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Abstract. We consider all combinatorially possible systems corresponding to subsets of

finite set theory (i.e., Zermelo-Fraenkel set theory without the axiom of infinity) and for

each of them either provide a well-founded locally finite graph that is a model of that

theory or show that this is impossible. To that end, we develop the technique of axiom

closure of graphs.
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1. Introduction

Relative independence results in set theory play a crucial role in the field: a
large part of current set theoretic research deals with the determination of
the relative consistency of set-theoretic statements, either independent of the
axioms of ZFC or fragments of ZFC. The most prominent such programme
is the study of relative strength of fragments of the axiom of choice, i.e.,
statements A such that ZFC � A, but ZF �� A; cf., e.g., [3,8,9]. Set theorists
have also looked at systems weaker than ZF; cf., e.g., [2,5–7,12,13].

Finite set theory FST consists of all of the axioms of ZF without the axiom
of infinity and has the model HF of hereditarily finite sets as its canonical
model. In this paper, we shall consider all combinatorially possible systems
corresponding to subsets of the axioms of finite set theory and develop a
general technique called axiom closure of graphs; for each of the 26 = 64
combinatorially possible systems we shall either show that it cannot hold
in a transitive submodel of the hereditarily finite sets or provide a concrete
model in which it holds (cf. Table 1).
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Table 1. Summary of the results for well-founded locally finite graphs

The notation for the axiom systems is defined in Section 4.1. The table either lists the

graph in which the theory holds (using the notation from Sections. 2.4 and 4.3) or the

result that it cannot hold in a well-founded locally finite graph: inconsistencies are in

boldface, impossibility results for transitive submodels of HF are in italics

As mentioned, in this paper, we are studying transitive submodels of the
hereditarily finite sets; in particular, all of our models are well-founded; for
a discussion of not necessarily wellfounded ω-models of FST, cf. [1].

Apart from independence analyses as in this paper, the technique of ax-
iom closure of graphs can serve as a useful tool in undergraduate educa-
tion of axiomatic set theory: concrete manipulation of graph models allows
students to develop an intuition for the meaning of defined terms such as
“power set” in graphs and thereby gain a more concrete understanding of
independence phenomena in set theory. This educational approach has been
successfully used for student research projects in the second and third year
of undergraduate programmes in mathematics [10,11].

2. Definitions

2.1. Graph Models of Set Theory

The language of set theory L∈ is the first-order language with a single bi-
nary relation symbol ∈. Its structures are sets with a binary relation, i.e.,
(directed) graphs G = (V, E). As usual, we write v E w for (v, w) ∈ E. If
G = (V, E) is a graph and v ∈ V is a vertex, we call ExtG(v) := {w ∈
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V ; w E v} the extension of v. We call degG(v) := |ExtG(v)| the degree of
v.1 If v, w ∈ V , we say that v is a G-subset of w if ExtG(v) ⊆ ExtG(w) or,
equivalently, if G |= ∀z(z ∈ v → z ∈ w).

A graph is called extensional if for v, w ∈ V with ExtG(v) = ExtG(w),
we have v = w. It is called well-founded if for every non-empty A ⊆ V there
is a v ∈ A such that such that ExtG(v) ∩ A = ∅.

If κ is a cardinal, we say that a graph is locally κ-small if for all v ∈ V ,
degG(v) < κ. If κ = ℵ0, we say that the graph is locally finite.2

By Mostowski’s collapsing theorem, a locally κ-small, extensional, well-
founded graph is isomorphic to a transitive subset of the set Hκ of sets of
hereditary size less than κ. In particular, every locally finite, extensional,
well-founded graph is isomorphic to a transitive subset of the set HF :=
Hℵ0 = Vω of hereditarily finite sets.

A graph G = (V, E) is a substructure of another graph G′ = (V ′, E′)
if E′ ∩ V × V = E. We say that G is transitive in G′ if for every v ∈ V
and w E′ v, we have that w ∈ V ; alternatively, we say that G′ is an end
extension of G. We say that a formula ϕ with n free variables is absolute for
end extensions if for any G transitive in G′ and any n-tuple (v1, ..., vn) ∈ V n,
we have that G |= ϕ(v1, ..., vn) if and only if G′ |= ϕ(v1, ..., vn). It is well-
known that Δ0 formulae are absolute for end extensions [4, Section IV.3].

If (Gn; n ∈ N) is a sequence of graphs Gn = (Vn, En) such that for
n < m, Gn is transitive in Gm, then Gω := (Vω, Eω) with Vω :=

⋃
n∈N

Vn

and Eω :=
⋃

n∈N
En is called the limit of the sequence and is an end exten-

sion of all graphs in the sequence.

