
V́ıctor Aranda

Manuel Martins

Maŕıa Manzano

Propositional Type Theory
of Indeterminacy

Abstract. The aim of this paper is to define a partial Propositional Type Theory. Our

system is partial in a double sense: the hierarchy of (propositional) types contains partial

functions and some expressions of the language, including formulas, may be undefined.

The specific interpretation we give to the undefined value is that of Kleene’s strong logic

of indeterminacy. We present a semantics for the new system and prove that every element

of any domain of the hierarchy has a name in the object language. Finally, we provide a

proof system and a (constructive) proof of completeness.

Keywords: Type theory, Partial logic, Three-valued logic, Kleene logic.

1. Introduction

The system of Propositional Type Theory (PT) was presented by Henkin
[12]. It is a version of Church’s Simple Type Theory where the set of truth-
values (Dt = {0, 1}) is the only basic type and any complex type (say, Dab)
is the set of total functions from Da to Db. Henkin gave a complete calculus
for this logic taking nothing but the abstractor λ and equality as primitive
symbols. In fact, the completeness proof is constructive, as it follows from
the fact that every element of any domain Da has a name in the object
language [12, pp. 328-29]. As Andrews pointed out, “the decidability of
Henkin’s axiomatic system for propositional types follows directly from the
results in his paper” [3, p. 68].

The idea of incorporating partiality into Church’s Type Theory is not new
in the literature. On the one hand, Farmer [8,9] has already defined a system
in which partial functions are in the hierarchy of types. He distinguishes
between kind e and kind t types. The former includes the type of individuals
as well as the functions from elements of any type to elements of kind e, while
the latter includes the type of truth values as well as the type of functions
from elements of any type to elements of kind t. “Expressions of kind e may
be non-denoting, but expressions of kind t must be denoting” [8, p. 1277].

Special Issue: Strong and weak Kleene logics

Edited by Gavin St. John and Francesco Paoli

Studia Logica
https://doi.org/10.1007/s11225-024-10099-0 c© The Author(s) 2024

http://orcid.org/0000-0003-3702-2003
http://crossmark.crossref.org/dialog/?doi=10.1007/s11225-024-10099-0&domain=pdf

V. Aranda et al.

On the other hand, Lepage [16] and Lapierre [15] worked on a Type
Theory where functions of any domain may be partial as a consequence of
the introduction of a third truth-value. In particular, Lepage [17] presented
a variation of Henkin’s logic containing 0, 1 and the undefined as the basic
type, so “the undefined becomes an object like the others and can thus be
a value and an argument of a function” [17, p. 29]. In Lepage’s system,
connectives behave like those of Kleene’s logic of indeterminacy [14, p. 153]:
a disjunction, e.g., is true if one of its members is true, false if both are false
and undefined otherwise.

However, neither a completeness proof nor a Nameability theorem is given
in [17]. “The unavoidable problem linked to this approach is the impossi-
bility of having a canonical name in the object language for every partial
function” [17, p. 37]. For this reason, in this paper we provide an alternative
to Lepage’s Type Theory in which the Nameability theorem can be proved
and completeness is obtained constructively. Since we keep Kleene’s strong
connectives, we call the new system Propositional Type Theory of Indeter-
minacy (PTK). The results we publish here are part of a broader research
interest in combining partiality and Type Theory [4,19]. We show that, in a
higher-order logic, the connectives borrowed from strong Kleene logics allow
us to reason about partial functions and indeterminacy in a natural way.

Our approach differs from Lepage’s in that we do not allow the undefined
to become an object like the others (more precisely, for any domain DK

a ,
∗ �∈ DK

a). Thus, the undefined value cannot be the argument of a function
and f(x) = ∗ is used to signal the undefinedness of f at certain input (x in
this case). The type of truth-values of PTK only contains 0 and 1, but any
complex type DK

ab is the set of partial functions from DK
a to DK

b . In order
to axiomatize such a hierarchy, we must take additional primitive symbols
beyond the language of PT: one constant for each type always “denoting”
∗, infinitely many symbols �a〈at〉 for weak equality (called “quasi-equality”)

and Kleene’s strong disjunction (
∗∨). We take disjunction from strong Kleene

logics rather than from weak ones, as we want to avoid contamination [7,
pp. 73-4], also called infectiousness [11, p. 67], staying as close to classical
logic as possible.

The paper is organized as follows. The syntax of PTK is defined in Sec-
tion 2.1 and the semantics is presented in Section 2.2. In Section 3, the Name-
ability theorem for this logic is stated and proved following Henkin’s strat-
egy. Section 4 provides a proof system for PTK , while some derived rules of
inference and useful metatheorems are proved in Section 5. Finally, in Sec-
tion 6, we give a constructive proof of completeness. We think, as Farmer

Propositional Type Theory of Indeterminacy

[10] does, that having partial functions and undefinedness at our disposal
in Type Theory provides high benefits at low cost, since the main compu-
tational properties of PT are preserved in PTK .

2. Propositional Type Theory of Indeterminacy

2.1. Syntax

The syntax of PTK is based on that of PT. Firstly, the set of type symbols
is exactly the same, as we also get rid of the type of individuals:

Definition 1. (Type Symbols) We inductively define the set TYPES of type
symbols as follows:

TYPES := t | 〈ab〉,
with a, b ∈ TYPES and writing ab instead of 〈ab〉 when no confusion arises
(a, b, c, . . . are syntactic variables ranging over type symbols).

Secondly, LPT contains parenthesis and the abstractor λ as improper
symbols, a denumerably infinite set of variables of type a for each a ∈ TYPES
(fa, ga, ha, xa, ya, za, . . .) and a logical constant Qa〈at〉 for each a ∈ TYPES.
In PTK , we keep all these symbols as primitive and define an extension of
LPT.

Definition 2. (Set of symbols of PTK) The set of symbols of PTK is
defined as follows:

LPTK
= LPT ∪ { ∗∨,

∗
∃} ∪

⋃
{Ua, �a〈at〉}a∈TYPES

Definition 2 can be simplified by Theorem 3 (see Corollary 4). We are
now ready to define, for each a ∈ TYPES, the set of meaningful expression
of type a (αa, βa, γa, . . . are syntactic variables ranging over expressions of
type a):

Definition 3. (Meaningful expressions of PTK) The set of meaningful
expressions, MEK , is defined as follows:

xa ∈ MEK
a | Qa〈at〉 ∈ MEK

a〈at〉 | Ua ∈ MEK
a | γabβa ∈ MEK

b | λxaαb ∈ MEK
ab |

�a〈at〉(αa, βa) ∈ MEK
t | {αt

∗∨ βt,
∗
∃xaαt} ∈ MEK

t

We easily see that the set of meaningful expressions of PT is a subset of
MEK . With regard to the specific expressions of PTK , Ua always “denote”
the undefined value in our semantics (for any type a), �a〈at〉(αa, βa) is true

V. Aranda et al.

iff αa and βa have the same denotation or both are non-denoting and
∗∨ and

∗
∃ are non-classical logical constants (see Definition 10).

Meaningful expressions of type t are called formulas and those containing
no free occurrence of a variable are called closed expressions. Closed formulas
are sentences. We also introduce some abbreviations to improve readability
(as Andrews does in [2, p. 212]):

• αa ≡ βa stands for (Qa〈at〉αa)βa.

• αa � βa stands for �a〈at〉 (αa, βa).

• 1N stands for λxtxt ≡ λxtxt (Henkin’s name for truth).

• 0N stands for λxtxt ≡ λxt1N (Henkin’s name for falsity).

• ¬αt stands for (λxt(0N ≡ xt))αt.

• αt

∗∧ βt stands for ¬(¬αt

∗∨ ¬βt).

• αt
∗→ βt stands for ¬αt

∗∨ βt.

• αa ↑ stands for αa � Ua and αa ↓ stands for ¬(αa ↑).

•
∗
∀xaαt stands for ¬(

∗
∃xa¬αt).

•
∗
∃!xaαt stands for

∗
∃xaαt

∗∧
∗
∀ya(Sxa

ya
αt

∗→ xa ≡ ya), where Sxa
ya

αt is the
result of replacing each free occurrence of xa in αt by ya (ya is the first
variable of type a not occurring in αt).

Before moving to the next section, let us consider a set of formulas
which correspond to formulas of the ordinary propositional logic (called
P -formulas). This set is useful for proving completeness (see Theorem 15)
and was isolated, for the same purposes, in [12, p. 335].

Definition 4. (P -formulas of PTK) We recursively define the set of P -
formulas as follows:

• 0N, 1N ∈ P .

• For any xt ∈ VARt, xt ∈ P .

• If ϕ ∈ P , then ¬ϕ ∈ P .

• If ϕ, ψ ∈ P , then ϕ
∗∨ ψ ∈ P and ϕ ≡ ψ ∈ P .

Clearly, no formula containing either Ut or � belongs to this set, because
we want it to resemble the propositional fragment of classical logic. In fact, in
the absence of the undefined value,

∗∨ behaves exactly as classical disjunction.

