel{*}{\forall} x_{a}\left(f_{a b} x_{a} \simeq g_{a b} x_{a}\right)$.
d. $\vdash \beta_{a} \downarrow \xrightarrow{*}\left(\left(\lambda x_{a} \alpha_{b}\right) \beta_{a} \simeq\left(\mathrm{~S}_{\beta_{a}}^{x_{a}} \alpha_{b}\right)\right)$, provided β_{a} is free for x_{a} in α_{b}.
2. Quasi-equality:
a. $\vdash \alpha_{a} \simeq \alpha_{a}$.
b. $\vdash\left(\alpha_{a} \simeq \beta_{a}\right) \simeq\left(\beta_{a} \simeq \alpha_{a}\right)$.
c. $\vdash\left(\left(\alpha_{a} \simeq \beta_{a}\right) \simeq\left(\beta_{a} \simeq \gamma_{a}\right)\right) \simeq\left(\alpha_{a} \simeq \gamma_{a}\right)$.
3. Truth-table of \simeq :
a. $\vdash\left(1^{\mathrm{N}} \simeq 0^{\mathrm{N}}\right) \simeq 0^{\mathrm{N}}$.
b. $\vdash\left(1^{\mathrm{N}} \simeq U_{t}\right) \simeq 0^{\mathrm{N}}$.
c. $\vdash\left(0^{\mathrm{N}} \simeq U_{t}\right) \simeq 0^{\mathrm{N}}$.
4. Equality and quasi-equality:
a. $\vdash \alpha_{a} \downarrow \xrightarrow{*}\left(\beta_{a} \downarrow \xrightarrow{*}\left(\left(\alpha_{a} \simeq \beta_{a}\right) \simeq\left(\alpha_{a} \equiv \beta_{a}\right)\right)\right)$.
5. Negation:
a. $\vdash\left(\alpha_{t} \simeq 1^{\mathrm{N}}\right) \simeq\left(\neg \alpha_{t} \simeq 0^{\mathrm{N}}\right)$.
b. $\vdash\left(\alpha_{t} \simeq 0^{\mathrm{N}}\right) \simeq\left(\neg \alpha_{t} \simeq 1^{\mathrm{N}}\right)$.
c. $\vdash\left(\alpha_{t} \simeq U_{t}\right) \simeq\left(\neg \alpha_{t} \simeq U_{t}\right)$.
d. $\vdash \neg \neg \alpha_{t} \simeq \alpha_{t}$.
6. Commutative property:
a. $\vdash\left(\alpha_{a} \stackrel{*}{\vee} \beta_{a}\right) \simeq\left(\beta_{a} \stackrel{*}{\vee} \alpha_{a}\right)$.
b. $\vdash\left(\alpha_{a} \stackrel{*}{\wedge} \beta_{a}\right) \simeq\left(\beta_{a} \stackrel{*}{\wedge} \alpha_{a}\right)$.
7. Truth-table of $\stackrel{*}{\vee}$:
a. $\vdash\left(\alpha_{t} \vee^{*} 1^{\mathrm{N}}\right) \simeq 1^{\mathrm{N}}$.
b. $\vdash\left(0^{\mathrm{N}} \vee^{*} 0^{\mathrm{N}}\right) \simeq 0^{\mathrm{N}}$.
c. $\vdash\left(U_{t} \vee^{*} 0^{\mathrm{N}}\right) \simeq U_{t}$.
d. $\vdash\left(U_{t} \stackrel{*}{\vee} U_{t}\right) \simeq U_{t}$.
e. $\vdash(\alpha \stackrel{*}{\wedge} \beta) \simeq \neg(\neg \alpha \stackrel{*}{\vee} \neg \beta)$
8. Definedness:
a. $\vdash c_{a} \downarrow$, for any primitive constant $c_{a} \neq U_{a}$.
b. $\vdash \lambda x_{a} \alpha_{b} \downarrow$.
c. $\vdash \alpha_{t} \downarrow$, for any $\alpha_{t} \in P($ see Definition 4$)$.
9. Quantification:
a. $\vdash \stackrel{*}{\exists} x_{a} \alpha_{t} \simeq\left(\mathrm{~S}_{\left(y_{1}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t} \stackrel{*}{\vee} \ldots \stackrel{*}{\vee} \mathrm{~S}_{\left(y_{q}\right)^{N^{\prime}}}^{x_{a}} \alpha_{t}\right)$.
b. $\vdash \stackrel{*}{\forall} x_{a} \alpha_{t} \simeq \neg \stackrel{*}{\exists} x_{a} \neg \alpha_{t}$.
c. $\vdash\left(\forall{ }^{*} x_{a} \alpha_{t} \simeq 1^{\mathrm{N}}\right) \xrightarrow{*}\left(\lambda y_{a} 1^{\mathrm{N}} \equiv \lambda x_{a} \alpha_{t}\right)$.
10. Definite descriptions and definedness:
a. $\vdash \beta_{a} \downarrow \xrightarrow{*}\left(\imath x_{a}\left(x_{a} \equiv \beta_{a}\right) \downarrow\right)$.
b. $\vdash\left(7 x_{a} \alpha_{t} \downarrow\right) \xrightarrow{*}\left(\lambda x_{a} \alpha_{t}\right)\left(7 x_{a} \alpha_{t}\right) \equiv 1^{\mathrm{N}}$.
c. $\vdash \beta_{a} \uparrow \xrightarrow{*}\left(\imath x_{a}\left(x_{a} \equiv \beta_{a}\right) \uparrow\right)$.

The rules of inference of $\mathbf{P} \mathbf{T}_{K}$ are quite standard. The Rule of Replacement differs from that of Henkin [12, p. 330] and was taken from Farmer [9] (he called it "Quasi-Equality Substitution"):

1. Rule of Replacement: If $\vdash \alpha_{a} \simeq \beta_{a}$ and $\vdash \gamma_{t}$, then $\vdash \delta_{t}$, where δ_{t} is the result of replacing one occurrence of α_{a} in γ_{t} by an occurrence of β_{a}, provided that the occurrence of α_{a} in γ_{t} is not immediately preceded by λ or in a meaningful part $\lambda x_{b} \varepsilon_{c}$ of γ_{t} where $x_{b} \in \operatorname{FreeVar}\left(\alpha_{a} \simeq\right.$ β_{a}).
2. Modus Ponens: If $\vdash \alpha_{t}$ and $\vdash \alpha_{t} \xrightarrow{*} \beta_{t}$, then $\vdash \beta_{t}$.
3. \forall-Generalization: If $\vdash \alpha_{t}$, then $\vdash \stackrel{*}{\forall} x_{a} \alpha_{t}$.
4. \exists-Generalization: If $\vdash \mathrm{S}_{\beta_{a}}^{x_{a}} \alpha_{t}$ and $\vdash \beta_{a} \downarrow$, then $\vdash \stackrel{*}{\exists} x_{a} \alpha_{t}$.
5. \downarrow-Generalization: If $\vdash \alpha_{t}$, then $\vdash \alpha_{t} \downarrow$.

Definition 16. (Proof) For any $\alpha_{t} \in \mathrm{ME}_{t}^{K}$, a proof of α_{t} in $\mathbf{P} \mathbf{T}_{K}$ is a finite sequence of formulas, ending with α_{t} such that each member in the sequence is an axiom or an instance of an axiom schema of $\mathbf{P} \mathbf{T}_{K}$ or is inferred from preceding formulas in the sequence by a rule of inference of $\mathbf{P} \mathbf{T}_{K}$. A theorem of $\mathbf{P} \mathbf{T}_{K}$ is a formula for which there is a proof in $\mathbf{P} \mathbf{T}_{K}$, written $\vdash \alpha_{t}$.

5. Some Metatheorems

5.1. Derived Rules of Inference

Now, we introduce some derived rules of inference that can be easily obtained from our proof system. These rules are used to state the results of Sects. 5.2 and 6 and the proofs are based on those of $[1,2,9,12]$. Propositions 5, 6, 7 and 8 are called Rules 5, 6, 7 and 8, respectively.

Proposition 5. If $\vdash \alpha_{t}$ and $\vdash \alpha_{t} \simeq \beta_{t}$, then $\vdash \beta_{t}$.
Proof. Suppose that $\vdash \alpha_{t}$ and $\vdash \alpha_{t} \simeq \beta_{t}$. Immediate by Rule 1 .
Proposition 6. $\vdash \alpha_{t}$ iff $\vdash \alpha_{t} \equiv 1^{\mathrm{N}}$.
Proof. We prove both sides of the implication.
(\Rightarrow) Suppose that $\vdash \alpha_{t}$. We know that $\vdash\left(\alpha_{t} \equiv 1^{\mathbb{N}}\right) \simeq \alpha_{t}$ (Axiom 1a). By Rule 5, we obtain $\vdash \alpha_{t} \equiv 1^{\mathrm{N}}$.
(\Leftarrow) Suppose that $\vdash \alpha_{t} \equiv 1^{\mathrm{N}}$. We know that $\vdash\left(\alpha_{t} \equiv 1^{\mathrm{N}}\right) \simeq \alpha_{t}$ (Axiom 1a). By Rule 5, we get $\vdash \alpha_{t}$.

