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Abstract. Multiple-conclusion Hilbert-style systems allow us to finitely axiomatize ev-

ery logic defined by a finite matrix. Having obtained such axiomatizations for Paraconsis-

tent Weak Kleene and Bochvar–Kleene logics, we modify them by replacing the multiple-

conclusion rules with carefully selected single-conclusion ones. In this way we manage to

introduce the first finite Hilbert-style single-conclusion axiomatizations for these logics.
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1. Introduction

In his classic book [25], S.C. Kleene employs two different sets of three-valued
truth tables to introduce the logical systems known, in today’s parlance, as
Strong Kleene and Weak Kleene logics. The latter, independently considered
in 1937 by Bochvar [6,7], is also called Bochvar–Kleene logic (henceforth
BK).

From a formal point of view, the main difference between the strong and
the weak Kleene tables is that in the latter the third truth value (u) exhibits
an infectious behaviour: any interaction between u and either of the classical
values (t and f) delivers u itself. This feature, as we shall see, makes the
resulting logics somewhat less tractable than most well-known three-valued
logics, both from an algebraic and a proof-theoretic point of view.

From the Bochvar–Kleene tables two logics naturally arise. One (BK) is
obtained by choosing the single truth value t as designated; the other, which
we call Paraconsistent Weak Kleene (PWK), results from designating both
t and u. Concerning both these systems, a positive and a negative result are
particularly worth mentioning in the present context.

The good news is that both logics are closely related, from a formal point
of view, to the classical: more precisely, PWK and BK are, respectively,
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the left and right variable inclusion companions of classical logic (more on
this below). The bad news, on the other hand, is that for neither of these
logics a finite Hilbert-style axiomatization currently exists (this observation
was made in [22], to which we also refer the reader for further background
and examples of axiomatizations of three-valued logics). In other words, we
do not know whether these logics admit a finite basis [35]. This is precisely
the gap we wish to bridge in the present paper, thus solving a fundamental
open problem concerning these logics.

According to Bochvar’s original paper [6,7], the intended applications
of the Bochvar–Kleene logic are in the formalization of paradoxes, future
contingent statements and presuppositions (see e.g. [18] for a more recent
computational interpretation of BK). The third value is therefore meant
to represent nonsensical statements, or corrupted data in the interpretation
given by Kleene. This explains the infectious behaviour of the third value,
because any complex formula having a nonsensical or paradoxical subfor-
mula should be regarded as nonsensical/paradoxical too.

Paraconsistent Weak Kleene (PWK) seems to have been considered al-
ready by S. Halldén in his 1949 monograph [24], and two decades later by
A. Prior [32], but has only recently been studied in more depth (see e.g. [11]
and [17], the latter of which explores applications to the theory of truth).

The proof theory of BK and PWK has been intensively developed in
the last years employing different formalisms and approaches, like sequent
calculi [9,30], natural deduction [4,31] and tableaux [9,30].

In addition, a number of Hilbert-like systems for these logics exist in
the literature [2,8,12]. However, as explained in Section 3, none of them are
finite Hilbert-style systems in the usual sense (we shall call these Set-Fmla

H-systems).
For BK, a finite but non-standard axiomatization may be obtained by

taking any complete Set-Fmla H-system for classical logic (with modus
ponens as its only rule) and, while keeping all the axioms, replacing modus
ponens by a restricted version that satisfies the containment condition [11,
Prop. 4], [12]. The finite Hilbert-style system for BK we introduce here
will instead be standard, i.e. consisting of a finite number of axioms and
unrestricted rule schemas.

For both BK and PWK, infinite Hilbert-style systems may be found in
[8,12]; we note that the completeness proofs found in these papers are essen-
tially algebraic, and rely on the above-mentioned observation that BK and
PWK are, respectively, the right and the left variable inclusion companion
of classical logic [34, Thm. 4, p. 258], [12,15].
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In the present paper we follow a two-step strategy. Relying on the general
observation that every finite logical matrix can be finitely axiomatized by
means of a Hibert-style multiple-conclusion system (here called a Set–Set

H-system), we first introduce finite Set–Set H-systems for BK and PWK,
then show how from these Set-Fmla axiomatizations may be obtained pre-
serving finiteness.

The paper is organized as follows. In Section 2 we formally introduce the
language and semantics of BK and PWK. Section 3 contains as much theory
of Set–Set and Set-Fmla H-systems as we shall need in order to introduce
our axiomatic systems for PWK and BK. The former is then presented and
shown to be complete in Section 4 (PWK), the latter in Section 5 (BK).
The final Section 6 contains concluding remarks and suggestions for future
research.

2. Language and Semantics of BK and PWK

Let ∧, ∨ and → be binary connectives and ¬ be a unary connective. Call
a collection Σ of these connectives a propositional signature. We may write
Σ c©1... c©n

for the signature { c©1, . . . , c©n} ⊆ {∧,∨,→,¬}.
A Σ-algebra is a structure A:= 〈A, ·A〉 such that A is a nonempty set

called the carrier of A and, for each k-ary connective c© ∈ Σ, the k-ary
mapping c©A : Ak → A is the interpretation (or truth table) of c© in A.

Given a denumerable set P of propositional variables, we denote by LΣ(P )
the term algebra over Σ generated by P or, more briefly, the Σ-language
(generated by P ), whose universe is denoted by LΣ(P ). The elements of
the latter are called Σ-formulas. Propositional variables will be denoted by
lowercase letters p, q, r, s, and Σ-formulas will be denoted by Greek letters
ϕ,ψ, γ, δ, possibly subscripted with positive integers.

The endomorphisms on LΣ(P ) are called Σ-substitutions. By subf(Φ) we
denote the set of all subformulas of the formulas in Φ ⊆ LΣ(P ). Moreover,
we will usually write Φ, Ψ to denote Φ ∪ Ψ and we will omit curly braces
when writing sets of formulas. Also, we write Φc for LΣ(P )\Φ.

We take Σ∧∨¬ to be the signature of classical logic as well as that of
PWK and BK in the present work. We are going to define these logics in
a moment via matrix semantics.

Let B:= 〈{f, t} , ·B〉 be the standard two-element Boolean Σ∧∨¬-algebra.
For Bu:= {f, u, t}, define the Σ∧∨¬-algebra Bu:= 〈Bu, ·Bu

〉 such that the con-
nectives in Σ∧∨¬ are interpreted according to the following truth tables:
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As we will see in a moment, such Σ∧∨¬-algebra provides the interpretation
structure for the logical matrices that determine the logics PWK and BK.
Note that we have, for all c© ∈ Σ∧∨¬ of arity k, c©Bu

(�a) = c©B(�a) if �a ∈
{f, t}k and c©Bu

(�a) = u otherwise. In other words, the above truth tables
result from extending the classical two-valued tables with an infectious truth
value [15].

