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Abstract. In the early 1960s, to prove undecidability of monadic fragments of sublogics of

the predicate modal logic QS5 that include the classical predicate logic QCl, Saul Kripke

showed how a classical atomic formula with a binary predicate letter can be simulated by

a monadic modal formula. We consider adaptations of Kripke’s simulation, which we call

the Kripke trick, to various modal and superintuitionistic predicate logics not considered

by Kripke. We also discuss settings where the Kripke trick does not work and where, as a

result, decidability of monadic modal predicate logics can be obtained.
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1. Introduction

Saul Kripke [22] made an observation that allowed him to prove undecidabil-
ity of monadic fragments of modal predicate logics that contain all the the-
orems of the classical predicate logic QCl and are sublogics of the predicate
extension QS5 of the modal propositional logic S5. Namely, Kripke observed
the following: if L is a modal predicate logic such that QCl ⊂ L ⊆ QS5
and ϕ is a classical predicate formula with a single binary predicate letter Q,
then the modal formula obtained from ϕ by substituting ♦(P1(x)∧P2(y)) for
Q(x, y) belongs to L if, and only if, ϕ belongs to QCl. Since the classical logic
of a single binary predicate is undecidable [4], Kripke’s observation implies
that, if L is a modal predicate logic satisfying QCl ⊂ L ⊆ QS5, then the
monadic fragment of L is undecidable. This construction, with an additional
observation that the formula ♦(P1(x) ∧ P2(y)) contains the same individual
variables as Q(x, y), has been used to establish undecidability of monadic
fragments with a restricted number of individual variables of various modal,
temporal, and superintuitionistic predicate logics [18,20,32,35–39]; in par-
ticular, it has been used [20] to show that two-variable monadic fragments
of most common modal predicate logics are undecidable.
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In this paper, we survey the uses of the Kripke trick in the literature,
discussing adaptations of Kripke’s original construction [22] that have been
used to prove lower algorithmic bounds (undecidability, lack of recursive
enumerability, non-membership in the classes of the arithmetical hierarchy,
etc.) for monadic fragments of various modal and superintuitionistic predi-
cate logics. Our focus here is on expounding the technique and its variations
rather than on any specific results. Most of the stated results are not the
strongest known—to strengthen them, additional techniques are needed,
most often those to do with simulating all monadic atomic formulas of the
language by atomic formulas with a single fixed monadic predicate letter.1

When expounding the variations of the Kripke trick, we focus on the essen-
tials, peeling away unnecessary complications arising from the more complex
arguments within which the uses of the trick are often embedded. We hope
that this survey will be of use to researchers in, and newcomers to, the field
of non-classical predicate logics, enabling them to put the Kripke trick to
novel uses. We also briefly discuss how blocking the trick results in decidable
fragments.

The paper is structured as follows. Section 2 contains preliminaries on
modal and superintuitionistic predicate logics. In Section 3, we recall Kripke’s
original proof. In Section 4, we consider adaptations of Kripke’s proof to
common logics conservatively extending QCl, but not included into QS5.
In Section 5, we do the same for logics of finite domains, which are not
conservative extensions of QCl. In Section 6, we discuss the adaptation of
the Kripke trick to modal logics of frames with only finitely many worlds.
In Section 7, we discuss how the trick can be carried out with formulas of
one monadic predicate letter, rather than two, as in Kripke’s original proof.
Section 8 briefly discusses the extension of the Kripke trick to simulation of
atomic formulas with n-ary, for n > 2, predicate letters. In Section 9, we
show how the trick can be used inside modal formulas. In Section 10, we
consider the adaptation of the trick to superintuitionistic logics. We con-
clude, in Section 11, with a discussion of situations where the Kripke trick
is blocked.

1For examples of such techniques we refer the reader to our earlier articles [28,32,35,
36,38,39]; these techniques generalise to predicate logics methods originally developed for
simulating proposition letters in modal and superintuitionistic propositional logics [2,5,
16,29,34,40,41].
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2. Preliminaries

2.1. Syntax

We shall be considering (first-order) predicate logics in two languages: the
non-modal language L, which is the language of the classical and superintu-
itionistic logics, and the modal language ML, which is the language of modal
logics. The language L contains the following expressions2: a countable set
Var of individual variables; for every n ∈ N, a countable set of predicate let-
ters of arity n (nullary predicate letters are also called proposition letters);
the propositional constant ⊥; binary propositional connectives →, ∧, and ∨;
and quantifier symbols ∀ and ∃. The language ML, in addition, contains a
unary modal operator �. We shall not be considering languages with indi-
vidual constants, function symbols, or equality; this is unnecessary since we
are concerned with lower algorithmic bounds, which immediately apply to
more expressive languages. Formulas of L (or, L-formulas) are defined by
the grammar

ϕ :: = P (x1, . . . , xn) | ⊥ | (ϕ → ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∀x ϕ | ∃x ϕ,

and formulas of ML (or, ML-formulas) by the grammar

ϕ :: = P (x1, . . . , xn) | ⊥ | (ϕ → ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∀x ϕ | ∃x ϕ | �ϕ,

where P is an n-ary predicate letter and x, x1, . . . , xn ∈ Var . From now on,
we identify the languages L and ML with their sets of formulas.

In both languages, ¬ and � are standard abbreviations: ¬ϕ = ϕ → ⊥ and
� = ¬⊥. In ML, ♦ϕ is a standard abbreviation for ¬�¬ϕ. When omitting
parentheses, we assume that ∧ and ∨ bind tighter than →. Formulas of the
form P (x1, . . . , xn) are called atomic. If ϕ is a formula, the set of subfor-
mulas of ϕ is denoted by sub ϕ, the set of the individual variables of ϕ is
denoted by var ϕ, and the set of free individual variables of ϕ, also called the
parameters of ϕ, is denoted by par ϕ. We write ϕ(x1, . . . , xn) to mean that
the parameters of ϕ are among x1, . . . , xn. If par ϕ = ∅, then ϕ is closed.
If Γ is a set of formulas, cfΓ denotes the set of closed formulas from Γ.
A formula containing neither quantifier symbols nor predicate letters other
than nullary ones is called propositional. A formula containing only monadic
and nullary predicate letters is called monadic.

2These expressions are often treated as symbols of an alphabet. Since we are concerned
with algorithmic issues, we assume that our languages contain only finitely many symbols,
which are used to encode all the expressions of the language.
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2.2. Kripke Semantics for Modal Logics

Prior to defining modal predicate logics, we describe the semantic apparatus
we shall be using for them. The standard Kripke semantics for modal predi-
cate logics comes in two varieties: expanding domains semantics, discussed in
Section 2.2.1, and varying domains semantics, discussed in Section 2.2.2; yet
another variety, constant domain semantics, can be viewed as a special case
of either (we view it as a special case of the expanding domains semantics).
These two semantics generate two different kinds of logics; in particular,
the same propositional modal logic extends, under the two approaches, to
distinct predicate modal logics.

Both predicate Kripke semantics build upon Kripke semantics for propo-
sitional logics, whose main concept is that of a Kripke frame, which is a pair
F = 〈W,R〉, where W is a non-empty set of possible worlds and R is a binary
accessibility relation on W . Speaking of Kripke frames, we use the standard
functional notation R(w) for {w′ ∈ W : wRw′}; thus, w′ ∈ R(w) means the
same as wRw′. Both kinds of predicate Kripke semantics equip worlds of
Kripke frames with domains of individuals, but make different assumptions
about the relationships among those domains; the two semantics also differ
in definitions of interpretations in models and of truth at a possible world
of a model.

2.2.1. Expanding Domains Semantics The expanding domains Kripke se-
mantics makes the assumption that domains of possible worlds expand
(more precisely, do not decrease) along the accessibility relation; moreover,
it interprets formulas with respect to domains of worlds and defines va-
lidity both for closed formulas and formulas with parameters; consequently,
L-fragments of the resultant logics coincide with the classical predicate logic
QCl.

An augmented frame with expanding domains (or, simply, an augmented
frame) is a pair FD = 〈F, D〉, where F is a Kripke frame and D is a domain
function sending each w ∈ W to a non-empty subset of some set of individ-
uals; the function D is required to satisfy the expanding domains condition:
for every w,w′ ∈ W ,

wRw′ =⇒ D(w) ⊆ D(w′). (2.1)

The set D(w), also denoted by Dw, is the domain of the world w. Sets
of the form Dw are also called local domains. If F = 〈W,R〉, we also write
FD = 〈W,R,D〉. We define D+ =

⋃{Dw : w ∈ W}; the set D+ is the
domain of the augmented frame FD, or the global domain of FD.
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A subframe of an augmented frame 〈W,R,D〉 is an augmented frame
〈W ′, R′, D′〉 where W ′ is a non-empty subset of W , and where R′ = R � W ′

and D′ = D � W ′.
We next define two classes of augmented frames with expanding domains

that are of particular interest. We say that an augmented frame FD =
〈W,R,D〉 is an augmented frame with locally constant domains if it satisfies
the local constancy condition: for every w,w′ ∈ W ,

wRw′ =⇒ D(w) = D(w′), (2.2)

and we say that FD is an augmented frame with a globally constant domain
if it satisfies the global constancy condition: for every w, w′ ∈ W ,

D(w) = D(w′). (2.3)

If FD is an augmented frame with a globally constant domain D, then,
following [13], we also denote FD by F � D.

A predicate Kripke model with expanding domains (or, simply, a Kripke
model) is a tuple M = 〈FD, I〉, where FD = 〈W,R,D〉 is an augmented
frame with expanding domains and I is an interpretation of predicate letters
sending a world w ∈ W and an n-ary predicate letter P to an n-ary relation
I(w, P ) on Dw; we also write P I,w for I(w,P ) and 〈W,R,D, I〉 for 〈FD, I〉.
We note that, if a predicate letter P is nullary (i.e., if P is a proposition
letter), then P I,w ⊆ D0

w = {〈〉}, i.e., either P I,w = ∅ or P I,w = {〈〉}. The
former corresponds to assigning the truth value ‘false’, and the latter to
assigning the truth value ‘true’, to a proposition letter in Kripke semantics
for propositional logics.

An assignment in an augmented frame 〈W,R,D〉 is a map g : Var → D+.
Observe that, since variables never take on values from outside of D+, indi-
viduals outside of D+ are irrelevant to the evaluation of formulas. If g and
g′ are assignments such that g′(y) = g(y) whenever y �= x, we write g′ x= g.

The truth of an ML-formula ϕ at a world w of a model M under an
assignment g is defined by recursion:

• M, w |=g P (x1, . . . , xn) if 〈g(x1), . . . , g(xn)〉 ∈ P I,w;

• M, w �|=g ⊥;

• M, w |=g ϕ1 ∧ ϕ2 if M, w |=g ϕ1 and M, w |=g ϕ2;

• M, w |=g ϕ1 ∨ ϕ2 if M, w |=g ϕ1 or M, w |=g ϕ2;

• M, w |=g ϕ1 → ϕ2 if M, w �|=g ϕ1 or M, w |=g ϕ2;

• M, w |=g �ϕ1 if M, w′ |=g ϕ1 whenever w′ ∈ R(w);
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• M, w |=g ∃x ϕ1 if M, w |=g′
ϕ1, for some g′ such that g′ x= g and

g′(x) ∈ D(w);

• M, w |=g ∀x ϕ1 if M, w |=g′
ϕ1 whenever g′ x= g and g′(x) ∈ D(w).

If FD is an augmented frame with expanding domains and M is a predi-
cate Kripke model with expanding domains, then

• we say that a formula ϕ is true at a world w of M, and write M, w |= ϕ,
if M, w |=g ϕ, for every assignment g such that g(x) ∈ Dw whenever
x ∈ par ϕ;

• we say that a formula ϕ is true in M, and write M |= ϕ, if M, w |= ϕ
whenever w ∈ W ;

• we say that a formula ϕ is valid on FD, and write FD |= ϕ, if M |= ϕ
whenever M is a model over FD;

• we say that a formula ϕ is valid on a Kripke frame F, and write F |= ϕ,
if ϕ is valid on every augmented frame with expanding domains over F;

• we say that a formula ϕ is valid on a class C of augmented frames, and
write C |= ϕ, if ϕ is valid on every augmented frame from C .

A set Γ of formulas is valid on an augmented frame, a Kripke frame, or a
class of frames if the corresponding relation holds for every formula from Γ.

As is well known, the global constancy condition (2.3) is not definable
by modal predicate formulas: it is easy to check, using generated subframes,
that the class of augmented frames satisfying (2.3) induces the same validi-
ties as the class of augmented frames satisfying (2.2). One the other hand,
condition (2.2) is definable by the Barcan formula

bf = ∀x�P (x) → �∀x P (x);

i.e., if FD is an augmented frame with expanding domains, then FD |= bf
if, and only if, FD has locally constant domains [13, Proposition 3.4.2].
Therefore, we only define logics of classes of augmented frames with ex-
panding and with locally constant domains.