Proposition 7. $\vdash \alpha_{t}$ iff $\vdash \alpha_{t} \simeq 1^{\mathrm{N}}$.
Proof. We prove both sides of the implication.
(\Rightarrow) Suppose that $\vdash \alpha_{t}$. By applying Rule $6, \vdash \alpha_{t} \equiv 1^{\mathrm{N}}$, as well as $\vdash \alpha_{t} \downarrow$ by Rule V and $\vdash 1^{\mathrm{N}} \downarrow$ by 8 c. Thus, we get $\vdash \alpha_{t} \simeq 1^{\mathrm{N}}$ by Axioms 4a, 2b and Rules II and 5.
(\Leftarrow) Suppose that $\vdash \alpha_{t} \simeq 1^{N}$. We know that $\vdash 1^{N} \simeq 1^{N}$ by Axioms 2 a. Since $\vdash 1^{\mathrm{N}} \downarrow$ is an instance of Axiom 8c, we get $\vdash 1^{\mathrm{N}} \equiv 1^{\mathrm{N}}$ by Axiom 4a and II. Thus, $\vdash 1^{\mathrm{N}}$ by Rule 6 and hence $\vdash \alpha_{t}$ by the assumption, Axiom 2b and Rule 5.

PRoposition 8. If $\vdash \neg \beta_{t}$ and $\vdash \alpha_{t} \simeq \beta_{t}$, then $\vdash \neg \alpha_{t}$.
Proof. Suppose that $\vdash \neg \beta_{t}$ and $\vdash \alpha_{t} \simeq \beta_{t}$. Then, $\vdash \neg \beta_{t} \simeq 1^{N}$ by Rule 7 , so $\vdash \beta_{t} \simeq 0^{\mathrm{N}}$ by Rules 5 and 1 and Axioms 5a and 5d. It follows that $\vdash \alpha_{t} \simeq 0^{\mathrm{N}}$ by Rule 1 again and hence $\vdash \neg \alpha_{t} \simeq 1^{\mathrm{N}}$ by Rule 5 and Axiom 5b. In consequence, $\vdash \neg \alpha_{t}$ by Rule 7 .

Proposition 9. The following formulas are theorems of $\mathbf{P T}_{K}$:

1. $\vdash U_{t} \uparrow$.
2. $\vdash U_{t} \simeq \neg U_{t}$.
3. $\vdash\left(\alpha_{t} \stackrel{*}{\wedge} 0^{\mathrm{N}}\right) \simeq 0^{\mathrm{N}}$.
4. $\vdash\left(1^{N} \stackrel{*}{\wedge} 1^{N}\right) \simeq 1^{N}$.
5. $\vdash\left(U_{t} \stackrel{*}{\wedge} 1^{\mathrm{N}}\right) \simeq U_{t}$.
6. $\vdash\left(U_{t} \stackrel{*}{\wedge} U_{t}\right) \simeq U_{t}$.
7. $\vdash \stackrel{*}{\forall} x_{a} \alpha_{t} \simeq\left(\mathrm{~S}_{\left(y_{1}\right)^{N}}^{x_{a}} \alpha_{t} \stackrel{*}{\wedge} \ldots \stackrel{*}{\wedge} \mathrm{~S}_{\left(y_{q}\right)^{N}}^{x_{a}} \alpha_{t}\right)$.

Proof.

1. $\vdash U_{t} \simeq U_{t}$ is an instance of Axiom 2a. By the definition of \uparrow, it follows that $\vdash U_{t} \uparrow$.
2. Again, $\vdash U_{t} \simeq U_{t}$ is an instance of Axiom 2a. By Rule 5 and Axiom 5c, we get $\vdash \neg U_{t} \simeq U_{t}$, so $\vdash U_{t} \simeq \neg U_{t}$ by Axiom 2 b and Rule 5 again.
3. Take $\vdash\left(\neg \alpha_{t} \vee^{*} 1^{\mathrm{N}}\right) \simeq 1^{\mathrm{N}}$, which is an instance of Axiom 7a. Then, \vdash $\neg\left(\neg \alpha_{t} \vee^{*} 1^{\mathrm{N}}\right) \simeq 0^{\mathrm{N}}$ by Rule 5 and Axiom 5a. Finally, by Axiom 7 e and Rule 1, we obtain $\vdash\left(\alpha_{t} \stackrel{*}{\wedge} 0^{\mathrm{N}}\right) \simeq 0^{\mathrm{N}}$.
4. Immediate by Axioms 7b, 5b and 7e and Rules 5 and 1.
5. Immediate by Axioms 7c, 5c and 7 e and Rules 5 and 1.
6. Immediate by Axioms 7d, 5c and 7e, Proposition 9(2) and Rules 5 and 1.
7. Consider $\vdash \stackrel{*}{\forall} x_{a} \alpha_{t} \simeq \neg \stackrel{*}{\exists} x_{a} \neg \alpha_{t}$ (Axiom 9b). Then, by Axiom 9a and Rule 1, it follows that $\vdash \stackrel{*}{\forall} x_{a} \alpha_{t} \simeq \neg\left(\mathrm{~S}_{\left(y_{1}\right)^{N}}^{x_{a}} \neg \alpha_{t} \stackrel{*}{\vee} \ldots \stackrel{*}{\vee}_{\left.\mathrm{S}_{\left(y_{q}\right)^{N}}^{x_{a}} \neg \alpha_{t}\right) \text {, and hence }}\right.$ $\vdash \stackrel{*}{\forall} x_{a} \alpha_{t} \simeq\left(\mathrm{~S}_{\left(y_{1}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t} \stackrel{*}{\wedge} \ldots \stackrel{*}{\wedge} \mathrm{~S}_{\left(y_{q}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{t}\right)$ by Axiom 7e and Rule 1.

Proposition 10. (Rule of Conjunction)
$I f \vdash \alpha_{t}$ and $\vdash \beta_{t}$, then $\vdash \alpha_{t} \stackrel{*}{\wedge} \beta_{t}$.
Proof. Suppose that $\vdash \alpha_{t}$ and $\vdash \beta_{t}$. Then, we obtain $\vdash \alpha_{t} \simeq 1^{\mathrm{N}}$ and $\vdash \beta_{t} \simeq 1^{\mathrm{N}}$ by Rule 6. Take $\vdash\left(\alpha_{t} \stackrel{*}{\wedge} \beta_{t}\right) \simeq\left(\alpha_{t} \stackrel{*}{\wedge} \beta_{t}\right)$, which is an instance of Axiom 2a. By Rule 1, we get $\vdash\left(\alpha_{t} \stackrel{*}{\wedge} \beta_{t}\right) \simeq\left(1^{N}{ }_{\wedge}^{*} 1^{N}\right)$. Since $\vdash\left(1^{N}{ }_{\wedge}^{*} 1^{N}\right) \simeq 1^{N}$ (Proposition $9(4)$), it follows that $\vdash\left(\alpha_{t} \stackrel{*}{\wedge} \beta_{t}\right) \simeq 1^{\mathrm{N}}$ again by Rule 1. Thus, $\vdash \alpha_{t} \stackrel{*}{\wedge} \beta_{t}$ by Rule 7 .

