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Abstract. In this paper, we introduce a new logic, which we call AM3. It is a connexive

logic that has several interesting properties, among them being strongly connexive and val-

idating the Converse Boethius Thesis. These two properties are rather characteristic of the

difference between, on the one hand, Angell and McCall’s CC1 and, on the other, Wans-

ing’s C. We will show that in other aspects, as well, AM3 combines what are, arguably, the

strengths of both CC1 and C. It also allows us an interesting look at how connexivity and

the intuitionistic understanding of negation relate to each other. However, some problems

remain, and we end by pointing to a large family of weaker logics that AM3 invites us to

further explore.
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1. Introduction

Connexive logic is a topic in non-classical logic that is receiving a lot of
attention these days; however, that is not to say that it is a recent topic by
any means. Some have claimed that it has its historical roots in antiquity,
others have disputed this. Much less controversial is the important role of two
connexive logical systems in the much more recent history of the subject.
The first is the system CC1 that is due to Richard Angell [1] and Storrs
McCall [15] and marks, in many ways, the modern inception of connexive
logic as a unified topic in logical research. While that topic never quite
disappeared after the seminal work by Angell and McCall, it was only after
Heinrich Wansing started making his contributions some forty years later
that it truly started to blossom. For that reason alone, the first connexive
logic Wansing introduced in [33], which is called C, has an indisputably
important place in the history of connexivity. Also, it offered one of the
most elegant semantics as well as proof systems for connexive logics to date
(see also [22, p.178]).

1 This is probably the impression one also gets from the overview in [21, §2].
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Beyond the connexive principles (see Section 2), the two logics seem to
have little in common (see Section 3.3 for a summary of the differences).1

However, it is the aim of this paper to bridge these differences and to try
to preserve as many of the desirable properties of each of these logics by
introducing a new logic. Conceptually, it is somewhat closer to CC1 than to
C, and for that reason we have chosen to call it AM3, abbreviating Angell-
and-McCall-inspired three-valued logic. However, we will see that it has, in
many ways, properties that are the best of the two worlds marked by CC1
and C. One item that is of particular interest is the property of hypercon-
nexivity, a property that is rather distinctive of C and related systems in
the connexive literature. The fact that AM3 is hyperconnexive is one of the
primary ways in which it fuses the influence of the two traditions.

Another way in which it does this concerns the relation between con-
nexivity and constructivity. Wansing wrote that his work “suggests that
connexive logic is constructive” ([33, p.367]). However, the account he gave
utilizes a lesser known kind of constructive negation, namely Nelson-style
strong negation. The better known constructive treatment of negation, i.e.
viewing it as defined in terms of a conditional and a bottom constant, has so
far not been investigated.2 AM3 naturally leads to an investigation of just
that sort (see Section 6.2), and it will point the way to a much richer space
of logics, as we will see in Section 6.3.

The paper is organized as follows. After recalling the key connexive prin-
ciples in Section 2, we briefly recall the two basic systems CC1 and C in
connexive logic, and compare them in Section 3. This will be followed by
Section 4 in which we introduce the new system AM3. Then, in Section 5,
we observe some properties of AM3, and compare them to CC1 and C. We
then turn to reflect on AM3 in Section 6 by looking at some old objections
against CC1, and the arrow-bottom flavor of the negation in AM3. We will
also specify a subsystem of AM3 that we call AMW and that seems to
be worth further investigations, and suggest some open problems. Finally,
Section 7 concludes the paper with a brief summary of the paper.

2. Connexive Principles

First and foremost, connexive logic is characterized by two sets of contra-
classical principles customarily called Aristotle and Boethius.3

2[26] mentions the topic in passing on p. 410.
3For an overview of connexive logic, see [16,32].



Angell and McCall Meet Wansing

Aristotle: ¬(A → ¬A) and ¬(¬A → A) are valid.

Boethius: (A → B) → ¬(A → ¬B) and (A → ¬B) → ¬(A → B) are
valid.

In [11], it was observed that some connexive logics (such as, indeed, Wans-
ing’s C, and John Cantwell’s system CN introduced in [3]) allowed for satis-
fiable instances of (A → ¬A), as well as simultaneously satisfiable instances
of (A → B) and (A → ¬B). Kapsner took that to go against the spirit of
the connexive enterprise. To be able to judge those cases out of bounds, he
suggested to add two unsatisfiability clauses:

UnSat1: In no model, (A → ¬A) is satisfiable, and neither is (¬A → A).

UnSat2: In no model (A → B) and (A → ¬B) are satisfiable simulta-
neously (for any A and B).

He called logics that satisfy Aristotle, Boethius and the UnSat clauses
strongly connexive, those that only satisfied Aristotle and Boethius weakly
connexive. Though strongly connexive logics might be more appealing from
certain philosophical perspectives, it has proven very difficult to find attrac-
tive systems that have this feature. As one of the benefits of this paper we
will, by the end, be left with new directions to search for such systems.

Lastly, a connexive system is hyperconnexive4 iff it is connexive and ad-
ditionally satisfies the Converse of Boethius:

Converse of Boethius: ¬(A → B) → (A → ¬B) and ¬(A → ¬B) →
(A → B) are valid.