2.2. Axioms of Set Theory

As mentioned in Section 1, we shall be studying finite set theory FST con-
sisting of the axioms of ZF without the axiom of infinity. We shall adopt
the theory consisting of the empty set axiom, the axiom of extensionality,
and the axiom of foundation as our base theory, denoted by BST, in order
to exclude trivial and pathological special cases:

Ext ∀x∀y(x = y ↔ ∀z(z ∈ x ↔ z ∈ y)),

Empty ∃x∀z(z /∈ x), and

Found ∀x∃y∀z¬(z ∈ x ∧ z ∈ y).

1More precisely, it is the in-degree of v, but we shall not use the out-degree in this
paper.

2To get a grasp of the notion of smallness, observe that locally 2-small, well-founded,
and extensional graphs are linear chains of vertices of length ≤ ω.
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The axiom of extensionality expresses the graph theoretic property of
extensionality: a graph G is extensional if and only if G |= Ext. The axiom
of foundation implies that there are no cycles in the graph, in particular, any
finite graph satisfying the axiom of foundation is well-founded. Note that if
(Gn; n ∈ ω) is a sequence such that each Gn is a well-founded graph which
is an end extension of all previous graphs, then the limit Gω is well-founded
as well.

As usual, a formula Ψ in n + 1 free variables is called functional in a
model M if for any given tuple (x1, ..., xn), there is at most one y such that
Ψ(y, x1, ..., xn); in other words, Ψ defines an n-ary partial class function in
M .

An axiom A is called functional and n-ary if there is a formula Φ with
n + 1 free variables called its functional description such that

A := ∀x1 · · · ∀xn∃yΔΦ(y, x1, ..., xn)

where ΔΦ(y, x1, ..., xn) := ∀z(z ∈ y ↔ Φ(z, x1, ..., xn)). The formula ΔΦ is
called the Φ-comprehension; in models of Ext, the formula ΔΦ is functional.

All single axioms of FST except for Ext and Found are functional. The
axiom schema of separation Sep consists of functional axioms Sepϕ for every
formula ϕ. The axiom schema of replacement Repl consists of axioms Replϕ
for every formula ϕ with n + 2 free variables given by

(∀x1 . . .∀xn∀u∀z∀z′ϕ(u, z, x1, . . . , xn) ∧ ϕ(u, z′, x1, . . . , xn) → z = z′) → Rϕ

where Rϕ is functional. Note that if ϕ provably satisfies the antecedent of
Replϕ, then Replϕ and Rϕ are equivalent (and hence Replϕ is functional). In
the following, we shall give the functional descriptions for all these axioms.3

Empty Φ∅(z) ⇐⇒ ⊥,

Singleton ΦS(z, x1) ⇐⇒ z = x1,

Pair ΦD(z, x1, x2) ⇐⇒ z = x1 ∨ z = x2,

Union ΦU(z, x1) ⇐⇒ ∃w(w ∈ x1 ∧ z ∈ w),

Powerset ΦP(z, x1) ⇐⇒ ∀w(w ∈ z → w ∈ x1),

Sepϕ ΦC,ϕ(z, x1, ..., xn, xn+1) ⇐⇒ z ∈ xn+1 ∧ ϕ(z, x1, ..., xn), and

Rϕ ΦR,ϕ(z, x1, ..., xn, xn+1) ⇐⇒ ∃u(u ∈ xn+1 ∧ ϕ(u, z, x1, ..., xn)).

3Here D and C stand for “doubleton” and “comprehension” to avoid the notational clash
between “pairing” & “power set” and “singleton” & “separation”, respectively.
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We call the axioms Singleton, Pair, Union, and Powerset basic axioms to
distinguish them from the axiom schemata Sep and Repl. If for any functional
description Φ, the comprehension ΔΦ is Δ0, then the formula

u ∈ v ↔ ΔΦ(u, v1, ..., vn)

is absolute for end extensions. In the cases of the axioms Empty, Singleton,
and Pair, the formulae Φ∅, ΦS, and ΦD are quantifier-free, so their compre-
hensions are Δ0; in the case of Union, the comprehension ΔΦU

is equivalent
to a Δ0-formula (provably in predicate logic).

This is not necessarily true for the other axioms; e.g., it is possible to
have vertices v and w in G such that w is the G-power set of v, but in an
end extension G′, there are more G′-subsets of v and w is not the G′-power
set of v anymore (cf. the proof of Proposition 15).

