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Abstract. The term ‘hyperconnexive logic’ (or ‘hyperconnexivity’ in general) in relation

to a certain logical system was coined by Sylvan to indicate that not only do Boethius’

theses hold in such a system, but also their converses. The plausibility of the latter was

questioned by some connexive logicians. Without going into the discussion regarding the

plausibility of hyperconnexivity and the converses of Boethius’ theses, this paper proposes

a quite simple way to escape the hyperconnexivity within the semantic framework of

Wansing-style constructive connexive logics. In particular, we present a working method

for escaping hyperconnexivity of constructive connexive logic C, discuss the problem that

creates an obstacle to using the same method in the case of logic C3 and provide a possible

solution to this problem that allows us to construct a logical theory which is similar to C3

and free from hyperconnexivity. All new logics introduced in this paper are equipped with

sound and complete Hilbert-style calculi, and their relationships with other well-known

connexive logics are discussed.

Keywords: Connexive logic, Hyperconnexivity, Mesoconnexivity, Constructivity, Boethius’

theses, Completeness and soundness.

1. Introductory Section

It is hard to say that there exists a uniform and undisputed criterion of
connexivity. Moreover, attempts to work out such a criterion have led to the
extreme diversity of views among connexive logicians. For instance, while
it is widely agreed that connexive logics should contain the complete set of
Aristotle and Boethius’ theses as valid,

¬(A → ¬A), (A1)

¬(¬A → A), (A2)

(A → ¬B) → ¬(A → B), (B1)

(A → B) → ¬(A → ¬B), (B2)
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it is controversial whether they should endow the following converses of
Boethius’ Theses with the same status.

¬(A → B) → (A → ¬B), (HB1)

¬(A → ¬B) → (A → B). (HB2)

In the works of some authors, we can find enough arguments for and against
HB1 and HB2 (see, for example, [16,23]). We are not going to enter into this
discussion here, but it is fair to say that the validity of these formulas be-
comes redundant if we assume what Estrada-Gonzáles and Ramirez-Cámara
call ‘minimal connexivity’ [11], i.e. the invalidity of (A → B) → (B → A)
and the validity of A1, A2, B1, and B2. Sylvan1 observed something similar
and introduced the term ‘hyperconnexivity’ to indicate that a correspond-
ing logical system validates more than enough, namely HB1 and HB2 [20].
Henceforth, we will call these formulas Hyper-Boethius’ theses.

For the sake of convenience, let us introduce another useful term, ‘meso-
connexivity ’, to indicate the situation when the requirements of minimal
connexivity are fulfilled and the hyperconnexivity is blocked, i.e. neither
HB1, nor HB2 hold.

Probably, one of the most significant achievements of modern connexive
logic is Wansing’s approach to modelling the falsity condition for implication
[21]. It states that a conditional sentence is false iff the truth of its antecedent
implies the falsity of the consequent. This semantic condition differs from
the traditional (classical or material) approach in one fundamental respect –
the latter does not involve any kind of conditionality between the truth of
the antecedent and the falsity of the consequent.

Incorporating Wansing’s idea within a certain semantic framework gives
rise to different minimally connexive logics that are well-known in the liter-
ature: Wansing’s C and MC [21], Omori and Wansing’s C3 [19], Cantwell’s
CN [3], Cooper’s OD [5], etc. But what is important is that the vast ma-
jority of logics obtained by Wansing’s method (or, as Estrada-Gonzáles re-
marked [9], by the Bochum-plan) is hyperconnexive in the above sense.

In this paper, we are concerned with this problem. Leaving aside the
discussion of the intuitive plausibility of Hyper-Boethius’ theses, we are
going to reveal some hidden features of Wansing’s account that might help
one to overcome the hyperconnexivity if one has some reasons to do this.
The main question driving our paper is the following.

1Richard Sylvan changed his name in 1983 from ‘Routley’ to ‘Sylvan’; the majority of
his published work is under the latter name.
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(Q) Is Wansing’s account of the falsity condition for implication flexible
enough to overcome hyperconnexivity?

We continue and significantly extend the previous work on the four-valued
‘minimal material connexive logic’ MMC that was done in [2]. In partic-
ular, we propose a working method for escaping the hyperconnexivity of
constructive connexive logic C, discuss the problem that creates an obstacle
to using the same method in the case of logic C3 and provide a possible
solution to this problem that allows us to construct a logical theory which
is similar to C3 and free from hyperconnexivity.