First, if C is a class of augmented frames with expanding domains, we
define

ML C = {ϕ ∈ ML : C |= ϕ}.

If C is a class of Kripke frames, then auge C and augc C denote, respectively,
the class of all augmented frames with expanding domains and the class of all
augmented frames with locally constant domains over Kripke frames from C .
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Now, if C is a class of Kripke frames, we define

MLe C = ML auge C ;
MLc C = ML augc C .

2.2.2. Varying Domains Semantics In contrast to the expanding domains
semantics, the varying domains semantics makes no assumptions about re-
lationships among domains of possible worlds. This requires a different def-
inition of interpretations in models so that modal formulas with parameters
can be evaluated at worlds; this leads to a different definition of truth of a
formula at a world. As a result, in this semantics, some classical validities
with parameters are refutable.

An augmented frame with varying domains is a pair FD = 〈F, D〉, where
F is a Kripke frame and D is a function sending each w ∈ W to a non-empty
subset of some set of individuals. No relationship among domains of worlds
is assumed a priori; in particular, (2.1) is not assumed. The notation Dw

and D+ has the same meaning as in the expanding domains semantics.
A Kripke model with varying domains is a tuple M = 〈FD, I〉, where

FD = 〈W,R,D〉 is an augmented frame with varying domains and I is an
interpretation of predicate letters sending a world w ∈ W and an n-ary
predicate letter P to an n-ary relation I(w,P ) on D+, rather than on Dw,
as in the expanding domains semantics. An assignment is defined as in the
expanding domains semantics.

The truth relation |=var between models, worlds, assignments, and
ML-formulas is defined analogously to the definition of the relation |= for
the expanding domains semantics: we simply replace |= with |=var in the
truth clauses defining |=. Truth at a world and validity are, however, de-
fined differently: a formula ϕ is considered true at a world w of a model M
if M, w |=g

var ϕ holds for every assignment g, regardless of the values of g
on variables from par ϕ; in other words, these values are not required, in
contrast to the expanding domains semantics, to belong to Dw. As a result,
some classical validities with parameters, e.g., ∀x P (x) → P (x), are not valid
in the varying domains semantics. Analogously to the expanding domains
semantics, we say that a formula ϕ is valid on an augmented frame FD if
ϕ is true at every world of every model over FD; we say that ϕ is valid on
a class C of augmented frames, and write C |=var ϕ, if it is valid on every
augmented frame from C . We say that ϕ is valid on a Kripke frame F, and
write F |=var ϕ, if ϕ is valid on every augmented frame over F.

If C is a class of augmented frames with varying domains, we define

vML C = {ϕ ∈ ML : C |=var ϕ}.
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For more background on the varying domains semantics, we refer the reader
to [8].

For our purposes, it suffices to make the following observations about the
varying domains semantics to be able, in the rest of the paper, not to pay
special attention to the logics arising from it.

First, when it comes to closed L-formulas, exactly those that are classi-
cally valid are valid on Kripke frames in the varying domains semantics:

Proposition 2.1. Let F be a Kripke frame and ϕ a closed L-formula. Then

F |=var ϕ ⇐⇒ ϕ ∈ QCl.

Proof. Straightforward.

Second, on augmented frames satisfying (2.1), the same closed
ML-formulas are valid in the varying domains semantics as in the expanding
domains semantics:

Proposition 2.2. Let FD be an augmented frame satisfying (2.1) and let
ϕ be a closed ML-formula. Then

FD |=var ϕ ⇐⇒ FD |= ϕ.

Proof. Straightforward.

From Proposition 2.2, we immediately obtain the following:

Corollary 2.3. Let C be a class of Kripke frames. Then

cf MLe C = cf vML auge C and cf MLc C = cf vML augc C .

Corollary 2.4. Let F be a Kripke frame and ϕ a closed ML-formula.
Then

F |=var ϕ =⇒ F |= ϕ.

The converse of Corollary 2.4 is not true: it is well known and easy to
check that the converse Barcan formula cbf = �∀x P (x) → ∀x�P (x) is
valid on every Kripke frame in the expanding domains semantics, but not
in the varying domains semantics; in fact, in the latter, cbf is valid precisely
on those augmented frames that satisfy (2.1).

If C is a class of Kripke frames, we denote by augv C the class of aug-
mented frames with varying domains over Kripke frames from C and define

MLv C = vML augv C .

We now make an observation that will allow us not to consider explicitly
the logics of varying domains in the rest of the paper:
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Proposition 2.5. Let C be a class of Kripke frames. Then

cfQCl ⊆ cf MLv C ⊆ cf MLe C ⊆ cf MLc C .

Proof. The first inclusion holds by Proposition 2.1. The second inclu-
sion holds by Corollary 2.4. The third inclusion follows from the inclusion
augc C ⊆ auge C .

Since the reductions considered throughout the paper are defined only
for closed formulas, Proposition 2.5 allows us to work, most of the time, ex-
clusively with the constant domains semantics. Since the constructions we
use to obtain results for logics of constant and expanding domains automat-
ically yield results for logics of varying domains, logics of varying domains
are not considered explicitly.

2.3. Predicate Modal Logics

2.3.1. Predicate Modal Logics of Expanding Domains By a normal modal
predicate logic we mean a set L of ML-formulas that includes QCl and
the minimal normal propositional modal logic K and is closed under Modus
Ponens, Substitution, Generalisation (if ϕ ∈ L, then ∀x ϕ ∈ L), and Neces-
sitation (if ϕ ∈ L, then �ϕ ∈ L). Closure under Substitution shall be of
particular importance to us, but instead of giving the technically involved
general definition of predicate Substitution, which can be found in [13, Sub-
section 2.5], we describe here a simple special case we will use. Suppose that
ϕ is a formula, Q(x1, . . . , xn) is an atomic formula, and ψ is a formula with
par ψ = {x1, . . . , xn}. Substituting ψ for Q(x1, . . . , xn) in ϕ amounts to re-
placing every subformula Q(y1, . . . , yn) of ϕ with a formula obtained from
ψ by replacing each xi with yi; for example, if

ϕ = ∀x∀y∀z (Q(x, y) ∧ Q(y, z) → Q(x, z)),

then substituting ♦(P1(x1) ∧ P2(x2)) for Q(x1, x2) gives us the formula

∀x∀y∀z
(
♦(P1(x) ∧ P2(y)) ∧ ♦(P1(y) ∧ P2(z)) → ♦(P1(x) ∧ P2(z))

)
.

Let C be a class of augmented frames with expanding domains, as de-
fined in Section 2.2.1; it is well known that the set ML C is a normal modal
predicate logic. Hence, the following holds:

Proposition 2.6. Let C be a class of Kripke frames. The sets MLe C and
MLc C are normal modal predicate logics.

If C is a class of augmented frames and L is a normal modal predicate
logic such that L = ML C , then L is said to be determined by C . A logic is
Kripke complete (in the expanding domains semantics) if it is determined
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by some class of augmented frames with expanding domains; otherwise, the
logic is said to be Kripke incomplete (in the expanding domains semantics).
Often, it makes sense to lift the notion of determination to the level of Kripke
frames: if C is a class of Kripke frames and L = MLe C , then L is said to be
determined by C .

The smallest normal modal predicate logic is called QK. It is well known
[13,19] that QK coincides with the set of ML-formulas valid, in the expand-
ing domains semantics, on every Kripke frame. We next introduce some
notation for logics. If L is a normal modal predicate logic and Γ a set of
ML-formulas, then L⊕Γ denotes the smallest normal modal predicate logic
that includes L ∪ Γ; we write L ⊕ ϕ instead of L ⊕ {ϕ}. Similarly, if L is a
propositional normal modal logic and Γ is a set of propositional formulas,
then L ⊕ Γ denotes the smallest propositional normal modal logic that in-
cludes L ∪ Γ. If L is a normal modal predicate logic, then L.bf denotes the
logic L ⊕ bf . If L is a normal modal propositional logic, then QL denotes
the minimal normal predicate extension of L, i.e., the logic QK ⊕ L. The
following four useful facts about logics of the form QL are easy to verify:

Proposition 2.7. If L is a propositional modal logic and Γ a set of propo-
sitional formulas, then QL ⊕ Γ = Q(L ⊕ Γ).

Proposition 2.8. If L and L′ are propositional modal logics such that
L ⊆ L′, then QL ⊆ QL′.

Proposition 2.9. Let FD be an augmented frame with expanding domains
and let L be a modal propositional logic. Then

F |= L ⇐⇒ FD |= QL.

Corollary 2.10. Let F be a Kripke frame and let L be a modal proposi-
tional logic. Then

F |= L ⇐⇒ F |= QL.

Recall that, if L1 and L2 are logics in languages, respectively, L1 and L2,
with L1 ⊆ L2, then L2 is a conservative extension of L1 if the L1-fragment of
L2 coincides with L1. If M = 〈W,R,D, I〉 is a Kripke model with expanding
domains, w ∈ W , and Iw is the function defined by Iw(P ) = I(w, P ),
for every predicate letter P , then the pair 〈Dw, Iw〉 is a classical model;
hence, every logic determined by a class of augmented frames with expanding
domains where no requirements other than (2.1) are placed on domains is
a conservative extension of QCl (observe that this is not true for varying
domains).
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To make the paper self-contained, we recall a number of facts about
minimal predicate extensions of common propositional modal logics:3

• QT is determined by the class of reflexive Kripke frames;

• QK4 is determined by the class of transitive Kripke frames;

• QS4 is determined by the class of reflexive, transitive Kripke frames;

• QGL and QGrz are Kripke incomplete [26,32]; their Kripke frames are,
respectively, strict and non-strict Noetherian partial orders, i.e., partial
orders where every non-empty subset has a maximal element;

• If L = ML C , for some class C of Kripke frames, then L.3 = ML Clin ,
where Clin is the subclass of C containing all frames satisfying the con-
dition ∀x∀y∀z (xRy ∧ xRz → yRz ∨ zRy ∨ y = z);

• QK4.3.D.X is determined by the class of serial, dense, strict partial
orders; it is also determined by the Kripke frame 〈Q,�〉 (the rationals
with the usual non-strict order) [7];

• QAltn, where n ∈ N, is determined by the class of n-alternative Kripke
frames, i.e., those where |R(w)| � n, for every world w of the frame [46];

• QK5 is Kripke incomplete [44]; its Kripke frames are those where the
accessibility relation is Euclidean, i.e., satisfies the condition
∀x∀y∀z (xRy ∧ xRz → yRz ∧ zRy);

• QK4.5 is Kripke incomplete [44]; its Kripke frames are those where the
accessibility relation is both Euclidean and transitive;

• QKB is determined by the class of symmetric Kripke frames;

• QKTB is determined by the class of reflexive, symmetric Kripke frames;

• QS5 is determined by the class of Kripke frames where the accessibility
relation is an equivalence.4

We note that, since bf ∈ QKB, augmented frames validating logics ex-
tending QKB (these logics include QKTB and QS5), have locally constant
domains. Since, as we have noted, conditions (2.2) and (2.3) give rise to the
same validities in the expanding domains semantics, it suffices to consider,
when working with extensions of QKB, augmented frames of the form F�D.

3The statements about QT, QK4, and QS4 are instances of [13, Theorem 6.1.29]:; the
statements about QKB, QKTB, and QS5 are instances of [13, Theorem 7.4.7], originally
proven by Tanaka and Ono [51].

4The logic QS5 is also determined by the class of Kripke frames with a universal
accessibility relation.
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This, in particular, is what Kripke does in his proof [22] recounted in Sec-
tion 3.

2.3.2. Predicate Modal Logics of Varying Domains Logics of varying do-
mains were introduced by Kripke [23]5 and were extensively studied in the
philosophically motivated literature on modal logic [8,14,15]. They are usu-
ally defined as sets of formulas valid on classes of augmented frames with
varying domains. Axiomatic treatments of such logics have been proposed
by Kripke [23] and Hughes and Cresswell [19]. Due to Proposition 2.5, we
will not explicitly consider logics of varying domains in the rest of the paper,
even though the constructions and results we present apply to them, as well.
When wishing to emphasize that the presented techniques apply to logics of
varying domains as well as to logics of expanding domains, we use the term
modal predicate logic to mean any set of ML-formulas that includes cfQCl
and is closed under Modus Ponens, Substitution, Generalisation, and Neces-
sitation. This general notion encompasses both logics of expanding domains
and logics of varying domains.