For arbitrary formulae ϕ, the functional descriptions of the axioms Sepϕ

or Replϕ are not absolute for end extensions, but the simplest instances of
separation and replacement are formed with quantifier-free formulae and
thus have absolute comprehensions: consider the formula (in n+1 free vari-
ables)

ϕ(z, x1, . . . , xn) ⇐⇒
n∨

i=1

z = xi, (*)

and a graph G with distinct vertices v1, . . . , vn+1 such that {v1, . . . , vn} ⊆
ExtG(vn+1). Then instantiating xi in Sepϕ with vi states in every end ex-
tension G′ of G the existence of a vertex w with ExtG(w) = {v1, . . . , vn}.
Similarly, consider the formula (in 2n + 2 free variables)

ψ(u, z, x1, . . . , xn, y1, . . . , yn) ⇐⇒
n∨

i=1

(u = xi ∧ z = yi) (†)

and observe that ψ provably satisfies the antecedent of Replψ, so Replψ is a
functional axiom. If G is a graph with distinct vertices v1, . . . , vn+1 and dis-
tinct vertices w1, . . . , wn such that {v1, . . . , vn} ⊆ ExtG(vn+1), instantiating
xi and yi in Replψ with vi and wi, respectively, states in every end extension
G′ of G the existence of a vertex w with ExtG(w) = {v1, . . . , vn}. We shall
call an instantiation of the axiom schemata of separation and replacement
explicit if it is either of the form Sepϕ with ϕ as in (*) or of the form Replψ
with ψ as in (†).
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Proposition 1.

(1) If G |= BST + Sep, then for all vertices v and all finite A ⊆ ExtG(v),
there is a vertex w such that A = ExtG(w). If G is locally finite, the
converse holds.

(2) If G |= BST + Repl, then if there is a vertex in G of degree k, then
for every set A ⊆ V with |A| ≤ k, there is a vertex w such that A =
ExtG(w). If G is locally finite, the converse holds.

Proof. The explicit instances of Sep and Repl yield the forward directions
of both (1) and (2), respectively.

For the converse of (1), let G be locally finite, v ∈ V , ϕ an arbitrary
formula with n + 1 free variables, and

A := {w; G |= w ∈ v ∧ ϕ(w,	v)} ⊆ ExtG(v).

Since G is locally finite, A is finite, by assumption, there is a vertex w such
that A = ExtG(w). This witnesses the required instance of Sepϕ.

Similarly, for the converse of (2), let G be locally finite, v ∈ V , ϕ an
arbitrary formula with n + 2 free variables, and

A := {w; G |= ϕ(w,	v, v)}.

Since G is locally finite, ExtG(v) is finite, say, of cardinality k and |A| ≤ k.
The assumption implies that the required instance of Replϕ holds.

Proposition 1 and its proof express that for locally finite graphs, the
axiom schemata of Separation and Replacement hold if and only if all of
their explicit instances hold.

If G |= BST, A is any n-ary functional axiom with functional description
Φ, and k is a natural number, we say that A is k-violated if there is a 	v ∈ V n

such that G |= ¬∃yΔΦ(y,	v) and if G′ is an end extension of G with vertex
w such that G′ |= ΔΦ(w,	v), then |ExtG′(w)| ≥ k. In words: an axiom A is
k-violated in G if A’s failure in G is witnessed by an instance that can only
be made true in an end extension of G by a vertex with at least k elements.

Remark 2. By the above discussion, the axioms Powerset, Union, Sep, and
Repl are k-violated in a graph G if the following properties hold:

Powerset: There is a vertex v without a power set in G such that v has at
least k G-subsets.

Union: There is a vertex v with | ⋃{ExtG(w); G |= w ∈ v}| ≥ k without
union in G.
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Sep: There is a vertex v and A ⊆ ExtG(v) with |A| ≥ k that is not instan-
tiated in G.

Repl: There is a vertex of degree at least k and a k-element subset A ⊆ V
that is not instantiated in G.

2.3. Set Theoretic Axioms in Graph Models

We collate some basic observations about the validity of set theoretic axioms
in graph models. All of the results in this section are elementary; several of
them are well-known arguments that frequently feature as exercises in an
axiomatic set theory course. We include them only for the sake of complete-
ness.

Proposition 3. In BST, Pair implies Singleton.

Proof. Trivial.

Proposition 4. In BST, Repl implies Sep.

Proof. Let v be an arbitrary vertex and find v′ such that

ExtG(v′) = {z; G |= z ∈ v ∧ ϕ(z,	v)} =: A

for some formula ϕ and some sequence of vertices 	v. Without loss of gener-
ality, we can assume that A is not empty, so let w ∈ A. Use replacement to
find v′ with

ExtG(v′) = {z; G |= ∃z ((z ∈ v ∧ ϕ(z,	v)) ∨ (¬ϕ(z,	v) ∧ z = w))}.

Clearly, ExtG(v′) = A.

Proposition 5. No finite graph G |= BST can be a model of either Singleton,
Pair, or Powerset. Furthermore, for every natural number k, a graph model
G |= BST + Powerset has a vertex with degree ≥ k.