Propositional Type Theory of Indeterminacy

Table 1. The set of 9 partial functions in DK
tt

00
0 −→ 0

1 −→ 0
10

0 −→ 1

1 −→ 0
∗0 0 −→ ∗

1 −→ 0

01
0 −→ 0

1 −→ 1
11

0 −→ 1

1 −→ 1
∗1 0 −→ ∗

1 −→ 1

0∗ 0 −→ 0

1 −→ ∗ 1∗ 0 −→ 1

1 −→ ∗ ∗∗ 0 −→ ∗
1 −→ ∗

2.2. Semantics

Our partial semantics is based on a hierarchy of partial functions, so we
first define the notion of partial propositional type hierarchy as a collection
of non-empty domains satisfying the following conditions:

Definition 5. (Partial propositional type hierarchy) The partial proposi-
tional type hierarchy {DK

a }a∈TYPES is defined by:

1. DK
t = Dt = {0, 1}.

2. DK
ab is the set of partial functions from DK

a to DK
b .

For any ab ∈ TYPES, if f is a partial function in DK
ab not defined at x,

we write f(x) = ∗ (but ∗ �∈ DK
b for any b ∈ TYPES). We say that Def(f)

is the set Y ⊆ DK
a such that y ∈ Y iff f(y) �= ∗. This is usually called the

domain of definition of f .

Notice that for any a ∈ TYPES |Da| < |DK
a |. The reason is that the

number of partial functions from DK
a to DK

b is (|DK
b | + 1)|DK

a |. Table 1
describes the domain DK

tt , making evident the difference with Dtt (00, 01,
10 and 11 are the only ones also in Dtt).

It is important to remark that Kleene’s strong disjunction is not a func-
tion in a domain of our partial hierarchy, and this is why we took

∗∨ as a
primitive.1 Table 2 shows that classical disjunction is in Dt〈tt〉 and also that
Kleene’s can be found in the corresponding domain of Lepage’s partial Type
Theory [17, p. 33]. Although classical disjunction is a function in DK

t〈tt〉 (the
one sending 0 to 01 and 1 to 11), it is pretty obvious that Kleene’s cannot
be in DK

t〈tt〉. There is no f ∈ DK
tt sending 0, 1 and the undefined value to 1,

because in our approach ∗ cannot be the argument of f . In consequence,
∗∨

must be a logical constant that behaves like Kleene’s strong disjunction.

1Of course, we could have taken Kleene’s strong conjunction as primitive instead of
disjunction, obtaining the same results.

V. Aranda et al.

Table 2. A comparison between classical and Kleene’s disjunction as

functions of type t〈tt〉

Disjunction in Henkin Disjunction in Lepage

0 −→ 0 −→ 0

1 −→ 1
0 −→

0 −→ 0

1 −→ 1

∗ −→ ∗

1 −→ 0 −→ 1

1 −→ 1
1 −→

0 −→ 1

1 −→ 1

∗ −→ 1

∗ −→
0 −→ ∗
1 −→ 1

∗ −→ ∗

Table 2 also shows Lepage’s characterization of partial functions. Accord-
ing to him, the undefined value has a status inside the hierarchy [16, p. 494]
and, hence, functions from the set of truth-values are also defined for ∗. As
a result, a function f such that f(0) = 1, f(1) = 1 and f(∗) = 1 belongs to
Lepage’s system. However, in our opinion, his starting point was far from the
intuitive understanding of partiality and undefinedness. A partial function
from A to B is, simply stated, one that is defined for some arguments and
not for others, so it may be identified with a mapping from A to B ∪ {∗}.

Now, we define the key semantic notions of PTK .

Definition 6. (Interpretation function) The interpretation function J is
the (total) mapping

J :
⋃

a∈TYPES

{Qa〈at〉, Ua} −→
⋃

a∈TYPES

DK
a ∪ {∗}

such that

• J (Qa〈at〉) is the function q ∈ DK
a〈at〉 such that, for any x, y ∈ DK

a ,
q(x)(y) = 1 iff x = y and q(x)(y) = 0 otherwise. We say that q is the
identity2 of type a〈at〉.

• J (Ua) = ∗.

Definition 7. (PTK model) The structure, or model, for PTK is the pair

M = 〈{DK
a }a∈TYPES, J 〉,

2See Henkin [13] and [4,19].

Propositional Type Theory of Indeterminacy

where {DK
a }a∈TYPES is the partial propositional type hierarchy and J the

interpretation function.

Definition 8. (Assignment) An assignment g is a (total) function

g :
⋃

a∈TYPES

VARa −→
⋃

a∈TYPES

DK
a

such that g(xa) ∈ DK
a for any a ∈ TYPES.

An assignment g′ is a xa-variant of g if it coincides with g on all values
except, perhaps, the value assigned to xa ∈ VARa. We will use gxa

θ to denote
the xa-variant assignment g whose value for xa is θ.

Definition 9. (Interpretation) An interpretation for PTK is a pair 〈M, g〉,
where M is the structure for PTK and g is an assignment.

Definition 10. Let M be a structure such that ∗ �∈ DK
a for any a ∈ TYPES

and let g be any assignment on this structure. We recursively define, for
each αa ∈ MEK

a , an interpretation [[αa]]M,g of αa with respect to 〈M, g〉 as
follows:

1. [[xa]]M,g = g(xa).

2. [[Qa〈at〉]]M,g = J (Qa〈at〉).

3. [[Ua]]M,g = J (Ua).

4. [[λxaαb]]M,g = f , where f is the partial function in DK
ab such that, for

each θ ∈ DK
a , f(θ) = [[αb]]M,gxa

θ . Thus,

Def(f) = {θ ∈ DK
a | [[αb]]M,gxa

θ �= ∗}, which may be ∅.

5.

[[γabβa]]M,g =

⎧
⎪⎨

⎪⎩

[[γab]]M,g([[βa]]M,g), if [[γab]]M,g �= ∗, [[βa]]M,g �= ∗ and
[[γab]]M,g is defined at [[βa]]M,g;

∗, otherwise.

6.

[[αa � βa]]M,g =

⎧
⎪⎨

⎪⎩

1, if [[αa]]M,g = [[βa]]M,g = ∗ or both are �= ∗
and [[αa]]M,g = [[βa]]M,g;

0, if [[αa]]M,g �= [[βa]]M,g.

V. Aranda et al.

7.

[[αt

∗∨ βt]]M,g =

⎧
⎪⎨

⎪⎩

1, if [[αt]]M,g = 1 or [[βt]]M,g = 1;
0, if [[αt]]M,g = 0 and [[βt]]M,g = 0;
∗, otherwise.

8.

[[
∗
∃xaαt]]M,g =

⎧
⎪⎨

⎪⎩

1, if there is some x ∈ DK
a s.t. [[λxaαt]]M,g(x) = 1;

0, if for all x ∈ DK
a it holds that [[λxaαt]]M,g(x) = 0;

∗, otherwise.

Notice that from Definition 10 it follows that, for each αa ∈ MEK
a ,

[[αa]]M,g ∈ DK
a or [[αa]]M,g = ∗.

Observe that, according to the corresponding abbreviations and Defini-
tion 10(5), negation behaves as expected (classically for 0 and 1, yielding ∗
for an undefined argument). Taking Definition 10(7) and negation, we easily
see that a conjunction is true iff both conjuncts are true, false whenever one
of them is false and undefined in any other case. Finally, by Definition 10(8),
we have:

[[
∗
∃!xaαt]]M,g =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if there is a unique x ∈ DK
a s.t [[λxaαt]]M,g(x) = 1;

0, if [[
∗
∃xaαt]]M,g = 0 or there are x, y ∈ DK

a s.t
x �= y, [[λxaαt]]M,g(x) = 1 and [[λxaαt]]M,g(y) = 1;

∗, otherwise.

With regard to the concept of validity, Lepage [17, p. 34] introduced
two notions of validity: being different from 0 for every assignment (weak
validity) and being equal to 1 for every assignment. Since we do not want
Ut to be valid, we restrict ourselves to the latter.

Definition 11. (Validity) For any αt ∈ MEK
t , αt is valid iff, for every

assignment g, [[At]]M,g = 1, written |= At. If αt is valid and αt ∈ P , we say
that αt is a tautology.

3. The Nameability Theorem

The Nameability theorem states the possibility of finding, for every ele-
ment of any domain of the hierarchy, a closed expression in the object lan-
guage whose interpretation is that particular element. To prove this result

Propositional Type Theory of Indeterminacy

for PTK , we will follow Henkin’s strategy in [12, 328–329]. The first step
towards the Nameability theorem is to define an election function for each
type, as follows (this function is marked in bold):

Definition 12. For any a ∈ TYPES, let ta be a function in DK
〈at〉a such

that, for any f ∈ DK
at, t

a(f) is the unique x ∈ DK
a for which f(x) = 1 or

ta(f) = ∗ if there is no such an x or if there are more than one.

Then, the next step is to show that it is possible to find a name (a closed
expression of the corresponding type) for each of these election functions
(see Lemma 1). After this, the desired result is obtained for any a ∈ TYPES
and every element in DK

a (Theorem 2), so let us start by proving the Lemma.

Lemma 1. For every a ∈ TYPES, there exists a closed expression ι〈at〉a such
that [[ι〈at〉a]]M,g = ta.

Proof. The proof is by induction.

1. Base case: DK
t . By definition of tt:

• tt(01) = tt(∗1) = 1,
• tt(10) = tt(1∗) = 0,
• tt(11) = tt(∗∗) = tt(∗0) = tt(0∗) = tt(00) = ∗.

We want to prove that [[ι〈tt〉t]]M,g = tt, where ι〈tt〉t :=

λftt((Ut

∗∨ (ftt ≡ λxtxt)
∗∨ (ftt ≡ λxt(xt

∗∨ Ut)))
∗∧ ¬(ftt ≡ (λxt(0N ≡ xt)))

∗∧¬(ftt ≡ (λxt(¬xt

∗∨ Ut)))).