We now extend the above observation to the derived operations of Bu. Let
ϕ(p1, . . . , pk) indicate that p1, . . . , pk are the propositional variables occur-
ring in ϕ (in which case ϕ is said to be k-ary—unary if k = 1, binary if k = 2),
and let ϕ(ψ1, . . . , ψk) refer to the formula resulting from replacing ψi for each
occurrence of pi in ϕ, for each 1 ≤ i ≤ k. Given a Σ-algebra A:= 〈A, ·A〉
and a Σ-formula ϕ, we denote by ϕA the derived operation induced on A by
ϕ. That is, for all a1, . . . , ak ∈ A, provided a valuation v with v(pi) = ai, if
ϕ = c©(ψ1, . . . , ψk) we have ϕA(a1, . . . , ak) = c©A(v(ψ1), . . . , v(ψk)) and, if
ϕ = pi, then ϕA(pi) = v(pi). By induction on the structure of Σ-formulas,
we then obtain that u is infectious also on the derived operations of Bu:

Proposition 1. For all k ∈ N, ϕ(p1, . . . , pk) ∈ LΣ∧∨¬(P ) and �a ∈ Bk
u ,

ϕBu
(�a) = ϕB(�a) if �a ∈ {f, t}k and ϕBu

(�a) = u otherwise.

In what follows, for every set X, let Pow(X) denote the power set of X.
We now formally introduce the notion of logic considered in this work.

A finitary Set–Set consequence relation (or a Set–Set logic) over
LΣ(P ) is a binary relation � on Pow(LΣ(P )) satisfying (O)verlap, (D)ilution,
(C)ut, (S)ubstitution-invariance and (F)initariness, for all Φ, Ψ, Φ′, Ψ′ ⊆
LΣ(P ):

(O) if Φ ∩ Ψ 
= ∅, then Φ � Ψ

(D) if Φ � Ψ, then Φ, Φ′ � Ψ, Ψ′

(C) if Π, Φ � Ψ, Πc for all Π ⊆ LΣ(P ), then Φ � Ψ

(S) if Φ � Ψ, then σ[Φ] � σ[Ψ], for every Σ-substitution σ

(F) if Φ � Ψ, then Φf � Ψf for some finite Φf ⊆ Φ and Ψf ⊆ Ψ
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Set–Set consequence relations have been thoroughly investigated by T.
Shoesmith and T. Smiley in the book [33], to which we refer the reader for
further background and details.

A finitary Set-Fmla consequence relation (or a Set-Fmla logic) over
LΣ(P ) is a relation � ⊆ Pow(LΣ(P )) × LΣ(P ) satisfying the well-known
Tarskian properties of reflexivity, monotonicity, transitivity, substitution-
invariance and finitariness. Set-Fmla logics are a particular case of Set–

Set logics. One may further check that each Set–Set logic � determines a
Set-Fmla logic �� over LΣ(P ) such that Φ �� ψ if, and only if, Φ � {ψ},
which is called the Set-Fmla companion of �. Pairs of the form (Φ, Ψ) or
(Φ, ψ) are dubbed statements, and the statements belonging to a logic are
called consecutions (of that logic).

A Σ-matrix is a structure M:= 〈A, D〉, where A is a Σ-algebra and D ⊆
A. We write D for the set-theoretic complement A\D. The homomorphisms
from LΣ(P ) into A are called M-valuations. Every Σ-matrix M determines
a Set–Set consequence relation �M over LΣ(P ) such that

Φ �M Ψ if, and only if, there is no M-valuation v satisfying

v[Φ] ⊆ D and v[Ψ] ⊆ D.

We denote by �M the Set-Fmla companion of �M, which matches the
canonical Set-Fmla consequence relation over LΣ(P ) induced by M, that
is, Φ �M ψ if, and only if, there is no M-valuation v satisfying v[Φ] ⊆ D and
v(ψ) ∈ D. As expected, the Σ∧∨¬-matrix MCL:= 〈B, {t}〉 determines the
Set–Set and Set-Fmla consequence relations corresponding to classical
logic, which we denote respectively by �CL and �CL.

Consider the Σ∧∨¬-matrices MPWK:= 〈Bu, {u, t}〉 and MBK:= 〈Bu, {t}〉.
Then Paraconsistent Weak Kleene (PWK) and Bochvar–Kleene (BK) log-
ics are defined, respectively, as the Set-Fmla logics �MPWK

and �MBK
,

which we write �PWK and �BK for brevity. We will also be interested in the
Set–Set logics determined by these matrices (�MPWK

and �MBK
) which

we denote simply by �PWK and �BK, respectively. We may refer to them
as the Set–Set versions of PWK and BK.

In what follows, given a Set-Fmla logic �, we say that Φ ⊆ LΣ(P ) is
�-explosive in case Φ � ϕ for all ϕ ∈ LΣ(P ). As mentioned earlier, it is
well-known that PWK and BK are, respectively, the left variable inclusion
companion and the right variable inclusion companion of classical logic, in
the sense expressed by the following facts (see [10,12,15] for general defini-
tions and results concerning inclusion logics).
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Theorem 2. [12] Let Φ, {ϕ,ψ} ⊆ LΣ∧∨¬(P ). Then the following are equiv-
alent:

1. Φ �PWK ψ.

2. There is Φ′ ⊆ Φ with props[Φ′] ⊆ props(ψ) such that Φ′ �CL ψ.

Theorem 3. ([34], Theorem 2.3.1) Let Φ, {ϕ, ψ} ⊆ LΣ∧∨¬(P ). Then the
following are equivalent:

1. Φ �BK ψ.

2. Φ �CL ψ and props(ψ) ⊆ props[Φ], or else Φ is �CL-explosive.

3. Basics of Hilbert-Style Axiomatizations

Logical matrices are a semantical way to define Set-Fmla and Set–Set

logics. Another popular way are proof systems, which manipulate syntacti-
cal objects envisaging the construction of derivations that bear witnesses to
consecutions. Proof systems can be classified with respect to the proof for-
malism they belong to, based mainly on the objects they manipulate and the
shape of their rules of inference and derivations. Each proof system induces
a logic based on the derivations one may build via its rules of inference.

In this work, we are interested in Hilbert-style proof systems, or H-systems
for short. As main characteristics, these have (a) rules of inference with the
same shape of the consecutions of the induced logic; (b) derivations as trees
labelled with sets of formulas; and (c) the fact that they represent a logical
basis for the logics they induce, meaning that the latter is the least logic
containing the rules of inference of the system [35].