Proof. Let A be one of the three axioms. Starting from the vertex v0
representing the empty set, we can recursively define vn+1 to be the result
of applying A to vn. It is easy to show by induction that this forms an infinite
sequence of distinct vertices.

In the case of A = Powerset, a standard induction shows that for all
natural numbers i, if x E vi, then x is a G-subset of vi.4 Therefore, for all
i, we have that vi is a G-subset of vi+1. We use this to prove by induction
that for all k, {v0, ..., vk−1} ⊆ ExtG(vk), so degG(vk) ≥ k.

4The induction step of this argument is usually phrased as “the power set of a transitive
set is transitive”.
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In the proofs of Propositions 6 & 7, we shall be utilising the characteri-
sation of Sep and Repl in locally finite graphs given in Proposition 1.

Proposition 6. If G |= BST is locally 2-small, then

(i) Union and Sep hold and

(ii) if Singleton holds, then Repl holds.

Proof. Being locally 2-small means that all vertices have degree at most
one, i.e., are empty or singletons. The only possible subsets of a singleton
are the empty set and itself; thus (assuming Empty), no singleton can ever
witness ¬Sep; hence, Sep holds. The union of the empty set is the empty
set and the union of a singleton is its unique element, so Union holds. Claim
(ii) follows directly from Proposition 1.

Proposition 7. If G |= BST is locally 3-small, then

(i) if Singleton holds, then Sep holds and

(ii) if Pair holds, then Repl holds.

Proof. Being locally 3-small means that all vertices have degree at most
two, so each set can have at most four G-subsets: the empty set, at most
two singletons, and itself. The assumption of Singleton implies that they all
exist in G. Claim (ii) follows directly from Proposition 1.

A similar argument shows that if G |= BST is locally 4-small and Pair
holds, then Sep holds; furthermore, if G |= BST is locally finite and Pair and
Union hold, then Repl holds (cf. the proof of Proposition 19).

Proposition 8. If G |= BST + Repl is not 2-small, then G |= Pair.

Proof. Not being 2-small means that there is a set of size at least two; the
claim follows directly from Proposition 1 (2).

Proposition 9. In BST, Repl implies Pair ∨ Union.

Proof. Let G |= BST. If G is locally 2-small, then Union holds by Propo-
sition 6; if G is not locally 2-small, then Pair holds by Proposition 8.

Proposition 10. In BST, Sep + Powerset implies Singleton.

Proof. Let G |= BST. If v is a vertex and w is the power set of v in G,
then G |= v ∈ w. Thus, we can now separate the singleton of v from w by
an explicit instance of separation.

Proposition 11. In BST, Repl + Powerset implies Pair.

Proof. By Proposition 8, we only need to find a set of size at least two.
This can be obtained by applying the power set axiom twice to the empty
set.



Independence Results for Finite Set Theories...

2.4. Some Concrete Finite Graphs

Finite extensional graphs are isomorphic to a unique transitive element of
HF, so it is possible to specify a graph by its Mostowski image.

The simplest possible graph is G1, the unique graph whose Mostowski
image is 1 = {0}. This is the graph with a single vertex and no edges. It is
easy to check that

G1 |= BST + ¬Singleton + ¬Pair + Union + ¬Powerset + Sep + Repl.

The next graph is G2, the unique graph whose Mostowski image is 2 =
{0, 1}. This is a finite 2-small graph where we cannot replace 0 by 1 in the
set {0} = 1, thus by Proposition 6,

G2 |= BST + ¬Singleton + ¬Pair + Union + ¬Powerset + Sep + ¬Repl.
Continuing along the natural numbers, the next graph is G3, the unique

graph whose Mostowski image is 3 = {0, 1, 2}. In this graph, we cannot
separate {1} from 2 = {0, 1}, so Sep fails. Hence,

G3 |= BST + ¬Singleton + ¬Pair + Union + ¬Powerset + ¬Sep + ¬Repl.
The same is true for G4 and G5, the unique graphs whose Mostowski images
are 4 = {0, 1, 2, 3} or 5 = {0, 1, 2, 3, 4}, respectively. All examples of this
type, i.e., graphs isomorphic to an ordinal, will satisfy Union, since

⋃
α+1 =

α and
⋃

λ = λ for limit ordinals λ.