We see that [[λftt(ftt ≡ λxtxt)]]M,g(01) = 1 and hence [[λftt(Ut

∗∨(ftt ≡
λxtxt)

∗∨(ftt ≡ λxt(xt

∗∨Ut)))]]M,g(01) = 1. Since [[λftt¬(ftt ≡ (λxt(0N ≡
xt)))]]M,g(01) = 1 and [[λftt¬(ftt ≡ (λxt(¬xt

∗∨ Ut)))]]M,g(01) = 1, it
follows that [[ι〈tt〉t]]M,g(01) = 1. The same argument works analogously

for ∗1, as [[λftt(ftt ≡ λxt(xt

∗∨Ut))]]M,g(∗1) = 1, so [[ι〈tt〉t]]M,g(∗1) = 1.
We can also check that [[λftt¬(ftt ≡ (λxt(0N ≡ xt)))]]M,g(10) = 0 and
[[λftt¬(ftt ≡ (λxt(¬xt

∗∨Ut)))]]M,g(1∗) = 0, which is enough to conclude
that [[ι〈tt〉t]]M,g(10) = 0 and [[ι〈tt〉t]]M,g(1∗) = 0.

Finally, [[λftt(Ut

∗∨ (ftt ≡ λxtxt)
∗∨ (ftt ≡ λxt(xt

∗∨ Ut)))]]M,g(11) = ∗,
[[λftt¬(ftt ≡ (λxt(0N ≡ xt)))]]M,g(11) = 1 and [[λftt¬(ftt ≡ (λxt(¬xt

∗∨
Ut)))]]M,g(11) = 1. Hence, [[ι〈tt〉t]]M,g(11) = ∗. The same argument

V. Aranda et al.

works analogously for ∗∗, ∗0, 0∗ and 00, so:

[[ι〈tt〉t]]M,g(∗∗) = [[ι〈tt〉t]]M,g(∗0) = [[ι〈tt〉t]]M,g(0∗)

= [[ι〈tt〉t]]M,g(00) = ∗.

Therefore, [[ι〈tt〉t]]M,g = tt.

2. Inductive step: DK
ab. By induction hypothesis, we assume that ι〈bt〉b and

ιxbαt have been defined and have the desired properties (ιxbαt stands
for ι〈bt〉b(λxbαt)). Fix ι〈〈ab〉t〉ab :=

λf〈ab〉t(λxa(ιyb(
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓) ∗→
(zabxa ≡ yb))))).

We must show that [[ι〈〈ab〉t〉ab]]M,g = tab. Let h ∈ DK
〈ab〉t. There are five

possibilities:

(a) h is a function such that there is exactly one x ∈ DK
ab, say d, such that

h(d) = 1. Let g be an assignment such that g(f〈ab〉t) = h and take

[[
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓)
∗→ (zabxa ≡ yb)))]]M,g.

We see immediately that [[
∗
∃!zab(f〈ab〉tzab))]]M,g = 1. Let g(zab) �= d.

Then, [[f〈ab〉tzab

∗∧f〈ab〉tzab ↓]]M,g = 0, because [[f〈ab〉tzab]]M,g = ∗ (and

hence [[f〈ab〉tzab ↓]]M,g = 0) or [[f〈ab〉tzab]]M,g = 0. Thus, [[(f〈ab〉tzab

∗∧
f〈ab〉tzab ↓) ∗→ (zabxa ≡ yb))]]M,g = 1 in that case. Now, if g(zab) =

d, [[f〈ab〉tzab

∗∧ f〈ab〉tzab ↓]]M,g = 1. Since [[(zabxa ≡ yb]]M,g is 1 iff

g(yb) = d(g(xa)), it holds that [[(f〈ab〉tzab

∗∧ f〈ab〉tzab ↓) ∗→ (zabxa ≡
yb))]]M,g = 1 iff g(yb) = d(g(xa)), what also works for [[

∗
∀zab((f〈ab〉tzab

∗∧
f〈ab〉tzab ↓) ∗→ (zabxa ≡ yb)))]]M,g. Thus:

[[ιyb(
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓) ∗→
(zabxa ≡ yb))))]]M,g = d(g(xa))

and consequently [[ι〈〈ab〉t〉ab]]M,g(h) = d for this h.
(b) h is a total function in DK

〈ab〉t with constant value 0. Let g be an assign-
ment such that g(f〈ab〉t) = h and take

Propositional Type Theory of Indeterminacy

[[
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓)
∗→ (zabxa ≡ yb)))]]M,g.

Clearly, [[
∗
∃!zab(f〈ab〉tzab))]]M,g = 0 and hence [[λyb(

∗
∃zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧f〈ab〉tzab ↓) ∗→ (zabxa ≡ yb))]]M,g is the function in DK
bt

with constant value 0. Therefore:

[[ιyb(
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓)
∗→ (zabxa ≡ yb))))]]M,g = ∗,

and consequently [[ι〈〈ab〉t〉ab]]M,g(h) = ∗ for this h.

(c) h is a function in DK
〈ab〉t such that h(u) = 1 and h(s) = 1, with u, s ∈ DK

ab

and u �= s. Let g(f〈ab〉t) = h and take

[[
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓)
∗→ (zabxa ≡ yb)))]]M,g.

We see again that [[
∗
∃!zab(f〈ab〉tzab))]]M,g = 0, so the argument in (b)

works here. Thus:

[[ιyb(
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓)
∗→ (zabxa ≡ yb))))]]M,g = ∗,

and consequently [[ι〈〈ab〉t〉ab]]M,g(h) = ∗ for this h.

(d) h is the function in DK
〈ab〉t such that Def(h) = ∅ (empty function). Let

g(f〈ab〉t) = h and take

[[
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓)
∗→ (zabxa ≡ yb)))]]M,g.

In this case, [[
∗
∃!zab(f〈ab〉tzab))]]M,g = ∗. On the other hand, we know

that [[f〈ab〉tzab

∗∧ f〈ab〉tzab ↓]]M,g = 0, because [[f〈ab〉tzab ↓]]M,g = 0.

Thus, [[
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓) ∗→ (zabxa ≡ yb))]]M,g = 1, and

hence [[λyb(
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓) ∗→ (zabxa ≡

V. Aranda et al.

yb)))]]M,g is the empty function in DK
bt . Therefore:

[[ιyb(
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓)
∗→ (zabxa ≡ yb))))]]M,g = ∗,

and consequently [[ι〈〈ab〉t〉ab]]M,g(h) = ∗ for this h.

(e) h is the proper partial function from DK
ab to DK

t such that, for every
x ∈ DK

ab, if x ∈ Def(h), then h(x) = 0. Let g(f〈ab〉t) = h and take

[[
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓)
∗→ (zabxa ≡ yb)))]]M,g.

Obviously, [[
∗
∃!zab(f〈ab〉tzab)]]M,g = ∗. Now, notice that [[(f〈ab〉tzab

∗∧
f〈ab〉tzab ↓)]]M,g is 0 in case [[f〈ab〉tzab]]M,g = 0, as well as in case

[[f〈ab〉tzab]]M,g = ∗. Thus, [[
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓) ∗→ (zabxa ≡
yb))]]M,g = 1, so the argument in (d) also works here. Hence:

[[ιyb(
∗
∃!zab(f〈ab〉tzab)

∗∧
∗
∀zab((f〈ab〉tzab

∗∧ f〈ab〉tzab ↓)
∗→ (zabxa ≡ yb))))]]M,g = ∗,

and consequently [[ι〈〈ab〉t〉ab]]M,g(h) = ∗ for this h.

Thus, we showed that [[ι〈〈ab〉t〉ab]]M,g(h) = tab(h) for every h ∈ DK
〈ab〉t,

so [[ι〈〈ab〉t〉ab]]M,g = tab, as claimed.

Now, before generalizing this result to each element of every domain
of our partial propositional type hierarchy, let us introduce the following
convention concerning our primitive constants for the undefined (see also
Definition 5):

Definition 13. For any ab ∈ TYPES, if f ∈ DK
ab, x ∈ DK

a and x �∈ Def(f),
then we define (f(x))N as Ub.

Thus, we are now ready to prove the theorem for PTK .

Theorem 2. (Nameability Theorem) For any a ∈ TYPES and each x ∈ DK
a ,

there exists a closed formula xN of type a such that [[xN]]M,g = x.

Proof. The proof is by induction.

Propositional Type Theory of Indeterminacy

1. Base case: DK
t . Clearly, [[λxtxt ≡ λxtxt]]M,g = 1, so 1N := λxtxt ≡

λxtxt. In addition to this, [[λxtxt ≡ λxt1N]]M,g = 0, so 0N := λxtxt ≡
λxt1N.

2. Inductive step: DK
ab. Suppose that y1, . . . , yq are distinct and are all the

elements of DK
a . By induction hypothesis, we assume that to every x of

DK
a and of DK

b we have already assigned a name. Let f be any function
in DK

ab. Take fN :=

λxa(ιzb((xa ≡ yN
1)

∗∧ (zb ≡ (f(y1))N)
∗∨ . . .