Proposition 11. (Rule of Universal Instantiation) If $\vdash \stackrel{*}{\forall} x_{a} \beta_{t}$, then $\vdash \gamma_{t}$, where γ_{t} is the result of replacing all free occurrences of x_{a} in β_{t} by some formula α_{a} such that $\vdash \alpha_{a} \downarrow$, provided that the occurrence of x_{a} in β_{t} is not in a meaningful part of β_{t} beginning with the symbols λy_{c} where $y_{c} \in$ FreeVar $\left(\alpha_{a}\right)$.
Proof. Suppose that $x_{a}, \beta_{t}, \alpha_{a}$ and γ_{t} are so related and $\vdash \stackrel{*}{\forall} x_{a} \beta_{t}$. Then, $\vdash \stackrel{*}{\forall} x_{a} \beta_{t} \simeq 1^{\mathrm{N}}$ by Rule 7 and hence $\vdash \lambda y_{a} 1^{\mathrm{N}} \equiv \lambda x_{a} \beta_{t}$ by applying Rule 2 to $\vdash \stackrel{*}{\forall} x_{a} \beta_{t} \simeq 1^{\mathrm{N}}$ and Axiom 9c. Since $\vdash \lambda y_{a} 1^{\mathrm{N}} \downarrow$ (Axiom 8b), we get $\vdash \lambda y_{a} 1^{\mathrm{N}} \simeq \lambda x_{a} \beta_{t}$ by Rules 2 and 5 and Axiom 4a. Take $\vdash\left(\lambda x_{a} \beta_{t}\right) \alpha_{a} \simeq$ $\left(\lambda x_{a} \beta_{t}\right) \alpha_{a}$, which is an instance of Axiom 2a (where $\vdash \alpha_{a} \downarrow$). It follows that $\vdash\left(\lambda x_{a} \beta_{t}\right) \alpha_{a} \simeq\left(\lambda y_{a} 1^{\mathrm{N}}\right) \alpha_{a}$ by Rule 1 . Thus, $\vdash\left(\left(\lambda y_{a} 1^{\mathrm{N}}\right) \alpha_{a}\right) \simeq 1^{\mathrm{N}}$ by applying Rule 2 to an instance of Axiom 1d and hence $\vdash\left(\lambda x_{a} \beta_{t}\right) \alpha_{a} \simeq 1^{\mathrm{N}}$ by Rule 1. Then, $\vdash\left(\lambda x_{a} \beta_{t}\right) \alpha_{a}$ by Rule 7. Because $\vdash\left(\lambda x_{a} \beta_{t}\right) \alpha_{a} \simeq \gamma_{t}$ (which results from applying Rule 2 to an instance of Axiom 1d), we can conclude $\vdash \gamma_{t}$ by Rule 5.

Proposition 12. (Rule of Substitution for Free Variables) If $\beta_{t}, x_{a}, \alpha_{a}$ and γ_{t} are related as in the hypothesis of Rule 11, and if $\vdash \beta_{t}$ and $\vdash \alpha_{a} \downarrow$, then $\vdash \gamma_{t}$.

Proof. Immediate by Rules 3 and 11.
Proposition 13. (Rule of Propositional Cases) Let $\alpha_{t} \in \mathrm{ME}_{t}^{K}$ and $x_{t} \in$ VAR_{t}. If α_{t}^{\prime} and $\alpha_{t}^{\prime \prime}$ are obtained by replacing all free occurrences of x_{t} in α_{t} by 1^{N} and 0^{N} respectively, and if $\vdash \alpha_{t}^{\prime}$ and $\vdash \alpha_{t}^{\prime \prime}$, then also $\vdash \alpha_{t}$, provided that $\vdash \alpha_{t} \downarrow$.
Proof. Suppose that $\alpha_{t}, x_{t}, \alpha_{t}^{\prime}$ and $\alpha_{t}^{\prime \prime}$ are so related, and $\vdash \alpha_{t}^{\prime}$ and $\vdash \alpha_{t}^{\prime \prime}$. By Rule $5, \vdash \alpha_{t}^{\prime} \downarrow$ and $\vdash \alpha_{t}^{\prime \prime} \downarrow$, so by applying Rule 2 to instances of Axiom 1d, we also get $\vdash\left(\lambda x_{t} \alpha_{t}\right) 1^{\mathrm{N}} \simeq \alpha_{t}^{\prime}$ and $\vdash\left(\lambda x_{t} \alpha_{t}\right) 0^{\mathrm{N}} \simeq \alpha_{t}^{\prime \prime}$. Hence, $\vdash\left(\lambda x_{t} \alpha_{t}\right) 1^{\mathrm{N}}$ and $\vdash\left(\lambda x_{t} \alpha_{t}\right) 0^{\mathrm{N}}$ by Rule 5 and $\vdash\left(\lambda x_{t} \alpha_{t}\right) 1^{\mathrm{N}} \stackrel{*}{\wedge}\left(\lambda x_{t} \alpha_{t}\right) 0^{\mathrm{N}}$ by Rule 10. Take

$$
\vdash\left(\left(\lambda x_{a} \alpha_{t}\right) 1^{\mathrm{N}} \stackrel{*}{\wedge}\left(\lambda x_{t} \alpha_{t}\right) 0^{\mathrm{N}}\right) \simeq \stackrel{*}{\forall} x_{t}\left(\left(\lambda x_{a} \alpha_{t}\right) x_{t}\right),
$$

which is the result of applying Rule 12 to Axiom 1b. Thus, $\vdash \stackrel{*}{\forall} x_{t}\left(\left(\lambda x_{t} \alpha_{t}\right) x_{t}\right)$ by Rule 5 . Because $\vdash x_{t} \downarrow$ (Axiom 8c), Rule 2 applied to $\vdash x_{t} \downarrow$ and to an instance of Axiom 1d gives us $\vdash\left(\lambda x_{t} \alpha_{t}\right) x_{t} \simeq \alpha_{t}$. It follows that $\vdash \forall x_{t} \alpha_{t}$ by Rule 1 and hence $\vdash \alpha_{t}$ by Rule 11, as $\vdash \alpha_{t} \downarrow$ by hypothesis.

5.2. Soundness and Useful Metatheorems

Theorem 14. (Soundness) For every $\alpha_{t} \in \mathrm{ME}_{t}^{K}$, if $\vdash \alpha_{t}$, then $\models \alpha_{t}$.

Proof. A straightforward verification shows that (1) every axiom and axiom schema of $\mathbf{P} \mathbf{T}_{K}$ is valid and (2) the rules of inference $1,2,3,4$ and 5 preserve validity.

We now prove the soundness of Axiom 1b (a way of expressing that \mathcal{D}_{t}^{K} contains the elements 0 and 1 , and no others) in order to display how partial propositional types are interpreted semantically.

- $\vdash\left(g_{t t} 1^{\mathrm{N}} \stackrel{*}{\wedge} g_{t t} 0^{\mathrm{N}}\right) \simeq \stackrel{*}{\forall} x_{t}\left(g_{t t} x_{t}\right)$.

Suppose firstly that $\left[\left[\left(g_{t t} 1^{\mathrm{N}} \stackrel{*}{\wedge} g_{t t} 0^{\mathrm{N}}\right)\right]\right]^{\mathcal{M}, g}=1$ for an arbitrary assignment g. It follows that $g\left(g_{t t}\right)$ must be 11 and consequently $\left[\left[\lambda x_{a} 1^{\mathrm{N}} \equiv\right.\right.$ $\left.\left.\lambda x_{t}\left(g_{t t} x_{t}\right)\right]\right]^{\mathcal{M}, g}=1$, so $\left[\left[\forall x_{t}\left(g_{t t} x_{t}\right)\right]\right]^{\mathcal{M}, g}=1$. Therefore, $\left[\left[\left(g_{t t} 1^{\mathrm{N}} \stackrel{*}{\wedge} g_{t t} 0^{\mathrm{N}}\right) \simeq\right.\right.$ $\left.\left.{ }^{*} x_{t}\left(g_{t t} x_{t}\right)\right]\right]^{\mathcal{M}, g}=1$.

Suppose now that $\left[\left[\left(g_{t t} 1^{\mathrm{N}} \stackrel{*}{\wedge} g_{t t} 0^{\mathrm{N}}\right)\right]\right]^{\mathcal{M}, g}=0$ for an arbitrary assignment g. The candidates for $g\left(g_{t t}\right)$ are $01,10,00,0 *$ and $* 0$. Thus, we see that there exists some $x \in \mathcal{D}_{t}^{K}$ such that $\left[\left[\lambda x_{t}\left(g_{t t} x_{t}\right)\right]\right]^{\mathcal{M}, g}(x)=0$, so $\left[\left[\forall^{*} x_{t}\left(g_{t t} x_{t}\right)\right]\right]^{\mathcal{M}, g}=$ 0 . Therefore, $\left[\left[\left(g_{t t} 1^{\mathrm{N}} \stackrel{*}{\wedge} g_{t t} 0^{\mathrm{N}}\right) \simeq \stackrel{*}{\forall} x_{t}\left(g_{t t} x_{t}\right)\right]\right]^{\mathcal{M}, g}=1$.

Finally, suppose that $\left[\left[\left(g_{t t} 1^{\mathrm{N}} \stackrel{*}{\wedge} g_{t t} 0^{\mathrm{N}}\right)\right]\right]^{\mathcal{M}, g}=*$ for an arbitrary assignment g. The candidates for $g\left(g_{t t}\right)$ are $1 *, * 1$ and $* *$. Hence, $\left[\left[\lambda x_{t}\left(g_{t t} x_{t}\right)\right]\right]^{\mathcal{M}, g}$ is either the empty function of type $t t$ or a partial function f from \mathcal{D}_{t}^{K} to \mathcal{D}_{t}^{K} such that, for every $x \in \mathcal{D}_{t}^{K}$, if $x \in \operatorname{Def}(f)$, then $f(x)=1$. Therefore, $\left[\left[\forall \forall_{t}\left(g_{t t} x_{t}\right)\right]\right]^{\mathcal{M}, g}=*$, so $\left[\left[\left(g_{t t} 1^{\mathrm{N}} \stackrel{*}{\wedge} g_{t t} 0^{\mathrm{N}}\right) \simeq \stackrel{*}{\forall} x_{t}\left(g_{t t} x_{t}\right)\right]\right]^{\mathcal{M}, g}=1$.