Moving to examples that violate Union, we define the graphs G� and G#

as follows (as usual, 0 = ∅, 1 = {0}, 2 = {0, 1}, and 3 = {0, 1, 2}).
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�����������
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Note that

G� |=BST + ¬Singleton + ¬Pair + ¬Union + ¬Powerset + ¬Sep + ¬Repl and

G# |=BST + ¬Singleton + ¬Pair + ¬Union + ¬Powerset + Sep + ¬Repl.
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Table 2. Level of violation of axioms in the finite graphs discussed in Section 2.4

Union Powerset Sep Repl

G1 – 1-violated – –

G2 – 2-violated – 1-violated

G3 – 3-violated 1-violated 2-violated

G4 – 4-violated 2-violated 3-violated

G5 – 5-violated 3-violated 4-violated

G� 3-violated 5-violated 2-violated 3-violated

G# 2-violated 3-violated – 2-violated

Axioms that hold in the graph are marked by “–”

For each of our finite graphs, using Remark 2, we identify the level of
violation of those axioms not true in it in Table 2. It is easy to check that
the obvious choice of vertex in these graphs will provide the level of violation
given.

3. Closure Graphs

3.1. Graph Operations and Closure Graphs

A graph operation is an operation C that assigns to each graph G an end
extension C(G). We say that it is extensional if it preserves extensionality,
i.e., whenever G is extensional, so is C(G); we say that it is finite if it
preserves finiteness, i.e., whenever G is finite, so is C(G). If Γ :=(Cn ; n ∈ ω)
is a sequence of graph operations, we call Γ extensional or finite if every
graph operation occurring in it is extensional or finite, respectively. We
define the closure graph of G with respect to Γ by recursion:

G0 := G,

Gn+1 := Cn(Gn),

and GΓ is the limit of the sequence (Gn; n ∈ ω).

Proposition 12. If G and Γ are extensional and finite, then GΓ is ex-
tensional, well-founded, and locally finite, hence isomorphic to a transitive
subset of HF.

Proof. The claim follows directly from the definitions by induction and
the fact that limits preserve well-foundedness.
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3.2. Axiom Closures

For functional axioms, the comprehension ΔΦ defines a total (class) function.
An axiom closure of a graph G is a graph obtained from G as a closure graph
GΓ of a graph operation that corresponds to adding the witnesses needed
to make all G-instances of the axiom A true. The intuitive idea of an axiom
closure is the following:

Given a graph G = (V, E), check whether ΔΦ already defines a func-
tion; if not, then there are tuples 	v where there is no vertex w such
that G |= ΔΦ(w,	v). Now add a new vertex to become the witness for
that formula in a way that preserves extensionality.

In the following, we shall make this precise. If G = (V, E) is a graph, Φ is
a formula with n + 1 free variables, and 	v := (v1, ..., vn) ∈ V n is an n-tuple,
we say that 	v is Φ-realised in G if

G |= ∃yΔΦ(y, v1, ..., vn);

otherwise, we say that 	v is Φ-omitted in G.
As mentioned, we should like to add new vertices to G that make sure

that every tuple that is Φ-omitted in G becomes Φ-realised in C(G). But
we need to make sure that we do not break extensionality: it might be that
two Φ-omitted tuples 	v �= 	w both require the same Φ-comprehension to exist
and we need to make sure that we do not add two distinct new vertices with
the same extensions.5 Thus, we define an equivalence relation ∼Φ on V n by

	v ∼Φ 	w : ⇐⇒ G |= ∀z(Φ(z,	v) ↔ Φ(z, 	w)).

Clearly, if a tuple is Φ-omitted, then so is every ∼Φ-equivalent tuple. Thus,
let OG,Φ be a set of n-tuples that has exactly one representative from each
∼Φ-equivalence class of Φ-omitted tuples. Let V ′ := {w	v ; 	v ∈ OG,Φ} be a
set of pairwise distinct new vertices, i.e., V ∩V ′ = ∅. Then define CΦ(G) :=
(V ∗, E∗) where V ∗ := V ∪ V ′ and

E∗ := E ∪ {(z, w	v);	v ∈ OG,Φ and G |= Φ(z,	v)}.

By construction, CΦ is an extensional graph operation. If V is finite, then
so is V n, and so CΦ is a finite graph operation. If Φ is one of our formulae
defining the basic axioms of set theory, we also write CS, CD, CU, or CP for
CΦS

, CΦD
, CΦU

, or CΦP
, respectively.

5A concrete example is the formula ΦD: if v �= w, then both ΔΦD(·, v, w) and ΔΦD(·, w, v)
define the unordered pair {v, w}.
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To illustrate this construction, consider the unary functional axiom
Singleton with functional description ΦS(z, x1) ⇐⇒ z = x1. Let G = (V, E)
be any graph. We consider every single vertex v ∈ V and check whether
the singleton of v exists in G, i.e., whether there is a vertex w such that
ExtG(w) = {v}. A vertex whose singleton exists is realised ; otherwise it is
omitted. Note that no two vertices are ∼ΦS

-equivalent, so OG,ΦS
is just the

set of omitted vertices. For each omitted vertex v, we now add a new vertex
wv and an edge (v, wv) and obtain CS(G) such that every vertex in G has a
singleton in CS(G). However, CS(G) will contain new vertices that do not
have singletons yet (e.g., any newly added wv).