∗∨ ((xa ≡ yN
q)

∗∧ (zb ≡ (f(yq))N)))

and consider an assignment g such that g(xa) = yi. Since [[xa ≡ yN
j]]M,g

�= ∗ for every j ∈ {1, . . . , q}, [[xa ≡ yN
j]]M,g will be 1 or 0 according as

{i = j} or i �= j. It follows that, for any i �= j, [[(xa ≡ yN
j)

∗∧ (zb ≡
(f(yj))N)]]M,g = 0. Now, there are two possibilities:

(a) f is defined at yi. In this case,

[[((xa ≡ yN
1)

∗∧ (zb ≡ (f(y1))N)
∗∨ . . .

∗∨ ((xa ≡ yN
q)

∗∧ (zb ≡ (f(yq))N))]]M,g

= 1 iff g(zb) = f(yi) and consequently

[[ιzb((xa ≡ yN
1)

∗∧ (zb ≡ (f(y1))N)
∗∨ . . .

∗∨ ((xa ≡ yN
q)

∗∧ (zb ≡ (f(yq))N)))]]M,g

= f(yi).
(b) f(yi) = ∗. In this case,

[[((xa ≡ yN
1)

∗∧ (zb ≡ (f(y1))N)
∗∨ . . .

∗∨ ((xa ≡ yN
q)

∗∧ (zb ≡ (f(yq))N))]]M,g = ∗,

for [[xa ≡ yN
i]]M,g = 1 and [[zb ≡ (f(yi))N]]M,g = ∗ (independently

of g(zb)), so [[(xa ≡ yN
1)

∗∧ (zb ≡ (f(y1))N)]]M,g = ∗. Thus, we know
that [[(λzb((xa ≡ yN

1)
∗∧ (zb ≡ (f(y1))N)

∗∨ . . .
∗∨ ((xa ≡ yN

q)
∗∧ (zb ≡

(f(yq))N)))]]M,g is the empty function in DK
bt . Hence:

[[ιzb((xa≡yN
1)

∗∧ (zb≡(f(y1))N)
∗∨ . . .

∗∨ ((xa≡yN
q)

∗∧ (zb≡(f(yq))N)))]]M,g = ∗.

Therefore, [[fN]]M,g(yi) = f(yi) iff f is defined at yi and [[fN]]M,g(yi) =
∗ otherwise. Since this fact holds for each i={1, . . . , q}, we get [[fN]]M,g

= f , as claimed.

V. Aranda et al.

Table 3. The names of all the functions in DK
tt

00 λxt0
N 10 λxt(0

N ≡ xt) ∗0 λxt(¬xt

∗∧ Ut)

01 λxtxt 11 λxt1
N ∗1 λxt(xt

∗∨ Ut)

0∗ λxt(xt

∗∧ Ut) 1∗ λxt(¬xt

∗∨ Ut) ∗∗ λxtUt

Table 3 illustrates the simplest closed expressions of type tt corresponding
to each function in DK

tt .3

Once the Nameability theorem has been stated, we explore its conse-
quences to show how the set of primitive symbols of PTK can be simplified
(Definition 2). In the present (finitary) context, existential statements can

be equivalently re-written as disjunctions, i.e.
∗
∃ can be defined in terms of

∗∨. This is stated in the following theorem:

Theorem 3. Let y1, . . . , yq be a list of all the distinct elements of DK
a

and consider αt ∈ MEK
t . Let Sxa

(yi)N
αt be the result of replacing each free

occurrence of xa in αt by (yi)N. Then, [[
∗
∃xaαt]]M,g = [[Sxa

(y1)N
αt

∗∨ . . .
∗∨

Sxa

(yq)N
αt]]M,g.

Proof.

1. Suppose that [[
∗
∃xaαt]]M,g = 1. We have to show that [[Sxa

(y1)N
αt

∗∨ . . .
∗∨

Sxa

(yq)N
αt]]M,g = 1. By Definition 10(8), it follows that there is a j ∈

{1, ..., q} such that [[λxaαt]]M,g(yj) = 1. Thus, [[Sxa

(yj)N
αt]] = 1, what is

enough to conclude that [[Sxa

(y1)N
αt

∗∨ . . .
∗∨ Sxa

(yq)N
αt]]M,g = 1.

2. Suppose that [[
∗
∃xaαt]]M,g = 0. We have to show that [[Sxa

(y1)N
αt

∗∨
. . .

∗∨ Sxa

(yq)N
αt]]M,g = 0. By Definition 10(8), it follows that, for every

k ∈ {1, ..., q}, [[λxaαt]]M,g(yk) = 0 and hence [[Sxa

(yk)N
αt]] = 0. Thus,

[[Sxa

(y1)N
αt

∗∨ . . .
∗∨ Sxa

(yq)N
αt]]M,g = 0.

3Although Lepage [16] refuses add a primitive constant “denoting” the undefined value,
we believe that it is not possible to find a name for a function f such that f(0) = 1, f(1) = 1
and f(∗) = ∗ (not even following the strategy of Table 3).

Propositional Type Theory of Indeterminacy

3. Suppose that [[
∗
∃xaαt]]M,g = ∗. We have to show that [[Sxa

(y1)N
αt

∗∨
. . .

∗∨ Sxa

(yq)N
αt]]M,g = ∗. By Definition 10(8), it follows that, for ev-

ery k ∈ {1, . . . , q}, [[λxaαt]]M,g(yk) �= 1 and hence [[Sxa

(yk)N
αt]] �= 1.

We also know that there exists at least a j ∈ {1, . . . , q} such that
[[λxaαt]]M,g(yj) = ∗, so [[Sxa

(yj)N
αt]] = ∗. Therefore, [[Sxa

(y1)N
αt

∗∨ . . .
∗∨

Sxa

(yq)N
αt]]M,g = ∗, as required.

Corollary 4. The set of symbols of PTK is simplified to

LPTK
= LPT ∪ { ∗∨} ∪

⋃
{Ua, �a〈at〉}a∈TYPES

Finally, let us introduce two more Definitions which depend essentially on
Theorem 2 and which play a very important role in proving both Theorem
17 and Lemma 20:

Definition 14. For any a ∈ TYPES, if αa ∈ MEK
a and [[αa]]M,g = ∗, then

we define ([[αt]]M,g)N as Ut.

Next we define a uniform way of replacing free variables in αc by the
name of their denotations (in a way analogous to Henkin) without changing
the meaning of function abstractions (where variables may occur bound).

Definition 15. Let αc ∈ MEK
c and let g be an assignment. Take V ⊂⋃

a∈TYPES

VARa.

We define α
(gV)
c as follows:

•

x(gV)
a =

{
xa, if xa ∈ V ;
(g(xa))N, if xa �∈ V.

• Q
(gV)
a〈at〉 = Qa〈at〉

• U
(gV)
a = Ua

• (γabβa)(gV) = γ
(gV)
ab β

(gV)
a

• (λxaαb)(gV) = λxa(αb)(gV ∪{xa})

• (αa � βa)(gV) = α
(gV)
a � β

(gV)
a

• (αa

∗∨ βa)(gV) = α
(gV)
a

∗∨ β
(gV)
a

We will use α
(g)
c to denote α

(g∅)
c .

V. Aranda et al.

4. Proof System

In this section, we present the proof system of PTK , which finds its inspi-
ration in Henkin [12], Farmer [9], Blackburn et al. [6] and Manzano et al .
[19]. Let y1, . . . , yq be a list of all the distinct elements of DK

a . The axioms
and axiom schemes of PTK are the following:

1. Partial propositional types:

a. � (αt ≡ 1N) � αt.

b. � (gtt1N
∗∧ gtt0N) �

∗
∀xt(gttxt).

c. � (fab ≡ gab) �
∗
∀xa(fabxa � gabxa).

d. � βa ↓ ∗→ ((λxaαb)βa � (Sxa

βa
αb)), provided βa is free for xa in αb.

2. Quasi-equality :

a. � αa � αa.
b. � (αa � βa) � (βa � αa).
c. � ((αa � βa) � (βa � γa)) � (αa � γa).

3. Truth-table of �:

a. � (1N � 0N) � 0N.
b. � (1N � Ut) � 0N.
c. � (0N � Ut) � 0N.

4. Equality and quasi-equality :

a. � αa ↓ ∗→ (βa ↓ ∗→ ((αa � βa) � (αa ≡ βa))).

5. Negation:

a. � (αt � 1N) � (¬αt � 0N).
b. � (αt � 0N) � (¬αt � 1N).
c. � (αt � Ut) � (¬αt � Ut).
d. � ¬¬αt � αt.

6. Commutative property :

a. � (αa

∗∨ βa) � (βa

∗∨ αa).
b. � (αa

∗∧ βa) � (βa

∗∧ αa).

7. Truth-table of
∗∨:

a. � (αt

∗∨ 1N) � 1N.
b. � (0N

∗∨ 0N) � 0N.
c. � (Ut

∗∨ 0N) � Ut.

Propositional Type Theory of Indeterminacy

d. � (Ut

∗∨ Ut) � Ut.
e. � (α

∗∧ β) � ¬(¬α
∗∨ ¬β)

8. Definedness:

a. � ca ↓, for any primitive constant ca �= Ua.
b. � λxaαb ↓.
c. � αt ↓, for any αt ∈ P (see Definition 4).

9. Quantification:

a. �
∗
∃xaαt � (Sxa

(y1)N
αt

∗∨ . . .
∗∨ Sxa

(yq)N
αt).

b. �
∗
∀xaαt � ¬

∗
∃xa¬αt.

c. � (
∗
∀xaαt � 1N) ∗→ (λya1N ≡ λxaαt).