Though not necessarily part of the modern day conception of connexivity,
some have argued that Boethius was actually committed to CBT, such as
Susanne Bobzien, who writes of “Boethius’ insistence that the negation of’
If it is A, it is B’ is ’If it is A, it is not B’ ”.5 Others have found that
the equivalence of ¬(A → B) and (A → ¬B) amounts to an attractive
account of what it means to negate a conditional. For example, David Lewis
conceded this attractiveness to Stalnaker, even though his own theory of
counterfactuals did not bear it out (see [14, p.79-80]). We do not take a
stand on whether satisfying CBT is a desirable property.6 Our interest here
is in its function as an important distinguishing feature between CC1 and
C.

4A terminology that is used by Richard Sylvan in [7, p.89].
5[2]. See also, e.g., [23] and [7, p.68].
6See also [16, p.446] for McCall arguing against CBT.
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3. Preliminaries

The language L consists of a finite set {¬,∧,→} of propositional connec-
tives7 and a countable set Prop of propositional variables which we denote
by p, q, etc. Furthermore, we denote by Form the set of formulas defined as
usual in L. We denote a formula of L by A, B, C, etc. and a set of formulas
of L by Γ, Δ, Σ, etc.

3.1. Angell and McCall

Let us first recall the four-valued logic CC1, introduced by Angell in [1] and
explored in some detail by McCall in [15].

Definition 1. A CC1-interpretation of L is a function v : Prop → {1, 2, 3, 4}.
Given a CC1-interpretation v, this is extended to a function I from Form to
{1, 2, 3, 4} by truth functions depicted in the form of truth tables as follows:

Definition 2. For all Γ ∪ {A} ⊆ Form, Γ |=CC1 A iff for all CC1-
interpretations v, I(A) ∈ D if I(B) ∈ D for all B ∈ Γ, where D = {1, 2}.

Remark 3. Note that the above four-valued semantics was considered by
Angell for the purpose of establishing the consistency of the main system he
proposed in [1], known as PA1.8 CC1 itself was studied in [15]. The main
results established by McCall include an axiomatization of CC1, as well as
a proof of the Post-completeness of CC1. There were a number of criticisms
against CC1, but we shall discuss them in some detail later (see Section 6.1).

3.2. Wansing

Let us now turn to Wansing’s system of connexive logic C, introduced in [33].
Although the standard presentation of C will also include disjunction as a
primitive connective, for our purpose, we will present it in the language L in

7Note that we are not much concerned with disjunction here, as the connexive principles
don’t involve it.

8A sound and complete semantics for PA1 was suggested in [26].



Angell and McCall Meet Wansing

which disjunction is not included. However, as one can easily see, disjunction
can be defined in the standard manner in terms of negation and conjunction.

The semantics are very similar to the Kripke semantics for intuitionistic
logic. The main difference is that negation is tied to an independent con-
structive notion of falsity, as opposed to being defined in terms of arrow and
bottom.

Definition 4. A C-model for the language L is a triple 〈W, ≤, V 〉, where
W is a non-empty set (of states); ≤ is a partial order on W ; and V :
W × Prop −→ {∅, {0}, {1}, {0, 1}} is an assignment of truth values to state-
variable pairs with the condition that i ∈ V (w1, p) and w1 ≤ w2 only if
i ∈ V (w2, p) for all p ∈ Prop, all w1, w2 ∈ W and i ∈ {0, 1}. Valuations V
are then extended to interpretations I of state-formula pairs by the following
conditions:

• I(w, p)=V (w, p),

• 1 ∈ I(w,¬A) iff 0 ∈ I(w,A),

• 0 ∈ I(w,¬A) iff 1 ∈ I(w,A),

• 1 ∈ I(w,A ∧ B) iff 1 ∈ I(w,A) and 1 ∈ I(w, B),

• 0 ∈ I(w,A ∧ B) iff 0 ∈ I(w,A) or 0 ∈ I(w, B),

• 1 ∈ I(w,A→B) iff for all w1 ∈ W : if w ≤ w1 and 1 ∈ I(w1, A) then
1 ∈ I(w1, B),

• 0 ∈ I(w,A→B) iff for all w1 ∈ W : if w ≤ w1 and 1 ∈ I(w1, A) then
0 ∈ I(w1, B).

Finally, semantic consequence is now defined as follows: Γ |=C A iff for all
C-models 〈W, ≤, V 〉, and for all w ∈ W : 1 ∈ I(w, A) if 1 ∈ I(w, B) for all
B ∈ Γ.

Remark 5. Historically, C is derived from Nelson’s logic N4 by replacing the
falsity condition for implication, which in the case of N4 is the following:

0 ∈ I(w,A→B) iff 1 ∈ I(w,A) and0 ∈ I(w, B).

N4 and its related systems are explored in great depth from a proof-theoretic
perspective in [10]. Given the close relationship between N4 and C, many of
the results established for N4 carry over to C.

3.3. A Quick Comparison

Let us now briefly compare CC1 and C. Almost the only shared property
for these two systems is that they are both connexive. We may also add that
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both systems enjoy double negation introduction and elimination as well as
modus ponens, but beyond this, they are rather unlike each other. Let us
point to some of the notable differences.

• C validates the Converse of Boethius’ thesis, but CC1 does not; thus,
the former is hyperconnexive, while the latter is not.

• C isn’t strongly connexive, while CC1 is. In fact, in many ways CC1
is one of the few systems that is satisfying strong connexivity in the
literature so far (other examples include the approach to connexivity via
relating semantics (cf. [8]) and the constructive approach of [5] which we
will mention again below).