The paper is structured as follows. In Section 2, we recapitulate the se-
mantics of C and C3. In Section 3, the semantics for a mesoconnexive vari-
ant of C is introduced, the problem of extending our method to the case of
C3 is discussed and a mesoconnexive logic similar to C3 is introduced. In
Section 4, Hilbert-style calculi for both logics are introduced. In Section 5,
completeness and soundness results for the corresponding calculi are proven.
Section 6 contains the proofs of constructivity and decidability of a meso-
connexive variant of C. In Section 7, we discuss relationships between the
mesoconnexive variant of C and other related connexive logics. In Section 8,
we compare our approach of escaping hyperconnexivity with the approach
developed by Omori in [18]. In Section 9, we finish our paper by making
some final conclusions and discussing problems for further investigations.

2. Semantics of Hyperconnexive Logics

The connexive logic C is a logic of fundamental importance because it seems
to be the first connexive logic that enjoys intuitively plausible semantics. Let
us briefly review it.

We shall consider logical systems built on a propositional language L
which contains conjunction ‘∧’, disjunction ‘∨’, implication ‘→’, and nega-
tion ‘¬’. The notion of a formula is defined in the standard inductive way.
Let P be the set of all propositional variables of L and F be the set of all
formulae of L .

A pre-ordered frame for L is a pair 〈W, ≤〉, where

• W is a non-empty set of ‘informational states’,

• ≤ is a reflexive and transitive binary relation on W .

A C-model for L is a triple 〈W, ≤, V 〉, where 〈W, ≤〉 is a pre-ordered frame
and V is a C-valuation, defined as
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V : P × W → {{1, 0}, {1}, {0}, ∅}.

We require V to satisfy the following hereditary condition: for all p ∈ P,
for all w,w′ ∈ W , for all i ∈ {1, 0},

if i ∈ V (p, w) and w ≤ w′ then i ∈ V (p, w′).

The following semantic conditions are employed to extend V to the inter-
pretation function I:

I(p, w) = V (p, w),

1 ∈ I(¬A,w) ⇔ 0 ∈ I(A,w), (¬1)

0 ∈ I(¬A,w) ⇔ 1 ∈ I(A,w), (¬0)

1 ∈ I(A ∧ B,w) ⇔ 1 ∈ I(A,w) and 1 ∈ I(B, w), (∧1)

0 ∈ I(A ∧ B,w) ⇔ 0 ∈ I(A,w) or 0 ∈ I(B, w), (∧0)

0 ∈ I(A ∨ B,w) ⇔ 0 ∈ I(A,w) and 0 ∈ I(B, w), (∨0)

1 ∈ I(A ∨ B,w) ⇔ 1 ∈ I(A,w) or 1 ∈ I(B, w), (∨1)

1 ∈ I(A → B,w) ⇔ for all w′ such that w ≤ w′, it holds that

if 1 ∈ I(A,w′) then 1 ∈ I(B,w′), (→1)

0 ∈ I(A → B,w) ⇔ for all w′ such that w ≤ w′, it holds that

if 1 ∈ I(A,w′) then 0 ∈ I(B,w′). (W)

Now, we define a formula A to be a logical consequence of a set of formulae
Γ in C (in symbols Γ �C A) if and only if, for all C-models 〈W, ≤, V 〉,
and for every w ∈ W , if 1 ∈ I(B,w) (for every B ∈ Γ), then 1 ∈ I(A,w).
Finally, a formula A is called valid in C only if 1 ∈ I(A,w) in every C-model
〈W, ≤, V 〉 and every w ∈ W .

In [19], H. Omori and H. Wansing investigated an extension of C that,
from a semantic point of view, can be seen as a result of excluding ‘gappy’
valuations from C-models. The corresponding logical system is known as
C3. More rigorously, a C3-model is obtained from a C-model by using a
restricted valuation function V : P × W 
→ {{1, 0}, {1}, {0}} and leaving
all semantic conditions of C unchanged. The notions of logical consequence
and validity in C3 are defined analogously to C.