10. Definite descriptions and definedness:

a. � βa ↓ ∗→ (ιxa(xa ≡ βa) ↓).
b. � (ιxaαt ↓) ∗→ (λxaαt)(ιxaαt) ≡ 1N.
c. � βa ↑ ∗→ (ιxa(xa ≡ βa) ↑).

The rules of inference of PTK are quite standard. The Rule of Replace-
ment differs from that of Henkin [12, p. 330] and was taken from Farmer [9]
(he called it “Quasi-Equality Substitution”):

1. Rule of Replacement : If � αa � βa and � γt, then � δt, where δt is the
result of replacing one occurrence of αa in γt by an occurrence of βa,
provided that the occurrence of αa in γt is not immediately preceded
by λ or in a meaningful part λxbεc of γt where xb ∈ FreeV ar(αa �
βa).

2. Modus Ponens: If � αt and � αt
∗→ βt, then � βt.

3. ∀-Generalization: If � αt, then �
∗
∀xaαt.

4. ∃-Generalization: If � Sxa

βa
αt and � βa ↓, then �

∗
∃xaαt.

5. ↓-Generalization: If � αt, then � αt ↓.

Definition 16. (Proof) For any αt ∈ MEK
t , a proof of αt in PTK is a finite

sequence of formulas, ending with αt such that each member in the sequence
is an axiom or an instance of an axiom schema of PTK or is inferred from
preceding formulas in the sequence by a rule of inference of PTK . A theorem
of PTK is a formula for which there is a proof in PTK , written � αt.

V. Aranda et al.

5. Some Metatheorems

5.1. Derived Rules of Inference

Now, we introduce some derived rules of inference that can be easily obtained
from our proof system. These rules are used to state the results of Sects. 5.2
and 6 and the proofs are based on those of [1,2,9,12]. Propositions 5, 6, 7
and 8 are called Rules 5, 6, 7 and 8, respectively.

Proposition 5. If � αt and � αt � βt, then � βt.

Proof. Suppose that � αt and � αt � βt. Immediate by Rule 1.

Proposition 6. � αt iff � αt ≡ 1N.

Proof. We prove both sides of the implication.

(⇒) Suppose that � αt. We know that � (αt ≡ 1N) � αt (Axiom 1a). By
Rule 5, we obtain � αt ≡ 1N.

(⇐) Suppose that � αt ≡ 1N. We know that � (αt ≡ 1N) � αt (Axiom 1a).
By Rule 5, we get � αt.

Proposition 7. � αt iff � αt � 1N.

Proof. We prove both sides of the implication.

(⇒) Suppose that � αt. By applying Rule 6, � αt ≡ 1N, as well as � αt ↓
by Rule V and � 1N ↓ by 8c. Thus, we get � αt � 1N by Axioms 4a, 2b
and Rules II and 5.

(⇐) Suppose that � αt � 1N. We know that � 1N � 1N by Axioms 2a.
Since � 1N ↓ is an instance of Axiom 8c, we get � 1N ≡ 1N by Axiom 4a
and II. Thus, � 1N by Rule 6 and hence � αt by the assumption, Axiom
2b and Rule 5.

Proposition 8. If � ¬βt and � αt � βt, then � ¬αt.

Proof. Suppose that � ¬βt and � αt � βt. Then, � ¬βt � 1N by Rule
7, so � βt � 0N by Rules 5 and 1 and Axioms 5a and 5d. It follows that
� αt � 0N by Rule 1 again and hence � ¬αt � 1N by Rule 5 and Axiom 5b.
In consequence, � ¬αt by Rule 7.

Proposition 9. The following formulas are theorems of PTK :

Propositional Type Theory of Indeterminacy

1. � Ut ↑.
2. � Ut � ¬Ut.

3. � (αt

∗∧ 0N) � 0N.

4. � (1N
∗∧ 1N) � 1N.

5. � (Ut

∗∧ 1N) � Ut.

6. � (Ut

∗∧ Ut) � Ut.

7. �
∗
∀xaαt � (Sxa

(y1)N
αt

∗∧ . . .
∗∧ Sxa

(yq)N
αt).

Proof.

1. � Ut � Ut is an instance of Axiom 2a. By the definition of ↑, it follows
that � Ut ↑.

2. Again, � Ut � Ut is an instance of Axiom 2a. By Rule 5 and Axiom 5c,
we get � ¬Ut � Ut, so � Ut � ¬Ut by Axiom 2b and Rule 5 again.

3. Take �(¬αt

∗∨ 1N) � 1N, which is an instance of Axiom 7a. Then, �
¬(¬αt

∗∨ 1N) � 0N by Rule 5 and Axiom 5a. Finally, by Axiom 7e and
Rule 1, we obtain � (αt

∗∧ 0N) � 0N.

4. Immediate by Axioms 7b, 5b and 7e and Rules 5 and 1.

5. Immediate by Axioms 7c, 5c and 7e and Rules 5 and 1.

6. Immediate by Axioms 7d, 5c and 7e, Proposition 9(2) and Rules 5 and
1.

7. Consider �
∗
∀xaαt � ¬

∗
∃xa¬αt (Axiom 9b). Then, by Axiom 9a and Rule

1, it follows that �
∗
∀xaαt � ¬(Sxa

(y1)N
¬αt

∗∨ . . .
∗∨ Sxa

(yq)N
¬αt), and hence

�
∗
∀xaαt � (Sxa

(y1)N
αt

∗∧ . . .
∗∧ Sxa

(yq)N
αt) by Axiom 7e and Rule 1.

Proposition 10. (Rule of Conjunction)
If � αt and � βt, then � αt

∗∧ βt.

Proof. Suppose that � αt and � βt. Then, we obtain � αt � 1N and
� βt � 1N by Rule 6. Take � (αt

∗∧ βt) � (αt

∗∧ βt), which is an instance of
Axiom 2a. By Rule 1, we get � (αt

∗∧βt) � (1N
∗∧ 1N). Since � (1N

∗∧ 1N) � 1N

(Proposition 9(4)), it follows that � (αt

∗∧ βt) � 1N again by Rule 1. Thus,
� αt

∗∧ βt by Rule 7.

V. Aranda et al.

Proposition 11. (Rule of Universal Instantiation) If �
∗
∀xaβt, then � γt,

where γt is the result of replacing all free occurrences of xa in βt by some
formula αa such that � αa ↓, provided that the occurrence of xa in βt is
not in a meaningful part of βt beginning with the symbols λyc where yc ∈
FreeV ar(αa).

Proof. Suppose that xa, βt, αa and γt are so related and �
∗
∀xaβt. Then,

�
∗
∀xaβt � 1N by Rule 7 and hence � λya1N ≡ λxaβt by applying Rule

2 to �
∗
∀xaβt � 1N and Axiom 9c. Since � λya1N ↓ (Axiom 8b), we get

� λya1N � λxaβt by Rules 2 and 5 and Axiom 4a. Take � (λxaβt)αa �
(λxaβt)αa, which is an instance of Axiom 2a (where � αa ↓). It follows that
� (λxaβt)αa � (λya1N)αa by Rule 1. Thus, � ((λya1N)αa) � 1N by applying
Rule 2 to an instance of Axiom 1d and hence � (λxaβt)αa � 1N by Rule
1. Then, � (λxaβt)αa by Rule 7. Because � (λxaβt)αa � γt (which results
from applying Rule 2 to an instance of Axiom 1d), we can conclude � γt by
Rule 5.

Proposition 12. (Rule of Substitution for Free Variables) If βt, xa, αa

and γt are related as in the hypothesis of Rule 11, and if � βt and � αa ↓,
then � γt.

Proof. Immediate by Rules 3 and 11.

Proposition 13. (Rule of Propositional Cases) Let αt ∈ MEK
t and xt ∈

VARt. If α′
t and α′′

t are obtained by replacing all free occurrences of xt in αt

by 1N and 0N respectively, and if � α′
t and � α′′

t , then also � αt, provided
that � αt ↓.
Proof. Suppose that αt, xt, α′

t and α′′
t are so related, and � α′

t and � α′′
t .

By Rule 5, � α′
t ↓ and � α′′

t ↓, so by applying Rule 2 to instances of Axiom
1d, we also get � (λxtαt)1N � α′

t and � (λxtαt)0N � α′′
t . Hence, � (λxtαt)1N

and � (λxtαt)0N by Rule 5 and � (λxtαt)1N
∗∧ (λxtαt)0N by Rule 10. Take

� ((λxaαt)1N
∗∧ (λxtαt)0N) �

∗
∀xt((λxaαt)xt),

which is the result of applying Rule 12 to Axiom 1b. Thus, �
∗
∀xt((λxtαt)xt)

by Rule 5. Because � xt ↓ (Axiom 8c), Rule 2 applied to � xt ↓ and to an
instance of Axiom 1d gives us � (λxtαt)xt � αt. It follows that � ∀xtαt by
Rule 1 and hence � αt by Rule 11, as � αt ↓ by hypothesis.

5.2. Soundness and Useful Metatheorems

Theorem 14. (Soundness) For every αt ∈ MEK
t , if � αt, then |= αt.

Propositional Type Theory of Indeterminacy

Proof. A straightforward verification shows that (1) every axiom and ax-
iom schema of PTK is valid and (2) the rules of inference 1, 2, 3, 4 and 5
preserve validity.

We now prove the soundness of Axiom 1b (a way of expressing that DK
t

contains the elements 0 and 1, and no others) in order to display how partial
propositional types are interpreted semantically.

• � (gtt1N
∗∧ gtt0N) �

∗
∀xt(gttxt).