Before the work of Shoesmith and Smiley [33], rules of inference in H-
systems were constrained to be Set-Fmla statements, that is, pairs (Γ, δ) ∈
Pow(LΣ(P ))×LΣ(P ), usually denoted by Γ

δ , where Γ is called the antecedent
and δ, the succedent of the rule. For this reason, we call them Set-Fmla

rules of inference and sets thereof constitute Set-Fmla or traditional H-
systems. They are also referred to as single-conclusion H-systems. In the
above-mentioned work, H-systems were generalized to allow for multiple
formulas in the succedent of rules of inference. In other words, rules of
inference became Set–Set statements, that is, pairs of the form (Γ, Δ) ∈
Pow(LΣ(P )) × Pow(LΣ(P )), which we usually denote by Γ

Δ . Collections of
these so-called Set–Set rules of inference constitute what we refer to as
Set–Set or multiple-conclusion H-systems.
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In both formalisms, rules of inference are usually presented schematically,
that is, as being induced by applying Σ-substitutions over representative
rules called rule schemas. An H-system is finite when it is presented via a
finite number of rule schemas.

Users of traditional H-systems are accustomed to derivations that are
sequences of formulas, where each member is either a premise or results from
the application of a rule of inference of the H-system on previous formulas
in the sequence. A proof in a traditional H-system H of a statement (Φ, ψ)
is then a derivation where the set of premises is Φ and the last formula
is ψ. Equivalently, we could see these derivations as rooted labelled linear
trees whose nodes are labelled with sets of formulas, where the root node
is labelled with the set of premises and the child of each non-leaf node n is
labelled with the label Γ of n plus the succedent of a rule of inference of H
whose antecedent is contained in Γ. A proof of (Φ, ψ), then, is just a linear
tree whose root node is labelled with Φ (or a subset thereof) and whose leaf
node contains ψ.

Every Set-Fmla H-system H induces a Set-Fmla logic �H such that
Φ �H ψ if and only if there is a proof of (Φ, ψ) in H. Given a Set-Fmla

logic � and a Set-Fmla H-system H, we say that H is sound for � when
�H ⊆ �; that H is complete for � when � ⊆ �H; and that H axiomatizes �
(or is an axiomatization of ) � when it is both sound and complete for �,
that is, when � = �H.

Example 1. The following is a well-known Set-Fmla axiomatization of
classical logic in the signature Σ→¬, which we call HCL (note that it is
presented by four rule schemas):

∅

q → (p → q)
HCL1

∅

(p → (q → r)) → ((p → q) → (p → r))
HCL2

∅

(¬r → ¬q) → ((¬r → q) → r)
HCL3

p, p → q

q
HCL4

Here is a proof in HCL bearing witness to ∅ �HCL
p → p:

1. (p → ((p → p) → p)) → ((p → (p → p)) → (p → p)) HCL2

2. p → ((p → p) → p) HCL1

3. (p → (p → p)) → (p → p) 1, 2,HCL4

4. p → (p → p) HCL1

5. p → p 3, 4,HCL4



V. Greati et al.

Figure 1. Graphical representation of R-derivations, where R is a

Set–Set system. The dashed edges and blank circles represent other

branches that may exist in the derivation. We usually omit the formulas

inherited from the parent node, exhibiting only the ones introduced by

the applied rule of inference. Recall that, in both cases, we must have

Γ ⊆ Φ

The passage from Set-Fmla H-systems to Set–Set H-systems demands
an adaptation on the latter notions of derivations and proofs. Now a non-leaf
node n may have a single child labelled with � (a discontinuation symbol)
when there is a rule of inference in the H-system with empty succedent and
whose antecedent Γ is contained in the label of n. This symbol indicates
that the node does not need further development (see Example 2). It may
alternatively have m child nodes n1, . . . , nm when there is a rule of inference

Γ
ψ1,...,ψm

in the H-system whose antecedent Γ is, as in the previous case,
contained in the label of n. The label of each ni, in this situation, is the
label of n union {ψi}, for all 1 ≤ i ≤ m. See Figure 1 for a general scheme
of these derivations. A proof of a statement (Φ, Ψ) in a Set–Set H-system,
then, is a labelled rooted tree whose root node is labelled with Φ (or a
subset thereof) and whose leaf nodes (now there may be more than one) are
labelled either with � or with a set having a nonempty intersection with Ψ.

Note that Set–Set H-systems generalize Set-Fmla H-systems because
when all rules of inference in a Set–Set H-system have a single formula
in the conclusion (that is, they are Set-Fmla rules), the derivations in
that system will always be rooted labelled linear trees, which matches our
definition of Set-Fmla derivations.

Every Set–Set H-system R induces a Set–Set logic �R such that Φ�RΨ
if and only if there is a proof of (Φ, Ψ) in R. Given a Set–Set logic �
and a Set–Set H-system R, the notions of R being sound, complete or an
axiomatization for � are defined analogously as in the Set-Fmla case.
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Figure 2. Proofs in RCL bearing witness, respectively, to ∅ �RCL p → p

and ¬(p ∧ q) �RCL ¬p,¬q

Example 2. The following is a Set–Set axiomatization for classical logic
in the signature Σ∧∨¬ (in its Set–Set version). See Figure 2 for examples
of derivations.

∅

p,¬p
CL1

p,¬p

∅
CL2

p, q

p ∧ q
CL3

p ∧ q

p
CL4

p ∧ q

q
CL5

p

p ∨ q
CL6

q

p ∨ q
CL7

p ∨ q

p, q
CL8

The derivations shown in Figure 2 have an important property: only sub-
formulas of the formulas in the respective statements (Φ, Ψ) being proved
appear in the labels of the nodes. In fact, every statement that is provable in
RCL has a proof with such feature. For this reason, we say that RCL is an-
alytic. Traditional (Set-Fmla) H-systems have been historically avoided in
tasks involving proof search, as they rarely satisfy the property of analyticity
(note how the non-analyticity of HCL shows up in Example 1). The solution
has usually been to employ another deductive formalism, usually one with
more meta-linguistic resources, allowing one to prove meta-results that guar-
antee analyticity (a typical example being cut elimination in sequent-style
systems [29]).

Recent work by C. Caleiro and S. Marcelino [13,27] demonstrates that
the much simpler passage to Set–Set H-systems is enough to obtain ana-
lytic proof systems (and thus bounded proof search) for a plethora of non-
classical logics. This observation will be key to us, for we will be able to apply
the techniques developed in the above-mentioned studies to provide finite
H-systems for PWK and BK. This result, however, demands a slight gen-
eralization of the notion of analyticity in addition to the already mentioned
modification of the proof formalism to Set–Set. In order to understand it,
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consider first a set Θ of formulas on a single propositional variable, and let R
be a Set–Set system. The main idea is to allow for not only subformulas of
a statement to appear in an analytic proof, but also formulas resulting from
substitutions of those subformulas over the formulas in Θ. For example, if
Θ = {r,¬r}, a Θ-analytic proof witnessing that ¬p follows from ¬(p ∧ q)
would use only formulas in {p, q, ¬p,¬q, ¬¬p, p∧ q, ¬(p∧ q),¬¬(p∧ q)}. For-
mally, we say that R is Θ-analytic whenever Φ �R Ψ implies that there is
a Θ-analytic proof of (Φ, Ψ) in R, that is, a proof whose nodes are labelled
only with formulas in the set subf(Φ∪Ψ)∪{ϕ(ψ) | ϕ ∈ Θ, ψ ∈ subf(Φ ∪ Ψ}),
i.e. the Θ-subformulas of (Φ, Ψ).