Both C and C3 are hyperconnexive logics because they validate Hyper-
Boethius’ Theses. It can be shown using the same argument in both cases.
Let us consider the case of C as an example.
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For any C-model, for any w ∈ W the following holds

1 ∈ I(¬(A → B), w)

⇔ 0 ∈ I(A → B,w)

⇔ for all w′ s. t. w ≤ w′ : if 1 ∈ I(A,w′) then 0 ∈ I(B, w′)

⇔ for all w′ s. t. w ≤ w′ : if 1 ∈ I(A,w′) then 1 ∈ I(¬B, w′)

⇔ 1 ∈ I(A → ¬B,w).

1 ∈ I(¬(A → ¬B), w)

⇔ 0 ∈ I(A → ¬B,w)

⇔ for all w′ s. t. w ≤ w′ : if 1 ∈ I(A,w′) then 0 ∈ I(¬B, w′)

⇔ for all w′ s. t. w ≤ w′ : if 1 ∈ I(A,w′) then 1 ∈ I(B, w′)

⇔ 1 ∈ I(A → B,w).

3. Semantics for Mesoconnexive Logics

3.1. Mesoconnexive Variant of C

In this section, we present a mesoconnexive variant of Wansing’s logic C.
Let us briefly recall that a logic is called mesoconnexive if it is subject to
two conditions:

• it is minimally connexive, i.e. it validates all Aristotle and Boethius’
theses and invalidates the symmetry of implication;

• it invalidates Hyper-Boethius’ theses.

In order to escape hyperconnexivity of C, one should find a way of breaking
the foregoing equivalences, showing the validity of Hyper-Boethius’ theses.
In [2], the authors proposed a solution to the analogous problem with respect
to the four-valued logic MC introduced by Wansing [22]. The key idea
is to modify Wansing-style falsity condition for implication in such a way
that it takes into account not only the information about the falsity of the
consequent but also the information about its untruth. Let us extend this
idea to the case of C.

A MeC-model for L is a triple 〈W, ≤, V 〉, where 〈W, ≤〉 is a pre-ordered
frame and V is a MeC-valuation, defined as

V : P × W → {{1, 0}, {1}, {0}, ∅}.
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We require V to satisfy the following hereditary condition: for all p ∈ P,
for all w,w′ ∈ W , for all i ∈ {1, 0},

if i ∈ V (p, w) and w ≤ w′ then i ∈ V (p, w′).

The valuation function V can be extended to the interpretation function
I by the same semantic conditions as with C, excepting that the falsity
condition (W) should be replaced with the following.

0 ∈ I(A → B,w) ⇔ for all w′ such that w ≤ w′, it holds that

if 1 ∈ I(A,w′) then (0 ∈ I(B,w′) or 1 �∈ I(B, w′)). (→0)

Remark 1. It is worthwhile to observe that the condition (→0) can be
equivalently rewritten as

0 ∈ I(A → B,w) ⇔ for all w′ such that w ≤ w′, it holds that

if 1 ∈ I(A,w′) then (if 1 ∈ I(B,w′) then 0 ∈ I(B, w′)).

We define a formula A to be a logical consequence of a set of formulae Γ in
MeC (in symbols Γ �MeC A) if and only if, for all MeC-models 〈W, ≤, V 〉,
and for every w ∈ W , if 1 ∈ I(B,w) (for every B ∈ Γ), then 1 ∈ I(A,w).

Finally, a formula A is called valid in MeC if and only if 1 ∈ I(A,w) in
every MeC-model 〈W, ≤, V 〉 and every w ∈ W .

Using simple induction on the complexity of formula A, the following
lemma can be proven in a standard manner.

Lemma 1. For any MeC-model 〈W, ≤, V 〉, for all w, w′ ∈ W , for any A ∈
F , for all i ∈ {1, 0}, if i ∈ V (A,w) and w ≤ w′ then i ∈ V (A,w′).

It is not difficult to find a counter-model that falsifies Hyper-Boethius’
theses in MeC. For example, in order to falsify the formula ¬(p → q) →
(p → ¬q), consider the following MeC-model: W = {w}, ≤ is defined as
{〈w, w〉}, and {1} = V (p, w), ∅ = V (q, w).

Proposition 1. Boethius’ theses are valid in MeC.