• CC1 is consistent and not paraconsistent, whereas C is not only para-
consistent but also inconsistent (or contradictory) without being trivial.
Indeed, we have both |=C (A ∧ ¬A) → A and |=C ¬((A ∧ ¬A) → A).

• CC1 validates contraposition, namely |=CC1 (A→B)→(¬B→¬A), but
we do not have contraposition in C.9

• Conjunction elimination fails in CC1, but holds in C. Indeed, given the
Boethius’ thesis, conjunction elimination would be the key to produce
inconsistency in CC1.

• C has Importation and Exportation which shows that conjunction and
the conditional stand in a residuation relation, but this is not the case
in CC1.

• C validates the Weakening axiom, namely |=C A → (B → A), but this
fails in CC1.

• Finally, C enjoys the Deduction Theorem, but CC1 does not.

The differences we mentioned here can be summarized as follows in a table.

9That C does not have contraposition, just like N4, can be checked by observing that
is it not even self-extensional by considering the equivalence |=C ¬((A→A)→¬(A→A)) ↔
((A∧¬A)→A) (↔ is defined in the usual way). Indeed, if C were self-extensional, then we
obtain that |=C ((A→A)→¬(A→A)) ↔ ¬((A ∧ ¬A)→A). Given that the right hand side
is valid in C, we obtain |=C (A→A)→¬(A→A), and thus |=C ¬(A→A), but we can check
that ¬(A→A) is not valid in C by considering a classical extension of C, known as MC in
the literature (cf. [32]). Therefore, C is not self-extensional and thus contraposition is not
valid.
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CC1 C

Converse of BT ¬(A→B)→(A→¬B) × �
Unsat 1 See Section 2. � ×
Unsat 2 See Section 2. � ×
Explosive A,¬A |= B � ×
Paraconsistent A,¬A �|= B × �
Contraposition (A → B) → (¬B → ¬A) � ×
Conjunction elimination (A ∧ B) → A × �
Exportation/Importation ((A ∧ B)→C) ↔ (A→(B→C)) × �
Weakening A→(B→A) × �
Deduction theorem Γ, A |= B only if Γ |= A → B × �

4. Semantics for AM3

We will now introduce a three-valued logic, called AM3, that can be obtained
by making some changes to CC1. We will first introduce the new system,
and explain the way we are making some modifications to CC1.

Definition 6. An AM3-interpretation of L is a function v : Prop → {1, i,0}.
Given an AM3-interpretation v, this is extended to a function I that assigns
every formula a truth value by truth functions depicted in the form of truth
tables as follows:

Then, the semantic consequence relation for AM3 (notation: |=) is defined
as follows.

Definition 7. For all Γ∪{A} ⊆ Form, Γ |= A iff for all AM3-interpretations
v, I(A) ∈ D if I(B) ∈ D for all B ∈ Γ where D = {1}.

Let us now explain how AM3 is obtained from CC1. To this end, let
us manipulate the four-valued tables for CC1, and remove the value 2 by
eliminating rows and columns with 2 as the input value. Then, we obtain
the following truth tables.
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Here, though, we still have an occurrence of 2 for the truth table for
negation when we look at input 3. In order to eliminate 2 from our tables
completely, we reconsider the truth table for negation in CC1. More specif-
ically, we consider negation as arrow-bottom, where bottom is defined as
¬o(p→p) for some p ∈ Prop in CC1, and ¬o is the old (or original) negation
in CC1. Note that the bottom defined here will always take the value 4.
Then, the resulting truth tables will be as follows, where ¬nA:=A → ⊥,
and n stands for new.

Now, we can safely remove the value 2 (as well as the subscript n for
negation) and we obtain the following truth tables.

And these are the truth tables for AM3 written in terms of a different set
of truth values. Note again that ⊥ is defined as ¬(p→p) for some p ∈ Prop in
AM3, and ⊥ will always take the value 4, or the value 0 in the new notation
above. In brief, for conjunction and conditional, we took the submatrix of
CC1, and for negation, given that the set {1, 3, 4} is not closed under the
original negation, we replaced the truth table by considering the arrow-
falsum operator, and by combining these, we obtain AM3 from CC1.

Remark 8. Interestingly, the truth tables for AM3 were independently dis-
covered and discussed by Davide Fazio, Antonio Ledda, and Francesco Paoli
in their [5], and they also observe that it appears in [29]. Note also that
in their paper, they define a new conditional within intuitionistic logic as
(A→B)∧(¬A→¬B), and their results imply that there are uncountably
many strongly connexive logics.

5. Observations

Let us offer a brief comparison of the three systems CC1, C and AM3.
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5.1. Connexive Principles (I)

Let us first compare the three systems in view of the first set of connexive
principles. We will not only discuss Aristotle’s and Boethius’ theses, but also
the additional principles discussed in the literature (see §2).

Our comparison shows that with respect to the basic connexive princi-
ples, namely Aristotle and Boethius’ theses, all three systems are on a par.
However, beyond that, there are interesting differences. Indeed, the converse
of Boethius’ thesis, and thus hyperconnexivity, is shared by AM3 and C, but
not with CC1, whereas strong connexivity (i.e., UnSat 1 and 2) is shared by
AM3 and CC1, but not with C.