2.4. Superintuitionistic Logics

2.4.1. Kripke Semantics for Superintuitionistic Logics An intuitionistic
Kripke frame is a Kripke frame F = 〈W,R〉 where R is a partial order—i.e.,
a reflexive, transitive, and antisymmetric binary relation—on W . An intu-
itionistic augmented frame is an augmented frame FD = 〈F, D〉 with expand-
ing domains such that F is an intuitionistic Kripke frame. An intuitionistic
Kripke model is a Kripke model with expanding domains M = 〈W,R,D, I〉
where 〈W,R,D〉 is an intuitionistic augmented frame and the interpretation
I satisfies the heredity condition: for every w, w′ ∈ W and every predicate
letter P ,

wRw′ =⇒ I(w,P ) ⊆ I(w′, P ). (2.4)
An assignment is a map g : Var → D+. The truth of an L-formula ϕ at a
world w of a model M under an assignment g is defined by recursion:

• M, w �g P (x1, . . . , xn) if 〈g(x1), . . . , g(xn)〉 ∈ P I,w;

• M, w ��g ⊥;

• M, w �g ϕ1 ∧ ϕ2 if M, w �g ϕ1 and M, w �g ϕ2;

• M, w �g ϕ1 ∨ ϕ2 if M, w �g ϕ1 or M, w �g ϕ2;

• M, w �g ϕ1 → ϕ2 if M, w′ ��g ϕ1 or M, w′ �g ϕ2 whenever w′ ∈ R(w);

5For this reason, these logics are often called Kripkean modal predicate logics.
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• M, w �g ∃x ϕ1 if M, w �g′
ϕ1, for some g′ such that g′ x= g and

g′(x) ∈ D(w);

• M, w �g ∀x ϕ1 if M, w′ �g′
ϕ1 whenever w′ ∈ R(w), g′ x= g, and

g′(x) ∈ D(w′).

It follows from (2.4) and the definition of the relation � that truth of
L-formulas in Kripke models is hereditary:

wRw′ & M, w �g ϕ =⇒ M, w′ �g ϕ. (2.5)

Definitions of truth and validity are similar to those for expanded domains
semantics for ML. We say that an L-formula ϕ is true at a world w of a
model M, and write M, w � ϕ, if M, w �g ϕ, for every g assigning to the
parameters of ϕ elements of Dw. We say that a formula ϕ is true in a model
M, and write M � ϕ, if M, w � ϕ, for every world w of M. We say that a
formula ϕ is valid on an augmented frame FD, and write FD � ϕ, if M � ϕ,
for every model M over FD. We say that a formula ϕ is valid on a Kripke
frame F, and write F � ϕ, if ϕ is valid on every augmented frame over F. We
say that a formula ϕ is valid on a class C of augmented frames, and write
C |= ϕ, if ϕ is valid on every member of C ; similarly for classes of Kripke
frames. A set Γ of formulas is valid on an augmented frame, a Kripke frame,
or a class of frames if the corresponding relation holds for every formula
from Γ.

Observe that, if F = 〈W,R〉 is an intuitionistic Kripke frame where W is
a singleton and ϕ is an L-formula, then F � ϕ if, and only if, ϕ ∈ QCl.

2.4.2. Superintuitionistic Logics The intuitionistic predicate logic QInt is
the set of L-formulas valid on every intuitionistic Kripke frame. The logic
QInt can also be defined through a Hilbert-style deductive calculus with a
finite set of axioms [13,56]. A superintuitionistic predicate logic is a set of
L-formulas that includes QInt and is closed under Modus Ponens, Substitu-
tion, and Generalisation. As with modal logics, we only use a simple special
case of Substitution described in Section 2.3.1. If L is a superintuitionistic
predicate logic and Γ is a set of L-formulas, then L+Γ denotes the smallest
superintuitionistic logic that includes L ∪ Γ. If L is a propositional superin-
tuitionistic logic, QL denotes the minimal predicate extension of L, i.e., the
logic QInt + L.

A superintuitionistic predicate logic coinciding with the set of all formulas
valid on a class C of augmented frames is said to be determined by C .
A logic determined by some class of augmented frames is said to be Kripke
complete.
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We recall that the formula cd = ∀x (P (x) ∨ q) → ∀xP (x) ∨ q, where P is
a unary, and q nullary, predicate letter, is valid on an augmented frame FD

if, and only if, FD has locally constant domains. If L is a superintuitionistic
predicate logic, then L.cd denotes the logic L + cd .

2.5. Some Facts About Classical Logic

Throughout the paper, we consider the classical predicate logic QCl in the
language without equality. We denote by QClfin the classical theory, in
the language without equality, of models with finite domains; we note that
QClfin is, in fact, a superintuitionistic predicate logic; in particular, it is
closed under Substitution. We now recall two well-known
[1,6,50,53] facts about the computational properties of QCl and QClfin (we
note that Σ0

1-completeness entails undecidability and that
Π0

1-completeness entails lack of recursive enumerability):

Proposition 2.11. The logic QCl is Σ0
1-complete in languages with a sin-

gle binary predicate letter and three individual variables.

Proposition 2.12. The logic QClfin is Π0
1-complete in languages with a

single binary predicate letter and three individual variables.

3. Kripke’s Proof

We now briefly recount Kripke’s proof [22]; we closely follow the original
text, changing only insignificant, stylistic detail. Throughout the rest of the
paper, we assume that Q is a binary predicate letter, that P1 and P2 are
monadic predicate letters, and that, if ψ is an L-formula, then ψ∗ is an
ML-formula obtained from ψ by substituting ♦(P1(x) ∧ P2(y)) for Q(x, y).

Proposition 3.1. (Kripke [22]) For every closed L-formula ϕ containing
no predicate letters other than a binary letter Q and every modal predicate
logic L such that L ⊆ QS5,

ϕ ∈ QCl ⇐⇒ ϕ∗ ∈ L.

Proof. (⇒) Assume that ϕ ∈ QCl. Since ϕ is closed and, by definition of
modal predicate logic, cfQCl ⊆ L, surely ϕ ∈ L. Since ϕ∗ is a substitution
instance of ϕ and L is closed under Substitution, ϕ∗ ∈ L.

(⇐) Assume that ϕ �∈ QCl. By the Löwenheim–Skolem theorem, there
exists a classical model μ with the domain N such that μ �|= ϕ.
Let F = 〈N,N × N〉. Define an interpretation I on the augmented frame
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F � N so that, for every n ∈ W ,

I(n, P1) = {〈m〉 : μ |= Q(m,n)};
I(n, P2) = {〈n〉},

and put M = 〈F � N, I〉. Then M is a Kripke model.
By definition of M, for every n, a, b ∈ N,

M, n |= P1(a) ∧ P2(b) ⇐⇒ b = n and μ |= Q(a, b).

Since the accessibility relation of F is universal, it follows that, for every
n, a, b ∈ N,

M, n |= ♦(P1(a) ∧ P2(b)) ⇐⇒ μ |= Q(a, b). (3.1)

Straightforward induction, using (3.1) as a basis, shows that, for every
n ∈ N, every assignment g : Var → N, and every ψ ∈ sub ϕ,

M, n |=g ψ∗ ⇐⇒ μ |=g ψ.

Since μ �|= ϕ, it follows that M, n �|= ϕ∗ whenever n ∈ N. Thus, M �|= ϕ∗.
On the other hand, M |= QS5.6 Hence, ϕ∗ �∈ QS5. Since, by assumption,
L ⊆ QS5, it follows that ϕ∗ �∈ L.

Kripke uses the fact proven in Proposition 3.1 to conclude that, if L is
a modal predicate logic such that QCl ⊆ L ⊆ QS5, then the monadic
fragment of L is undecidable. Since var ϕ∗ = var ϕ, Proposition 3.1, in view
of Proposition 2.11, in fact, yields a stronger result:

Theorem 3.2. (Kripke [22]) Every sublogic of QS5 that includes cfQCl is
Σ0

1-hard in languages with two monadic predicate letters and three individual
variables.

Proof. Immediate from Propositions 2.11 and 3.1 since the functionf:ϕ�→ϕ∗

is recursive.

Remark 3.3. Kripke states the results of Proposition 3.1 and Theorem 3.2
for logics that include QCl, rather than cfQCl. We restated them with
cfQCl to explicitly cover logics of varying domains.

The simplicity of Kripke’s proof partially stems from its using only con-
stant domains semantics and not relying on any completeness results for
modal logics: the proof draws only on completeness of QCl and on sound-
ness of QS5 with respect to models with a universal accessibility relation.

6Kripke [22] does not explicitly justify this claim; we note that it follows from the
soundness of QS5 with respect to Kripke models with a universal accessibility relation;
completeness is not required.
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We note that Kripke’s proof substantially relies on closure of modal pred-
icate logics under Substitution. We also briefly comment on the use of the
Löwenheim–Skolem theorem in the proof. The theorem is invoked to as-
sume that the domain of the classical model refuting the formula ϕ is the
set N of natural numbers. It is easy to see, however, that this assumption
is superfluous to Kripke’s argument: just go back to the proof of Proposi-
tion 3.1, omit the appeal to the Löwenheim–Skolem theorem, and replace,
throughout the rest of the proof, N with the domain of an arbitrary model
refuting ϕ—the proof still stands. Why then invoke the Löwenheim–Skolem
theorem? Suppose we wished to prove a statement stronger than Proposi-
tion 3.1—namely, that a single augmented frame with a constant domain,
and hence a single Kripke frame, suffices to refute substitution instances of
all formulas not in QCl, so that, given a formula ϕ /∈ QCl, we only need to
define a suitable Kripke model, over the said augmented frame, refuting ϕ∗.
For that, we could have started with any infinite set X and considered the
augmented frame 〈X,X × X〉 � X, but the Löwenheim–Skolem theorem
gives us a convenient choice for X, the naturals. This line of thinking has
been developed by Hughes and Cresswell, as discussed in the next section,
but seems to be implicit in Kripke’s paper.

4. Logics that are not Sublogics of QS5

The direction (⇐) of the proof of Proposition 3.1 proceeds by defining a
countermodel for the formula ϕ∗ over an augmented frame with a universal
accessibility relation and a constant domain; hence, Proposition 3.1 applies
only to sublogics of QS5. The universality of the accessibility relation and
the use of the constant domain semantics are, however, not essential to the
proof. As observed by Hughes and Cresswell [19, pp. 271–272], who develop
Kripke’s ideas, the proof can be easily adapted to apply to every logic that
admits a Kripke frame with a world that sees infinitely many worlds.

We say that a Kripke frame F = 〈W,R〉 satisfies the Kripke–Hughes–
Cresswell condition (for short, KHC) if there exist W0 ⊆ W and w0 ∈ W
such that

|W0| = ℵ0 and {w0} × W0 ⊆ R.

Proposition 4.1. Let F = 〈W,R〉 be a Kripke frame satisfying KHC.
Then, for every closed L-formula ϕ containing no predicate letters other
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than a binary letter Q,

ϕ ∈ QCl ⇐⇒ ϕ∗ ∈ MLc F.

Proof. (⇒) As in the proof of Proposition 3.1.
(⇐) Suppose that ϕ �∈ QCl. Then, by the Löwenheim–Skolem theorem,

there exists a classical model μ with the domain N such that μ �|= ϕ. Since
F satisfies KHC, there exist W0 ⊆ W and w0 ∈ W such that |W0| = ℵ0 and
{w0} × W0 ⊆ R. We assume, without a loss of generality, that W0 = N.
Define an interpretation I on the augmented frame F�N so that, for every
n ∈ W0,

I(n, P1) = {〈m〉 : μ |= Q(m,n)};
I(n, P2) = {〈n〉},

and I(w,P1) = I(w,P2) = ∅ whenever w /∈ W0. Set M = 〈F � N, I〉. Then
M is a Kripke model and, for every a, b ∈ N,

M, w0 |= ♦(P1(a) ∧ P2(b)) ⇐⇒ μ |= Q(a, b).

Hence, M, w0 �|= ϕ∗. Since F � N ∈ augc F, surely ϕ∗ �∈ MLc F.

Corollary 4.2. Let F be a Kripke frame satisfying KHC and let ϕ be a
closed L-formula ϕ containing no predicate letters other than a binary letter
Q. Then the following conditions are equivalent:

(1) ϕ ∈ QCl;

(2) ϕ∗ ∈ MLv F;

(3) ϕ∗ ∈ MLe F;

(4) ϕ∗ ∈ MLc F.

Proof. (1) ⇒ (2): By Proposition 2.5, ϕ ∈ MLv F. Hence, by Substitution,
ϕ∗ ∈ MLv F. (2) ⇒ (3) and (3) ⇒ (4): These implications hold by Proposi-
tion 2.5. (4) ⇒ (1): This implication is given by Proposition 4.1.

We say that a modal predicate logic L is KHC-friendly if there exists a
Kripke frame F such that F satisfies KHC and F � N |= L (equivalently,
F � N |=var L).

Theorem 4.3. Every KHC-friendly modal predicate logic that includes
cfQCl is Σ0

1-hard in languages with two monadic predicate letters and three
individual variables.

Proof. Immediate from Proposition 2.11 and Corollary 4.2.
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Theorem 4.3 entails undecidability, in languages with only two monadic
predicate letters and three variables, of important logics not covered by
Theorem 3.2. If L is a propositional modal logic, we denote by KFL the
class of Kripke frames validating L.