Proof. We consider the case of B1. Assume, for some MeC-model 〈W, ≤, V 〉,
for some w ∈ W , that 1 /∈ I((p → ¬q) → ¬(p → q), w). Then, by (→1)
and (¬1), there exists w ∈ W such that w ≤ w′, 1 ∈ I(p → ¬q, w′), and
0 /∈ I(p → q, w′). From the latter it follows, according to (→0), that there ex-
ists such w′′ ∈ W that w′ ≤ w′′, 1 ∈ I(p, w′′), 0 /∈ I(q, w′′), and 1 ∈ I(q, w′′).
But in the light of (→1) and (¬1) this contradicts with what follows from
1 ∈ I(p → ¬q, w′); namely that for all w′′ ∈ W such that w′ ≤ w′′ it holds
that if 1 ∈ I(p, w′′) then 0 ∈ I(q, w′′). The case of B2 is similar.
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Proposition 2. Aristotle’s theses are valid in MeC.

Proof. Again, we consider only the case of A1, the case of A2 is similar.
For some MeC-model 〈W, ≤, V 〉 and for some w ∈ W we assume that
1 /∈ I(¬(p → ¬p), w). According to (¬1), it is equivalent to 0 /∈ I(p → ¬p, w).
But in the light of (→0), (¬1), and (¬0), it follows that there exists such
w′ ∈ W that w ≤ w′, 1 ∈ I(p, w′), 1 /∈ I(p, w′), and 0 ∈ I(p, w′), which is a
contradiction.

3.2. The Problem with a C3-Like Extension

Then, a natural question arises: is it possible to provide a similar modi-
fication of C3 that would result in a mesoconnexive counterpart of C3?
Unfortunately, such a modification doesn’t work in the case of C3. In the
absence of truth-value gaps, the non-truth of a sentence implies its falsity,
hence a C3-model in which (W) is replaced with (→0) collapses back to the
C3-model. However, this doesn’t mean that there is no other simple way to
obtain a mesoconnexive logic relative to C3.

A qMeC3-model for L is a triple 〈W, ≤, V 〉, where 〈W, ≤〉 is a pre-
ordered frame and V is a qMeC3-valuation, defined as

V : P × W → {{1, 0}, {1}, {0}}.

We require V to satisfy the following hereditary condition: for all p ∈ P,
for all w,w′ ∈ W , for all i ∈ {1, 0},

if i ∈ V (p, w) and w ≤ w′ then i ∈ V (p, w′).

qMeC3-valuation is extended to the interpretation I by employing all se-
mantic conditions used in C3, excepting (W). The latter should be replaced
with the following:

0 ∈ I(A → B,w) ⇔ for all w′ such that w ≤ w′, it holds that

if 0 /∈ I(A,w′) then 0 ∈ I(B,w′). (F)

Remark 2. Notice that the condition (F) can be equivalently rewritten as

0 ∈ I(A → B,w) ⇔ for all w′ such that w ≤ w′, it holds that

0 ∈ I(A,w′) or 0 ∈ I(B,w′).

As an anonymous referee correctly pointed out, this condition looks sim-
ilar to the falsity condition of →O from [10]. Let σ be a function from P
into {{1}, {1, 0}, {0}}, then the falsity and truth conditions for →O from
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[10] are defined as

0 ∈ σ(A →O B) ⇔ 0 ∈ σ(A) or 0 ∈ σ(B),

1 ∈ σ(A →O B) ⇔ 0 ∈ σ(A) or 1 ∈ σ(B).

These conditions give rise to the following three-valued table for →O.

It should be noticed, however, that if we rewrite our ‘dynamic’ truth condi-
tion (→1) in such a three-valued framework, we obtain the following.

1 ∈ σ(A →O B) ⇔ 1 /∈ σ(A) or 1 ∈ σ(B).

And this, coupled with the foregoing falsity condition, results in a different
three-valued table

which was discovered by Farrell in [12]. This is what motivates the name
(F) for the falsity condition of implication in qMeC3.

A qMeC3-consequence relation is defined in a standard way:
Γ�qMeC3A ⇔ for all qMeC3-models 〈W, ≤, V 〉, and for every w ∈ W , if 1 ∈
I(B,w) (for every B ∈ Γ), then 1 ∈ I(A,w). Finally, a formula A is called
qMeC3-valid only if 1 ∈ I(A,w) in every qMeC3-model and every w ∈ W .

The following lemma can be easily proven.