We would like to highlight and emphasize here that all the systems of
connexive logic which enjoy hyperconnexivity, to the best of our knowledge,
have been obtained along Wansing’s idea of replacing the falsity condition
of the conditional in N4 (see Section 3), and thus the negation was al-
ways paraconsistent.10 In contrast, we are here achieving hyperconnexivity
with Explosion (cf. Section 5.6). Thus, given that hyperconnexivity is one of
the key features of Wansing’s system C, AM3 occupies an interesting place
bridging two traditions in connexive logic that are, as we’ve seen in Section
3.3, very different in their approach as well as their properties.

There are more connexive principles we will discuss in Sections 5.4 and
5.5, but before turning to them, it makes sense to first clarify the properties
of the implication and conjunction in AM3, which we will do in the next
two subsections.

5.2. The Implicational Fragment

We now turn our attention to the implicational fragments of the logics we
are concerned with. Here, we see that AM3 lies somewhere in between CC1
and C when it comes to the strength of the conditional.

10The same move of changing the falsity condition of conditionals can be done with
weaker conditionals, such as those with conditional logics (cf. [12,31]) as well as relevant
logics (cf. [6,20,35]).
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CC1 AM3 C

(B) (B → C) → ((A → B) → (A → C)) � � �
(C) (A → (B → C)) → (B → (A → C)) × � �
(I) A → A � � �
(K) A → (B → A) × × �
(W) (A → (A → B)) → (A → B) × × �

Our observation shows that the conditional of AM3 lies somewhere between
BCI and BCK, and this seems to let us conclude that the conditional of AM3
enjoys a reasonable strength, if one is happy to grant that the conditional
of BCI is reasonably strong.

In contrast, C has the full strength of the intuitionistic conditional, and
therefore enjoys the deduction theorem. This is of course not the case with
CC1 nor AM3, and one may dismiss CC1 and AM3 on this ground, but we
shall remain neutral with respect to this concern.

Given that the conditional of AM3 is below BCK, one may wonder about
the variable sharing property for AM3. This, unfortunately, does not hold
since we have |= (A→A)→(B→B).

Note finally that, in general, we may observe that if an implicational
formula is either valid in CC1 or valid in AM3, then the corresponding for-
mula obtained by replacing → by the biconditional is valid in classical logic
(indeed, we only need to consider the submatrix obtained by eliminating
the middle values). As a corollary, we obtain that none of the implicational
formulas with an odd number of occurrences of variables are valid in both
CC1 and AM3.

5.3. The Conjunction-Conditional Fragment

We now turn to see some differences with respect to conjunction which are
known to be problematic, and thus heavily criticized for CC1. To this end,
we focus on the conjunction-conditional fragment.

CC1 AM3 C

Simplification (A ∧ B) → A, (A ∧ B) → B × × �
Idempotence A → (A ∧ A) × × �
Importation (A → (B → C)) → ((A ∧ B) → C)) × � �
Exportation ((A ∧ B) → C)) → (A → (B → C)) × � �
Adjunction A → (B → (A ∧ B)) × � �
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Our observation shows that unlike the case with CC1, there is a clear sense
in which ∧ indeed deserves to be called conjunction in AM3, if the so-
called intensional conjunction, or fusion, in relevant logic and linear logic
are justified to be called conjunction. It therefore seems that AM3 scores
far better for both implication and conjunction compared to CC1.

In contrast, C again enjoys all the listed properties, but those that are not
enjoyed by AM3 can be explained in terms of the weakness of the conditional
of AM3, and thus the matter to some extent boils down to the strength of
the conditional. We shall return to this point later when we revisit some old
criticisms of CC1.

5.4. Secondary Connexive Principles: Abelard and Aristotle’s Second

Now that we have an idea of conjunction in AM3, we move on to see the
connexive formulas that involve conjunction in their formulations.

CC1 AM3 C

Abelard ¬((A → B) ∧ (A → ¬B)) � � ×
Aristotle’s second ¬((A → B) ∧ (¬A → B)) � � ×

Our observation shows that AM3 inherits the validity of both Abelard’s
thesis as well as Aristotle’s second thesis from CC1. Note that in AM3,
we have the equivalence of Boethius’s thesis and Abelard’s thesis in view
of Importation and Exportation, as well as the arrow-falsum account of
negation.

Note also that although both theses fail for C, there is an extension of C
by the law of excluded middle, called C3, that is worth noting in this context.
More specifically, the conditional of C3 will validate Abelard’s thesis but not
Aristotle’s second thesis. Moreover, if we consider the strong implication,
defined in terms of (A → B) ∧ (¬B → ¬A), then the strong implication of
C3 will validate both theses (for the details, see [19]).

5.5. Yet More Connexive Principles: Superconnexivity and Super-Bot-
Connexivity

When he introduced the notion of strong connexivity, Kapsner suggested
that there might be a way to push the requirement into the object language.
The idea is to draw an analogy to the use of Explosion, (A ∧ ¬A)→B, as a
normative bar from satisfying contradictions. He wrote:
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In analogy to this use of explosion to express the unsatisfiability of
any contradiction, we might try to ask that (A → ¬A) → B should
be valid, in order to express in the object language that A → ¬A
is unsatisfiable (and similarly for the rest of the connexive theses).
Call a logic that validates all of these schemata and satisfies all the
requirements for strong connexivity superconnexive. ([11, p.143])

However adding this to a system with substitutivity of logical equivalents
quickly leads to triviality (cf. [13]).