We are ready to prove some results that are needed to prove completeness constructively. Firstly, we show that every tautology ${ }^{4}$ is a formal theorem and also that every closed expression which is a name is defined:

Theorem 15. (P-Completeness) Every tautology α_{t} is a formal theorem.
Proof. The proof is by induction on the number of free variables in α_{t}.

1. Let α_{t} be a tautology containing no free variables:
(a) Let α_{t} be 1^{N}. Then, $\vdash \lambda x_{t} x_{t} \simeq \lambda x_{t} x_{t}$ is an instance of Axiom 2a. Since $\vdash \lambda x_{t} x_{t} \downarrow($ Axiom 8 b$), \vdash \lambda x_{t} x_{t} \equiv \lambda x_{t} x_{t}$ by Rules 2 and 5 and Axiom 4a. By the definition of 1^{N}, we get $\vdash 1^{\mathrm{N}}$.
(b) Let α_{t} be $\neg 0^{N}$. Since $\vdash 0^{N} \downarrow$ (Axiom 8c), we can apply Rule 2 to an instance of Axiom 1d obtaining $\vdash \lambda x_{t}\left(0^{\mathrm{N}} \equiv x_{t}\right) 0^{\mathrm{N}} \simeq 1^{\mathrm{N}}$. Thus, we get $\vdash \lambda x_{t}\left(0^{\mathrm{N}} \equiv x_{t}\right) 0^{\mathrm{N}}$ by Rule 7 , so, by the definition of $\neg, \vdash \neg 0^{\mathrm{N}}$.

[^4](c) Let α_{t} be $\alpha_{t} \vee^{*} 1^{N}$. Take $\vdash\left(\alpha_{t} \stackrel{*}{\vee} 1^{\mathrm{N}}\right) \simeq 1^{\mathrm{N}}$ (Axiom 7a). Then, $\vdash \alpha_{t} \stackrel{*}{\vee} 1^{\mathrm{N}}$ by Rule 7 .
(d) Let α_{t} be $1^{\mathrm{N}} \equiv 1^{\mathrm{N}}$. Immediate by applying Rule 6 to (1a).
2. Let α_{t} be a tautology containing some free variable, say x_{t}. Let α_{t}^{\prime} be the result of replacing each occurrence of x_{a} in α_{t} by 1^{N} and $\alpha_{t}^{\prime \prime}$ by 0^{N}. Both α_{t}^{\prime} and $\alpha_{t}^{\prime \prime}$ are tautologies, because $\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}=1$ for all assignments g, including those, g^{\prime} and $g^{\prime \prime}$, where $g^{\prime}\left(x_{t}\right)=1$ and $g^{\prime \prime}\left(x_{t}\right)=0$. It follows, by induction hypothesis, that $\vdash \alpha_{t}^{\prime}$ and $\vdash \alpha_{t}^{\prime \prime}$. Since $\vdash \alpha_{t} \downarrow$ (Axiom 8c), we obtain $\vdash \alpha_{t}$ by Rule 13.

Theorem 16. (Names are defined) For any $a \in$ TYPES and each $x \in \mathcal{D}_{a}^{K}$, $\vdash x^{\mathrm{N}} \downarrow$ 。

Proof. The proof is by induction.

1. Base case: $\mathcal{D}_{t}^{K} . \vdash 1^{\mathrm{N}} \downarrow$ and $\vdash 0^{\mathrm{N}} \downarrow$ (instances of Axiom 8c).
2. Inductive step: $\mathcal{D}_{a b}^{K}$. For any $f \in \mathcal{D}_{a b}^{K}$,
by Theorem 2. Thus, $\vdash f^{\mathrm{N}} \downarrow$ by Axiom 8 b , as desired.

Secondly, we prove Theorem 17, which is essential for the whole strategy of Lemma 20 :

ThEOREM 17. For any $c \in$ TYPES and z_{1}, \ldots, z_{q} all the elements of \mathcal{D}_{c}^{K}, it holds that:

1. $\vdash \neg\left(z_{i}^{\mathrm{N}} \equiv z_{j}^{\mathrm{N}}\right)$ if $i \neq j$.
2. If $c=a b$, then for any $y \in \mathcal{D}_{a}^{K}$, we have $\vdash\left(z_{i}^{\mathrm{N}} y^{\mathrm{N}}\right) \simeq\left(z_{i} y\right)^{\mathrm{N}}$.

Proof. The proof is by induction.

1. Base case: $\mathcal{D}_{t}^{K} . \neg\left(1^{\mathrm{N}} \equiv 0^{\mathrm{N}}\right)$ is a tautology, so $\vdash \neg\left(1^{\mathrm{N}} \equiv 0^{\mathrm{N}}\right)$ by Theorem 15.
2. Inductive step: $\mathcal{D}_{a b}^{K}$. Let f_{1}, \ldots, f_{p} be a list of the distinct elements of $\mathcal{D}_{a b}^{K}$ and y_{1}, \ldots, y_{q} a list of the distinct elements of \mathcal{D}_{a}^{K}.

- We start by proving (2).

Since $\vdash y_{j}^{N} \downarrow$ (Theorem 16), from Axiom 1d, Rule 2 and Theorem 2 we have:

$$
\vdash\left(f_{i}^{\mathrm{N}} y_{j}^{\mathrm{N}}\right) \simeq \imath z_{b}\left(\left(y_{j}^{\mathrm{N}} \equiv y_{1}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f_{i} y_{1}\right)^{\mathrm{N}}\right) \stackrel{*}{\vee} \ldots \stackrel{*}{\vee}^{\left.\left(\left(y_{j}^{\mathrm{N}} \equiv y_{q}^{\mathrm{N}}\right) \stackrel{*}{\wedge}\left(z_{b} \equiv\left(f_{i} y_{q}\right)^{\mathrm{N}}\right)\right)\right)}\right.
$$

Because $\vdash \neg\left(y_{j}^{\mathrm{N}} \equiv y_{k}^{\mathrm{N}}\right)$ for $j \neq k$ by induction hypothesis concerning \mathcal{D}_{a}^{K}, we get

$$
\vdash\left(f_{i}^{\mathrm{N}} y_{j}^{\mathrm{N}}\right) \simeq 1 z_{b}\left(z_{b} \equiv\left(f_{i} y_{j}\right)^{\mathrm{N}}\right)(\mathrm{I} . \mathrm{H})
$$

Now, there are two possibilities:
(a) Firstly, suppose that $\left[\left[f_{i}^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}$ is the partial function f_{i} in $\mathcal{D}_{a b}^{K}$ such that $f_{i}\left(\left[\left[y_{j}^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}\right)=*$. In this case, $\left(f_{i} y_{j}\right)^{\mathrm{N}}=U_{b}$ by Definition 13 . Since $\vdash U_{b} \uparrow$ by Proposition $9(1), \vdash \imath z_{b}\left(z_{b} \equiv U_{b}\right) \uparrow$ by Rule 2 and Axiom 10c. Now, by the definition of \uparrow, we get $\vdash \tau z_{b}\left(z_{b} \equiv\left(f_{i} y_{j}\right)^{\mathrm{N}}\right) \simeq U_{b}$ and hence $\vdash\left(f_{i}^{\mathbb{N}} y_{j}^{\mathrm{N}}\right) \simeq U_{b}$ by applying Rule 1 to (I.H). Therefore, $\vdash\left(f_{i}^{\mathrm{N}} y_{j}^{\mathrm{N}}\right) \simeq\left(f_{i} y_{j}\right)^{\mathrm{N}}$, as $\left(f_{i} y_{j}\right)^{\mathrm{N}}=U_{b}$.
(b) Suppose that $\left[\left[f_{i}^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}$ is the function f_{i} in $\mathcal{D}_{a b}^{K}$ such that $f_{i}\left(\left[\left[y_{j}^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}\right)=$ θ, where $\theta \in \mathcal{D}_{b}^{K}$. In this case, $\left(f_{i} y_{j}\right)^{\mathrm{N}}$ is the name of θ, so $\vdash\left(f_{i} y_{j}\right)^{\mathrm{N}} \downarrow$ by Theorem 16. Then, $\vdash \tau z_{b}\left(z_{b} \equiv\left(f_{i} y_{j}\right)^{N}\right) \downarrow$ by Rule 2 and Axiom 10a, so $\left.\vdash \lambda z_{b}\left(z_{b} \equiv\left(f_{i} y_{j}\right)^{\mathrm{N}}\right)\right)\left(\imath z_{b}\left(z_{b} \equiv\left(f_{i} y_{j}\right)^{\mathrm{N}}\right)\right) \equiv 1^{\mathrm{N}}$ by Rule 2 again and Axiom 10b. We obtain $\left.\vdash \lambda z_{b}\left(z_{b} \equiv\left(f_{i} y_{j}\right)^{\mathrm{N}}\right)\right)\left(1 z_{b}\left(z_{b} \equiv\right.\right.$ $\left.\left(f_{i} y_{j}\right)^{\mathrm{N}}\right)$) by Rule 6. Since $\left.\vdash\right\urcorner z_{b}\left(z_{b} \equiv\left(f_{i} y_{j}\right)^{\mathrm{N}}\right) \downarrow$, from this it follows that $\vdash \imath z_{b}\left(z_{b} \equiv\left(f_{i} y_{j}\right)^{\mathrm{N}}\right) \simeq\left(f_{i} y_{j}\right)^{\mathrm{N}}$ by Axiom 1d and Rule 2. Therefore, $\vdash\left(f_{i}^{\mathrm{N}} y_{j}^{\mathrm{N}}\right) \simeq\left(f_{i} y_{j}\right)^{\mathrm{N}}$ by applying Rule 1 to (I.H), as desired.
In consequence, $\vdash\left(f_{i}^{N} y_{j}^{N}\right) \simeq\left(f_{i} y_{j}\right)^{N}$.