One can show that any finite logical matrix1 satisfying a very mild ex-
pressiveness requirement is effectively axiomatized by a finite Θ-analytic
Set–Set system, for some finite Θ. This requirement is called monadicity
(or sufficient expressivess), and intuitively means that every truth value of
the matrix can be described by formulas on a single variable (the set of these
formulas will be precisely Θ). Let us make this notion precise and formally
state the axiomatization result. We say that a matrix M:=〈A, D〉 is monadic
whenever for every pair of distinct truth values x, y ∈ A there is a formula
ϕ in one propositional variable such that ϕA(x) ∈ D and ϕA(y) ∈ A\D or
vice-versa. These formulas are called separators. Then we have that:

Theorem 4. ([27], Theorem 3.5) For every finite monadic logical matrix M,
the logic �M is axiomatized by a finite Θ-analytic Set–Set system (which
we call RΘ

M
) where Θ is a finite set of separators for every pair of truth values

of M.

The next lemma shows why this result is so important for us in the
present context.

Lemma 5. The matrices MPWK and MBK are monadic, with set of sepa-
rators Θ:= {p,¬p}.
Proof. In both matrices, p is a separator for (t, f). In MPWK, the same
formula separates (f, u) and ¬p separates (u, t). In MBK, we have that p
separates (t, u) and ¬p separates (f, u).

The above fact anticipates that we will be able to provide finite and
{p,¬p}-analytic Set–Set systems for the Set–Set versions of PWK and
BK. However, it is not obvious how to obtain traditional finite H-systems

1Actually, the result applies to a much more general scenario, which is not needed in
the present work: the matrix can even be partial non-deterministic [13] in the sense of
[1,3]. It may also be infinite, but then the generated system might be infinite as well.
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for the original (and most studied) Set-Fmla versions of these logics. In
the next couple of sections, we will not only exhibit the announced Set–

Set systems, but also show how to use them to obtain finite Set-Fmla

H-systems for PWK and BK, thus solving the question regarding their
finite axiomatizability.

4. Finite H-Systems for PWK

Let us begin with the task of axiomatizing the Set–Set version of PWK.
The following Set–Set system was generated from the matrix MPWK by
the algorithm and simplification procedures described in [27] and imple-
mented in [20, Appendix A], using {p,¬p} as a set of separators (in view of
Lemma 5).

Definition 1. Let RPWK be the Set–Set system presented by the follow-
ing rule schemas:

∅

p,¬p
PWK�

1

p

¬¬p
PWK�

2

¬¬p

p
PWK�

3

p, q

p ∧ q
PWK�

4

p ∧ q

p, q
PWK�

5

p ∧ q

p,¬q
PWK�

6

p ∧ q

¬p, q
PWK�

7

¬(p ∧ q)
¬p,¬q

PWK�
8

p,¬p

p ∧ q
PWK�

9

¬p

¬(p ∧ q)
PWK�

10

q, ¬q

p ∧ q
PWK�

11

¬q

¬(p ∧ q)
PWK�

12

p

p ∨ q
PWK�

13

q

p ∨ q
PWK�

14

p ∨ q

p, q
PWK�

15

¬(p ∨ q)
p,¬q

PWK�
16

¬(p ∨ q)
¬p, q

PWK�
17

¬(p ∨ q)
¬p,¬q

PWK�
18

p,¬p

¬(p ∨ q)
PWK�

19

q, ¬q

¬(p ∨ q)
PWK�

20

Since this system is equivalent to the system R
{p,¬p}
MPWK

mentioned in Theo-
rem 4 (when specialized to MPWK), and since the mentioned simplification
procedures preserve Θ-analyticity, we obtain:

Theorem 6. RPWK is {p,¬p}-analytic and �RPWK
= �PWK.

Our goal now is to find a finite Set-Fmla H-system for PWK. We will
see that this task is easily solved because the disjunction connective in this
logic allows us to convert RPWK into the desired finite Set-Fmla system.
More generally, every Set-Fmla logic � is finitely axiomatized by a Set-

Fmla H-system whenever it satisfies two conditions which we now describe
[33, Theorem 5.37]. First, the logic is the Set-Fmla companion of a Set–

Set logic finitely axiomatized by a Set–Set H-system, say R. Second, it
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satisfies the following property for some binary formula C(p, q) (said to be
a definable binary connective in this context):

for all Φ ∪ {ϕ,ψ, γ} ⊆ LΣ(P ), (disj)

Φ, ϕ � γ and Φ, ψ � γ if, and only if, Φ, C(ϕ, ψ) � γ.

The proof of this fact in [33] reveals how to effectively convert R into
the desired Set-Fmla H-system. Let us see how to perform this conver-
sion and then apply the transformation to RPWK.2 In what follows, when
Φ:={ϕ1, . . . , ϕn} ⊆ LΣ∧∨¬(P ) (n ≥ 1), let

∨
Φ:=(. . . (ϕ1 ∨ ϕ2) ∨ . . .) ∨ ϕn.

Also, let Φ ∨ ψ:={ϕ ∨ ψ | ϕ ∈ Φ}. Note that the latter set is empty when Φ
is empty.

Definition 2. Let R be a Set–Set system and p0 be a propositional vari-
able not occurring in the rule schemas of R. Define the system R∨as being pre-
sented by the rule schemas

{
p

p∨q , p∨q
q∨p , p∨(q∨r)

(p∨q)∨r

}
∪{r∨ | r is a rule schema of R}

where r∨ is ∅

ϕ if r = ∅

ϕ , Φ∨p0
(
∨

Ψ)∨p0
if r = Φ

Ψ , and Φ∨p0
p0

if r = Φ
∅

.

Below we present the result of this procedure when applied to RPWK.
Note that the conversion of rule PWK�

15 results in a rule of the form ϕ/ϕ,
and thus can be discarded.

Definition 3. Let HPWK be the Set-Fmla system presented by the fol-
lowing rule schemas:

∅

p ∨ ¬p
PWK1

r ∨ p

r ∨ ¬¬p
PWK2

r ∨ ¬¬p

r ∨ p
PWK3

p, q

p ∧ q
PWK4

r ∨ (p ∧ q)
r ∨ (p ∨ q)

PWK5

r ∨ (p ∧ q)
r ∨ (p ∨ ¬q)

PWK6

r ∨ (p ∧ q)
r ∨ (¬p ∨ q)

PWK7

r ∨ ¬(p ∧ q)
r ∨ (¬p ∨ ¬q)

PWK8

p,¬p

p ∧ q
PWK9

¬p

¬(p ∧ q)
PWK10

q, ¬q

p ∧ q
PWK11

¬q

¬(p ∧ q)
PWK12

p

p ∨ q
PWK13

q

p ∨ q
PWK14

r ∨ ¬(p ∨ q)
r ∨ (p ∨ ¬q)

PWK15

r ∨ ¬(p ∨ q)
r ∨ (¬p ∨ q)

PWK16

r ∨ ¬(p ∨ q)
r ∨ (¬p ∨ ¬q)

PWK17

p,¬p

¬(p ∨ q)
PWK18

2Note that we use ∨ to simplify notation, but the same definition could be rephrased
with the derived connective C(p, q).
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q, ¬q

¬(p ∨ q)
PWK19

p ∨ q

q ∨ p
PWK20

p ∨ (q ∨ r)
(p ∨ q) ∨ r

PWK21

As anticipated in the previous discussion, we have that:

Theorem 7. ([33], Theorem 5.37) If �R = � and �� satisfies (disj), then
�R∨ = �� .