Recently, the present authors revived the idea by slightly modifying it in
[13]. We called our idea Super-Bot-Connexivity, because it involves a bot-
tom constant. The Super-Bot versions of Aristotle and Boethius (or rather,
UnSat1 and UnSat2) then become:

Super-Bot-Aristotle: (A → ¬A) → ⊥ and (¬A → A) → ⊥ are valid.

Super-Bot-Boethius: (A → B) → ((A → ¬B) → ⊥) and (A →
¬B) → ((A → B) → ⊥) are valid.

We then argued that these conditions are not as problematic as the idea of
superconnexivity, and, in particular, are no threat to having substitutivity.
Moreover, by making sure that ⊥ is never satisfiable, we argued that the
philosophical impact of the UnSat principles is preserved.

We also considered versions of this idea that can capture the unsatisfia-
bility intuitions that might make us adopt Abelard and Aristotle’s Second
Thesis11:

Super-Bot-Abelard: ((A → B) ∧ (A → ¬B)) → ⊥ is valid;

Super-Bot-Aristotle2: ((A → B) ∧ (¬A → B)) → ⊥ is valid.

Let us see how this notion is displayed by the three systems we are concerned
with in this paper. Recall from Section 4 that we can define a bottom con-
stant in CC1 and AM3 as ¬(p → p) for some p ∈ Prop such that it always
takes value 4, and this is the constant we will consider in this context, as
well. However, given that we cannot define ⊥ in C, we will consider an ex-
pansion of C by the falsum constant ⊥, with the following truth and falsity
condition following the approach considered by Sergei Odintsov in [18].

11In case of Ableard, this just coincides with UnSat2, in case of Aristotle’s Second
Thesis we suggested:

UnSat3: In no model (A → B) and (¬A → B) are satisfiable simultaneously (for any
A and B).
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• 1 �∈ I(w,⊥),

• 0 ∈ I(w,⊥).

Following the naming convention for the case with N4, we refer to the re-
sulting expansion of C by ⊥ as C⊥.

Once this extension is made, we obtain the following table as a result of
the comparison.

Though we will not argue for this here, we believe that the super-bot
versions of the connexive principles are an attractive way of capturing the
intuitions that might draw one towards strong connexivity (we deliver this
argument and all technical details in [13]). Given that C isn’t strongly con-
nexive, it is no surprise that C⊥ fails to obey these features, nor is it surpris-
ing that CC1 and AM3, both being strongly connexive, do. Rather, these
examples might be seen as a small-scale proof of concept of the super-bot
idea.

5.6. Negation

Finally, we add a few more comparisons of the three systems by focusing on
some properties related to negation.

First, observe that this table shows that AM3 and CC1 are independent of
each other. Turning to the specific principles, note that (DNE) is the only
property we are discussing that is shared by CC1 and C, but missing for
AM3. Given this observation, one may wonder if (DNE) can be added to
AM3 or not without a collapse. One possible approach, though definitely
not the best nor the only approach, is to address this question in view of
the three-valued semantics. Then, the validity of (DNE) will require the
elimination of the third value i. If we consider this submatrix, then the
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truth table for the conditional becomes the truth table for the biconditional
in classical logic. This is not showing that the resulting extension will be
trivial, but still it is a kind of collapse (we will point to some other approaches
to this question later in our conclusion).

For contraposition, AM3 has it in both forms, like in CC1, but as we
observed earlier, even the rule form fails for C.

For the explosion related results, note that all three systems share the
result concerning the failure of (ECQ1), and thus if paraconsistency is un-
derstood in terms of the failure of ECQ1, then they are all paraconsistent.
Moreover, for CC1 and AM3, the results related to (ECQ1) and (ECQ3)
imply that the deduction theorem fails in both systems. Furthermore, the
difference between (ECQ1) and (ECQ2) for AM3 reflects our approach to
negation in terms of arrow-falsum, and we shall return to this point in more
details later. Finally, in view of (ECQ3), we obtain the consistency of CC1
and AM3, but C will be standing out for having some contradictory formulas
being valid (recall Section 3.3).

6. Reflections

6.1. Revisiting Old Objections

Let us begin by revisiting the two old objections against CC1 in view of AM3.
These objections were raised almost immediately after the publication of [15]
by John Woods in [36] and by Richard Routley and Hugh Montgomery in
[27].

In his short note [36], Woods raised two worries. First, given that we have

• �|=CC1 p → (p ∧ p),

• �|=CC1 (p ∧ p) → p, but

• |=CC1 p → (p ∧ (p ∧ p)),

he wrote that

The upshot would appear to be that p connexively implies only odd-
numbered conjunctions of occurrences of itself, and never even-numbered
ones. Simplification is, therefore, not unrestrictedly valid.

Second, as a somewhat more general objection that can be seen as di-
rected to connexive logic in general, Woods observed that Aristotle’s thesis,
transitivity of the conditional (in the rule form), conjunction elimination, the
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rule of contraposition, and substitution will prove negation inconsistency12,
and asks

With respect to [these assumptions], is there anything which you would
be willing to give up?

For AM3, we can now respond to these worries by repeating that the con-
junction of AM3 is an intensional one (cf. Section 5.3), and thus the failure
of conjunction elimination is to be expected (this is not necessarily to say
that the failure is not a problem, but we refer to the literature on inten-
sional conjunction for further discussion). Moreover, and more specifically
to the second worry, we may point exactly to the conjunction elimination
from the perspective of AM3 that needs to be given up. All other principles
that Woods listed are kept in AM3.13

For the worries raised by Routley and Montgomery in their [27], they
extensively consider some weaker systems below PA1, in terms of axiomatic
proof systems, and establish a number of interesting results that will be of
direct importance for PA1 as well as CC1. However, given that our interest
is to see how AM3 removes the odd features of CC1, we focus on a result
reported in [27] that applies specifically to CC1.