Suppose firstly that [[(gtt1N
∗∧ gtt0N)]]M,g = 1 for an arbitrary assign-

ment g. It follows that g(gtt) must be 11 and consequently [[λxa1N ≡
λxt(gttxt)]]M,g = 1, so [[

∗
∀xt(gttxt)]]M,g = 1. Therefore, [[(gtt1N

∗∧ gtt0N) �
∗
∀xt(gttxt)]]M,g = 1.

Suppose now that [[(gtt1N
∗∧gtt0N)]]M,g = 0 for an arbitrary assignment g.

The candidates for g(gtt) are 01, 10, 00, 0∗ and ∗0. Thus, we see that there

exists some x ∈ DK
t such that [[λxt(gttxt)]]M,g(x) = 0, so [[

∗
∀xt(gttxt)]]M,g =

0. Therefore, [[(gtt1N
∗∧ gtt0N) �

∗
∀xt(gttxt)]]M,g = 1.

Finally, suppose that [[(gtt1N
∗∧gtt0N)]]M,g = ∗ for an arbitrary assignment

g. The candidates for g(gtt) are 1∗, ∗1 and ∗∗. Hence, [[λxt(gttxt)]]M,g is
either the empty function of type tt or a partial function f from DK

t to
DK

t such that, for every x ∈ DK
t , if x ∈ Def(f), then f(x) = 1. Therefore,

[[
∗
∀xt(gttxt)]]M,g = ∗, so [[(gtt1

N
∗∧ gtt0N) �

∗
∀xt(gttxt)]]M,g = 1.

We are ready to prove some results that are needed to prove completeness
constructively. Firstly, we show that every tautology4 is a formal theorem
and also that every closed expression which is a name is defined:

Theorem 15. (P -Completeness) Every tautology αt is a formal theorem.

Proof. The proof is by induction on the number of free variables in αt.

1. Let αt be a tautology containing no free variables:

(a) Let αt be 1N. Then, � λxtxt � λxtxt is an instance of Axiom 2a. Since
� λxtxt ↓ (Axiom 8b), � λxtxt ≡ λxtxt by Rules 2 and 5 and Axiom
4a. By the definition of 1N, we get � 1N.

(b) Let αt be ¬0N. Since � 0N ↓ (Axiom 8c), we can apply Rule 2 to an
instance of Axiom 1d obtaining � λxt(0N ≡ xt)0N � 1N. Thus, we get
� λxt(0N ≡ xt)0N by Rule 7, so, by the definition of ¬, � ¬0N.

4See Definition 11.

V. Aranda et al.

(c) Let αt be αt

∗∨ 1N. Take � (αt

∗∨ 1N) � 1N (Axiom 7a). Then, � αt

∗∨ 1N

by Rule 7.
(d) Let αt be 1N ≡ 1N. Immediate by applying Rule 6 to (1a).

2. Let αt be a tautology containing some free variable, say xt. Let α′
t be the

result of replacing each occurrence of xa in αt by 1N and α′′
t by 0N. Both

α′
t and α′′

t are tautologies, because [[αt]]M,g = 1 for all assignments g,
including those, g′ and g′′, where g′(xt) = 1 and g′′(xt) = 0. It follows,
by induction hypothesis, that � α′

t and � α′′
t . Since � αt ↓ (Axiom 8c),

we obtain � αt by Rule 13.

Theorem 16. (Names are defined) For any a ∈ TYPES and each x ∈ DK
a ,

� xN ↓.

Proof. The proof is by induction.

1. Base case: DK
t . � 1N ↓ and � 0N ↓ (instances of Axiom 8c).

2. Inductive step: DK
ab. For any f ∈ DK

ab,

fN = λxa(
ιzb((xa ≡ yN

1)
∗∧ (zb ≡ (f(y1))

N)
∗∨ . . .

∗∨ ((xa ≡ yN
q)

∗∧ (zb ≡ (f(yq))
N)))

by Theorem 2. Thus, � fN ↓ by Axiom 8b, as desired.

Secondly, we prove Theorem 17, which is essential for the whole strategy
of Lemma 20:

Theorem 17. For any c ∈ TYPES and z1, . . . , zq all the elements of DK
c ,

it holds that:

1. � ¬(zNi ≡ zNj) if i �= j.

2. If c = ab, then for any y ∈ DK
a , we have � (zNi yN) � (ziy)N.

Proof. The proof is by induction.

1. Base case: DK
t . ¬(1N ≡ 0N) is a tautology, so � ¬(1N ≡ 0N) by Theorem

15.

2. Inductive step: DK
ab. Let f1, . . . , fp be a list of the distinct elements of

DK
ab and y1, . . . , yq a list of the distinct elements of DK

a .

• We start by proving (2).

Propositional Type Theory of Indeterminacy

Since � yN
j ↓ (Theorem 16), from Axiom 1d, Rule 2 and Theorem 2 we

have:

	 (fN
i yN

j)
 ιzb((y
N
j ≡ yN

1)
∗∧ (zb ≡ (fiy1)

N)
∗∨ . . .

∗∨ ((yN
j ≡ yN

q)
∗∧ (zb ≡ (fiyq)

N))).

Because � ¬(yN
j ≡ yN

k) for j �= k by induction hypothesis concerning
DK

a , we get

� (fN
i yN

j) � ιzb(zb ≡ (fiyj)N) (I.H)

Now, there are two possibilities:

(a) Firstly, suppose that [[fN
i]]M,g is the partial function fi in DK

ab such that
fi([[yN

j]]M,g) = ∗. In this case, (fiyj)N = Ub by Definition 13. Since
� Ub ↑ by Proposition 9(1), � ιzb(zb ≡ Ub) ↑ by Rule 2 and Axiom
10c. Now, by the definition of ↑, we get � ιzb(zb ≡ (fiyj)N) � Ub

and hence � (fN
i yN

j) � Ub by applying Rule 1 to (I.H). Therefore,
� (fN

i yN
j) � (fiyj)N, as (fiyj)N = Ub.

(b) Suppose that [[fN
i]]M,g is the function fi in DK

ab such that fi([[yN
j]]M,g) =

θ, where θ ∈ DK
b . In this case, (fiyj)N is the name of θ, so � (fiyj)N ↓

by Theorem 16. Then, � ιzb(zb ≡ (fiyj)N) ↓ by Rule 2 and Ax-
iom 10a, so � λzb(zb ≡ (fiyj)N))(ιzb(zb ≡ (fiyj)N)) ≡ 1N by Rule
2 again and Axiom 10b. We obtain � λzb(zb ≡ (fiyj)N))(ιzb(zb ≡
(fiyj)N)) by Rule 6. Since � ιzb(zb ≡ (fiyj)N) ↓, from this it follows
that � ιzb(zb ≡ (fiyj)N) � (fiyj)N by Axiom 1d and Rule 2. Therefore,
� (fN

i yN
j) � (fiyj)N by applying Rule 1 to (I.H), as desired.

In consequence, � (fN
i yN

j) � (fiyj)N.

• We turn next to the proof of (1).

Notice that, if i �= j, then for some k ∈ {1, ..., p} it holds that (fiyk) �=
(fjyk). Then, by induction hypothesis concerning DK

b , we know that
� ¬((fiyk)N ≡ (fjyk)N). Since � (fiyk)N ↓ and � (fjyk)N ↓ by Theorem
16, � ((fiyk)N � (fjyk)N) � ((fiyk)N ≡ (fjyk)N) by Rule 2 and Axiom
4a. In consequence, � ¬((fiyk)N � (fjyk)N) by Rule 8. Because we
proved already that �(fN

i yN
k) � (fiyk)N and � (fN

j yN
k) � (fjyk)N, we

get � ¬((fN
i yN

k) � (fN
j yN

k)) by Rule 1. Therefore, �
∗
∃ya(¬((fN

i ya) �
(fN

j ya))) by Rule 4, as � yN
k ↓ (by Theorem 16) and � ¬

∗
∀ya((fN

i ya) �
(fN

j ya)) by Rules 7 and 1 and Axioms 5a and 9b. Thus, we obtain the
desired � ¬(fi ≡ fj) by applying Rule 8 to Axiom 1c.

V. Aranda et al.

Finally, we also prove Propositions 18 and 19, which are needed to estab-
lish cases (6) and (7) of Lemma 20, respectively.

Proposition 18. � (([[αa]]M,g)N � ([[βa]]M,g)N) � ([[αa � βa]]M,g)N.

Proof. The proof is by induction.

1. Base case: DK
t .

(a) If ([[αt � βt]]M,g)N = 1N, then [[αt]]M,g = [[βt]]M,g and therefore
� ([[αt]]M,g)N � ([[βt]]M,g)N is an instance of Axiom 2a. Consequently,
we get � (([[αt]]M,g)N � ([[βt]]M,g)N) � TN by Rule 7.

(b) If ([[αt � βt]]M,g)N = 0N, then [[αt]]M,g �= [[βt]]M,g. Hence, it follows
that � (([[αt]]M,g)N � ([[βt]]M,g)N) � 0N is either an instance of one of
the axioms of group 3 or follows from such an instance and Axiom 2b
by applying Rule 1.

2. Inductive step: DK
ab.

(a) If ([[αab � βab]]M,g)N = 1N, then [[αab]]M,g = [[βab]]M,g, so the argu-
ment for (1a) works here.