Corollary 4.4. Let L0 be one of the propositional logics GL.3, Grz.3,
or K4.3.D.X. Then every modal predicate logic L satisfying the condition
cfQCl ⊆ L ⊆ MLc KFL0 is Σ0

1-hard in languages with two monadic predicate
letters and three individual variables.

Proof. For each logic L0 from the statement of the corollary, the predicate
logic MLc KFL0 is KHC-friendly.

Here are some examples of logics covered by Theorem 4.3, but not by
Theorem 3.2 (the list is not meant to be exhaustive):

Corollary 4.5. Let L be one of the propositional logics GL, GL.3, Grz,
Grz.3, S4.3, K4.3, and K4.3.D.X. Then QL and QL.bf are both
Σ0

1-hard in languages with two monadic predicate letters and three individual
variables.

Corollary 4.6. Let A ∈ {N,Q,R} and let A be either 〈A,<〉 or 〈A,�〉.
Then MLv A, MLe A, and MLc A are all Σ0

1-hard in languages with two monadic
predicate letters and three individual variables.7

Thus, many predicate modal logics—including the sublogics of QS5 con-
sidered in Kripke’s original proof—are KHC-friendly. Many, but not all:
non-examples include QAltn, where n ∈ N (as we shall see in Section 11, if
L = QAltn, then the monadic fragment of L is decidable); they also include
logics of augmented frames with finite local domains and logics of augmented
frames with finitely many possible worlds, both of which we shall show, in
Sects. 5 and 6, to be undecidable.8

5. Logics of Augmented Frames with Finite Local Domains

Logics of augmented frames with finite local domains are not KHC-friendly
since they conservatively extend QClfin , which is not valid on augmented

7We note that MLe〈Q,�〉 = QS4.3 and MLe〈Q, <〉 = KS4.3.D.X [7].
8We briefly note that, since the proof of Proposition 4.1 involves evaluating formulas

only at a single world, it can be adapted, in a straightforward manner, to quasi-normal
and non-normal modal predicate logics; such logics are not considered in this paper, and
we leave details to the interested reader.
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frames with infinite domains. In this section, we consider how Kripke’s proof
can be adapted to such logics and state a property guaranteeing that a logic
is amenable to the adaptation.

First, we define the logics considered in this section. We say that an aug-
mented frame (with varying, expanding, or constant domains)
FD = 〈W,R,D〉 is locally finite if |Dw| ∈ N+ whenever w ∈ W . If C is
a class of Kripke frames, then we define augvfin C , augefin C , and augcfin C to
be the subclasses of, respectively, augv C , auge C , and augc C containing all
locally finite augmented frames from the respective class. We, lastly, define
the following sets of ML-formulas:

MLcfin C = ML augcfin C ;
MLefin C = ML augefin C ;
MLvfin C = vML augvfin C .

These sets of formulas are predicate modal logics; in particular, they are
closed under Substitution; furthermore, MLcfin C and MLefin C are normal.
Proposition 5.1. Let C be a class of Kripke frames. Then MLcfin C and
MLefin C are conservative extensions of QClfin and, moreover,

cfQClfin ⊆ cf MLvfin C ⊆ cf MLefin C ⊆ cf MLcfin C .

Proof. Similar to the proof of Proposition 2.5.
We seek a weakening of KHC that would play the same role for locally

finite augmented frames. It turns out that the condition we seek is very
similar to the condition formulated by Skvortsov in the context of super-
intuitionistic predicate logics of frames with finitely many possible worlds9

[48, Corollary 3], cf. [33, Lemma 3.3]: We say that a class C of Kripke frames
satisfies the weak Kripke–Hughes–Cresswell condition (for short, wKHC) if,
for every n ∈ N+, there exists a Kripke frame 〈W,R〉 ∈ C with W0 ⊆ W
and w0 ∈ W such that

|W0| = n and {w0} × W0 ⊆ R.

Observe that, if a class of Kripke frames contains a frame satisfying KHC,
then the class satisfies wKHC, but the converse is not always true.
Proposition 5.2. Let C be a class of Kripke frames satisfying wKHC.
Then, for every closed L-formula ϕ containing no predicate letters other
than a binary letter Q,

ϕ ∈ QClfin ⇐⇒ ϕ∗ ∈ MLcfin C .

9Note, however, that Skvortsov’s set-up differs from the one studied in this section.
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Proof. (⇒) Assume that ϕ ∈ QClfin . By Proposition 5.1, ϕ ∈ cf MLcfin C .
Since MLcfin C is closed under Substitution, surely ϕ∗ ∈ cf MLcfin C .

(⇐) Assume that ϕ �∈ QClfin . Then there exists n ∈ N and a classical
model μ with the domain {1, . . . , n} such that μ �|= ϕ. Since C satisfies
wKHC, it contains a Kripke frame F = 〈W,R〉 with W0 ⊆ W and w0 ∈ W
such that |W0| = n and {w0} × W0 ⊆ R. We assume, without a loss of
generality, that W0 = {1, . . . , n}. Define an interpretation I on F�{1, . . . , n}
so that, for every k ∈ {1, . . . , n},

I(k, P1) = {〈m〉 : μ |= Q(m, k)};
I(k, P2) = {〈k〉},

and I(w,P1) = I(w,P2) = ∅ whenever w /∈ W0. Set M = 〈F�{1, . . . , n}, I〉.
Then M is a Kripke model and, for every m, k ∈ {1, . . . , n},

M, w0 |= ♦(P1(m) ∧ P2(k)) ⇐⇒ μ |= Q(m, k).

Hence, M, w0 �|= ϕ∗, and so ϕ∗ �∈ MLcfin C .

Corollary 5.3. Let C be a class of Kripke frames satisfying wKHC and
let ϕ be a closed L-formula ϕ containing no predicate letters other than a
binary letter Q. Then the following conditions are equivalent:

(1) ϕ ∈ QClfin ;

(2) ϕ∗ ∈ MLvfin C ;

(3) ϕ∗ ∈ MLefin C ;

(4) ϕ∗ ∈ MLcfin C .

Proof. Analogous to the proof of Corollary 4.2.

Theorem 5.4. Let C be a class of Kripke frames satisfying wKHC. Then
the logics MLcfin C , MLefin C , and MLvfin C are all Π0

1-hard in languages with
two monadic predicate letters and three individual variables.

Proof. Immediate from Proposition 2.12 and Corollary 5.3.

Since Π0
1-hardness means lack of recursive enumerability, logics from The-

orem 5.4 are not recursively enumerable.

Corollary 5.5. Let L be a propositional modal logic such that KFL sat-
isfies wKHC. Then the logics MLcfin KFL, MLefin KFL, and MLvfin KFL are all
Π0

1-hard in languages with two monadic predicate letters and three individual
variables.

Proof. Immediate from Theorem 5.4.
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Corollary 5.6. Let L0 be one of the propositional logics S5, GL.3, Grz.3,
or K4.3.D.X. Then every predicate modal logic L satisfying the condition
cfQClfin ⊆ L ⊆ MLcfin KFL0 is Π0

1-hard in languages with two monadic
predicate letters and three individual variables.

Proof. Observe that, for each propositional logic L0 from the statement of
the corollary, the class KFL0 contains a frame satisfying KHC; hence, KFL0

satisfies wKHC.

6. Logics of Augmented Frames with Finitely Many Worlds

Neither Kripke [22] nor Hughes and Cresswell [19] consider logics deter-
mined by frames with only finitely many possible worlds. In propositional
modal logic, the finite frame property (ffp) typically leads to decidability
(recall that a logic has the ffp if it is determined by a class of Kripke frames
each with finitely many possible worlds). More precisely, every recursively
enumerable propositional logic with the ffp is decidable [17].10 In predicate
modal logic, as we shall see, the situation is very different: applying the
Kripke trick to logics determined by augmented frames with finitely many
worlds, we can show that such logics are not recursively enumerable.

First, we define the logics considered in this section. If C is a class of
Kripke frames, we define wfinC = {〈W,R〉 ∈ C : |W | ∈ N+} and then
define

MLcwfin C = ML augc wfinC ;
MLewfin C = ML auge wfinC ;
MLvwfin C = vML augv wfinC .

We now introduce the condition playing the role of KHC for these log-
ics. This is exactly the condition set out by Skvortsov [48, Corollary 3] for
superintuitionistic logics. We, therefore, say that a class C of Kripke frames
is a Skvortsov class if its subclass wfinC satisfies wKHC.

Proposition 6.1. Let C be a Skvorstov class of Kripke frames. Then the
logics MLcwfin C and MLewfin C are conservative extensions of QCl and, more-
over,

cfQCl ⊆ cf MLvwfin C ⊆ cf MLewfin C ⊆ cf MLcwfin C .

10In general neither the ffp [55], nor even the linear size frame property [42,49], guar-
antees decidability of propositional modal or superintuitionistic logics; examples of unde-
cidable propositional logics with the ffp are, however, rather contrived.
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Proof. Similar to the proof of Proposition 2.5.

The key observation in this section is that, if C is a Skvortsov class
of Kripke frames, then QClfin can be recursively embedded into MLcwfin C
by simulating finite local domains on the possibly infinite local domains of
augmented frames over Kripke frames from C .

To minimize the number of monadic letters used in the simulation pre-
sented in this section, we will be using the monadic predicate letter P2 for
two purposes: to simulate, along with P1, the binary letter Q, and to induce
equivalence relations on local domains. First, we define

C = ∀x∀y
(
�(P2(x) ↔ P2(y)) → ∀z (Q(x, z) → Q(y, z))

∧ ∀z (Q(z, x) → Q(z, y))
)
.

Recall that the translation ·∗ was defined in Section 3.

Proposition 6.2. Let C be a Skvortsov class of Kripke frames. Then, for
every closed L-formula ϕ containing no predicate letters other than a binary
letter Q,

ϕ ∈ QClfin ⇐⇒ C∗ → ϕ∗ ∈ MLcwfin C .

Proof. (⇒) Assume that C∗ → ϕ∗ �∈ MLcwfin C . Then there exist a Kripke
frame F = 〈W,R〉 ∈ C with a finite W , a model M = 〈F�D, I〉, and w0 ∈ W
such that

M, w0 |= C∗ and M, w0 �|= ϕ∗.

We obtain a classical model with a finite domain refuting ϕ. We define a
binary relation ≈ on the set D by

a ≈ b ⇐⇒ M, w0 |= �(P2(a) ↔ P2(b)).

It should be clear that ≈ is an equivalence on D. Set [a] = {b ∈ D : a ≈ b}
and D̄ = {[a] : a ∈ D} = D / ≈. We show that the set D̄ is finite. Put, for
every a ∈ D,

V(a) = {w ∈ R(w0) : M, w |= P2(a)},

and set

V̄ = {V(a) : a ∈ D}.

The definition of ≈ implies that V(a) = V(b) if, and only if, a ≈ b,
i.e., there exists a bijection between V̄ and D̄, and so |V̄| = |D̄|. Surely,
|V̄| � 2|R(w0)| � 2|W |. Since, by assumption, W is finite, it follows that D̄ is
finite.
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Since M, w0 |= C∗, the relation ≈ is a congruence with respect to the bi-
nary relation {〈a, c〉 : M, w0 |= ♦(P1(a)∧P2(c))} on D. Hence, the following
definition of a classical model μ = 〈D̄, I〉 is sound: for every a, c ∈ D(w0),

〈[a], [c]〉 ∈ I(Q) � there exists w ∈ R(w0) with M, w |= P1(a) ∧ P2(c).

We next show that μ �|= ϕ. We say that assignments ḡ in μ and g in M agree
if ḡ(x) = [g(x)], for every x. Straightforward induction, with the definition
of I(Q) as a basis, shows that μ |=ḡ ψ if, and only if, M, w0 |=g ψ, for every
ψ ∈ sub ϕ and every pair of agreeing assignments ḡ and g. Hence, μ �|= ϕ,
and so ϕ �∈ QClfin .

(⇐) Assume that ϕ �∈ QClfin . Then, there exist n ∈ N and a classical
model μ with the domain {1, . . . , n} such that μ �|= ϕ. Since C is a Skvortsov
class, there exists a (finite) Kripke frame F = 〈W,R〉 ∈ C with W0 ⊆ W
and w0 ∈ W such that |W0| = n and {w0} × W0 ⊆ R. We assume, without
a loss of generality, that W0 = {1, . . . , n}. Define an interpretation I on the
augmented frame F � {1, . . . , n} so that, for every k ∈ {1, . . . , n},

I(k, P1) = {〈m〉 : μ |= Q(m, k)};
I(k, P2) = {〈k〉},

and I(w,P1) = I(w,P2) = ∅ whenever w /∈ W0. Set M = 〈F�{1, . . . , n}, I〉.
Then, for every a, b ∈ D(w0),

M, w0 |= �(P2(a) ↔ P2(b)) ⇐⇒ a = b.