Remark 1. The authors of [33] also show that a similar conversion between
Set–Set and Set-Fmla is possible when the logic has a definable binary
connective C(p, q) that satisfies the so-called deduction theorem:

for all Φ ∪ {ϕ,ψ} ⊆ LΣ(P ), (ded)

Φ, ϕ � ψ if, and only if, Φ � C(ϕ, ψ).

Theorem 7 can then be applied to PWK because �PWK = ��PWK
and

it satisfies (disj), as we establish below.

Proposition 8. For all Φ ∪ {ϕ,ψ, γ} ⊆ LΣ∧∨¬(P ),

Φ, ϕ �PWK γ and Φ, ψ �PWK γ if, and only if, Φ, ϕ ∨ ψ �PWK γ.

Proof. The reader can easily check that the presence of rules PWK�
13,

PWK�
14 and PWK�

15 in RPWK is enough to prove this statement.

In other words,

Theorem 9. �HPWK
= �PWK.

5. Finite H-Systems for BK

We shall proceed as in the previous case, starting with the axiomatization
of the Set–Set version of BK. In view of Lemma 5, we can apply the same
reasoning as the one applied to axiomatize PWK in Set–Set, that is, we
can automatically generate a {p,¬p}-analytic axiomatization for BK:

Definition 4. Let RBK be the Set–Set system presented by the following
rule schemas:

p,¬p

∅
BK�

1

p

¬¬p
BK�

2

¬¬p

p
BK�

3

p, q

p ∧ q
BK�

4

¬p,¬q

¬(p ∧ q)
BK�

5

¬p, q

¬(p ∧ q)
BK�

6

p,¬q

¬(p ∧ q)
BK�

7

¬(p ∧ q)
¬p, p

BK�
8

¬(p ∧ q)
¬q, q

BK�
9

p ∧ q

p
BK�

10

p ∧ q

q
BK�

11
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¬p,¬q

¬(p ∨ q)
BK�

12

¬(p ∨ q)
¬p

BK�
13

¬(p ∨ q)
¬q

BK�
14

p ∨ q

p,¬p
BK�

15

p ∨ q

q, ¬q
BK�

16

¬p, q

p ∨ q
BK�

17

p,¬q

p ∨ q
BK�

18

p, q

p ∨ q
BK�

19

p ∨ q

p, q
BK�

20

As in the case of PWK, since RBK is equivalent to the system R
{p,¬p}
MBK

mentioned in Theorem 4 (when particularized to MBK), and the employed
simplification procedures preserve Θ-analyticity, we have:

Theorem 10. RBK is {p,¬p}-analytic and �RBK
= �BK.

Remark 2. It is not hard to see that MBK results from a renaming of the
truth-values of the logical matrix M

′:= 〈B′
u, {f}〉, where B′

u has the same set
Bu of truth values and its truth tables are such that ∨B′

u
:=∧Bu

, ∧B′
u
:=∨Bu

and ¬B′
u
:=¬Bu

(just swap t and f in the interpretations and in the designated
set). Note also that, if we take MPWK and replace its designated set {t, u} by
{f} and swap the truth tables of ∧ and ∨, we obtain M

′. The axiomatization
procedure of [27] implies in this situation that M

′ is axiomatized simply by
taking RPWK and turning its rules of inference upside down (antecedents
become succedents, and vice-versa), in addition to replacing ∧ by ∨ and vice-
versa in the rules. We call the resulting system the dualization of RPWK.
Because MBK results from M

′ by this simple renaming of truth values, we
have that it is axiomatized by this same Set–Set system. The reader can
easily check that, indeed, RBK is just the dualization of RPWK.

Finding a finite Set-Fmla axiomatization for BK turns out to be harder
than in the case of PWK. The reason, as we prove in the next proposition,
is that in BK it is impossible to define a binary connective C(p, q) satisfying
(disj) or (ded).

Proposition 11. The following holds for BK:

1. For no binary formula C(p, q) ∈ LΣ∧∨¬(P ) we have Φ, ϕ �BK γ and
Φ, ψ �BK γ whenever Φ, C(ϕ,ψ)�BK γ, for all Φ∪{ϕ, ψ, γ}⊆LΣ∧∨¬(P ).

2. For no binary formula C(p, q) ∈ LΣ∧∨¬(P ) we have Φ �BK C(ϕ, ψ)
whenever Φ, ϕ �BK ψ, for all Φ ∪ {ϕ,ψ} ⊆ LΣ∧∨¬(P ).

Proof. For item 1, note that C(p, q) �BK C(p, q) ∨ ¬C(p, q), however
q 
�BK C(p, q) ∨ ¬C(p, q), as a BK-valuation assigning u to p and t to
q would be a countermodel for the latter consecution (see Theorem 1). Sim-
ilarly, for item 2, note that ¬p, p �BK q, but ¬p 
�BK C(p, q), what can be
seen by considering a BK-valuation assigning f to p and u to q.
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Therefore, up to this point, the mere existence of a finite Set–Set system
for BK does not guarantee that this logic is finitely axiomatizable in Set-

Fmla. It does not mean, however, that such system cannot help us in an ad
hoc effort to finitely axiomatize BK.

We begin by noting that only the rules BK�
i , with i ∈ {8, 9, 15, 16, 20},

have multiple formulas in the succedent. We will replace the first four of
these by the following Set-Fmla rules:

¬(p ∧ q)
¬p ∨ p

BK8�

¬(p ∧ q)
¬q ∨ q

BK9�

p ∨ q

p ∨ ¬p
BK15�

p ∨ q

q ∨ ¬q
BK16�

Definition 5. Let RBK� be RBK but with BK�
i replaced by BKi�, for

each i ∈ {8, 9, 15, 16}.

Then we have that this transformation preserves the induced logic:

Proposition 12. RBK and RBK� induce the same Set–Set logic.

Proof. We just need to show that �RBK
= �RBK�

. The right-to-left inclu-
sion is easy, and the converse follows thanks to the presence of
BK�

20.

Example 3. The following derivation bears witness to ¬(p ∧ q) �RBK�
¬p ∨

¬q:

Figure 3. A derivation in RBK� showing that ¬(p ∧ q) �RBK� ¬p ∨ ¬q
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Remark 3. The modifications in RBK that resulted in RBK�, despite pre-
serving the induced logic, are not guaranteed to preserve {p,¬p}-analyticity.
The previous example may be seen as an illustration of this fact.