If G = G1 and Γ = (Cn ; n ∈ ω) is the sequence such that Cn = CS for
all n ∈ ω, then the closure graph GΓ is isomorphic to the Zermelo natural
numbers {∅, {∅}, {{∅}}, {{{∅}}}, ...}. Every vertex is either empty or a
singleton.6

If C is a graph operation and Γ = (Cn; n ∈ ω) is a sequence of graph
operations, we say that C occurs unboundedly in Γ if the set {n ∈ ω; Cn =
C} is unbounded.
Proposition 13. Let G |= BST, A an n-ary functional axiom with func-
tional description Φ, and Γ a sequence of graph operations such that CΦ

occurs unboundedly in Γ . Suppose that both Φ and ΔΦ are absolute for end
extensions. Then GΓ |= A.
Proof. We use Gk = (Vk, Ek) to denote the stages of the closure construc-
tion and GΓ = (VΓ , EΓ ) to denote the closure graph. Let 	v be an n-tuple
in VΓ . We have to show that it is Φ-realised in GΓ . Find N large enough
such that all elements of 	v occur in VN . By the assumption, there is some
stage K > N where Γ (K) = CΦ, but this means that we find y ∈ VK+1

such that

GK+1 |= z ∈ y ⇐⇒ GK |= Φ(z,	v).

Absoluteness of Φ lifts this to

GK+1 |= ∀z(z ∈ y ↔ Φ(z,	v)), i.e.,

GK+1 |= ΔΦ(y,	v).

Now absoluteness of ΔΦ gives GΓ |= ΔΦ(y,	v), so y still Φ-realises 	v in
GΓ .

6Similarly, in order to get familiar with the definition of closure graphs, the reader
might find it illuminating to check that if G = G1 and Γ = (Cn ; n ∈ ω) with Cn = CP

for all n ∈ ω, then the closure graph GΓ is isomorphic to the von Neumann natural
numbers.
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Corollary 14. Let G |= BST and Γ a sequence of graph operations such
that CS, CD, or CU occurs cofinally in Γ . Then GΓ satisfies Singleton, Pair,
or Union, respectively.

Proof. Follows directly from Proposition 13 and the fact that all corre-
sponding formulae are absolute for end extensions.

Note that Proposition 13 does not apply to the axiom Powerset, since
the comprehension of its functional description ΔΦP

is not absolute: as men-
tioned, an end extension G′ of a graph G can contain more G′-subsets of a
given vertex v ∈ V .

Proposition 15. Let G |= BST be finite and Γ an extensional and finite
sequence of graph operations such that CP occurs cofinally in Γ . Then GΓ

satisfies Powerset.

Proof. We use the notation from the proof of Proposition 13. By Propo-
sition 12, we know that GΓ is locally finite; thus for any v ∈ VΓ , we have
that degGΓ

(v) = n for some natural number n. This means that there are at
most 2n many GΓ -subsets of v. But this means that there is some N such
that all GΓ -subsets of v have appeared before stage N of the construction.
By our assumption, there is some K > N such that Γ (K) = CP, but then
the GK+1-power set of v is the GΓ -power set of v.

4. Consistency and Inconsistency Results

4.1. Notational Set-up

In this section, we consider all 26 = 64 possible combinations of Singleton,
Pair, Union, Powerset, Sep, and Repl and their negations and check whether
they can hold in a transitive submodel of HF, or equivalently, in an exten-
sional, well-founded, locally finite graph model. In order to keep the notation
brief, we use the labels S, D, U, P, C, and R for the six axioms and ��S, ��D, ��U, ��P,
��C, and ��R for their negations.7

By Proposition 4, Repl implies Sep, excluding all 24 = 16 combinations
with ��CR. Proposition 3 makes any theory containing ��SD trivially inconsistent,
immediately removing 12 = 22×3 additional theories from the list. Further-
more, Proposition 9 means that any theory with ��D��UR cannot hold, removing
four more theories; Proposition 10 means that any theory with ��SPC can-
not hold, removing three more theories; finally, Proposition 11 means that

7Cf. Footnote 3 for the notations D and C.
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any theory with ��DPR cannot hold, removing another theory. These basic ax-
iomatic connections from Section 2.3 remove 36 of our 64 combinatorially
possible theories; consequently, 28 remain.

4.2. Finite Graphs

By Proposition 5, only theories containing ��S��D��P can hold in finite models.
Using our examples from Section 2.4, we see that

G1 |= ��S��DU��PCR

G2 |= ��S��DU��PC��R,

G3 |= ��S��DU��P��C��R,

G� |= ��S��D��U��PC��R, and

G# |= ��S��D��U��P��C��R.