- We turn next to the proof of (1).

Notice that, if $i \neq j$, then for some $k \in\{1, \ldots, p\}$ it holds that $\left(f_{i} y_{k}\right) \neq$ $\left(f_{j} y_{k}\right)$. Then, by induction hypothesis concerning \mathcal{D}_{b}^{K}, we know that $\vdash \neg\left(\left(f_{i} y_{k}\right)^{\mathrm{N}} \equiv\left(f_{j} y_{k}\right)^{\mathrm{N}}\right)$. Since $\vdash\left(f_{i} y_{k}\right)^{\mathrm{N}} \downarrow$ and $\vdash\left(f_{j} y_{k}\right)^{\mathrm{N}} \downarrow$ by Theorem $16, \vdash\left(\left(f_{i} y_{k}\right)^{\mathrm{N}} \simeq\left(f_{j} y_{k}\right)^{\mathrm{N}}\right) \simeq\left(\left(f_{i} y_{k}\right)^{\mathrm{N}} \equiv\left(f_{j} y_{k}\right)^{\mathrm{N}}\right)$ by Rule 2 and Axiom 4a. In consequence, $\vdash \neg\left(\left(f_{i} y_{k}\right)^{\mathrm{N}} \simeq\left(f_{j} y_{k}\right)^{N}\right)$ by Rule 8. Because we proved already that $\vdash\left(f_{i}^{N} y_{k}^{\mathrm{N}}\right) \simeq\left(f_{i} y_{k}\right)^{\mathrm{N}}$ and $\vdash\left(f_{j}^{\mathrm{N}} y_{k}^{\mathrm{N}}\right) \simeq\left(f_{j} y_{k}\right)^{\mathrm{N}}$, we get $\vdash \neg\left(\left(f_{i}^{\mathcal{N}} y_{k}^{\mathcal{N}}\right) \simeq\left(f_{j}^{\mathcal{N}} y_{k}^{\mathcal{N}}\right)\right)$ by Rule 1. Therefore, $\vdash \stackrel{*}{\exists} y_{a}\left(\neg\left(\left(f_{i}^{\mathcal{N}} y_{a}\right) \simeq\right.\right.$ $\left.\left.\left(f_{j}^{\mathrm{N}} y_{a}\right)\right)\right)$ by Rule 4 , as $\vdash y_{k}^{\mathrm{N}} \downarrow$ (by Theorem 16) and $\vdash \neg \neg^{\forall} y_{a}\left(\left(f_{i}^{\mathrm{N}} y_{a}\right) \simeq\right.$ $\left.\left(f_{j}^{N} y_{a}\right)\right)$ by Rules 7 and 1 and Axioms 5a and 9b. Thus, we obtain the desired $\vdash \neg\left(f_{i} \equiv f_{j}\right)$ by applying Rule 8 to Axiom 1c.

Finally, we also prove Propositions 18 and 19, which are needed to establish cases (6) and (7) of Lemma 20, respectively.
PROPOSITION 18. $\vdash\left(\left(\left[\left[\alpha_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\right) \simeq\left(\left[\left[\alpha_{a} \simeq \beta_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$.
Proof. The proof is by induction.

1. Base case: \mathcal{D}_{t}^{K}.
(a) If $\left(\left[\left[\alpha_{t} \simeq \beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}=1^{\mathrm{N}}$, then $\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}=\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}$ and therefore $\vdash\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$ is an instance of Axiom 2a. Consequently, we get $\vdash\left(\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\right) \simeq \mathrm{T}^{\mathrm{N}}$ by Rule 7 .
(b) If $\left(\left[\left[\alpha_{t} \simeq \beta_{t}\right]\right]^{\mathcal{M}}, g\right)^{\mathrm{N}}=0^{\mathrm{N}}$, then $\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g} \neq\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}$. Hence, it follows that $\vdash\left(\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\right) \simeq 0^{\mathrm{N}}$ is either an instance of one of the axioms of group 3 or follows from such an instance and Axiom 2b by applying Rule 1.
2. Inductive step: $\mathcal{D}_{a b}^{K}$.
(a) If $\left(\left[\left[\alpha_{a b} \simeq \beta_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}=1^{\mathrm{N}}$, then $\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g}=\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}$, so the argument for (1a) works here.
(b) If $\left(\left[\left[\alpha_{a b} \simeq \beta_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}=0^{\mathrm{N}}$, then $\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g} \neq\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}$. This means that there exists some $x \in \mathcal{D}_{a}^{K}$ such that $\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g}(x)=y$ and $\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}(x)=z$, with $y, z \in \mathcal{D}_{b}^{K}$ and $y \neq z$. Now, by induction hypothesis, we have

$$
\vdash\left(\left(\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g}(x)\right)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}(x)\right)^{\mathrm{N}}\right) \simeq\left(\left[\left[\alpha_{a b}(x)^{\mathrm{N}} \simeq \beta_{a b}(x)^{\mathrm{N}}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}
$$

and hence $\vdash\left(\left(\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g}(x)\right)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}(x)\right)^{\mathrm{N}}\right) \simeq 0^{\mathrm{N}}$. Therefore, $\vdash \neg\left(\left(\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g}(x)\right)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}(x)\right)^{\mathrm{N}}\right) \simeq 1^{\mathrm{N}}$ by Rule 2 and Axiom 5b, so $\vdash \neg\left(\left(\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g}(x)\right)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}(x)\right)^{\mathrm{N}}\right)$ by Rule 7. By Theorem $17(2), \vdash \neg\left(\left(\left[\left[\alpha_{a b}\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}(x)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}(x)^{\mathrm{N}}\right)\right.$ and consequently

$$
\vdash \neg \forall x_{a}\left(\left(\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} x_{a} \simeq\left(\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} x_{a}\right)
$$

by Rules 4 (for $\vdash(x)^{\mathrm{N}} \downarrow$ by Theorem 16), 7 and 1 and Axioms 5a and 9b. Therefore, $\vdash \neg\left(\left(\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \equiv\left(\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\right)$ by applying Rule 8 to Axiom 1c, so we obtain $\vdash \neg\left(\left(\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\right)$ by Axiom 4 a , Theorem 16 again and Rules 2 and 5 . Because $\vdash \neg\left(\left(\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \simeq\right.$ $\left.\left(\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\right) \simeq \mathrm{T}^{\mathrm{N}}$ by Rule 7, it follows by Axioms 5a and 5d and Rules 5 and 1 that

$$
\vdash\left(\left(\left[\left[\alpha_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\right) \simeq \mathrm{F}^{\mathrm{N}}
$$

as desired.

Proposition 19. $\vdash\left(\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \vee^{*}\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\right) \simeq\left(\left[\left[\alpha_{t} \stackrel{*}{\vee} \beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$.
Proof.