Hence, M, w0 |= C∗. On the other hand, for every m, k ∈ {1, . . . , n},

M, w0 |= ♦(P1(m) ∧ P2(k)) ⇐⇒ μ |= Q(m, k),

and so, by straightforward induction, for every subformula ψ ∈ sub ϕ and
every assignment g,

M, w0 |=g ψ∗ ⇐⇒ μ |=g ψ.

Hence, M, w0 �|= ϕ∗, and so C∗ → ϕ∗ �∈ MLcwfin C .

Corollary 6.3. Let C be a Skvortsov class of Kripke frames and let ϕ be a
closed L-formula containing no predicate letters other than a binary letter Q.
Then the following conditions are equivalent:

(1) ϕ ∈ QClfin ;

(2) C∗ → ϕ∗ ∈ MLvwfin C ;

(3) C∗ → ϕ∗ ∈ MLewfin C ;

(4) C∗ → ϕ∗ ∈ MLcwfin C .
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Proof. (1) ⇒ (2): Observe that in the proof of the implication (⇒) from
Proposition 6.2 we did not rely on the constancy of domains. Hence, the
proof can be repeated for MLvwfin C .

(2) ⇒ (3) and (3) ⇒ (4): These implications hold by Proposition 6.1.
(4) ⇒ (1): This implication is given by Proposition 6.2.

Theorem 6.4. Let C be a Skvortsov class of Kripke frames. Then, the
logics MLewfin C , MLcwfin C , and MLvwfin C are Π0

1-hard in languages with two
monadic predicate letters and three individual variables.

Proof. Immediate from Proposition 2.12 and Corollary 6.3.

Corollary 6.5. Let L be a propositional modal logic such that KFL is a
Skvortsov class of Kripke frames. Then the logics MLcwfin KFL, MLewfin KFL,
and MLvwfin KFL are all Π0

1-hard in languages with two monadic predicate
letters and three individual variables.

Proof. Immediate from Theorem 6.4.

Corollary 6.6. Let L0 ∈ {S5,GL.3,Grz.3,K4.3.D.X}. Then every
sublogic of MLcwfin KFL0 that includes QClfin is Π0

1-hard in languages with
two monadic predicate letters and three individual variables.

Proof. Observe that, for each propositional logic L0 from the statement of
the corollary, the class KFL0 is Skvortsov.

7. Kripke Trick with a Single Predicate Letter

The Kripke trick itself, as well as all the modifications discussed thus far,
use two monadic predicate letters. Kripke’s primary concern was proving
undecidability of monadic fragments of modal predicate logics, regardless
of the number of predicate letters involved. More recently, finer analysis of
computational properties of modal predicate logics has become of interest,
partly as a result of the realisation of the immense expressive power of modal
predicate languages and partly due to the analysis of the expressive power
of propositional logics through embeddings into very restricted fragments of
modal predicate logics [10,58]. While techniques for simulating atomic for-
mulas involving an arbitrary number of monadic letters by atomic formulas
with a single fixed monadic letter are outside of the scope of this paper, we
show, in this section, how the Kripke trick itself can be implemented with
a single monadic predicate letter, rather than two.

It should be clear that, if a modal predicate logic L admits an augmented
frame with infinite domains over an irreflexive tree of height 3 that has an
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infinite branching factor, then, in L, the formula Q(x, y) can be simulated
with ♦(P (x) ∧ ♦P (y))—the proof is similar to the proof of Proposition 4.1.
This does not, however, work for logics proving �p → p and, hence, re-
quiring reflexive frames: if a model M is based on a reflexive frame, then
M, w |= ♦(P (a) ∧ ♦P (b)) implies M, w |= ♦(P (a) ∧ ♦P (a)), for every world
w of M; hence, the classical model of the L-formula into which the substi-
tution of ♦(P (x) ∧ ♦P (y)) for Q(x, y) is made has to validate the formula
∀x∀y (Q(x, y) → Q(x, x)). Thus, over reflexive frames, ♦(P (x) ∧ ♦P (y))
does not have the same meaning as Q(x, y) if Q is allowed to stand for an
arbitrary binary predicate.

We can, nevertheless, recursively reduce to modal logics with a single
monadic predicate letter a classical first-order theory of a binary predicate
with special properties. A suitable candidate for such a theory is the first-
order theory SIB of relational structures with a symmetric and irreflexive
binary relation, which is known to be undecidable with only three individual
variables [21,27,31]:

Proposition 7.1. The theory SIB is undecidable with three individual vari-
ables.

We define

sib = ∀x∀y (Q(x, y) → Q(y, x)) ∧ ∀x¬Q(x, x).

Let ψ be an L-formula, let P be a monadic predicate letter, and let ψ◦ be an
ML-formula obtained from ψ by substituting ¬♦(P (x) ∧ P (y)) for Q(x, y).
Then the following holds [30] (cf. [9], Chapter 11, Theorem III):

Proposition 7.2. Let F be a Kripke frame satisfying KHC. Then, for ev-
ery closed L-formula ϕ containing no predicate letters other than a binary
letter Q,

ϕ ∈ SIB ⇐⇒ sib◦ → ϕ◦ ∈ MLc F.

Proof. (⇒) Assume that ϕ ∈ SIB. Then sib → ϕ ∈ QCl, and so
sib → ϕ ∈ MLc F. Since MLc F is closed under Substitution, surely it fol-
lows that sib◦ → ϕ◦ ∈ MLc F.

(⇐) Assume that ϕ /∈ SIB. Then sib → ϕ �∈ QCl, and so, by the
Löwenheim–Skolem theorem, there exists a classical model μ = 〈N, I〉 such
that μ �|= sib → ϕ. Since μ |= sib, the relation I(Q) is symmetric and
irreflexive. Since F satisfies KHC, there exist W0 ⊆ W and w0 ∈ W such
that |W0| = ℵ0 and {w0}×W0 ⊆ R. We assume, without a loss of generality,
that W0 = N×N. Define an interpretation I on the augmented frame F�N
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so that, for every n,m ∈ N,

I(〈n,m〉, P ) =
{{〈n〉, 〈m〉} if μ �|= Q(n,m);

∅ otherwise,

and I(w,P ) = ∅ whenever w ∈ W\W0. Set M = 〈F � N, I〉. Since I(Q) is
symmetric and irreflexive, for every n,m ∈ N,

M, w0 |= ♦(P (n) ∧ P (m)) ⇐⇒ μ �|= Q(n,m). (7.1)

Straightforward induction, using (7.1) as a basis, shows that, for every
ψ ∈ sub ϕ and every assignment g,

M, w0 |=g ψ◦ ⇐⇒ μ |=g ψ.

Since μ �|= ϕ, it follows that M, w0 �|= ϕ◦. Since I(Q) is symmetric and
irreflexive, the binary relation

{〈a, b〉 ∈ N × N : M, w0 |= ¬♦(P (a) ∧ P (b))}
is also symmetric and irreflexive; hence, M, w0 |= sib◦. Therefore,
M, w0 �|= sib◦ → ϕ◦, and so sib◦ → ϕ◦ �∈ MLc F.

Corollary 7.3. Let F be a Kripke frame satisfying KHC and let ϕ be a
closed L-formula ϕ containing no predicate letters other than a binary letter
Q. Then the following conditions are equivalent:

(1) ϕ ∈ QCl;

(2) sib◦ → ϕ◦ ∈ MLv F;

(3) sib◦ → ϕ◦ ∈ MLe F;

(4) sib◦ → ϕ◦ ∈ MLc F.

Proof. (1) ⇒ (2): Observe that in the proof of the implication (⇒) from
Proposition 7.2 we did not rely on the constancy of domains. Hence, the
proof can be repeated for MLv C .

(2) ⇒ (3) and (3) ⇒ (4): These implications hold by Proposition 2.5.
(4) ⇒ (1): This implication holds by Proposition 7.2.

Theorem 7.4. Every KHC-friendly modal predicate logic is Σ0
1-hard in lan-

guages with one monadic predicate letter and three individual variables.

Proof. Immediate from Proposition 7.1 and Corollary 7.3.

Corollary 7.5. Let L0 ∈ {QS5,QGL.3.bf ,QGrz.3.bf ,QK4.3.D.X.bf}
and L be a modal predicate logic with cfQCl ⊆ L ⊆ L0. Then, L is Σ0

1-hard
in languages with only one monadic predicate letter and three individual
variables.
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8. Simulation of Predicate Letters of Higher Arity

We briefly note that Kripke’s idea of simulating classical atomic formulas
with a binary predicate letter by modal formulas with two monadic letters
is easily generalisable: as observed by Alexander Chagrov, we can simu-
late S(x1, . . . , xn), where S is an n-ary predicate letter, with the formula
♦(P1(x1) ∧ . . . ∧ Pn(xn)). This enables us to easily and effortlessly simulate
all classical atomic formulas with monadic modal formulas. Then, applying
techniques for simulating an arbitrary number of monadic atomic formulas
by formulas with a single fixed monadic letter [28,35,36,39], we can simu-
late every classical atomic formula by modal formulas with a single monadic
predicate letter; note that simulating atomic formulas with n-ary predicate
letters, for n � 3, within QCl itself is rather cumbersome [3, Chapter 21].
We come back to this theme in Section 9 and, in the context of superintu-
itionistic logics, in Section 10.

9. Kripke Trick for Modal Formulas

So far, we have seen how variations of the Kripke trick are applied to clas-
sical formulas; this is useful for the transfer of algorithmic lower bounds
from non-modal to modal logics. We might, however, want to reduce sets
of modal formulas containing binary predicate letters to sets of monadic
modal formulas; for that, it is useful to be able to apply the Kripke trick to
formulas with modalities.

The substitution of ♦(P1(x) ∧ P2(y)) for Q(x, y) used so far, if applied
to a modal formula, is not guaranteed to produce a QK-equivalent formula:
since QK admits frames containing worlds that do not see any worlds, it
follows that

∀x∀y Q(x, y) → ♦� /∈ QK.

On the other hand, surely

∀x∀y ♦(P1(x) ∧ P2(y)) → ♦� ∈ QK.

This problem does not arise when applying the Kripke trick to a classical
formula ϕ: then the resultant ML-formula ϕ∗ contains modalities only in
formulas of the form ♦(P1(x) ∧ P2(y)) substituted for atomic formulas of
the form Q(x, y); hence, in the proof of the correctness of the substitution,
the truth status of subformulas of ϕ∗ other than ♦(P1(x) ∧ P2(y)) at the
world refuting ϕ∗ is independent of the truth status of any formulas at any
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other worlds. To avoid undesirable effects in the modal setting, we can use
relativization.

We first explain how relativization works when applied to arbitrary modal
formulas. Along the way, we show that, for some subframe logics, combining
relativization with the Kripke trick suffices to prove their embeddability into
their own monadic fragments. We recall that a modal predicate logic L is
subframe if, for every augmented frame with expanding domains FD, the
following holds: if FD |= L and F′

D is a subframe of FD, then F′
D |= L.

Let ϕ be an ML-formula and p a proposition letter not in ϕ. We recur-
sively define the p-relativization ϕp of ϕ:

ϕp = ϕ ifϕ is atomic;
(ϕ1 ◦ ϕ2)p = ϕp

1 ◦ ϕp
2 if ◦ ∈ {∧,∨,→};

(�ϕ1)p = �(p → ϕp
1);

(Qx ϕ1)p = Qx ϕp
1 ifQ ∈ {∀,∃}.

Lemma 9.1. For every ML-formula ϕ and every Kripke complete subframe
normal modal predicate logic L,

ϕ ∈ L ⇐⇒ p → ϕp ∈ L.

Proof. Suppose that p → ϕp /∈ L. Since L is Kripke complete, there exists
a model M = 〈W,R,D, I〉 and w0 ∈ W such that 〈W,R,D〉 |= L and
M, w0 �|= p → ϕp. Set

W ′ = {w ∈ W : M, w |= p}.

Since M, w0 |= p, surely W ′ �= ∅. We define

R′ = R � W ′, D′ = D � W ′, I ′ = I � W ′, and M′ = 〈W ′, R′, D′, I ′〉.
Then M′ is a Kripke model such that M′, w0 �|= ϕ; hence, 〈W ′, R′, D′〉 �|= ϕ.
On the other hand, since L is subframe, 〈W ′, R′, D′〉 |= L. Hence, ϕ /∈ L.

Conversely, suppose that p → ϕp ∈ L. Let ϕ′ be obtained from p → ϕp

by substituting � for p. By Substitution, ϕ′ ∈ L. Since (ϕ ↔ ϕ′) ∈ QK, it
follows that ϕ ∈ L.

For some subframe logics, namely for QK, QKT, QKB, and QKBT,
Lemma 9.1 enables us to reproduce the Kripke trick for an arbitrary
ML-formula:

Proposition 9.2. Let L ∈ {QK,QKT,QKB,QKBT}. Then, for every
ML-formula ϕ,

ϕ ∈ L ⇐⇒ p → (ϕp)∗ ∈ L.
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Proof. (⇒) Suppose that ϕ ∈ L. Then, by Lemma 9.1 and Substitution,
(p → ϕp)∗ ∈ L, i.e., p → (ϕp)∗ ∈ L.