4.3. Graphs Obtained by Axiom Closures

We shall consider a number of different sequences of graph operations: ΓS,
ΓD, and ΓP are the sequences where each graph operation is CS, CD, or
CP, respectively. For X, Y ∈ {S, D, P}, we write ΓXY for the sequence where
all even-numbered graph operations are CX and all odd-numbered graph
operations are CY. If G is any graph, we write GX or GXY for the closure
graph by ΓX or ΓXY, respectively.

Lemma 16. If A is 2-violated in G, then GS |= ¬A; If A is 3-violated in G,
then GD |= ¬A.
Proof. Note that the graph operation CS only adds new vertices of degree
one and the graph operation CD only adds new vertices of degree at most
two, so no newly added vertex can ever be the witness to the instance of A
that is violated in G.

Proposition 17. If G is any finite graph, then

GP |= ��S��DP��C��R,

GSP |= S��DP��C��R, and

GDP |= SDP��C��R.
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Proof. The positive claims follow from Corollary 14 & Proposition 15.
Proposition 5 implies that the graphs GP, GSP, and GDP are infinite and
have vertices with arbitrarily large finite extensions. Because G is finite,
there is an n such that the degrees of vertices in G are bounded by n and
therefore any vertex in the axiom closure graph with more than n vertices
must have been added by the closure operations.

All vertices added by the closure operations are of a particular form: in
GP, they all contain the empty set; in GSP, they all contain the empty set or
are singletons; and in GDP, they all contain the empty set or are singletons
or pairs. This means that any vertex with degree at least n + 3 was added
by the closure operations and since it is neither a pair nor a singleton, it
must contain the empty set.

These observations imply ��S��D in GP: if v is any vertex added by the closure
operation and w is a vertex containing v, then w was added by the closure
operation and thus, it must contain the empty set. But then it cannot be
the singleton of v.

Similarly, they imply ��D in GSP: if v0 and v1 are any two distinct vertices
added by the closure operations and w is a set containing v0 and v1, then
w was added by the closure operations and thus either w is a singleton or
contains the empty set; in neither case can w be the pair of v0 and v1.

By Proposition 4, it is sufficient to show that Sep cannot hold in any
of the three axiom closures. Pick any vertex that has degree k ≥ n + 4;
by the above argument, it must have the empty set as predecessor, say,
its extension is {v0, ..., vk−1} with distinct vertices where ExtG(v0) = ∅. If
Sep holds, we can find a vertex with extension {v1, ..., vk−1}. But that has
k − 1 ≥ (n + 4) − 1 = n + 3 elements, and thus would have to contain the
empty set. Contradiction!

Lemma 18. (Preservation Lemma) Let G be a graph.

(1) If G |= Union, then so do CS(G), CP(G), GS, and GP.

(2) If G is finite and G |= Sep, then so do CS(G), CD(G), GS, and GD.

Proof. To prove (1), observe that the new elements added by CS (single-
tons of previous vertices) and CP (power sets of previous vertices) both have
unions in the original graph: the union of a singleton is its unique element,
the union of a power set is the set it is a power set of. For (2), use Proposition
1 and the proofs of Propositions 6 & 7.

Singleton closure. We consider finite graphs G and their locally finite sin-
gleton closure GS. By Corollary 14, GS |= Singleton; thus, by Proposition 5,
GS is infinite, but it has only finitely many elements of degree more than
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one. As a consequence, it satisfies S��D��P. Therefore, using the Preservation
Lemma 18,

G1
S |= S��DU��PCR: use that G1

S is locally 2-small and Proposition 6 (ii)8;

G3
S |= S��DU��PC��R: all new vertices have degree one, thus no new vertices can

be a counterexample to Sep (cf. the proof of Proposition 6); the singleton
closure provides all missing separation instances in G3; note that Repl
was 2-violated in G3 and use Lemma 16;

G4
S |= S��DU��P��C��R: note that Sep and Repl were both 2-violated in G4 and

use Lemma 16;

G�
S |= S��D��U��P��C��R: note that Union, Sep, and Repl are all 2-violated in G�

and use Lemma 16;

G#
S |= S��D��U��PC��R: note that Union and Repl are both 2-violated in G# and

use Lemma 16.

Pair closure. We consider finite graphs G and their locally finite pair closure
GD. By Corollary 14, GD |= Pair; thus, by Proposition 5, GD is infinite, but
it has only finitely many elements of degree more than two. But for any
pair, all four subsets exist, so power sets of pairs will have size four, whence
Powerset cannot hold. Also, for any four distinct vertices, we can apply the
pairing axiom twice to obtain a set whose union has these four vertices as
extension, so Union must fail. As a consequence, the pair closures all satisfy
SD��U��P. We observe that

G1
D |= SD��U��PCR: use that G1

D is locally 3-small and Proposition 7 (ii)9;

G4
D |= SD��U��PC��R: all new vertices have degree at most two, thus no new

vertices can be a counterexample to Sep (cf. the proof of Proposition
7); the pair closure provides all missing separation instances in G4; note
that Repl was 3-violated in G4 and use Lemma 16;

G5
D |= SD��U��P��C��R: note that Sep and Repl were both 3-violated in G5 and

use Lemma 16.