The fact that the only rule of RBK� with more than one formula in the
succedent is p∨q

p,q BK�
20 will help us in providing a finite Set-Fmla system

for BK, thus answering positively the question of its finite axiomatizability.
Before showing why and how, let us introduce some transformations over
Set-Fmla rules that will be useful in our endeavour:

Definition 6. Let ϕ1,...,ϕm

ψ r be a Set-Fmla inference rule and r be a
propositional variable not occurring in any of the formulas ϕ1, . . . , ϕm and
ψ. For simplicity, we define the binary connective → by abbreviation: for all
ϕ,ψ ∈ LΣ∧∨¬(P ), let ϕ → ψ:=¬ϕ ∨ ψ. Then:

1. The ∨-lifted version of r is the rule
r ∨ ϕ1, . . . , r ∨ ϕm

r ∨ ψ
r∨

2. The →-lifted version of r is the rule
r → ϕ1, . . . , r → ϕm

r → ψ
r→

The following characterization of rules of inference will also be useful to
us, in view of Theorem 3:

Definition 7. A Set-Fmla inference rule Φ
ψ r is said to satisfy the contain-

ment condition whenever props(ψ) ⊆ props[Φ].

We will provide a Set-Fmla H-system resulting from RBK� essentially
by the following modifications:

(a) removing the rule BK�
20;

(b) replacing BK�
1 , a rule with empty succedent, with a new rule called

BK1� having a fresh variable in the succedent;

(c) adding some rules concerning ∨;

(d) adding all ∨-lifted versions (see Definition 6) of all rules but BK1�.

Having the lifted rules for all rules satisfying the containment condition will
be important for completeness, as we will see. Our task, then, boils down
to showing that applications of BK�

1 and BK�
20 in derivations in RBK�

of Set-Fmla statements may be replaced by applications of rules of the
proposed Set-Fmla system. We display this system below for clarity and
ease of reference.



Finite Hilbert Systems for Weak Kleene Logics

Definition 8. Let HBK be the Set-Fmla system given by the rule schemas

p,¬p

q
BK1�

p

¬¬p
BK2

¬¬p

p
BK3

p, q

p ∧ q
BK4

¬p,¬q

¬(p ∧ q)
BK5

¬p, q

¬(p ∧ q)
BK6

p,¬q

¬(p ∧ q)
BK7

¬(p ∧ q)
¬p ∨ p

BK8�

¬(p ∧ q)
¬q ∨ q

BK9�

p ∧ q

p
BK10

p ∧ q

q
BK11

¬p,¬q

¬(p ∨ q)
BK12

¬(p ∨ q)
¬p

BK13

¬(p ∨ q)
¬q

BK14

p ∨ q

p ∨ ¬p
BK15�

p ∨ q

q ∨ ¬q
BK16�

¬p, q

p ∨ q
BK17

p,¬q

p ∨ q
BK18

p, q

p ∨ q
BK19

p ∨ q, ¬p

q
BK20

p ∨ (q ∨ r)
(p ∨ q) ∨ r

BK21

p ∨ p

p
BK22

p ∨ q

q ∨ p
BK23

p ∨ q, r

¬p ∨ r
BK24

plus the ∨-lifted versions of the above rules that satisfy the containment
condition (see Definition 7)—that is, all but BK1�.

Remark 4. Adding the ∨-lifted versions of the rules displayed above sub-
stantially increases the size of the proposed system. In classical logic, this
can be readily avoided due to the presence of the rule p

p∨q , which is not
sound in BK.

Our first goal is to verify that the Set-Fmla system just defined is sound
for BK. This can be proved by showing that each rule Γ

δ of the system is
sound for �MBK

, i.e. that Γ �MBK
δ. In this direction, we take advantage of

the close relationship between MBK and classical logic described in Theo-
rem 3.

Lemma 13. �HBK
⊆ �MBK

.

Proof. Note that BK1� is the only rule that does not satisfy the contain-
ment condition. Since it is impossible for an MBK-valuation to satisfy both
p and ¬p, this rule is sound with respect to MBK. Because the other rules
satisfy the containment condition and are all sound in classical logic, by
Theorem 3 we have that they are also sound with respect to MBK.

In what follows, we will abbreviate some Set-Fmla derivations by com-
posing rules of inference: we write r1, r2, . . . , rn to mean that we apply first
rule r1, then r2 considering the formula derived in the previous step, then r3
and so on.
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Proposition 14. The following rules are derivable in HBK:

p ∨ q

p → (p ∨ q)
BK25

p → q, p

q
BK26

(p ∨ q) ∨ r

p ∨ (q ∨ r)
BK27

p → r, q → r

(p ∨ q) → r
BK28

Proof. Below we present the derivations of the above rules:

• p∨q
p→(p∨q)BK25:

1. p ∨ q Assumption

2. p ∨ ¬p 1,BK15�

3. (p ∨ q) ∨ (p ∨ ¬p) 2,BK19

4. ¬p ∨ ((p ∨ q) ∨ p) 3,BK21,BK23

5. ¬p ∨ ((p ∨ p) ∨ q) 4,BK∨
23,BK∨

21

6. ¬p ∨ (p ∨ q) 5,BK∨
23,BK∨

22,BK∨
23

• p→q,p
q BK26: clearly from BK2 and BK20.

• (p∨q)∨r
p∨(q∨r)BK27: clearly from BK21 and BK23.

• p→r,q→r
(p∨q)→r BK28:

1. ¬p ∨ r Assumption

2. ¬q ∨ r Assumption

3. r ∨ ¬p 1,BK23

4. r ∨ ¬q 2,BK23

5. r ∨ ¬(p ∨ q) 3, 4,BK∨
12

6. ¬(p ∨ q) ∨ r 5,BK23

Now, should we also add as primitive rules the ∨-lifted versions of the
primitive ∨-lifted rules (and continue this ad infinitum)? The following result
shows that this is not necessary.

Lemma 15. For every primitive rule r of HBK but BK1�, the ∨-lifted ver-
sion of r is derivable.

Proof. Note that the ∨-lifted version of the rules depicted in Definition 8,
with the exception of BK1�, are primitive in HBK. Thus it remains to
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show that the ∨-lifted versions thereof are derivable in this system. Let
r∨ϕ1,...,r∨ϕm

r∨ψ r∨ be the ∨-lifted version of ϕ1,...,ϕm

ψ r, this one being any of the

primitive rules of HBK but BK1�. Below we show that s∨(r∨ϕ1),...,s∨(r∨ϕm)
s∨(r∨ψ) r∨∨

is derivable in HBK:

1. s ∨ (r ∨ ϕ1) Assumption
...

m. s ∨ (r ∨ ϕm) Assumption

m + 1. (s ∨ r) ∨ ϕ1 1,BK21

...