(⇐) We first give a proof for QK and then point out the adjustments
necessary for the other logics. Suppose that ϕ /∈ QK. Then there exists a
Kripke model M = 〈W,R,D, I〉 and w0 ∈ W such that M, w0 �|= ϕ. Let
Mp = 〈W,R,D, Ip〉 be an expansion of M such that Mp |= p (recall that
p does not occur in ϕ). Then Mp, w0 |= p and, as can be easily checked,
Mp, w0 �|= ϕp. Extend the model Mp as follows: let

• W ′ = W ∪ {〈w, a〉 : w ∈ W,a ∈ Dw};

• R′ = R ∪ {〈w, 〈w, a〉〉 : w ∈ W,a ∈ Dw};

• D′ : W ′ → P(D+) be the map defined by

D′(u) =
{

D(u) if u ∈ W ;
D(w) if u = 〈w, a〉, for some w ∈ W and a ∈ Dw;

• I ′ be an interpretation on the augmented frame 〈W ′, R′, D′〉 such that

– I ′(w,S) = I(w,S) whenever w ∈ W and S is a letter from p → ϕp;
– I ′(w,P1) = I ′(w,P2) = ∅ whenever w ∈ W ;
– for every w ∈ W and every b ∈ Dw,

I ′(〈w, b〉, P1) = {〈a〉 : Mp, w |= Q(a, b)};
I ′(〈w, b〉, P2) = {〈b〉};
I ′(〈w, b〉, S) = ∅ if S /∈ {P1, P2};

• M′ = 〈W ′, R′, D′, I ′〉.
Thus, in particular, M′, 〈w, b〉 �|= p whenever w ∈ W and b ∈ Dw.

Then, for every w ∈ W and every a, b ∈ Dw,

M′, w |= ♦(P1(a) ∧ P2(b)) ⇐⇒ Mp, w |= Q(a, b), (9.1)

and, for every w ∈ W , every atomic subformula θ of ϕp that does not have
the form Q(x, y), and every assignment g,

M′, w |=g θ∗ ⇐⇒ M′, w |=g θ ⇐⇒ Mp, w |=g θ. (9.2)

Then straightforward induction on ψ shows that, for every w ∈ W , every
ψ ∈ sub ϕ, and every assignment g,

M′, w |=g (ψp)∗ ⇐⇒ Mp, w |=g ψp;

the basis of the induction follows from (9.1) and (9.2), while the inductive
step for � goes through since p is false in M′ outside of W and every
subformula of ψ beginning with � has the form �(p → ψ′).
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It follows that M′, w0 �|= (ϕp)∗. Hence, M′, w0 �|= p → (ϕp)∗, and so
p → (ϕp)∗ /∈ QK.

To obtain proofs for QKT, QKB, QKTB, amend the definition of the
model M′ by taking, respectively, reflexive, symmetric, and symmetric re-
flexive closure of the relation R′ as the accessibility relation of the model
M′.

Using the observation of Section 8, we can recursively embed logics men-
tioned in Proposition 9.2 into their own monadic fragments. Suppose that
ϕ ∈ ML, that S is an n-ary predicate letter, and that the formula ϕ# is
obtained from ϕ by substituting ♦(P1(x1) ∧ · · · ∧ Pn(xn)) for S(x1, . . . , xn).

Proposition 9.3. Let L ∈ {QK,QKT,QKB,QKBT}. Then, for every
ϕ ∈ ML,

ϕ ∈ L ⇐⇒ p → (ϕp)# ∈ L.

Proof. Similar to the proof of Proposition 9.2.

Corollary 9.4. Let L ∈ {QK,QKT,QKB,QKBT}. Then L is recur-
sively embeddable into its own monadic fragment.

Relativization by itself is not, however, sufficient for logics of transitive
Kripke frames, such as QK4 and QS4. Here is a simple counter-example:
consider the formula

ϕ = ∀x∀y (¬Q(x, y) → �¬Q(x, y)).

Relativizing ϕ and applying the substitution of ♦(P1(x)∧P2(y)) for Q(x, y)
to the resultant formula gives us

(ϕp)∗ = ∀x∀y (¬♦(P1(x) ∧ P2(y)) → �(p → ¬♦(P1(x) ∧ P2(y)))).

It should be clear that ϕ is refuted on the trivially transitive Kripke frame
F = 〈{w, v}, {〈w, v〉}〉; hence, ϕ /∈ QK4. On the other hand, as can be easily
checked, p → (ϕp)∗ ∈ QK4.

This is the effect of transitivity. In the model M′ from the proof of Propo-
sition 9.2, for every w ∈ W , fresh worlds 〈w, a〉 are R′-accessible from w,
but not from any w′ ∈ W \ {w}. This could not be ensured were M based
on a transitive Kripke frame: if R were transitive, then, by transitivity, the
world 〈w, a〉 could become accessible from some world u that sees w, but
is distinct from w. This would imply that M′, u |= ♦(P1(a) ∧ P2(b)) even
if M, u �|= Q(a, b), thus violating (9.1) and, hence, invalidating the proof of
Proposition 9.2.

If L is a Kripke complete subframe logic whose frames are transitive, the
analogue of Proposition 9.2 holds provided the formula ϕ has the following
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special property: if ϕ is satisfiable in a model validating L, then it is sat-
isfiable in a model M = 〈W,R,D, I〉 that validates L and, additionally, is
downward hereditary with respect to the interpretation of the letter Q, i.e.,
for all w,w′ ∈ W :

M, w |= Q(a, b) & w ∈ R(w′) & a, b∈D(w′) =⇒ M, w′ |= Q(a, b). (9.3)

We note that, instead of models satisfying (9.3), we could use models sat-
isfying the upward heredity property with respect to Q: for all w, w′ ∈ W
and a, b ∈ Dw,

M, w |= Q(a, b) & w′ ∈ R(w) =⇒ M, w′ |= Q(a, b), (9.4)

but then Q(x, y) should be simulated by ¬♦(P1(x) ∧ P2(y)) rather than by
♦(P1(x) ∧ P2(y)).

When working with logics of transitive Kripke frames, it is often possi-
ble to encode an undecidable problem with formulas satisfying either (9.3)
or (9.4), but relativization might need extra work when dealing with logics
of particular Kripke frames, such as 〈N,�〉. Then the Kripke trick can be
carried out by simulating formulas of the form Q(x, y) using the worlds of
the given frame, rather than fresh worlds appended to the frame. We briefly
sketch how this can be done in the case of logics MLe〈N,�〉 and MLc〈N,�〉.11
Here, we need to encode a suitable undecidable problem with monadic modal
formulas satisfiable in a model M = 〈N,�, D, I〉 satisfying both (9.3) and
(9.4) and, additionally, such that with |D+| = ℵ0. Then we simulate each
subformula Q(x, y) of ϕ with monadic formulas, as follows. Since |D+| = ℵ0,
we can allocate to each w ∈ N a pair from Dw × Dw so that each pair from
the set D+ × D+ is allocated to infinitely many worlds from N. We then
define a model M′ over 〈N,�〉 so that, for every w ∈ N,

M′, w |= P1(a) ∧ P2(b) � 〈a, b〉 is allocated to w andM, w |= Q(a, b).

Then, by (9.3) and (9.4), for every w ∈ W and every a, b ∈ Dw,

M′, w |= ♦(P1(a) ∧ P2(b)) ⇐⇒ M, w |= Q(a, b).

Hence, M′, w |= ϕ∗ if, and only if, M, w |= ϕ whenever w ∈ N.

11The construction presented below is a slight generalization of that used in our proof
of Π1

1-hardness of two-variable monadic fragments of MLe〈N,�〉 and MLc〈N,�〉; details can
be found in [37,39].
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10. Kripke Trick for Superintuitionistic Logics

10.1. Difficulties of the Transfer from Modal Languages

The transfer of the Kripke trick from modal to superintuitionistic logics has
caused some difficulties. Kripke, in his paper [22, p. 115], announced a sequel
on the intuitionistic predicate logic, but it seems to have never appeared in
print.12 We briefly point out how, and why, the straightforward attempts to
apply the trick to superintuitionistic logics fail.

Kontchakov et al. [20, § 4] suggest that the most obvious way to simulate
Q(x, y) in QInt would be to use ¬¬(P1(x) ∧ P2(y)). To see why, observe
that, in intuitionistic Kripke models,

M, w |= ¬¬ϕ ⇐⇒ M, w′ |= ϕ, for some w′ ∈ R(w);

thus, in the Kripke semantics for L the formula ¬¬ϕ has meaning similar
to the meaning of the formula ♦ϕ in Kripke semantics for ML (more pre-
cisely, intuitionistic formula ¬¬ϕ behaves like the modal formula �♦ϕ, but
all intuitionistic formulas, due to (2.5), can be viewed as statements about
necessity). Therefore, the intuitionistic formula ¬¬(P1(x)∧P2(y)) has mean-
ing similar to that of the modal formula ♦(P1(x) ∧ P2(y)). The substitution
of ¬¬(P1(x) ∧ P2(y)) for Q(x, y) does not, however, work in QInt. Indeed,
consider the formula

A = ∀x∀y (¬¬Q(x, y) → Q(x, y)).

Since A is an instance of the law of double negation elimination, which is not
valid intuitionistically, surely A /∈ QInt. On the other hand, substituting
¬¬(P1(x) ∧ P2(y)) for Q(x, y) into A results in the formula

∀x∀y (¬¬¬¬(P1(x) ∧ P2(y)) → ¬¬(P1(x) ∧ P2(y))),

which belongs to QInt, since ¬¬¬ψ → ¬ψ is intuitionistically valid.
Another idea would be to negate Kripke’s formula: ¬♦(P1(x) ∧ P2(y)) is

equivalent to �(¬P1(x) ∨ ¬P2(y)), which, due to (2.5), has meaning similar
to the intuitionistic formula ¬P1(x) ∨ ¬P2(y). This substitution works, at
least, for the formula A. It does not, however, work in general: consider the
formula

B = ∀x∀y∀z (Q(x, y) → Q(x, z) ∨ Q(z, y)),

12The undecidability of the monadic fragment of QInt had been established by
Maslov et al. [25] using unrelated methods; a different proof, also circumventing the Kripke
trick, was discovered by Gabbay [9, Chapter 14, Theorem 1].
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which is refuted in a classical model with a two-element domain, and hence
does not belong to QInt. On the other hand, as can be easily checked, its
substitution instance

∀x∀y∀z ((¬P1(x) ∨ ¬P2(y)) → (¬P1(x) ∨ ¬P2(z)) ∨ (¬P1(y) ∨ ¬P2(y)))

is in QInt. The formula B would also furnish a counterexample if we tried
substituting P1(x)∨P2(y) for Q(x, y). Another reformulation, P1(x) → P2(y)
does not work, either: the formula

∀x∀y∀z∀u ¬(¬Q(x, y) ∧ ¬Q(z, u) ∧ Q(x, u))

is refuted in the classical model 〈D, I〉 with D = {a, b} and I(Q) = {〈a, b〉},
and hence is not in QInt, but its substitution instance

∀x∀y∀z∀u ¬(¬(P1(x) → P2(y)) ∧ ¬(P1(z) → P2(u)) ∧ (P1(x) → P2(u)))

is in QInt. Thus, head-on attempts fail.

10.2. The Kripke Trick for Superintuitionistic Logics

A successful attempt to transfer the Kripke trick to superintuitionistic logics
involves two ideas: relativization and avoidance of non-positive formulas.

An L-formula ϕ is positive if it does not contain ⊥. Observe that posi-
tive formulas do not contain ¬ either. We denote by L+ the set of positive
L-formulas and, if L is a superintuitionistic predicate logic, we define
L+ = L ∩ L+. We say that a superintuitionistic predicate logic L is sub-
frame in case, for every intuitionistic augmented frame FD, if FD |= L then
F′

D |= L whenever F′
D is a subframe of FD.

We first show that, if L is a subframe Kripke complete superintuitionistic
predicate logic, then there exists a recursive embedding of L into L+. We
denote by ∀̄χ the universal closure of a formula χ (we assume, without a
loss of generality, that each formula has a unique universal closure). For an
L-formula ϕ and a proposition letter f not in ϕ, we denote by ϕf the result
of substituting f for ⊥ in ϕ and define

F = ∀̄
∧

ψ∈sub ϕ

(
f → ψf

)
.

Proposition 10.1. Let L be a subframe Kripke complete superintuitionistic
predicate logic and let ϕ be an L-formula. Then

ϕ ∈ L ⇐⇒ F → ϕf ∈ L.