Lemma 2. For any qMeC3-model 〈W, ≤, V 〉, for all w, w′ ∈ W , for any
A ∈ F , for all i ∈ {1, 0}, if i ∈ V (A,w) and w ≤ w′ then i ∈ V (A,w′).

Lemma 3. For any qMeC3-model 〈W, ≤, V 〉, for any w ∈ W , for any A ∈
F , either 1 ∈ I(A,w) or 0 ∈ I(A,w).

Proof. By induction on the complexity of A. We consider only the case of
A = B → C. We have to show that 1 ∈ I(B → C,w) or 0 ∈ I(B → C,w).
Let us suppose the contrary, i.e. 1 /∈ I(B → C,w) and 0 /∈ I(B → C,w).
Notice that in the light of the inductive hypothesis either 1 ∈ I(B, w) or
0 ∈ I(B,w); and either 1 ∈ I(C,w) or 0 ∈ I(C,w). We now apply (→1),
(F) and get the following two statements:

• There exists w′ such that w ≤ w′, 1 ∈ I(B, w′), and 1 /∈ I(C,w′);

• There exists w′′ such that w ≤ w′′, 0 /∈ I(B, w′′), and 0 /∈ I(C,w′′).
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Eliminating existential quantifiers and applying Lemma 2, we obtain 1 /∈
I(C, w) and 0 /∈ I(C,w) which leads us to a contradiction.

Again, it is not difficult to find a counter-model for the Hyper-Boethius’
theses in qMeC3. Consider the following qMeC3-model that falsifies ¬(p →
q) → (p → ¬q): W = {w}, ≤ is defined as {〈w, w〉}, and V (p, w) = {1, 0},
V (q, w) = {1}.

Proposition 3. Boethius’s theses are valid in qMeC3.

Proof. We consider the case of B2 and left B1 to the interested reader.
Suppose that, for some qMeC3-model 〈W, ≤, V 〉, for some w ∈ W , that
1 /∈ I((p → q) → ¬(p → ¬q), w). According to (→1) and (¬1), there exists
w ∈ W such that w ≤ w′, 1 ∈ I(p → q, w′), and 0 /∈ I(p → ¬q, w′). From the
latter, it follows, according to (F) and (¬0), that there exists such w′′ ∈ W
that w′ ≤ w′′, 0 /∈ I(p, w′′), 1 /∈ I(q, w′′). Note that 0 /∈ I(p, w′′) implies
1 ∈ I(p, w′′). But in the light of (→1) this contradicts with what follows
from 1 ∈ I(p → q, w′); namely that for all w′′ ∈ W such that w′ ≤ w′′ it
holds that if 1 ∈ I(p, w′′) then 1 ∈ I(q, w′′).

Proposition 4. Aristotle’s theses are valid in qMeC3.

Proof. As an example, we consider only A2. Suppose, for some qMeC3-
model 〈W, ≤, V 〉 and for some w ∈ W we assume that 1 /∈ I(¬(¬p → p), w).
According to (¬1), it is equivalent to 0 /∈ I(¬p → p, w). But in the light
of (F) and (¬0), it follows that there exists such w′ ∈ W that w ≤ w′,
1 /∈ I(p, w′) and 0 /∈ I(p, w′), which is a contradiction since I is a total
function.

Though qMeC3 matches the requirements of mesoconnexivity, it seems
to us hasty to treat it as a mesoconnexive counterpart of C3. This is what
exactly motivates the usage of ‘q’ in its name, abbreviating ‘quasi’. The
reason is that the genuine counterpart of C3 would have to be in the same
relation with MeC, in which C3 stands for C. It is known that C3 is an
extension of C. In turn, qMeC3 is not an extension of MeC. Consider the
following formula

q → (¬(p → q) → (p → ¬q)),

which is MeC-valid but not qMeC3-valid.
For a counter-model in qMeC3, one can use exactly the same model that