The result we would like to mention is their Theorem 21 of [27] which
shows that if A is a classically valid formula in the fragment of classical logic
only with conjunction and the conditional, then τ(A) is valid in CC1, where
τ is defined as follows:

• τ(p) = p ∧ p for p ∈ Prop and

• τ(A ∗ B) = τ(A) ∗ τ(B) where ∗ ∈ {∧,→}.

Since this result is established by considering the submatrix of CC1 in the
conjunction-conditional fragment by restricting the carrier set to {1, 3}, their
observation will carry over to AM3. In view of this result, we obtain the
following in AM3:

• �|= p → (q → p), but |= (p ∧ p) → ((q ∧ q) → (p ∧ p)),

• �|= (p ∧ q) → p, but |= ((p ∧ p) ∧ (q ∧ q)) → (p ∧ p).

Now, given that we can view the conjunction in AM3 as an intensional
conjunction, the failure of Weakening as well as conjunction elimination can

12Note that one may wonder if modus ponens is necessary or not, as addressed by one
of the referees, but if transitivity of the conditional is understood in the rule form, then
the derivation observed by Woods does not require modus ponens.

13Alternatively, one can dispute that negation inconsistency is bad in the first place.
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be explained on that ground. However, it is far from obvious how we can
explain the validity of the versions with conjunction everywhere. At least,
we are not able to offer an explanation of this phenomenon. It rather seems
to be a byproduct of working with a three-valued semantics, that is a special
case of a more general semantics. Therefore, this will give us some reasons
to generalize AM3, and we shall discuss some possible directions in the
conclusion.

A last point that has been raised against CC1 by Routley and Mont-
gomery is that the values in the characteristic matrices have no intuitively
plausible interpretation. While AM3 is no worse off than CC1 here, we can
not claim that the problem went away by removing one of the four values.
This is still a strong point for C, which has a much more compelling story
that backs its semantics up.

6.2. Intuitionistic Handling of Negation and Connexivity

Though we explained in Section 4 that the truth tables for AM3 were arrived
at by thinking of an quasi-intuitionistic understanding of negation, in fact
we have so far treated it as primitive, and defined ⊥ in terms of it. Let us
now push this line of constructive thinking a bit further: What if we adopt
that view of negation wholesale and take ⊥ as primitive and consider ¬A as
defined as A → ⊥?

It is interesting to note that connexivity has been investigated in relation
to many kinds of negation14, but no discussion we are aware of relates the
connexive principles to the intuitionistic understanding of negation. This
is surprising, especially given Wansing’s suggestion that connexivity and
constructivity are closely related (see the quote in the introductory section
of this paper). Maybe this lacuna exists because the natural habitat of that
account of negation, viz., intuitionistic logic, is more than hostile to the
connexive principles. As the proof in proposition 1 below shows, intuitionistic
logic becomes trivial once AT is added.

One move is to consider giving up EFQ, namely ⊥ → A, to avoid such
calamity. And of course, that is an idea that has been considered in intu-
itionistic circles, as well (and for a long time, at that). The move famously
leads to minimal logic (cf. [9]).

Minimal logic achieves to avoid EFQ by making ⊥ a proposition that does
not necessarily take an undesignated value. We argue in [13] that this would
take the normative sting out of the superconnexive idea. What is worse,

14E.g. cancellation accounts of negation ([23,28,34]), strong constructive negation
([33]), a ’reversal’ theory of negation ([30]) etc.
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however, is the following: While the connexive principles can be added to
minimal logic without triviality, we obtain “half-triviality”, namely that ¬A
can be derived for any A:

Proposition 1. Aristotle’s thesis, Weakening (i.e. A → (B → A)) and
modus ponens proves ⊥, and thus ¬A for any A where negation is defined
as A → ⊥.

Proof. The proof runs as follows.
1 ¬(A → ¬A) → ((A → ¬A) → ¬(A → ¬A)) [Weakening]
2 ((A → ¬A) → ¬(A → ¬A)) [Aristotle’s thesis, 1, MP]
3 ¬((A → ¬A) → ¬(A → ¬A)) [Aristotle’s thesis]
4 ⊥ [2, 3, def. of ¬, MP]

Moreover, we obtain ¬A for any A by final applications of Weakening and
MP.

Remark 9. If one tries to make sense of Aristotle’s thesis in terms of arrow-
bottom, and keep modus ponens, then we need to tame Weakening. One
of the many ways will be to go subintuitionistic in the sense that we strip
off some of the frame conditions for the intuitionistic conditional. For this
purpose, there are roughly two approaches, depending on whether we have
a base point in the Kripke semantics. More specifically, Giovanna Corsi in
[4] formulates the semantics without the base point, whereas Greg Restall in
[24] formulates the semantics with the base point. Then, interestingly, there
is a crucial difference in these two approaches. Indeed, in Corsi’s approach,
the rule from � A to � B → A still preserves validities, even in the weak-
est system, but this is not the case with Restall’s approach (in which the
validity of Weakening corresponds to the heredity condition). Noting that
the above proof will go through even with the rule form, Restall’s approach
is the only reasonable way, if we aim at a conditional as strict implication.
Deeper investigations into this matter, however, need to be left for interested
readers.