(b) If ([[αab � βab]]M,g)N = 0N, then [[αab]]M,g �= [[βab]]M,g. This means
that there exists some x ∈ DK

a such that
[[αab]]M,g(x) = y and [[βab]]M,g(x) = z, with y, z ∈ DK

b and y �= z.
Now, by induction hypothesis, we have

� (([[αab]]M,g(x))N � ([[βab]]M,g(x))N) � ([[αab(x)N � βab(x)N]]M,g)N

and hence � (([[αab]]M,g(x))N � ([[βab]]M,g(x))N) � 0N. Therefore,
� ¬(([[αab]]M,g(x))N � ([[βab]]M,g(x))N) � 1N by Rule 2 and Axiom
5b, so � ¬(([[αab]]M,g(x))N � ([[βab]]M,g(x))N) by Rule 7. By Theorem
17(2), � ¬(([[αab]]M,g)N(x)N � ([[βab]]M,g)N(x)N) and consequently

� ¬∀xa(([[αab]]M,g)Nxa � ([[βab]]M,g)Nxa)

by Rules 4 (for � (x)N ↓ by Theorem 16), 7 and 1 and Axioms 5a and
9b. Therefore, � ¬(([[αab]]M,g)N ≡ ([[βab]]M,g)N) by applying Rule 8 to
Axiom 1c, so we obtain � ¬(([[αab]]M,g)N � ([[βab]]M,g)N) by Axiom
4a, Theorem 16 again and Rules 2 and 5. Because � ¬(([[αab]]M,g)N �
([[βab]]M,g)N) � TN by Rule 7, it follows by Axioms 5a and 5d and
Rules 5 and 1 that

� (([[αab]]M,g)N � ([[βab]]M,g)N) � FN,

as desired.

Propositional Type Theory of Indeterminacy

Proposition 19. � (([[αt]]M,g)N
∗∨ ([[βt]]M,g)N) � ([[αt

∗∨ βt]]M,g)N.

Proof.

1. If ([[αt

∗∨βt]]M,g)N = 1N, then either [[αt]]M,g or [[βt]]M,g is 1. In conse-
quence, � (([[αt]]M,g)N

∗∨ ([[βt]]M,g)N) � 1N is an instance of Axiom 7a
or follows from such an instance and Axiom 2b by applying Rule 1.

2. If ([[αt

∗∨ βt]]M,g)N = 0N, then [[αt]]M,g = [[βt]]M,g = 0. Clearly, we see
that � (([[αt]]M,g)N

∗∨ ([[βt]]M,g)N) � 0N is Axiom 7b.

3. If ([[αt

∗∨βt]]M,g)N = Ut (see Definition 14), then [[αt]]M,g = [[βt]]M,g =
∗ or one is ∗ and the other 0. In the first case, � (([[αt]]M,g)N

∗∨
([[βt]]M,g)N) � Ut is Axiom 7d. In the second case, � (([[αt]]M,g)N

∗∨
([[βt]]M,g)N) � Ut is Axiom 7c or follows from it, Axiom 2b and Rule 1.

6. Completeness

The method of proof for the completeness of PT is rather different from the
one Henkin used to prove it for first-order logic and Church’s Type Theory.
In this case, the proof is constructive, as it is based on the Nameability the-
orem [12, 341-43]. To prove completeness for PTK , we will follow Henkin’s
strategy in [12], so first we have to give a proof of the following Lemma (and
completeness easily follows):

Lemma 20. Let αc ∈ MEK
c . Then, � α

(g)
c � ([[αc]]M,g)N.

Proof. The proof is by induction on the length of αc.

1. Let αc be a variable xa. In this case, [[xa]]M,g ∈ DK
a for every assign-

ment g and x
(g)
a = ([[xa]]M,g)N by Definition 15. Therefore, � x

(g)
a �

([[xa]]M,g)N is an instance of Axiom 2a.

2. Let αc be a primitive constant Qa〈at〉. We have to show that � Qa〈at〉 �
qN, where q ∈ Da〈at〉, because [[Qa〈at〉]]M,g = q and Q

(g)
a〈at〉 = Qa〈at〉.

Suppose that y1, . . . , ym are distinct and are all the elements of DK
a .

By Axiom 2a, � xa � xa. Since � xa ↓ (Axiom 8c), it holds that
� xa ≡ xa by Rules 2, 5 and Axiom 4a. By induction hypothesis,
� x

(g)
a � ([[xa]]M,g)N, so, assuming that ([[xa]]M,g)N = yN

i , we get
� yN

i ≡ yN
i by Rule 1. Therefore, � (Qa〈at〉yN

i)yN
i by the definition of

V. Aranda et al.

≡, so � (Qa〈at〉yN
i)yN

i � 1N by Rule 7. We also know that � ¬(yN
i ≡ yN

j)
by Theorem 17(1) and hence � ¬((Qa〈at〉yN

i)yN
j) by the definition of ≡, so

� (Qa〈at〉yN
i)yN

j � 0N by Rules 7, 5 and 1 and Axioms 5a and 5d. In other
words, � (qNyN

i)yN
i � 1N and � (qNyN

i)yN
j � 0N, so � (qNyN

i yN
i) � 1N and

� (qNyN
i yN

j) � 0N by Theorem 17(2).
In particular, � (Qa〈at〉yN

1)yN
1 � 1N and � (qNyN

1 yN
1) � 1N. By Axiom

2b and Rules 7 and 5, we get � (Qa〈at〉yN
1 yN

1) � (qNyN
1 yN

1) by Rule 1.
Analogously, from � (Qa〈at〉yN

2 yN
1) � 0N and � (qNyN

2 yN
1) � 0N, it follows

that � (Qa〈at〉yN
2 yN

1) � (qNyN
2 yN

1) again by Rule 1. In consequence we get,
for each i ∈ {1, ..., m},

� (Qa〈at〉yN
i yN

1) � (qNyN
i yN

1)
∗∧ . . .

∗∧ (Qa〈at〉yN
i yN

m) � (qNyN
i yN

m)

by Rule 10. Thus, �
∗
∀xa((Qa〈at〉yN

i xa) � (qNyN
i xa)) by Proposition 9(7)

and Rule 5. Then, we get � (Qa〈at〉yN
i) ≡ (qNyN

i) by applying Rule 5 to
an instance of Axiom 1c. By Theorem 17(2) and Rule 1, � (Qa〈at〉yN

i) ≡
(qyi)N and it holds that � (qyi)N ↓ (Theorem 16). In consequence, we can
apply Rules 2 and 5 to an instance of Axiom 4a obtaining � (Qa〈at〉yN

i) �
(qNyN

i). Because this holds for each i ∈ {1, ..., m}, we can conclude the
desired � Qa〈at〉 � qN.

3. Let αc be a primitive constant Ua. In this case, U
(g)
a = Ua by Definition

15 and ([[Ua]]M,g)N = Ua by Definition 14. Thus, � U
(g)
a � ([[Ua]]M,g)N

is an instance of Axiom 2a.

4. Let αc be of the form γabβa. Firstly, we make the induction hypoth-
esis that �γ

(g)
ab � ([[γab]]M,g)N and � β

(g)
a � ([[βa]]M,g)N. Therefore,

� γ
(g)
ab β

(g)
a � ([[γab]]M,g)N([[βa]]M,g)N and consequently

� γ
(g)
ab β(g)

a � ([[γab]]M,g([[βa]]M,g))N

by Theorem 17(2). Now, we must distinguish four possibilities:

(a) If [[γ(g)
ab]]M,g = ∗, then ([[γab]]M,g([[βa]]M,g))N = Ub by Definition 13,

so � γ
(g)
ab β

(g)
a � Ub. Because γ

(g)
ab β

(g)
a = (γabβa)(g) by Definition 15, we

obtain � (γabβa)(g) � Ub and hence � (γabβa)(g) � ([[γabβa]]M,g)N.

(b) If [[β(g)
a]]M,g = ∗, then ([[γab]]M,g([[βa]]M,g))N = Ub by Definition 13,

so the argument in (4a) works here.
(c) If [[γ(g)

ab]]M,g ∈ DK
ab, [[β(g)

a]]M,g ∈ DK
a , but [[γab]]M,g is not defined at

[[βa]]M,g, then [[γab]]M,g([[βa]]M,g) = ∗, so ([[γab]]M,g([[βa]]M,g))N =
Ub by Definition 13. Thus, the argument in (4a) also works here.

Propositional Type Theory of Indeterminacy

(d) If [[γ(g)
ab]]M,g ∈ DK

ab, [[β(g)
a]]M,g ∈ DK

a and [[βa]]M,g ∈ Def([[γab]]M,g),
then [[γab]]M,g([[βa]]M,g) ∈ DK

b . Clearly,

[[γab]]M,g([[βa]]M,g) = [[γabβa]]M,g.

Since γ
(g)
ab β

(g)
a = (γabβa)(g) by Definition 15, we conclude � (γabβa)(g) �

([[γabβa]]M,g)N, as desired.

5. Let αc be λxaαb. We have to show that � (λxaαb)(g) � ([[λxaαb]]M,g)N,
because [[λxaαb]]M,g ∈ DK

ab for every assignment g.
Suppose that y1, . . . , yq are all the distinct elements of DK

a . By induction
hypothesis, we have � α

(g)
b � ([[αb]]M,g)N for every assignment g.