2m. (s ∨ r) ∨ ϕm m,BK21

2m + 1. (s ∨ r) ∨ ψ m + 1, . . . , 2m, r∨

2m + 2. s ∨ (r ∨ ψ) 2m + 1,BK27

With the above, we also obtain the following result, which will be useful
to abbreviate some of the upcoming proofs.

Corollary 16. For every primitive rule r of HBK but BK1�, the →-lifted
version of r is derivable.

Proof. Let ϕ1,...,ϕm

ψ r be a primitive rule of HBK but BK1�. Then, from
¬r ∨ ϕ1, . . . ,¬r ∨ ϕm, we derive, in view of Lemma 15, ¬r ∨ ψ, and we are
done.

These two results extend easily to rules that can be proved derivable in
HBK without the use BK1�.

Corollary 17. Let r be a derivable rule of HBK having a proof that does
not use BK1�. Then r∨ and r→ are derivable as well.

Proof. By induction on the length of the proof of r in HBK (one that does
not employ BK1�), applying essentially Lemma 15 and Corollary 16.

Even though BK does not admit a deduction theorem in the usual sense
(see Theorem 11), the following result provides analogous deduction theo-
rems that will be enough for our purposes.

Proposition 18. Let δ ∈ {ϕ,ψ} ⊆ LΣ∧∨¬(P ) and let t be a proof in HBK

witnessing that Φ, ϕ ∨ ψ, δ �HBK
γ.

If the rule BK�1 was not applied in t, then Φ, ϕ ∨ ψ �HBK
δ → γ.
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Proof. Let us first consider the case δ = ϕ. Suppose that t is γ1, . . . , γn =
γ. We will prove that P (j):=Φ, ϕ ∨ ψ �HBK

ϕ → γj for all 1 ≤ j ≤ n,
using strong induction on j. For the base case j = 1, we have that γ1 ∈
Φ ∪ {ϕ ∨ ψ,ϕ}, leading to the following cases:

1. if γ1 ∈ Φ, use BK24.

2. if γ1 = ϕ ∨ ψ, use BK25.

3. if γ1 = ϕ, use BK15�.

Suppose now that (IH): P (j) holds for all j < k. We want to prove P (k). The
cases when γk ∈ Φ ∪ {ϕ ∨ ψ,ϕ} are as in the base case. We have to consider
then γk resulting from applications of the rules of the system, except for
BK1�. Assume that γk resulted from an application of an m-ary rule r using
formulas γk1 , . . . , γkm

as premises, which must have appeared previously in
the proof. By (IH), then, we have Φ, ϕ∨ψ �HBK

ϕ → γki
for each 1 ≤ i ≤ m.

By Corollary 16, then, we have Φ, ϕ ∨ ψ �HBK
ϕ → γk. In particular, for

k = n, we obtain Φ, ϕ ∨ ψ �HBK
ϕ → γ, as desired. The case δ = ψ follows

easily by commutativity of ∨ and the case δ = ϕ just proved.

With this deduction theorem, we can derive some rules more easily, as
the next result shows.

Proposition 19. The following rules are derivable in HBK:
¬p ∨ ¬q

¬(p ∧ q)
BK29

p → q

¬(q ∧ ¬q)
BK30

Proof. We present below the derivations.

• ¬p∨¬q
¬(p∧q)BK29: first of all, we prove that ¬p∨¬q, ¬q∨¬¬q, ¬p �HBK

¬(p∧q):

1. ¬p Assumption

2. ¬q ∨ ¬¬q Assumption

3. ¬¬q ∨ ¬p 1, 2,BK24

4. ¬¬q ∨ ¬q 2,BK23

5. ¬¬q ∨ ¬(p ∧ q) 3, 4,BK∨
5

6. ¬¬q ∨ ¬¬¬q 2,BK16�

7. ¬¬¬q ∨ ¬¬q 6,BK23

8. ¬¬¬q ∨ q 7,BK∨
3

9. ¬¬¬q ∨ ¬p 1, 3,BK24

10. ¬¬¬q ∨ ¬(p ∧ q) 8, 9,BK∨
6
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11. ¬q → ¬(p ∧ q) 5, Def. of →
12. ¬¬q → ¬(p ∧ q) 10, Def. of →
13. (¬q ∨ ¬¬q) → ¬(p ∧ q) 11, 12,BK28

14. ¬(p ∧ q) 2, 13,BK26

Similarly, we can show that ¬p ∨ ¬q, ¬p ∨ ¬¬p,¬q �HBK
¬(p ∧ q), also

without using BK1�. Since BK1� was not employed in such derivations,
we have ¬p∨¬q, ¬q∨¬¬q �HBK

¬p → ¬(p∧q) and ¬p∨¬q, ¬p∨¬¬p �HBK

¬q → ¬(p ∧ q), by Proposition 18. Since ¬p ∨ ¬q �HBK
¬p ∨ ¬¬p (by

BK15�) and ¬p∨¬q �HBK
¬q ∨¬¬q (by BK16�), by transitivity of �HBK

(the Set-Fmla version of (C)), we have ¬p∨¬q �HBK
¬p → ¬(p∧q) and

¬p∨¬q �HBK
¬q → ¬(p∧ q). By BK28, then, ¬p∨¬q �HBK

(¬p∨¬q) →
¬(p ∧ q). Finally, by BK26 (modus ponens), we obtain ¬p ∨ ¬q �HBK

¬(p ∧ q).

• p→q
¬(q∧¬q)BK30: clearly from BK16� and BK29.

In the negation fragment of classical logic (call it CL¬) we have the
following deduction theorem: if Φ, ϕ �CL¬ ¬ϕ, then Φ �CL¬ ¬ϕ. Similarly
to what we did in Proposition 18, we show now that this result also holds
for BK provided ϕ∨ψ is present in the context Φ. In this case, however, we
do not need to impose any restriction on the rules applied in the derivations
witnessing the consecution in the assumption. This result will also be useful
for proving the desired completeness result for HBK.

Proposition 20. Let δ ∈ {ϕ,ψ} ⊆ LΣ∧∨¬(P ). If Φ, ϕ∨ψ, δ �HBK
¬δ, then

Φ, ϕ ∨ ψ �HBK
¬δ.