1. If $\left(\left[\left[\alpha_{t} \vee^{*} \beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}=1^{\mathrm{N}}$, then either $\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}$ or $\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}$ is 1 . In consequence, $\left.\vdash\left(\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}}, g\right)^{\mathrm{N}}{\stackrel{*}{\vee}\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}}, g\right.}\right)^{\mathrm{N}}\right) \simeq 1^{\mathrm{N}}$ is an instance of Axiom 7 a or follows from such an instance and Axiom 2b by applying Rule 1.
2. If $\left(\left[\left[\alpha_{t} \stackrel{*}{\vee} \beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}=0^{\mathrm{N}}$, then $\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}=\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}=0$. Clearly, we see that $\left.\vdash\left(\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}}, g\right)^{\mathrm{N}}{\stackrel{*}{V}\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}}, g\right.}\right)^{\mathrm{N}}\right) \simeq 0^{\mathrm{N}}$ is Axiom 7 b .
3. If $\left(\left[\left[\alpha_{t} \stackrel{*}{\vee} \beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}=U_{t}$ (see Definition 14), then $\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}=\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}=$ * or one is $*$ and the other 0 . In the first case, $\vdash\left(\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \stackrel{*}{\vee}\right.$ $\left.\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}}, g\right)^{\mathrm{N}}\right) \simeq U_{t}$ is Axiom 7d. In the second case, $\vdash\left(\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \stackrel{*}{\vee}^{*}\right.$ $\left.\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\right) \simeq U_{t}$ is Axiom 7c or follows from it, Axiom 2b and Rule 1.

6. Completeness

The method of proof for the completeness of $\mathbf{P T}$ is rather different from the one Henkin used to prove it for first-order logic and Church's Type Theory. In this case, the proof is constructive, as it is based on the Nameability theorem [12, 341-43]. To prove completeness for $\mathbf{P} \mathbf{T}_{K}$, we will follow Henkin's strategy in [12], so first we have to give a proof of the following Lemma (and completeness easily follows):

Lemma 20. Let $\alpha_{c} \in \operatorname{ME}_{c}^{K}$. Then, $\vdash \alpha_{c}^{(g)} \simeq\left(\left[\left[\alpha_{c}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$.
Proof. The proof is by induction on the length of α_{c}.

1. Let α_{c} be a variable x_{a}. In this case, $\left[\left[x_{a}\right]\right]^{\mathcal{M}, g} \in \mathcal{D}_{a}^{K}$ for every assignment g and $x_{a}^{(g)}=\left(\left[\left[x_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$ by Definition 15. Therefore, $\vdash x_{a}^{(g)} \simeq$ $\left(\left[\left[x_{a}\right]\right]^{\mathcal{M}}, g\right)^{\mathrm{N}}$ is an instance of Axiom 2a.
2. Let α_{c} be a primitive constant $\mathrm{Q}_{a\langle a t\rangle}$. We have to show that $\vdash \mathrm{Q}_{a\langle a t\rangle} \simeq$ q^{N}, where $q \in \mathcal{D}_{a\langle a t\rangle}$, because $\left[\left[\mathrm{Q}_{a\langle a t\rangle}\right]\right]^{\mathcal{M}, g}=q$ and $\mathrm{Q}_{a\langle a t\rangle}^{(g)}=\mathrm{Q}_{a\langle a t\rangle}$. Suppose that y_{1}, \ldots, y_{m} are distinct and are all the elements of \mathcal{D}_{a}^{K}. By Axiom 2a, $\vdash x_{a} \simeq x_{a}$. Since $\vdash x_{a} \downarrow$ (Axiom 8c), it holds that $\vdash x_{a} \equiv x_{a}$ by Rules 2, 5 and Axiom 4a. By induction hypothesis, $\vdash x_{a}^{(g)} \simeq\left(\left[\left[x_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$, so, assuming that $\left(\left[\left[x_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}=y_{i}^{\mathrm{N}}$, we get $\vdash y_{i}^{\mathrm{N}} \equiv y_{i}^{\mathrm{N}}$ by Rule 1 . Therefore, $\vdash\left(\mathrm{Q}_{a\langle a t\rangle} y_{i}^{\mathrm{N}}\right) y_{i}^{\mathrm{N}}$ by the definition of
\equiv, so $\vdash\left(\mathrm{Q}_{a\langle a t\rangle} y_{i}^{\mathrm{N}}\right) y_{i}^{\mathrm{N}} \simeq 1^{\mathrm{N}}$ by Rule 7 . We also know that $\vdash \neg\left(y_{i}^{\mathrm{N}} \equiv y_{j}^{\mathrm{N}}\right)$ by Theorem $17(1)$ and hence $\vdash \neg\left(\left(\mathrm{Q}_{a\langle a t\rangle} y_{i}^{\mathrm{N}}\right) y_{j}^{\mathrm{N}}\right)$ by the definition of \equiv, so $\vdash\left(\mathrm{Q}_{a\langle a t\rangle} y_{i}^{\mathrm{N}}\right) y_{j}^{\mathrm{N}} \simeq 0^{\mathrm{N}}$ by Rules 7,5 and 1 and Axioms 5a and 5d. In other words, $\vdash\left(q^{\mathrm{N}} y_{i}^{\mathrm{N}}\right) y_{i}^{\mathrm{N}} \simeq 1^{\mathrm{N}}$ and $\vdash\left(q^{\mathrm{N}} y_{i}^{\mathrm{N}}\right) y_{j}^{\mathrm{N}} \simeq 0^{\mathrm{N}}$, so $\vdash\left(q^{\mathrm{N}} y_{i}^{\mathrm{N}} y_{i}^{\mathrm{N}}\right) \simeq 1^{\mathrm{N}}$ and $\vdash\left(q^{\mathrm{N}} y_{i}^{\mathrm{N}} y_{j}^{\mathrm{N}}\right) \simeq 0^{\mathrm{N}}$ by Theorem 17(2).
In particular, $\vdash\left(\mathrm{Q}_{a\langle a t\rangle} y_{1}^{\mathrm{N}}\right) y_{1}^{\mathrm{N}} \simeq 1^{\mathrm{N}}$ and $\vdash\left(q^{\mathrm{N}} y_{1}^{\mathrm{N}} y_{1}^{\mathrm{N}}\right) \simeq 1^{\mathrm{N}}$. By Axiom 2 b and Rules 7 and 5 , we get $\vdash\left(\mathrm{Q}_{a\langle a t\rangle} y_{1}^{\mathrm{N}} y_{1}^{\mathrm{N}}\right) \simeq\left(q^{\mathrm{N}} y_{1}^{\mathrm{N}} y_{1}^{\mathrm{N}}\right)$ by Rule 1 . Analogously, from $\vdash\left(\mathrm{Q}_{a\langle a t\rangle} y_{2}^{\mathrm{N}} y_{1}^{\mathrm{N}}\right) \simeq 0^{\mathrm{N}}$ and $\vdash\left(q^{\mathrm{N}} y_{2}^{\mathrm{N}} y_{1}^{\mathrm{N}}\right) \simeq 0^{\mathrm{N}}$, it follows that $\vdash\left(\mathrm{Q}_{a\langle a t\rangle} y_{2}^{\mathrm{N}} y_{1}^{\mathrm{N}}\right) \simeq\left(q^{\mathrm{N}} y_{2}^{\mathrm{N}} y_{1}^{\mathrm{N}}\right)$ again by Rule 1 . In consequence we get, for each $i \in\{1, \ldots, m\}$,

$$
\vdash\left(\mathrm{Q}_{a\langle a t\rangle} y_{i}^{\mathrm{N}} y_{1}^{\mathrm{N}}\right) \simeq\left(q^{\mathrm{N}} y_{i}^{\mathrm{N}} y_{1}^{\mathrm{N}}\right) \stackrel{*}{\wedge} \ldots \stackrel{*}{\wedge}^{\left.\left(\mathrm{Q}_{a\langle a t\rangle} y_{i}^{\mathrm{N}} y_{m}^{\mathrm{N}}\right) \simeq\left(q^{\mathrm{N}} y_{i}^{\mathrm{N}} y_{m}^{\mathrm{N}}\right) .\right) .}
$$