Proof. (⇐) Assume that F → ϕf ∈ L. Let ψ⊥ be the result of substi-
tuting ⊥ for f in an L-formula ψ. By Substitution, (F → ϕf )⊥ ∈ L, i.e.,
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F⊥ → ϕ ∈ L. Since ⊥ → ψ ∈ QInt, for every formula ψ, surely F⊥ ∈ L.
Hence, by Modus Ponens, ϕ ∈ L.

(⇒) Assume that F → ϕf /∈ L. Since L is Kripke complete, there exist
an intuitionistic Kripke model M = 〈W,R,D, I〉, a world w0 ∈ W , and an
assignment g0, with g0(x) ∈ D(w0) for every x ∈ par ϕf , such that

〈W,R,D〉 |= L, M, w0 �g0 F, and M, w0 ��g0 ϕf .

Set W ′ = {w ∈ W : M, w �� f}. Since M, w0 � F , it follows that, for every
w ∈ W , every ψ ∈ sub ϕ, and every assignment g such that g(x) ∈ Dw

whenever x ∈ par ψf ,

w ∈ R(w0) & M, w �g f =⇒ M, w �g ψf . (10.1)

Since w0 ∈ R(w0) and M, w0 �� ϕf , it follows, by (10.1), that M, w0 �� f .
Hence w0 ∈ W ′, and so W ′ �= ∅. Set

R′ = R � W ′, D′ = R � D′, I ′ = I � W ′, and M′ = 〈W ′, R′, D′, I ′〉.
Then M′ is an intuitionistic Kripke model. Since L is subframe, 〈W ′, R′, D′〉
|= L. We show, by induction on ψ, that, for every w ∈ R′(w0), every
ψ ∈ subϕ, and every assignment g such that g(x) ∈ D(w) whenever
x ∈ par ψf ,

M′, w �g ψf ⇐⇒ M, w �g ψf . (10.2)
For atomic formulas, (10.2) holds since M′ is a submodel of M. The cases
ψ = ψ1 ∧ ψ2, ψ = ψ1 ∨ ψ2, and ψ = ∃x ψ1 are straightforward.

Let ψ = ψ1 → ψ2 and w ∈ R′(w0). If M, w �g ψf
1 → ψf

2 , then surely
M′, w �g ψf

1 → ψf
2 . Conversely, suppose that M, w ��g ψf

1 → ψf
2 . Then there

exists w′ ∈ R(w) such that M, w′ �g ψf
1 and M, w′ ��g ψf

2 . By transitivity,
w′ ∈ R(w0). Since M, w′ ��g ψf

2 , it follows, by (10.1), that M, w′ �� f , and so
w′ ∈ W ′, by definition of W ′. Hence, by inductive hypothesis, M′, w′ �g ψf

1

and M′, w′ ��g ψf
2 . Since w′ ∈ R′(w), it follows that M′, w ��g ψf

1 → ψf
2 .

Let ψ = ∀x ψ1 and w ∈ R′(w0). If M, w �g ∀x ψf
1 , then surely M′, w �g

∀x ψf
1 . Conversely, suppose that M, w ��g ∀x ψf

1 . Then there exist w′ ∈ R(w)
and g′ x= g such that g′(x) ∈ D(w′) and M, w′ ��g′

ψf
1 . By transitivity,

w′ ∈ R(w0). Thus, by (10.1), M, w′ �� f , and so w′ ∈ W ′. Hence, by inductive
hypothesis, M′, w′ ��g′

ψf
1 . Since w′ ∈ R′(w), it follows that M′, w ��g ∀x ψf

1 .
Since M, w0 ��g0 ϕf , by (10.2), M′, w0 ��g0 ϕf . Since M′ � f ↔ ⊥, it fol-

lows, by straightforward induction, that M′, w0 ��g0 (ϕf )⊥, i.e.,
M′, w0 ��g0 ϕ. Hence, 〈W ′, R′, D′〉 �� ϕ. On the other hand, as we have
seen, 〈W ′, R′, D′〉 � L. Hence, ϕ /∈ L.
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To make the paper self-contained, we recall that the superintuitionistic
logic QKC is determined by the class of convergent intuitionistic Kripke
frames [13, Theorem 6.6.20], i.e., those satisfying the classical first-order
condition

∀x∀y∀z (xRy ∧ xRz → ∃u (yRu ∧ zRu)).

We next notice that all the logics between QInt and QKC have the same
positive fragment, and that the same holds true for all the logics between
QInt.cd and QKC.cd:

Proposition 10.2. QInt+ = QKC+ and QInt.cd+ = QKC.cd+.

Proof. Since QInt ⊆ QKC, surely QInt+ ⊆ QKC+. For the converse,
suppose that ϕ ∈ L+ \ QInt+. Then there exists an intuitionistic Kripke
model M = 〈W,R,D, I〉, a world w0 ∈ W , and an assignment g0, with
g0(x) ∈ D(w0) whenever x ∈ par ϕ, such that M, w0 ��g0 ϕ. Assuming that
u0 /∈ W , we define

• W ′ = W ∪ {u0};

• R′ = R ∪ (
(W ∪ {u0}) × {u0}

)
.

Then 〈W ′, R′〉 is a convergent intuitionistic Kripke frame; hence, 〈W ′, R′〉 �
QKC, and so 〈W ′, R′〉 � QKC+. Define the domain function D′ on W ′ by

D′(w) =
{

D(w) if w ∈ W ;
D+ if w = u0,

and the interpretation I ′ on the augmented frame 〈W ′, R′, D′〉 so that, for
every n-ary predicate letter P ,

I ′(P,w) =
{

I(P,w) ifw ∈ W ;
(D+)n ifw = u0.

Then M′ = 〈W ′, R′, D′, I ′〉 is an intuitionistic Kripke model. Observe that,
by definition of M′, for every ψ ∈ L+ and for every assignment g such that
g(x) ∈ D(u0) whenever x ∈ par ψ,

M′, u0 �g ψ. (10.3)

We show, by induction on ψ ∈ sub ϕ, that, for every w ∈ W and every
assignment g such that g(x) ∈ D(w) whenever x ∈ par ψ,

M, w �g ψ ⇐⇒ M′, w �g ψ. (10.4)

The cases when ψ is an atomic formula, ψ = ψ1 ∧ ψ2, ψ = ψ1 ∨ ψ2, and
ψ = ∃x ψ1 are straightforward.
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Let ψ = ψ1 → ψ2 and w ∈ W . If M, w ��g ψ1 → ψ2, then surely
M′, w ��g ψ1 → ψ2. Conversely, assume that M, w �g ψ1 → ψ2. Suppose
that w′ ∈R(w). If w′ ∈W , then, by inductive hypothesis, either M′, w′ ��g ψ1

or M′, w′ �g ψ2. If w′ = u0, then, by (10.3), M′, w′ �g ψ2. Hence, in either
case, M′, w �g ψ1 → ψ2.

Let ψ = ∀x ψ1 and w ∈ W . If M, w ��g ∀x ψ1, then surely M′, w ��g ∀x ψ1.
Conversely, assume that M, w �g ∀x ψ1. Suppose that w′ ∈ R(w).
If w′ ∈ W , then, by inductive hypothesis, M′, w′ �g′

ψ1 whenever g′ x= g
and g′(x) ∈ D′(w′). If w′ = u0, then, by (10.3), M′, w′ �g′

ψ1, for every
assignment g′. Hence, in either case, M′, w �g ∀x ψ1.

Since M, w0 ��g0 ϕ, by (10.4), M′, w0 ��g0 ϕ. Hence, ϕ /∈ QKC+. Thus,
QInt+ = QKC+.

To see that QInt.cd+ = QKC.cd+, observe that, if the model M is
based on a locally constant augmented frame, then so is M′.

We now do the Kripke trick for superintuitionistic predicate logics. Let q
and p be nullary predicate letters and let, for an L-formula ψ, the formula
ψ# be obtained from ψ by substituting (P1(x) ∧ P2(y) → q) ∨ p for Q(x, y).

Proposition 10.3. For every formula ϕ ∈ L+ containing only a binary
predicate letter Q,

ϕ ∈ QInt ⇐⇒ ϕ# ∈ QInt.

Proof. (⇒) This implication follows by Substitution.
(⇐) Assume that ϕ /∈ QInt. Then there exists an intuitionistic Kripke

model M = 〈W,R,D, I〉, a world w0 ∈ W , and an assignment g0, with
g0(x) ∈ D(w0) whenever x ∈ par ϕ, such that M, w0 ��g0 ϕ. Define

W ∗ =
⋃

w∈W

({w} × D(w)) and W ′ = W ∪ W ∗.

We also denote the world 〈w, a〉 ∈ W ∗ by wa. We assume, without a loss of
generality, that W ∩ W ∗ = ∅.

Define R′ to be the reflexive transitive closure of the relation

R ∪ {〈w,wa〉 : w ∈ W and a ∈ D(w)}.

Define the domain function D′ on the Kripke frame 〈W ′, R′〉 by

D′(u) =
{

D(u) if u ∈ W ;
D(w) if u = wa, for some w ∈ W and a ∈ D(w).

Define the interpretation I ′ on the augmented frame 〈W ′, R′, D′〉 so that
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• for every w ∈ W and every a, b ∈ D(w),

I ′(P1, wa) = {〈a〉};

I ′(P2, wa) = {〈b〉 : M, w �� Q(a, b)};

I ′(p, wa) = {〈〉};

I ′(q, wa) = ∅;

• for every w ∈ W ,

I ′(P1, w) = I ′(P2, w) = I ′(p, w) = I ′(q, w) = ∅.

Lastly, define M′ = 〈W ′, R′, D′, I ′〉. Clearly, the interpretation I ′ satis-
fies (2.4); hence, M′ is an intuitionistic Kripke model. We shall prove that
M′, w0 �� ϕ#. We first prove the following:

Sublemma 10.4. Let ψ ∈ sub ϕ, w ∈ W ∗, and g be an assignment in M′.
Then, M′, w �g ψ#.

Proof. Since ϕ is positive and contains no predicate letters other than Q,
the formula ψ# is built from formulas of the form (P1(x) ∧ P2(y) → q) ∨ p
using the logical symbols ∧, ∨, →, ∃, and ∀. Suppose that w ∈ W ∗. Then
M′, w � p, by definition of I ′. Therefore, each formula of the form
(P1(x) ∧ P2(y) → q) ∨ p, and hence ψ#, is true at w under every
assignment.

We next show that, for every ψ ∈ subϕ, every w ∈ W , and every assign-
ment g such that g(x) ∈ D(w) whenever x ∈ par ψ,

M, w �g ψ ⇐⇒ M′, w �g ψ#. (10.5)

Assuming that w ∈ W , we proceed by induction on ψ.
Suppose that ψ = Q(x, y), and so ψ# = (P1(x) ∧ P2(y) → q) ∨ p.
Assume that M, w �� Q(a, b). Then, by definition of M′,

wa ∈ R′(w), M′, wa � P1(a) ∧ P2(b), and M′, wa �� q,

as well as M′, w �� p. Hence, M′, w �� (P1(a) ∧ P2(b) → q) ∨ p.
Conversely, assume that M, w � Q(a, b). We show that, then, for every

u ∈ R′(w),

M′, u �� P1(a) ∧ P2(b),

which implies that M′, w � (P1(a) ∧ P2(b) → q) ∨ p. Suppose, for the sake
of contradiction, that u ∈ R′(w) and M′, u � P1(a) ∧ P2(b). The definition
of I ′ implies that u = va, for some v ∈ R(w). Then the definition of I ′
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for P2 implies that M, v �� Q(a, b). Hence, by (2.4), M, w �� Q(a, b), in
contradiction with the assumption.

The cases ψ = ψ1 ∨ ψ2, ψ = ψ1 ∧ ψ1, and ψ = ∃x ψ1 are straightforward.
Suppose that ψ = ψ1 → ψ2, and so ψ# = ψ#

1 → ψ#
2 .

Assume that M, w ��g ψ1 → ψ2. Then there exists v ∈ R(w) such that
M, v �g ψ1 and M, v ��g ψ2. By inductive hypothesis, M′, v �g ψ#

1 and
M′, v ��g ψ#

2 . Since v ∈ R(w) and R ⊆ R′, it follows that v ∈ R′(w). Hence,
M′, w ��g ψ#

1 → ψ#
2 .

Conversely, assume that M′, w ��g ψ#
1 → ψ#

2 . Then there exists v ∈ R′(w)
such that M′, v �g ψ#

1 and M′, v ��g ψ#
2 . Since M′, v ��g ψ#

2 , by Sub-
lemma 10.4, v /∈ W ∗, and so v ∈ W . Hence, by inductive hypothesis,
M, v �g ψ1 and M, v ��g ψ2. Since w, v ∈ W , v ∈ R′(w), and R = R′ � W ,
it follows that v ∈ R(w). Hence, M, w ��g ψ1 → ψ2.

Suppose that ψ = ∀x ψ1, and so ψ# = ∀x ψ#
1 .