we used above to falsify Hyper-Boethius’ theses. To show the validity of this
formula in MeC, let us suppose, for some MeC-model 〈W, ≤, V 〉 and for
some w ∈ W , that 1 /∈ I(q → (¬(p → q) → (p → ¬q)), w). According to
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(→1), it means that there exists such w′ ∈ W that w ≤ w′, 1 ∈ I(q, w′) and
1 /∈ I(¬(p → q) → (p → ¬q), w′). Then, according to (→1) and (¬1), there
exists such w′′ ∈ W that w′ ≤ w′′, 0 ∈ I(p → q, w′′), and 1 /∈ I(p → ¬q, w′′).
Now, from 0 ∈ I(p → q, w′′), according to (→0), it follows that for all w′′′,
such that w′′ ≤ w′′′ it holds that if 1 ∈ I(p, w′′′) then either 0 ∈ I(q, w′′′)
or 1 /∈ I(q, w′′′). In turn, according to (→1) and (¬1), 1 /∈ I(p → ¬q, w′′)
implies the existence of such w′′′ that q ∈ I(p, w′′′) and 0 /∈ I(q, w′′′). The
latter fact together with the fact that 1 ∈ I(q, w′) implies 1 ∈ I(q, w′′′), by
the heredity condition, leads us to a contradiction.

4. Axiomatic Formulation

In this section, we present axiomatic calculi for MeC and qMeC3.
MeC is axiomatized by the calculus, containing the following set of

axiomatic schemata and rules of inference (A ↔ B abbreviates (A →
B) ∧ (B → A)).

A → (B → A), (A1)

(A → (B → C)) → ((A → B) → (A → C)), (A2)

(A → C) → ((B → C) → ((A ∨ B) → C)), (A3)

A → (A ∨ B), (A4)

B → (A ∨ B), (A5)

(A → B) → ((A → C) → (A → (B ∧ C))), (A6)

(A ∧ B) → A, (A7)

(A ∧ B) → B, (A8)

¬¬A ↔ A, (A9)

¬(A ∧ B) ↔ (¬A ∨ ¬B), (A10)

¬(A ∨ B) ↔ (¬A ∧ ¬B), (A11)

¬(A → B) ↔, (A → (B → ¬B)), (A12)



A Simple Way to Overcome Hyperconnexivity 79

A → B, A

B
. (MP)

In order to obtain a calculus, formalizing qMeC3, it is sufficient to replace
(A12) with

¬(A → B) ↔ (¬A ∨ ¬B), (A13)

A ∨ ¬A. (A14)

We use the standard notions of proof in both systems. Let L denotes MeC
or qMeC3.

A proof of a formula A in the calculus of L is a sequence of formu-
las A1, . . . , An, A, where 0 ≤ n, such that every formula in the sequence
A1, . . . , An, A either (1) is an axiom of the calculus of L, or (2) is obtained
with the help of (MP) from the preceding formulas.

We write 
L A to indicate that A has a proof in the calculus of L (such
A is called a theorem). Γ 
L A means that A has a proof from hypotheses
Γ in the calculus of L, i. e. there is a sequence of formulas A1, . . . , An, A,
where 0 ≤ n, such that every formula in the sequence A1, . . . , An, A either
(1) belongs to Γ, or (2) is an axiom of the calculus of L, or (3) is obtained
with the help of (MP) from the preceding formulas.

It is worth noticing that in the light of the presence of (A1), (A2) and
(MP) in both systems the deduction theorem holds in both logics, so we
omit its proof.

Theorem 1. Let L ∈ {MeC,qMeC3}. If Γ, A 
L B then Γ 
L A → B.

Some remarks on MeC, qMeC3 and related systems are in order.

• A Hilbert-style calculus for Nelson’s logic N4 (also referred to in the
literature as N−) is obtained from MeC by replacing (A12) with

¬(A → B) ↔ (A ∧ ¬B). (A15)

N4 was originally introduced in [1]. For a more detailed discussion of
its proof-theoretical formulations and properties, the reader may wish to
consult [14].

• A Hilbert-style calculus for Wansing’s C is obtained from MeC by re-
placing (A12) with

¬(A → B) ↔ (A → ¬B). (A16)