by Rule 10. Thus, $\vdash \stackrel{*}{\forall} x_{a}\left(\left(\mathrm{Q}_{a\langle a t\rangle} y_{i}^{\mathrm{N}} x_{a}\right) \simeq\left(q^{\mathrm{N}} y_{i}^{\mathrm{N}} x_{a}\right)\right)$ by Proposition $9(7)$ and Rule 5 . Then, we get $\vdash\left(\mathrm{Q}_{a\langle a t\rangle} y_{i}^{\mathrm{N}}\right) \equiv\left(q^{\mathrm{N}} y_{i}^{\mathrm{N}}\right)$ by applying Rule 5 to an instance of Axiom 1c. By Theorem $17(2)$ and Rule $1, \vdash\left(\mathrm{Q}_{a\langle a t\rangle} y_{i}^{\mathrm{N}}\right) \equiv$ $\left(q y_{i}\right)^{\mathrm{N}}$ and it holds that $\vdash\left(q y_{i}\right)^{\mathrm{N}} \downarrow$ (Theorem 16). In consequence, we can apply Rules 2 and 5 to an instance of Axiom 4a obtaining $\vdash\left(\mathrm{Q}_{a\langle a t\rangle} y_{i}^{N}\right) \simeq$ $\left(q^{\mathrm{N}} y_{i}^{\mathrm{N}}\right)$. Because this holds for each $i \in\{1, \ldots, m\}$, we can conclude the desired $\vdash \mathrm{Q}_{a\langle a t\rangle} \simeq q^{\mathrm{N}}$.
3. Let α_{c} be a primitive constant U_{a}. In this case, $U_{a}^{(g)}=U_{a}$ by Definition 15 and $\left(\left[\left[U_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}=U_{a}$ by Definition 14. Thus, $\vdash U_{a}^{(g)} \simeq\left(\left[\left[U_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$ is an instance of Axiom 2a.
4. Let α_{c} be of the form $\gamma_{a b} \beta_{a}$. Firstly, we make the induction hypothesis that $\vdash \gamma_{a b}^{(g)} \simeq\left(\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$ and $\vdash \beta_{a}^{(g)} \simeq\left(\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$. Therefore, $\vdash \gamma_{a b}^{(g)} \beta_{a}^{(g)} \simeq\left(\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\left(\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$ and consequently

$$
\vdash \gamma_{a b}^{(g)} \beta_{a}^{(g)} \simeq\left(\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}\left(\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\right)\right)^{\mathrm{N}}
$$

by Theorem $17(2)$. Now, we must distinguish four possibilities:
(a) If $\left[\left[\gamma_{a b}^{(g)}\right]\right]^{\mathcal{M}, g}=*$, then $\left(\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}\left(\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\right)\right)^{\mathrm{N}}=U_{b}$ by Definition 13 , so $\vdash \gamma_{a b}^{(g)} \beta_{a}^{(g)} \simeq U_{b}$. Because $\gamma_{a b}^{(g)} \beta_{a}^{(g)}=\left(\gamma_{a b} \beta_{a}\right)^{(g)}$ by Definition 15, we obtain $\vdash\left(\gamma_{a b} \beta_{a}\right)^{(g)} \simeq U_{b}$ and hence $\vdash\left(\gamma_{a b} \beta_{a}\right)^{(g)} \simeq\left(\left[\left[\gamma_{a b} \beta_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$.
(b) If $\left[\left[\beta_{a}^{(g)}\right]\right]^{\mathcal{M}, g}=*$, then $\left(\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}\left(\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\right)\right)^{\mathrm{N}}=U_{b}$ by Definition 13 , so the argument in (4a) works here.
(c) If $\left[\left[\gamma_{a b}^{(g)}\right]\right]^{\mathcal{M}, g} \in \mathcal{D}_{a b}^{K},\left[\left[\beta_{a}^{(g)}\right]\right]^{\mathcal{M}, g} \in \mathcal{D}_{a}^{K}$, but $\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}$ is not defined at $\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}$, then $\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}\left(\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\right)=*$, so $\left(\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}\left(\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\right)\right)^{\mathrm{N}}=$ U_{b} by Definition 13. Thus, the argument in (4a) also works here.
(d) If $\left[\left[\gamma_{a b}^{(g)}\right]\right]^{\mathcal{M}, g} \in \mathcal{D}_{a b}^{K},\left[\left[\beta_{a}^{(g)}\right]\right]^{\mathcal{M}, g} \in \mathcal{D}_{a}^{K}$ and $\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g} \in \operatorname{Def}\left(\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}\right)$, then $\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}\left(\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\right) \in \mathcal{D}_{b}^{K}$. Clearly,

$$
\left[\left[\gamma_{a b}\right]\right]^{\mathcal{M}, g}\left(\left[\left[\beta_{a}\right]\right]^{\mathcal{M}, g}\right)=\left[\left[\gamma_{a b} \beta_{a}\right]\right]^{\mathcal{M}, g}
$$

Since $\gamma_{a b}^{(g)} \beta_{a}^{(g)}=\left(\gamma_{a b} \beta_{a}\right)^{(g)}$ by Definition 15, we conclude $\vdash\left(\gamma_{a b} \beta_{a}\right)^{(g)} \simeq$ $\left(\left[\left[\gamma_{a b} \beta_{a}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$, as desired.
5. Let α_{c} be $\lambda x_{a} \alpha_{b}$. We have to show that $\vdash\left(\lambda x_{a} \alpha_{b}\right)^{(g)} \simeq\left(\left[\left[\lambda x_{a} \alpha_{b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$, because $\left[\left[\lambda x_{a} \alpha_{b}\right]\right]^{\mathcal{M}, g} \in \mathcal{D}_{a b}^{K}$ for every assignment g.
Suppose that y_{1}, \ldots, y_{q} are all the distinct elements of \mathcal{D}_{a}^{K}. By induction hypothesis, we have $\vdash \alpha_{b}^{(g)} \simeq\left(\left[\left[\alpha_{b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$ for every assignment g.
Now, since $\vdash\left(y_{i}\right)^{\mathrm{N}} \downarrow$ (by Theorem 16), it follows that $\vdash\left(\lambda x_{a}\left(\alpha_{b}\right)^{\left(g_{\left\{x_{a}\right\}}\right)}\right)$ $y_{i}^{\mathrm{N}} \simeq\left(\mathrm{S}_{\left(y_{i}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{b}^{\left(g_{\left\{x_{a}\right\}}\right)}\right)$ by applying Rule 2 to Axiom 1d. Because $\left[\left[\mathrm{S}_{\left(y_{i}\right)^{\mathrm{N}}}^{x_{a}} \alpha_{b}\right]\right]^{\mathcal{M}, g}=\left[\left[\left(\lambda x_{a}\left(\alpha_{b}\right)\right]\right]^{\mathcal{M}, g}\left(y_{i}\right)\right.$ (Definition 10) and $\lambda x_{a}\left(\alpha_{b}\right)^{\left(g_{\left\{x_{a}\right\}}\right)}$ $=\left(\lambda x_{a} \alpha_{b}\right)^{(g)}$ (Definition 15), our induction hypothesis yields:

$$
\vdash\left(\lambda x_{a} \alpha_{b}\right)^{(g)} y_{i}^{\mathrm{N}} \simeq\left(\left[\left[\lambda x_{a} \alpha_{b}\right]\right]^{\mathcal{M}, g}\left(y_{i}\right)\right)^{\mathrm{N}}
$$

and hence

$$
\vdash\left(\lambda x_{a} \alpha_{b}\right)^{(g)} y_{i}^{\mathrm{N}} \simeq\left(\left[\left[\lambda x_{a} \alpha_{b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\left(y_{i}\right)^{\mathrm{N}}
$$

by Theorem $17(2)$. Thus, $\vdash \stackrel{*}{\forall} y_{a}\left(\left(\lambda x_{a} \alpha_{b}\right)^{(g)} y_{a} \simeq\left(\left[\left[\lambda x_{a} \alpha_{b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} y_{a}\right)$ by Rule 3 and hence $\vdash\left(\lambda x_{a} \alpha_{b}\right)^{(g)} \equiv\left(\left[\left[\lambda x_{a} \alpha_{b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$ by Rule 5 and Axiom 1c. Since $\vdash\left(\lambda x_{a} \alpha_{b}\right)^{(g)} \downarrow\left(\right.$ Axiom 8a) and $\vdash\left(\left[\left[\lambda x_{a} \alpha_{b}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \downarrow$ (Theorem 16), by Rules 2 and 5 and Axiom 4a, as desired.
6. Let α_{c} be $\alpha_{t} \simeq \beta_{t}$. By induction hypothesis, we have $\vdash \alpha_{t}^{(g)} \simeq\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$ and $\vdash \beta_{t}^{(g)} \simeq\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$. Take $\vdash\left(\alpha_{t}^{(g)} \simeq \beta_{t}^{(g)}\right) \simeq\left(\alpha_{t}^{(g)} \simeq \beta_{t}^{(g)}\right)$, which is an instance of Axiom 2a. Then, by applying Rule 1 twice, we get $\vdash\left(\alpha_{t}^{(g)} \simeq \beta_{t}^{(g)}\right) \simeq\left(\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \simeq\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\right)$ and consequently

$$
\vdash\left(\alpha_{t}^{(g)} \simeq \beta_{t}^{(g)}\right) \simeq\left(\left[\left[\alpha_{t} \simeq \beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}
$$