Compared to these two unsatisfactory cases, AM3 is free of triviality/half-
triviality problems, while it handles negation in arrow-bottom style. Note
here that we are now taking the bottom as primitive, so we are assuming
the following truth tables for AM3.
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A further interesting fact is that the double negation laws behave just like
they do for intuitionistic logic, i.e., DNI holds while DNE does not.15 This
does not seem to track any intuitive constructive reading of the semantics, as
arguably, the Kripke semantics for intuitionistic logic allow. But as we will
point out in the conclusion, AM3 is only the strongest of a large family of
systems, and maybe for some of the weaker members such an interpretation
might be possible.

More generally, AM3 is not without problems, as we mentioned above
in light of the old observations due to Routley and Montgomery. Still, we
believe that as the first step towards a full understanding of the intuitionistic
handling of negation in the context of connexivity, AM3 seems to play an
important role, as opening up the view of a fuller picture.

6.3. Looking Ahead

Before wrapping up the paper, let us make a concrete proposal for the pur-
pose of further investigations. We submit a subsystem of AM3, called AMW
after Angell, McCall and Wansing, as an interesting system of connexive
logic. To this end, we make a small change to the language by taking ⊥ as
primitive, and take negation to be defined in terms of → and ⊥, as motivated
in the last section.
Definition 10. Let AMW be the system with the following axioms and a
rule of inference.

(B → C) → ((A → B) → (A → C)) (B)

(A → (B → C)) → (B → (A → C)) (C)

A → A (I)

(A → (B → C)) → ((A ∧ B) → C) (Importation)

((A ∧ B) → C) → (A → (B → C)) (Exportation)

((A ∧ B) → ⊥) → ((A → B) → ⊥) (∧→⊥1)

((A → B) → ⊥) → ((A ∧ B) → ⊥) (∧→⊥2)

15Not just for the arrow forms we mention above, but also for the entailment versions
(not a completely trivial fact because we don’t have the deduction theorem).
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A A → B

B
(MP)

Remark 11. Here are some reasons why we chose these axioms. First, for the
implicational fragment, we observed that BCI is included by AM3, which
is a reasonably strong arrow, unlike in the case of CC1. For the purpose of
making sure that the arrow is an arrow, we keep the strength of BCI. Second,
for conjunction, we observed that we can make sense of conjunction in AM3
as an intensional conjunction, standing in the residuation relation to →.
Therefore, we kept Importation/Exportation axioms. Finally, for negation,
we kept two axioms that require conjunction and implication to be equivalent
under the scope of negation, which is defined in terms of → and ⊥. These
two axioms will also allow us to derive (CBT), and thus we added ‘W’ in
the name of the system for Wansing.

Remark 12. Note that AMW is not trivial thanks to the fact that AM3 is
not trivial.

In other words, AMW is an expansion of a fragment of linear logic ex-
panded by two axioms that carry the connexive flavor. Let us then observe
some derivable formulas in AMW, before listing a number of questions for
further research.

Proposition 2. The following formulas are derivable in AMW, where ¬A
abbreviates A → ⊥.

(A → B) → (¬B → ¬A) (Contra.)

A → ¬¬A (DNI)

¬(¬A → A) (AT1)

¬(A → ¬A) (AT2)

(A → ¬B) → ¬(A → B) (BT1)

(A → B) → ¬(A → ¬B) (BT2)

¬(A → B) → (A → ¬B) (CBT)

¬((A → B) ∧ (A → ¬B)) (Abelard)
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Proof. For (Contra.), it suffices to confirm that (A → B) → ((B → C) →
(A → C)) is derivable, and this is indeed the case in view of (B), (C)
and (MP). For (DNI), it suffices to confirm that A → ((A → B) → B)
is derivable, and this is indeed the case in view of (C), (I) and (MP). For
(AT1), the proof runs as follows.

1 ((¬A ∧ A) → ⊥) → ((¬A → A) → ⊥) [(∧→⊥1)]
2 (¬A → (A → ⊥)) → ((¬A ∧ A) → ⊥) [(Importation)]
3 ¬A → (A → ⊥) [(I) and def. of ¬]
4 (¬A → A) → ⊥ [1, 2, 3, (MP)]
5 ¬(¬A → A) [4, def. of ¬]

For (AT2), the proof runs as follows.
1 ((A ∧ ¬A) → ⊥) → ((A → ¬A) → ⊥) [(∧→⊥1)]
2 (A → (¬A → ⊥)) → ((A ∧ ¬A) → ⊥) [(Importation)]
3 A → (¬A → ⊥) [(DNI) and def. of ¬]
4 (A → ¬A) → ⊥ [1, 2, 3, (MP)]
5 ¬(A → ¬A) [4, def. of ¬]

For (BT1), the proof runs as follows.
1 ((A ∧ B) → ⊥) → ((A → B) → ⊥) [(∧→⊥1)]
2 (A → (B → ⊥)) → ((A ∧ B) → ⊥) [(Importation)]
3 (A → ¬B) → ¬(A → B) [1, 2, (Trans), def. of ¬]

For (BT2), the proof runs as follows.
1 ¬¬(A → B) → ¬(A → ¬B) [(BT1), (Contra.), (MP)]
2 (A → B) → ¬¬(A → B) [(DNI)]
3 (A → B) → ¬(A → ¬B) [1, 2, (Trans)]

For (CBT), the proof runs as follows.
1 ((A → B) → ⊥) → ((A ∧ B) → ⊥) [(∧→⊥2)]
2 ((A ∧ B) → ⊥) → (A → (B → ⊥)) [(Exportation)]
3 ¬(A → B) → (A → ¬B) [1, 2, (Trans), def. of ¬]

Finally, for (Abelard), the proof runs as follows.
1 ((A → B) → ¬(A → ¬B)) → (((A → B) ∧ (A → ¬B)) → ⊥)

[Importation]
2 ¬((A → B) ∧ (A → ¬B)) [1, (BT2), (MP), def. of ¬]
This completes the proof.