Assume that M, w ��g ∀x ψ1. Then there exist v ∈ R(w) and g′ with
g′ x= g and g′(x) ∈ D(v) such that M, v ��g′

ψ1. By inductive hypothesis,
M′, v ��g′

ψ#
1 . Since v ∈ R(w) and R ⊆ R′, it follows that v ∈ R′(w). Hence,

M′, w ��g ∀x ψ#
1 .

Conversely, assume that M′, w ��g ∀x ψ#
1 . Then there exist v ∈ R′(w)

and some g′ with g′ x= g and g′(x) ∈ D′(v) such that M′, v ��g′
ψ#
1 . By

Sublemma 10.4, v /∈ W ∗, and so v ∈ W . Hence, by inductive hypothesis,
M, v ��g′

ψ1. Since w, v ∈ W , v ∈ R′(w), and R = R′ � W , it follows that
v ∈ R(w). Hence, M, w ��g ∀x ψ1.

This completes the induction, thus proving (10.5).
Since M, w0 ��g0 ϕ, it follows, by (10.5), that M′, w0 ��g0 ϕ#. Hence,

ϕ# /∈ QInt.

Proposition 10.5. For every formula ϕ ∈ L+ containing only a binary
predicate letter Q,

ϕ ∈ QInt.cd ⇐⇒ ϕ# ∈ QInt.cd.

Proof. Similar to the proof of Proposition 10.3. For (⇐), it suffices to
notice that the model M′ has locally constant domains whenever M has
locally constant domains.

Similarly to what happens in modal logics (see Section 8), Propositions
10.3 and 10.5 can be generalised to predicate letters of any arity greater
than or equal to two. Suppose that ϕ ∈ L+ and that ϕ contains only an
n-ary predicate letter S, and let ϕ� be obtained from ϕ by substituting the
formula (P1(x1) ∧ . . . ∧ Pn(xn) → q) ∨ p for S(x1, . . . , xn).
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Proposition 10.6. For every formula ϕ ∈ L+ containing only an n-ary
predicate letter S,

(1) ϕ ∈ QInt ⇐⇒ ϕ� ∈ QInt;

(2) ϕ ∈ QInt.cd ⇐⇒ ϕ� ∈ QInt.cd.

Proof. Similar to the proofs of Propositions 10.3 and 10.5.

It should be clear that Proposition 10.6 can be easily generalised to for-
mulas with any number of predicate letters of any arity greater than one—all
we need to do is to repeatedly apply the construction of Proposition 10.6,
dealing with one predicate letter at a time. Since this construction preserves
the number of individual variables in the original formula, using Proposi-
tion 10.2, we obtain the following:

Proposition 10.7. Let L be a subframe Kripke complete superintuitionistic
predicate logic such that L ⊆ QKC and let n ∈ N+. Then

(1) the n-variable fragment of L is recursively embeddable into the positive
monadic n-variable fragment of L;

(2) the n-variable fragment of L.cd is recursively embeddable into the pos-
itive monadic n-variable fragment of L.cd.

Proof. (1): Let ϕ be an L-formula with var ϕ = {x1, . . . , xn}. We assume,
without a loss of generality, that ϕ contains a single predicate letter S of
arity greater than one (otherwise, we apply the translation defined below
repeatedly). Since L is subframe and Kripke complete, by Proposition 10.1,

ϕ ∈ L ⇐⇒ F → ϕf ∈ L.

Since F → ϕf and (F → ϕf )� are both positive and L ⊆ QKC, by Propo-
sitions 10.2 and 10.6,

F → ϕf ∈ L ⇐⇒ F → ϕf ∈ QInt

⇐⇒ (F → ϕf )� ∈ QInt

⇐⇒ (F → ϕf )� ∈ L.

Hence,

ϕ ∈ L ⇐⇒ (F → ϕf )� ∈ L.

Since var(F → ϕf )� = {x1, . . . , xn}, the statement follows.
(2): Analogous to the proof of (1).
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Kontchakov et al. [20, Theorem 1] have shown that QInt and QInt.cd are
undecidable in languages with two variables.13 Hence, by Proposition 10.7,
we obtain the following:

Theorem 10.8. Positive monadic two-variable fragments of QInt+ and
QInt.cd+ are both undecidable.

We note that, to obtain an embedding of logics between QInt and QKC,
and those between QInt.cd and QKC.cd, into their monadic fragments, we
could have used, in the proof of Proposition 10.3, ⊥ instead of q. The use of
q allowed us to obtain an embedding into positivite monadic fragments. The
positivity of the target fragments can be used [35] to simulate all their atomic
formulas by formulas with a single fixed monadic predicate letter, which
proves undecidability of all superintuitionistic predicate logics between QInt
and QKC.cd in languages with two variables and a single monadic predicate
letter.

The techniques described in this section can also be used to prove
Π0

1-hardness of the monadic positive fragments of all logics between QIntwfin

and QKC.cdwfin [38]. Constructions similar to those described here can
also be obtained for the predicate counterparts of Visser’s propositional log-
ics BPL and FPL [57].

11. When the Kripke Trick is Blocked

The Kripke trick lies close to the heart of undecidability of rather poor
fragments of modal and superintuitionistic predicate logics: combined with
techniques for simulating all monadic atomic formulas by formulas with a
single fixed monadic letter, it leads to undecidability of modal and super-
intuitionistic predicate logics with only a single monadic predicate letter
and two individual variables. Hence, identification of decidable fragments
of predicate modal logics is closely related to identifying settings where the
Kripke trick does not work. The trick can be blocked due to either syntactic
or semantic considerations.

11.1. Syntactic Restrictions

The Kripke trick uses formulas of the form ♦(P1(x)∧P2(y)); as we have seen,
in some settings, more economical formulas of the form ¬♦(P (x)∧P (y)) can

13Undecidability of QInt.cd with two variables and predicate letters of arity at most
one had earlier been established by Gabbay and Shehtman [11].
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be used instead. Disallowing such formulas is one way to obtain decidable
fragments of modal predicate logics.

11.1.1. Monodic Fragments Wolter and Zakharyaschev [58] define monodic
fragments as those where modal operators are applied to subformulas with
at most one parameter. Thus, formulas of the form ♦(P1(x) ∧ P2(y)) and
♦(P (x) ∧ P (y)) are disallowed since they contain two parameters in the
scope of ♦. Wolter and Zakharyaschev prove that the two-variable monodic
fragments [58, Theorem 5.1] and the monadic monodic fragments [58, The-
orem 5.8] of logics QK, QT, QK4, and QS4 are decidable; they mention
[58, Remark 4.8] that their techniques can be extended to other standard
modal logics.

11.1.2. One-Variable Fragments An apparently more severe restriction
than monodicity is the requirement that formulas contain at most one indi-
vidual variable, free or bound (one-variable formulas are, clearly, monodic).
Wolter and Zakharyaschev prove [58, Theorem 5.2] that one-variable frag-
ments of QK, QT, QK4, and QS4 are decidable.

In fact, in QK and hence in every its extension, every monadic monodic
formula is equivalent to a Boolean combination of one-variable formulas
[47, Lemma 3.1]; thus, one-variable fragments are no less expressive than
monadic monodic ones (observe that in one-variable formulas it suffices to
use only monadic predicate letters). Decidability of a wide range of one-
variable fragments follows from their close link with two-modal propositional
logics known as semiproducts and products. We omit here discussion of the
connection between semiproducts, products, and one-variable fragments, re-
ferring the reader to [10,12,45], and only note the following:

Proposition 11.1. Let L be a Kripke complete modal propositional logic.
If the logic QL is Kripke complete, then there exists a bijection between the
one-variable fragment of QL and the semiproduct of L with S5. Also, if the
logic QL.bf is Kripke complete, then there exists a bijection between the
one-variable fragment of QL and the product of L with S5.

This opens the door to the transfer of decidability results from semiprod-
ucts and products to one-variable fragments of modal predicate logics.

11.1.3. Bundled Fragments Another restriction on the use of modal op-
erators that rules out formulas of the form ♦(P1(x) ∧ P2(y)) is adopted in
bundled fragments, where a modality can only be used in combination with a
quantifier; such a combination, e.g., ∀x� or �∀x, is called a bundle. Allow-
ing only certain bundles, none of which permits to use ♦ without a pairing
quantifier, leads to decidable fragments of QK [24].
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11.2. Semantic Restrictions

If we are not placing any syntactic restrictions on formulas, blocking the
Kripke trick should involve violation of the frame properties considered in
Sections 4 and 5: Kripke frames where a world can see any number of possible
worlds should be disallowed. The most obvious example of standard logics
not admitting such Kripke frames are logics QAltn, with n ∈ N, which,
recall, are logics of n-alternative Kripke frames [46, Theorem 5], i.e. Kripke
frames where, for every w ∈ W :

|R(w)| � n. (11.1)

It turns out that monadic fragments of logics QAltn are decidable, due to
the following observation [43, Lemma 3.1]:

Proposition 11.2. If a monadic modal formula with m predicate letters
is refuted on an augmented frame FD = 〈W,R,D〉 with finite W , then it
is refuted on an augmented frame FD̄ = 〈W,R, D̄〉 with |D̄+| � 2|W |(m+1);
moreover, if FD has locally constant domains, then so does FD̄.

Proof. Let ϕ be a modal formula with monadic predicate letters P1, . . . , Pm.
Let M = 〈W,R,D, I〉 be a model, with finite W , such that M, w0 �|= ϕ, for
some w0 ∈ W .

Define the binary relation ∼ on D+ so that a ∼ b if, and only if, for every
w ∈ W and every i ∈ {1, . . . ,m},

a ∈ Dw ⇐⇒ b ∈ Dw; (11.2)

M, w |= Pi(a) ⇐⇒ M, w |= Pi(b). (11.3)

It should be clear that ∼ is an equivalence on D+. For every a ∈ D+, let
ā = {b ∈ D+ : b ∼ a}; let also D = D+/∼ = {ā : a ∈ D+}.

To define the sought augmented frame, let, for every w ∈ W ,

D̄(w) = {ā ∈ D : a ∈ Dw}.

Observe that D̄+ = D. Then FD̄ = 〈W,R, D̄〉 is an augmented frame with
expanding domains: if wRv, then, by (2.1), Dw ⊆ Dv, and hence, by defini-
tion of D̄, also D̄w ⊆ D̄v. Moreover, by definition of D̄, if Dw = Dv, then
D̄w = D̄v. Thus, if FD has locally constant domains, then so does FD̄; this
shall give us the additional claim of the proposition. We now show that FD̄

is the required augmented frame.
Let Ī be an interpretation on FD̄ such that, for every w ∈ W and every

i ∈ {1, . . . ,m},

Ī(w,Pi) = {〈ā〉 : 〈a〉 ∈ I(w, Pi)},
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and let M̄ = 〈FD̄, Ī〉.
Straightforward induction on ϕ shows that, for every subformula

ψ(x1, . . . , xk) of ϕ, every w ∈ W , and every a1, . . . , ak ∈ Dw,

M, w |= ψ(a1, . . . , ak) ⇐⇒ M̄, w |= ψ(ā1, . . . , āk).

Thus, in particular, M̄, w0 �|= ϕ, and so FD̄ �|= ϕ.
To prove the lemma, it remains to show that |D̄+| � 2|W |(m+1). Condi-

tion (11.2) defines an equivalence on D+ partitioning it into at most 2|W |

equivalence classes. Each of those classes is further partitioned by the equiv-
alence defined by (11.3) into at most 2|W |m classes. The resultant partitions
are exactly those induced on D+ by ∼. Hence, |D̄+| � 2|W |(m+1).

Proposition 11.2 readily implies the following:

Theorem 11.3. For every n ∈ N, the monadic fragment of the logic QAltn

is decidable.

Proof. Suppose that ϕ /∈ QAltn. Then, M, w0 �|= ϕ, for some Kripke
model M = 〈W,R,D, I〉, with 〈W,R〉 satisfying (11.1), and some w0 ∈ W .
Denote by mdϕ the modal depth of a formula ϕ, defined as the maximal
number of nesting modalities in ϕ. Define the Kripke frame Fϕ by

Wϕ = R0(w0) ∪ . . . ∪ Rmdϕ(w0);
Rϕ = R � Wϕ;
Fϕ = 〈Wϕ, Rϕ〉.

Since only the worlds accessible in at most md ϕ steps from w0 affect the
truth of ϕ at w0, surely Fϕ, w0 �|= ϕ. Define the number nϕ by

nϕ = 1 + n + n2 + . . . + nmdϕ.

Since F, and hence Fϕ, satisfies (11.1), Wϕ contains at most nϕ worlds. Let
the number of monadic predicate letters in ϕ be m. By Proposition 11.2, ϕ is
refuted on an augmented frame over Fϕ with at most 2nϕ(m+1) individuals.

Thus, to check if ϕ ∈ QAltn, it is enough to check if ϕ is valid on every
augmented frame satisfying (11.1) and containing at most nϕ worlds and
2nϕ(m+1) individuals.
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