by Proposition 18 and Rule 1 again. Because $\left(\alpha_{t}^{(g)} \simeq \beta_{t}^{(g)}\right)=\left(\alpha_{t} \simeq \beta_{t}\right)^{(g)}$ by Definition 15 , we get $\vdash\left(\alpha_{t} \simeq \beta_{t}\right)^{(g)} \simeq\left(\left[\left[\alpha_{t} \simeq \beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$, as desired.
7. Let α_{c} be $\alpha_{t} \stackrel{*}{\vee} \beta_{t}$. By induction hypothesis, we have $\vdash \alpha_{t}^{(g)} \simeq\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$ and $\vdash \beta_{t}^{(g)} \simeq\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}$. Take $\vdash\left(\alpha_{t}^{(g)} \vee^{*} \beta_{t}^{(g)}\right) \simeq\left(\alpha_{t}^{(g)} \stackrel{*}{\vee}^{(g)} \beta_{t}^{(g)}\right)$, which is an instance of Axiom 2a. Then, by applying Rule 1 twice, we get $\vdash\left(\alpha_{t}^{(g)} \stackrel{*}{\vee}^{(g)}\right) \simeq\left(\left(\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}} \stackrel{*}{\vee}\left(\left[\left[\beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}\right)$ and consequently

$$
\vdash\left(\alpha_{t}^{(g)} \stackrel{*}{\vee} \beta_{t}^{(g)}\right) \simeq\left(\left[\left[\alpha_{t} \stackrel{*}{\vee} \beta_{t}\right]\right]^{\mathcal{M}, g}\right)^{\mathrm{N}}
$$

by Proposition 19 and Rule 1 again. Because $\left(\alpha_{t}^{(g)} \vee^{*} \beta_{t}^{(g)}\right)=\left(\alpha_{t} \stackrel{*}{\vee} \beta_{t}\right)^{(g)}$ by Definition 15 , we get $\vdash\left(\alpha_{t}{\left.\stackrel{*}{\vee} \beta_{t}\right)^{(g)} \simeq\left(\left[\left[\alpha_{t} \stackrel{*}{\vee} \beta_{t}\right]\right]^{\mathcal{M}}, g\right.}\right)^{\mathrm{N}}$, as desired.

Theorem 21. (Completeness) For every $\alpha_{t} \in \mathrm{ME}_{t}^{K}$, if $\models \alpha_{t}$, then $\vdash \alpha_{t}$.
Proof. If α_{t} is closed, $\alpha_{t}^{(g)}=\alpha_{t}$ by Definition 15 . Since α_{t} is valid, $\left[\left[\alpha_{t}\right]\right]^{\mathcal{M}, g}$ $=1$ for every assignment g, so Lemma 20 gives us $\vdash \alpha_{t} \simeq 1^{\mathrm{N}}$. Therefore, $\vdash \alpha_{t}$ by Rule 7 .

If α_{t} is not closed, the closure of α_{t} is a theorem of $\mathbf{P} \mathbf{T}_{K}$. Let $x_{a_{1}}, \ldots, x_{a_{n}}$ be all the variables occurring free in α_{t}. Then, $\left(\forall^{*} x_{a_{1}}, \ldots, x_{a_{n}} \alpha_{t}\right)^{(g)}=\stackrel{*}{\forall} x_{a_{1}}$, $\ldots, x_{a_{n}} \alpha_{t}$, so by the previous argument $\vdash\left({ }_{\forall}^{*} x_{a_{1}}, \ldots, x_{a_{n}} \alpha_{t}\right) \simeq 1^{\mathrm{N}}$. Hence, $\vdash \stackrel{*}{\forall} x_{a_{1}}, \ldots, x_{a_{n}} \alpha_{t}$ by Rule 7.

7. Conclusion

In this paper, we have defined a version of Henkin's Propositional Type Theory which is partial in a double sense. The hierarchy of propositional types contains partial functions and some meaningful expressions of the language, including formulas, may be undefined. This is a novelty with respect to Farmer's system (Andrew's Type Theory with undefinedess), because for him formulas must be always defined. Although Lepage's Partial Propositional Logic allows formulas to be undefined, his Type Theory lacks the Nameability theorem characterizing Henkin's original system and a construtive proof of completeness was not given.

For future work, we intend first to extend this framework to a Type Theory having a basic type for individuals. Secondly, we are interested in implementing our proof system in an automated theorem prover for higherorder logic, like Isabelle/HOL. Finally, a translation of this logic into manysorted logic could be explored. In the meantime, we hope to have shown that, as we said above, having partial functions and undefinedness at our disposal in a Type Theory provides high benefits at low cost.

Acknowledgements. We appreciate the insightful comments and remarks of two anonymous reviewers for this journal. V. Aranda and M. Manzano are supported by Project PID2022-142378NB-I00 funded by MICIU/AEI/10.13 039/501100011033 and by ERDF, EU. M. Martins was partially supported
by FCT within the project UIDB/04106/2020 (https://doi.org/10.54499/ UIDB/04106/2020).

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Andrews, P., A reduction of the axioms for the theory of propositional types, Fundamenta Mathematicae 52:345-350, 1963.
[2] Andrews, P., An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, Applied Logic Series, Kluwer Academic Publishers, Dordrecht, 2002.
[3] Andrews, P., A Bit of History Related to Logic Based on Equality, in M. Manzano, I. Sain, and E. Alonso, (eds.), 2014, pp. 67-71.
[4] Aranda, V., A. Huertas, M. Manzano, and M. Martins, On the philosophy and mathematics of Hybrid Partial Type Theory, Springer's "Outstanding Contributions to Logic" series, forthcoming.
[5] Benzmüller, C., et al. (eds.), Reasoning in Simple Type Theory: Festschrift in Honor of Peter B. Andrews on his 70th Birthday, College Publications, London, 2008.
[6] Blackburn, P., M. Martins, M. Manzano, and A. Huertas, Exorcising the phantom zone, Information and Computation 287:1-21, 2022.
[7] Correia, F., Weak Necessity on Weak Kleene Matrices, in F. Walter et al (eds.), 2002, pp. 73-90.
[8] Farmer, W.M., A partial functions version of Church's simple theory of types, The Journal of Symbolic Logic 55:1269-1291, 1990.
[9] Farmer, W.M., Andrews' Type System with Undefinedness, in C. Benzmüller et al (eds.), 2008, pp. 223-242.
[10] Farmer, W.M., Simple Type Theory: A Practical Logic for Expressing and Reasoning About Mathematical Ideas, Springer, Cham, 2023.
[11] Ferguson, T.M., Logics of nonsense and parry systems, Journal of Philosophical Logic 44:65-80, 2014.
[12] Henkin, L., A theory of propositional types, Fundamenta Mathematicae 52:323-344, 1963.
[13] Henkin, L., Identity as a logical primitive, Philosophia 5:31-45, 1975.
[14] Kleene, S.C., On notation for ordinal numbers, The Journal of Symbolic Logic 3:150155, 1938.
[15] Lapierre, S., A functional partial semantics for intensional logic, Notre Dame Journal of Formal Logic 33:517-541, 1992.
[16] Lepage, F., Partial functions in type theory, Notre Dame Journal of Formal Logic 33:493-516, 1992.
[17] Lepage, F., Partial Propositional Logic, in M. Marion and R. S. Cohen (eds.), 1995, pp. 23-39.
[18] Manzano, M., I. Sain, and E. Alonso (eds.), The Life and Work of Leon Henkin, Birkhauser, Heidelberg, 2014.
[19] Manzano, M., A. Huertas, P. Blackburn, M. Martins, and V. Aranda, Hybrid Partial Type Theory, The Journal of Symbolic Logic, 1-37. https://doi.org/10.1017/ jsl.2023.33.
[20] Marion, M. and R. S. Cohen (eds.), Québec Studies in the Philosophy of Science. Part I: Logic, Mathematics, Physics and History of Science. Essays in Honor of Hugues Leblanc, Kluwer Academic Publishers, Dordrecht, 1995.
[21] Walter, F., et al (eds.), Advances in Modal Logic 3, World Scientific Publishing Co., Singapore, 2002.
V. Aranda

Department of Logic and Theoretical Philosophy Complutense University of Madrid
Madrid
Spain
vicarand@ucm.es
M. Martins

Department of Mathematics
University of Aveiro
Aveiro
Portugal
martins@ua.pt
M. Manzano

Department of Philosophy, Logic and Aesthetics
University of Salamanca
Salamanca
Spain
mara@usal.es

[^0]: Special Issue: Strong and weak Kleene logics
 Edited by Gavin St. John and Francesco Paoli

[^1]: ${ }^{1}$ Of course, we could have taken Kleene's strong conjunction as primitive instead of disjunction, obtaining the same results.

[^2]: ${ }^{2}$ See Henkin [13] and [4,19].

[^3]: ${ }^{3}$ Although Lepage [16] refuses add a primitive constant "denoting" the undefined value, we believe that it is not possible to find a name for a function f such that $f(0)=1, f(1)=1$ and $f(*)=*$ (not even following the strategy of Table 3).

[^4]: ${ }^{4}$ See Definition 11.