Now, since � (yi)N ↓ (by Theorem 16), it follows that � (λxa(αb)(g{xa}))
yN

i � (Sxa

(yi)N
α
(g{xa})
b) by applying Rule 2 to Axiom 1d. Because

[[Sxa

(yi)N
αb]]M,g = [[(λxa(αb)]]M,g(yi) (Definition 10) and λxa(αb)(g{xa})

= (λxaαb)(g) (Definition 15), our induction hypothesis yields:

� (λxaαb)(g)yN
i � ([[λxaαb]]M,g(yi))N

and hence

� (λxaαb)(g)yN
i � ([[λxaαb]]M,g)N(yi)N

by Theorem 17(2). Thus, �
∗
∀ya((λxaαb)(g)ya � ([[λxaαb]]M,g)Nya) by

Rule 3 and hence � (λxaαb)(g) ≡ ([[λxaαb]]M,g)N by Rule 5 and Axiom
1c. Since � (λxaαb)(g) ↓ (Axiom 8a) and � ([[λxaαb]]M,g)N ↓ (Theorem
16), by Rules 2 and 5 and Axiom 4a, as desired.

6. Let αc be αt � βt. By induction hypothesis, we have � α
(g)
t � ([[αt]]M,g)N

and � β
(g)
t � ([[βt]]M,g)N. Take � (α(g)

t � β
(g)
t) � (α(g)

t � β
(g)
t), which

is an instance of Axiom 2a. Then, by applying Rule 1 twice, we get
� (α(g)

t � β
(g)
t) � (([[αt]]M,g)N � ([[βt]]M,g)N) and consequently

� (α(g)
t � β

(g)
t) � ([[αt � βt]]M,g)N

by Proposition 18 and Rule 1 again. Because (α(g)
t � β

(g)
t) = (αt � βt)(g)

by Definition 15, we get � (αt � βt)(g) � ([[αt � βt]]M,g)N, as desired.

7. Let αc be αt

∗∨βt. By induction hypothesis, we have � α
(g)
t � ([[αt]]M,g)N

and � β
(g)
t � ([[βt]]M,g)N. Take � (α(g)

t

∗∨ β
(g)
t) � (α(g)

t

∗∨ β
(g)
t), which

is an instance of Axiom 2a. Then, by applying Rule 1 twice, we get
� (α(g)

t

∗∨ β
(g)
t) � (([[αt]]M,g)N

∗∨ ([[βt]]M,g)N) and consequently

� (α(g)
t

∗∨ β
(g)
t) � ([[αt

∗∨ βt]]M,g)N

V. Aranda et al.

by Proposition 19 and Rule 1 again. Because (α(g)
t

∗∨ β
(g)
t) = (αt

∗∨ βt)(g)

by Definition 15, we get � (αt

∗∨ βt)(g) � ([[αt

∗∨ βt]]M,g)N, as desired.

Theorem 21. (Completeness) For every αt ∈ MEK
t , if |= αt, then � αt.

Proof. If αt is closed, α
(g)
t = αt by Definition 15. Since αt is valid, [[αt]]M,g

= 1 for every assignment g, so Lemma 20 gives us � αt � 1N. Therefore,
� αt by Rule 7.

If αt is not closed, the closure of αt is a theorem of PTK . Let xa1 , . . . , xan

be all the variables occurring free in αt. Then, (
∗
∀xa1 , . . . , xan

αt)(g) =
∗
∀xa1 ,

. . . , xan
αt, so by the previous argument � (

∗
∀xa1 , . . . , xan

αt) � 1N. Hence,

�
∗
∀xa1 , . . . , xan

αt by Rule 7.

7. Conclusion

In this paper, we have defined a version of Henkin’s Propositional Type The-
ory which is partial in a double sense. The hierarchy of propositional types
contains partial functions and some meaningful expressions of the language,
including formulas, may be undefined. This is a novelty with respect to
Farmer’s system (Andrew’s Type Theory with undefinedess), because for
him formulas must be always defined. Although Lepage’s Partial Propo-
sitional Logic allows formulas to be undefined, his Type Theory lacks the
Nameability theorem characterizing Henkin’s original system and a constru-
tive proof of completeness was not given.

For future work, we intend first to extend this framework to a Type
Theory having a basic type for individuals. Secondly, we are interested in
implementing our proof system in an automated theorem prover for higher-
order logic, like Isabelle/HOL. Finally, a translation of this logic into many-
sorted logic could be explored. In the meantime, we hope to have shown
that, as we said above, having partial functions and undefinedness at our
disposal in a Type Theory provides high benefits at low cost.

Acknowledgements. We appreciate the insightful comments and remarks of
two anonymous reviewers for this journal. V. Aranda and M. Manzano are
supported by Project PID2022-142378NB-I00 funded by MICIU/AEI/10.13
039/501100011033 and by ERDF, EU. M. Martins was partially supported

Propositional Type Theory of Indeterminacy

by FCT within the project UIDB/04106/2020 (https://doi.org/10.54499/
UIDB/04106/2020).

Open Access. This article is licensed under a Creative Commons Attribution 4.0 Interna-

tional License, which permits use, sharing, adaptation, distribution and reproduction in

any medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s

Creative Commons licence, unless indicated otherwise in a credit line to the material. If

material is not included in the article’s Creative Commons licence and your intended use

is not permitted by statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder. To view a copy of this licence, visit

http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Andrews, P., A reduction of the axioms for the theory of propositional types, Fun-

damenta Mathematicae 52:345–350, 1963.

[2] Andrews, P., An Introduction to Mathematical Logic and Type Theory: To Truth

Through Proof, Applied Logic Series, Kluwer Academic Publishers, Dordrecht, 2002.

[3] Andrews, P., A Bit of History Related to Logic Based on Equality, in M. Manzano,

I. Sain, and E. Alonso, (eds.), 2014, pp. 67–71.

[4] Aranda, V., A. Huertas, M. Manzano, and M. Martins, On the philosophy and

mathematics of Hybrid Partial Type Theory, Springer’s “Outstanding Contributions

to Logic” series, forthcoming.

[5] Benzmüller, C., et al. (eds.), Reasoning in Simple Type Theory: Festschrift in Honor

of Peter B. Andrews on his 70th Birthday, College Publications, London, 2008.

[6] Blackburn, P., M. Martins, M. Manzano, and A. Huertas, Exorcising the phan-

tom zone, Information and Computation 287:1–21, 2022.

[7] Correia, F., Weak Necessity on Weak Kleene Matrices, in F. Walter et al (eds.),

2002, pp. 73–90.

[8] Farmer, W.M., A partial functions version of Church’s simple theory of types, The

Journal of Symbolic Logic 55:1269–1291, 1990.

[9] Farmer, W.M., Andrews’ Type System with Undefinedness, in C. Benzmüller et al

(eds.), 2008, pp. 223–242.

[10] Farmer, W.M., Simple Type Theory: A Practical Logic for Expressing and Reasoning

About Mathematical Ideas, Springer, Cham, 2023.

[11] Ferguson, T.M., Logics of nonsense and parry systems, Journal of Philosophical

Logic 44:65–80, 2014.

[12] Henkin, L., A theory of propositional types, Fundamenta Mathematicae 52:323–344,

1963.

[13] Henkin, L., Identity as a logical primitive, Philosophia 5:31–45, 1975.

https://doi.org/10.54499/UIDB/04106/2020
https://doi.org/10.54499/UIDB/04106/2020
http://creativecommons.org/licenses/by/4.0/

V. Aranda et al.

[14] Kleene, S.C., On notation for ordinal numbers, The Journal of Symbolic Logic 3:150–

155, 1938.

[15] Lapierre, S., A functional partial semantics for intensional logic, Notre Dame Journal

of Formal Logic 33:517–541, 1992.

[16] Lepage, F., Partial functions in type theory, Notre Dame Journal of Formal Logic

33:493–516, 1992.

[17] Lepage, F., Partial Propositional Logic, in M. Marion and R. S. Cohen (eds.), 1995,

pp. 23–39.

[18] Manzano, M., I. Sain, and E. Alonso (eds.), The Life and Work of Leon Henkin,

Birkhauser, Heidelberg, 2014.

[19] Manzano, M., A. Huertas, P. Blackburn, M. Martins, and V. Aranda, Hybrid

Partial Type Theory, The Journal of Symbolic Logic, 1–37. https://doi.org/10.1017/

jsl.2023.33.

[20] Marion, M. and R. S.Cohen (eds.),Québec Studies in the Philosophy of Science. Part

I: Logic, Mathematics, Physics and History of Science. Essays in Honor of Hugues

Leblanc, Kluwer Academic Publishers, Dordrecht, 1995.

[21] Walter, F., et al (eds.), Advances in Modal Logic 3, World Scientific Publishing Co.,

Singapore, 2002.

V. Aranda

Department of Logic and Theoretical Philosophy
Complutense University of Madrid
Madrid
Spain
vicarand@ucm.es

M. Martins

Department of Mathematics
University of Aveiro
Aveiro
Portugal
martins@ua.pt

M. Manzano

Department of Philosophy, Logic and Aesthetics
University of Salamanca
Salamanca
Spain
mara@usal.es

https://doi.org/10.1017/jsl.2023.33
https://doi.org/10.1017/jsl.2023.33

	Propositional Type Theory of Indeterminacy
	Abstract
	1. Introduction
	2. Propositional Type Theory of Indeterminacy
	2.1. Syntax
	2.2. Semantics

	3. The Nameability Theorem
	4. Proof System
	5. Some Metatheorems
	5.1. Derived Rules of Inference
	5.2. Soundness and Useful Metatheorems

	6. Completeness
	7. Conclusion
	Acknowledgements
	References