Remark 13. Let us make some remarks about the intuitionistic understand-
ing of negation and the notion of Super-Bot-Connexivity we talked about
above. Take another look at Aristotle and Super-Bot-Aristotle:

Aristotle: ¬(A → ¬A)

Super-Bot-Aristotle: (A → ¬A) → ⊥
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Here it becomes clear that Super-Bot-Aristotle just is Aristotle when the
outer negation is understood along intuitionistic lines. Similar observations
can be made about the other super-bot-principles and their more traditional
counterparts.

As there is more than one negation involved in these principles, the in-
tuitionistic understanding of negation invites us to consider other ways of
unpacking these negations, which might in a context where negation is not
defined be independent and interesting objects of investigation in them-
selves:

• ¬(A → ¬A)

• (A → ¬A) → ⊥
• ¬(A → (A → ⊥))

• (A → (A → ⊥)) → ⊥
Note, in particular, that the last formula can be seen as an instance of Super
contraction in [25, p.423], namely (A → (A → B)) → B .

Then, we can formulate a number of open problems for AMW. Here is a
small list.
Open problem 1. Given that AMW is an expansion of BCI, we may ask how
we can devise the algebraic semantics for AMW along Robert Meyer and
Hiroakira Ono in [17]?
Open problem 2. We may also ask if we can devise other kinds of semantics
by borrowing insights from linear logic, as well as combinatory logic.
Open problem 3. Given that there is a cut-free sequent calculus presentation
of BCI, can we also devise one for AMW?
Open problem 4. A systematic investigation into extensions and expansions
of AMW will be particularly interesting, giving us a clear understanding
of AM3 as well. For example, the bottom constant in AMW is like that in
minimal logic in the sense that we do not have EFQ. We already know that
we cannot add ⊥ → A, but we can add ⊥ � A, and thanks to AM3, such
extension is not trivial. What then is the effect of this additional rule to
the semantics and proof systems, and are there other interesting ways to
constrain ⊥? Moreover, how many systems are there between AMW with
EFQ and AM3?
Open problem 5. A systematic investigation into expansions will be also
interesting. For example, how should we add disjunction? Moreover, are
there technical/philosophical reasons to add extensional conjunction?
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We can even continue more to list some questions, but we will stop here.
Instead, we would like to invite the readers to add more and answer them.

7. Concluding Remarks

We started out by considering two iconic connexive systems, Angell and Mc-
Call’s CC1 and Wansing’s C. We pointed out that these systems have little
in common beyond satisfying Aristotle’s Thesis and Boethius’ Thesis. For
example, we noted that CC1 is strongly connexive, but not hyperconnexive,
whereas it is the other way around for C. We found a system that broadly
succeeded in bridging the distance between these logics and called it AM3.
Due to some interpretational problems we discussed, we ended by conjec-
turing that a weaker system we called AMW or some system in between
the two might ultimately turn out to be a more interesting logic than AM3
itself.16

Nonetheless, AM3 has several pleasant properties and serves to make
several interesting observations worthy of further investigation, among them:

• The problem with strong connexivity has been to find any attractive
logics beyond CC1 that satisfy the UnSat principles. AM3 points the
way to a realm of logics that might instantiate strong connexivity in a
more intuitively satisfying way.

• Hyperconnexivity has, to our knowledge, been only observed in logics
that are paraconsistent (such as C). AM3 is not paraconsistent, and
thus shows that there is no necessary connection between these features.

• AM3 has invited us to consider how connexivity and the intuitionistic
handling of negation go together. We pointed out that this fills a curious
lacuna in the connexive literature.

• AM3 serves as a showcase of our recently developed idea of super-bot-
connexivity. Indeed, we found that considering the negation defined as
arrow-bottom allows us to see the super-bot versions as mere notational
variants of the connexive theses. The connection will not be quite as tight
in other environment, but we take this as a small scale proof of concept
of our idea.

16Due to the problems of AM3 we discussed earlier in Section 6.1, we did not consider
the problem of axiomatizing AM3. We will therefore leave the problem of axiomaitzation
to interested readers.
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Again, AM3 is surely not the final word on the understanding of con-
nexivity, but rather a hopefully fruitful starting point. Indeed, given the
problems pointed out by Routley and Montgomery for the system CC1, we
need to seek for some interesting subsystems that will be free of those prob-
lems. As a starting point for that project, we submitted the system AMW
as the basic system to continue the investigation. Given the close connection
to linear logics, we may expect some new insights into connexivity from the
techniques developed in linear logics. It remains to be seen how rich this
new field is, and we hope some readers will be motivated to join the authors
to continue with the search for interesting connexive logics along these lines.
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