Proof. We begin with the case δ = ϕ. Let t = γ1, . . . , γn be a proof
witnessing that Φ, ϕ ∨ ψ,ϕ �HBK

¬ϕ. In case no application of BK1�

is used in t, we have Φ, ϕ ∨ ψ �HBK
ϕ → ¬ϕ �HBK

¬ϕ ∨ ¬ϕ �HBK

¬ϕ by Proposition 18 and BK22, as desired. On the other hand, suppose
that γk was the formula produced by the first application of BK1�. Then
k > 2 and there are γm1 and γm2 = ¬γm1 , with m1, m2 < k, such that
Φ, ϕ ∨ ψ,ϕ �HBK

γm1 and Φ, ϕ ∨ ψ,ϕ �HBK
¬γm1 . By Proposition 18,

then, we have (a): Φ, ϕ ∨ ψ �HBK
ϕ → γm1 , and Φ, ϕ ∨ ψ �HBK

ϕ →
¬γm1 , and so, by Corollary 16, Φ, ϕ ∨ ψ �HBK

ϕ → (γm1 ∧ ¬γm1), that
is, Φ, ϕ ∨ ψ �HBK

¬ϕ ∨ (γm1 ∧ ¬γm1) �HBK
(γm1 ∧ ¬γm1) ∨ ¬ϕ. But

Φ, ϕ∨ψ �HBK
¬(γm1 ∧¬γm1) by (a) and BK30, and thus Φ, ϕ∨ψ �HBK

¬ϕ
by BK20. Now, for δ = ψ, we have that from Φ, ϕ ∨ ψ, ψ �HBK

¬ψ and
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the rule BK23, we get Φ, ψ ∨ ϕ,ψ �HBK
¬ψ. By Proposition 20, we get

Φ, ψ ∨ ϕ �HBK
¬ψ and, again by BK23, we have Φ, ϕ ∨ ψ �HBK

¬ψ.

A consequence of the previous result is the following.

Proposition 21. Let δ1, δ2 ∈ {ϕ,ψ} ⊆ LΣ∧∨¬(P ) with δ1 
= δ2, and γ1, . . . ,
γn be a proof in HBK witnessing that Φ, ϕ∨ψ, δ1 �HBK

γ. If the rule BK1�

was applied in such proof, then Φ, ϕ ∨ ψ �HBK
δ2.

Proof. We will prove the case δ1 = ϕ and the other will be analogous.
Suppose that γk was the formula produced by the first application of BK1�.
Then k > 2 and there are γm1 and γm2 = ¬γm1 , with m1,m2 < k, such that
Φ, ϕ ∨ ψ,ϕ �HBK

γm1 and Φ, ϕ ∨ ψ,ϕ �HBK
¬γm1 . But then, by BK1�, we

have Φ, ϕ ∨ ψ,ϕ �HBK
¬ϕ. By Proposition 20, then, we have Φ, ϕ ∨ ψ �HBK

¬ϕ, and then Φ, ϕ ∨ ψ �HBK
ψ by BK20.

In Proposition 11, we proved that BK does not allow to express a con-
nective satisfying (disj). Nevertheless, we now show that having ϕ∨ψ in the
context is also enough to recover this result.

Lemma 22. For all Φ, {ϕ,ψ, γ} ⊆ LΣ∧∨¬(P ), we have
Φ, ϕ ∨ ψ,ϕ �HBK

γ and Φ, ϕ ∨ ψ,ψ �HBK
γ,

if,and only if, Φ, ϕ ∨ ψ �HBK
γ.

Proof. The right-to-left direction is obvious by reflexivity of the conse-
quence relation. For the left-to-right direction, suppose that t1 and t2 are
witnesses of Φ, ϕ ∨ ψ,ϕ �HBK

γ and Φ, ϕ ∨ ψ, ψ �HBK
γ, respectively. Con-

sider the following cases:

1. In both there are no applications of BK1�: then, by Proposition 18,
we have Φ, ϕ ∨ ψ �HBK

ϕ → γ and Φ, ϕ ∨ ψ �HBK
ψ → γ. Thus

Φ, ϕ ∨ ψ �HBK
(ϕ ∨ ψ) → γ, by BK28, and Φ, ϕ ∨ ψ �HBK

γ, by BK26.

2. If there is an application of BK1� in t1: then, by Proposition 21, we have
Φ, ϕ ∨ ψ �HBK

ψ. Then, by transitivity considering Φ, ϕ ∨ ψ, ψ �HBK
γ,

we obtain Φ, ϕ ∨ ψ �HBK
γ.

3. If there is an application of BK1� in t2: similar to the previous case.

Finally we get to the desired axiomatization result.

Theorem 23. �HBK
= �BK.

Proof. We will show that Φ �HBK
ψ if, and only if, Φ �RBK�

{ψ}. The
left-to-right direction easily follows, since every rule of HBK is sound with
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respect to the matrix of BK by Lemma 13, and thus derivable in RBK�.
From the right to the left, we will show by induction on the structure of
derivations in RBK� that P (t): if t witnesses that Φ �RBK�

{ψ}, then there
is a proof in HBK bearing witness to Φ �HBK

ψ. In the base case, t has a
single node, meaning that ψ ∈ Φ, and we are done by reflexivity of �HBK

.
In the inductive step, we assume P (t′) for each subtree t′ of t and consider
t resulting from an application of the rules of RBK�. Let us consider three
cases:

1. t results from a rule that is derivable in HBK: here, there is nothing to
do, as the same rule may be applied to produce the desired derivation.

2. t results from an application of BK�
1 : use BK1� instead.

3. t results from an application of BK�
20: if the root of t is labelled with

Γ, then γ ∨ δ ∈ Γ, and we have, by the induction hypothesis, (a): Γ, γ ∨
δ, γ �HBK

ψ and (b): Γ, γ ∨ δ, δ �HBK
ψ. By Lemma 22, then, we obtain

the desired result.

6. Concluding Remarks

Taking stock of what we achieved in the previous sections, we highlight
that we have settled fundamental questions regarding BK and PWK, two
logics that are among the main subjects of this Special Issue. We also wish
to mention an interesting corollary of our results, namely that some finite
subset of the axioms employed in the papers [8,12] must already suffice to
axiomatize each of the two logics. We leave this observation as a suggestion
for future developments.

Besides the intrinsic interest in the results established above, the present
paper may also be seen as another illustration of the differences in expres-
sive power among the various available proof-theoretic formalisms in logic,
and in particular between Set–Set over Set-Fmla H-systems. The latter
are obviously less expressive than the former—even weaker if compared to
sequent systems—even though they afford more fine-grained tools for com-
paring and also for combining logics (in particular when one wishes to in-
troduce the least possible interactions), as recent results amply demonstrate
[14,28].
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Another direction for future research worth mentioning is the study of
these and other logics associated to the algebra Bu (and other three-valued
algebras) in the setting of different kinds of H-systems. In particular, a two-
dimensional version of Set–Set H-systems [21,23], whose induced logics are
the so-called B-consequence relations [5], may be employed as a uniform set-
ting for investigating pure consequence relations (like BK and PWK), their
intersection (order-theoretic consequence relations) and mixed consequence
relations (we use here the terminology of [16]), the latter being non-Tarskian
consequence relations (lacking either reflexivity [26] or transitivity [19]).

Not only can a two-dimensional logic express all of these very different no-
tions of logics in the same logical environment: we also have that it has a neat
analytic two-dimensional axiomatization. That is, this two-dimensional logic
has not only great theoretical value due to its expressiveness, but also consti-
tutes an important tool for using the above-mentioned logics and studying
their properties.
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