Power set closure. We consider finite graphs G and their locally finite pair
closure GP. By Proposition 17, GP |= ��S��DP��C��R We obtain

8Note that G1
S = G2

S .
9Note that G1

D = G2
D = G3

D .
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– G1
P |= ��S��DUP��C��R: follows from the Preservation Lemma 18;10

– G�
P |= ��S��D��UP��C��R: the set witnessing the 3-violation of Union in G� is

{1, 2, 3} =
⋃{{1}, {2}, {3}}; this set does not contain the empty set,

so it is not added by the axiom closure, whence Union still fails.

Singleton & Power set closure. We consider finite graphs G and their sin-
gleton & power set closure GSP. By Proposition 17, GSP |= S��DP��C��R We obtain

– G1
SP |= S��DUP��C��R: follows from the Preservation Lemma 18;

– G�
SP |= S��D��UP��C��R: the set witnessing the 3-violation of Union in G� is

{1, 2, 3} =
⋃{{1}, {2}, {3}}; this set is neither a singleton nor does it

contain the empty set, so it is not added by the axiom closure, whence
Union still fails.

Pair & Power set closure. For our analysis, we only need one pair & power set
closure, the graph G�

DP. By Proposition 17, G�
DP |= SDP��C��R. Once more, the set

witnessing the 3-violation of Union in G� is {1, 2, 3} =
⋃{{1}, {2}, {3}}; this

set has degree three and does not contain the empty set, so it is not added
by the axiom closure, whence Union still fails. We obtain G�

DP |= SD��UP��C��R.

4.4. Obtaining All Hereditarily Finite Sets

In Section 4.1, we excluded 36 of the 64 combinatorially possible theories
as inconsistent; in Section 4.2, we gave 5 finite graphs for different possible
theories; and in 4.3, we provided 13 closure graphs. As a consequence 10 =
64 − (36 + 5 + 13) theories remain. One of these is FST = SDUPCR which
holds in HF; the other nine cannot be valid in a transitive substructure of
HF, as we shall show in this section.

Proposition 19. Any subset of HF that contains ∅ and is closed under
pairing and union is equal to HF.

Proof. We prove this by ∈-induction on HF. Let ∅ ∈ M ⊆ HF be closed
under pairing and union. This implies that it is closed under binary union,
i.e., if x, y ∈ M , then x ∪ y =

⋃{x, y} ∈ M . Assume towards a contra-
diction that x ∈ HF is minimal such that x /∈ M . Since x is finite, let
x = {x0, ..., xn} ⊆ M . By closure under pairing, for each i ≤ n, we have
that {xi} ∈ M . Recursively define x∗

0 := {x0} and x∗
i+1 := x∗

i ∪ {xi+1}. By
the closure properties of M , all of these sets are in M by induction. Thus
x∗

n = x ∈ M . Contradiction!

10Cf. Footnote 6.
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Proposition 19 excludes the five theories SDU��P��C��R, SDU��PC��R, SDU��PCR, SDUPC��R,
and SDUP��C��R as impossible in substructures of HF.

Proposition 20. Any non-empty transitive subset M ⊆ HF that is a model
of Powerset + Sep is equal to HF.

Proof. We prove by induction on n that Vn ∈ M . Since M is transitive,
this is sufficient. Because M is nonempty, we have that ∅ = V0 ∈ M .
Suppose Vn ∈ M . The power set axiom in M gives us the M -power set of
Vn in M . But since Vn is finite, every HF-subset of Vn is definable by a
quantifier-free formula with parameters, and thus by Sep in M , the M -power
set of Vn and the HF-power set of Vn coincide. But the latter is Vn+1.

Proposition 20 excludes all remaining four theories, viz. S��D��UPC��R, S��DUPC��R,
SD��UPC��R, and S��D��UPCR.

4.5. Beyond Hereditarily Finite Sets

While the theories excluded in Section 4.1 are inconsistent, this is in general
not the case with the nine theories excluded in Section 4.4: these theories
cannot be obtained in well-founded locally finite graphs, but might be true
in well-founded graphs that are not locally finite; well-known examples are

Vω+ω |= SDUPC��R and

HC |= SDU��PCR,

where HC is the set of hereditarily countable sets. Applying the method
of axiom closure to infinite graphs produces further examples; we do not
know whether graph models for all nine theories can be produced by axiom
closures or even whether all nine theories are consistent.
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