• A Hilbert-style calculus for Omori-Wansing C3 is obtained by adding
(A14) to the calculus of C.
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• (A12) is a characteristic axiom schema of MeC. It is worth noticing
that Boethius’ theses (and hence Aristotle’s theses too) are provable in
the presence of (A12); the general schema of their proofs can be found
in Section 7. But (A12) is insufficient to prove Hyper-Boethius’ theses
and this guarantees the mesoconnexivity. The right-to-left direction of
(A12) is contra-classical because it is invalid in classical logic. This ‘the-
sis’ is completely novel to the field of connexive logics. Despite all of the
differences between it and Boethius’ theses, we can provide a plausible
connexive reading of this formula. In contrast to (A16), stating that the
implication from the truth of the antecedent to the falsity of the conse-
quent is necessary and sufficient to the falsity of the whole conditional,
(A12) expresses a stronger requirement. Some connexivists tend to in-
terpret a statement of the form A → ¬A as kind of a statement saying
that A is incompatible with itself. This interpretation goes back to Mc-
Call’s analysis of the well-known definition of a sound conditional by
Chryssipus [16]. From this point of view, (A12) encodes that the falsity
of a conditional statement is necessary and sufficiently established by
the fact that the truth of its antecedent implies the consequent which
is ‘incompatible with itself’. Notice, however, that here we use ‘incom-
patible’ in a broad sense of the term, and refer the reader to a careful
historical discussion by Lenzen [15] where he illuminates some subtleties
in how the notion of incompatibility was used by ancient logicians and
some inaccuracies of McCall’s interpretation of the history of connexive
implication.

• (A13) is a characteristic axiom schemata of qMeC3, and it reflects quite
an unusual feature of the implication of qMeC3. Clearly, (A13) together
with (A10) imply the equivalence between the falsity of implication and
the falsity of conjunction. For a more detailed discussion of implication
connectives that shares similarities with conjunctions, the reader can
consult [7,8].

• It is well-known that N4 and C are constructive logics. This means that
both of them enjoy the following disjunction and the constructible falsity
properties (let L ∈ {N4,C}):

– If 
L A ∨ B, then 
L A or 
L B (disjunction property);
– If 
L ¬(A ∧ B), then 
L ¬A or 
L ¬B (constructible falsity prop-

erty).

Comparing MeC with N4 and C, it can be questioned whether MeC is
constructive. We provide a positive answer to this question in Section 6.
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As to qMeC3, it can be easily shown that (A14) destroys the construc-
tivity. Consider p ∨ ¬p for arbitrary p ∈ P. Clearly, neither p nor ¬p is
provable in qMeC3, and hence the disjunction property does not hold.
A similar argument can be used to show that the constructible falsity
does not hold in qMeC3 as well.

5. Completeness and Soundness

Before turning to the completeness result we need to lay down some auxiliary
notions. A set of formulas T is called an L-theory if it is closed under 
L, i.e.
if T 
L A then A ∈ T . An L-theory T is called prime iff, for every formulas
A and B, it holds that A∨B ∈ T implies A ∈ T or B ∈ T . An L-theory T is
called non-trivial iff there exists a formula A such that A �∈ T . An L-theory
T is called negation complete iff, for every formula A, it holds that A ∈ T
or ¬A ∈ T .

The following variants of the Lindenbaum Lemma are well-known, hence
their proofs are omitted.

Lemma 4. If Γ �
MeC A then there exists a non-trivial prime MeC-theory
Γ′, such that Γ ⊆ Γ′ and Γ′ �
MeC A.

Lemma 5. If Γ �
qMeC3 A then there exists a non-trivial prime negation
complete qMeC3-theory Γ′, such that Γ ⊆ Γ′ and Γ′ �
qMeC3 A.

We next prove a series of lemmas.

Lemma 6. For any L from {MeC,qMeC3}, if Π is a non-trivial prime
L-theory and A → B /∈ Π, then there exists a non-trivial prime L-theory Π′

such that Π ⊆ Π′, A ∈ Π′ and B /∈ Π′.

Proof. The proof of this lemma is the same for both logics. Let Π be a
non-trivial prime L-theory and A → B /∈ Π. According to Theorem 1, we
have Π ∪ {A} �
L B. By Lemma 4 (and Lemma 5), there exists a non-trivial
prime (in case of L = qMeC3 it is negation complete as well) L-theory Π′,
such that Π∪{A} ⊆ Π′ and Π′ �
L B. Clearly, A ∈ Π′. Due to the reflexivity
of 
L we also have B /∈ Π′, as desired.

Lemma 7. If Π is a non-trivial prime MeC-theory and ¬(A → B) /∈ Π,
then there exists a non-trivial prime MeC-theory Π′, such that Π ⊆ Π′,
A ∈ Π′, ¬B /∈ Π′ and B ∈ Π′.

Proof. Let Π be a non-trivial prime MeC-theory and ¬(A → B) /∈ Π.
Then, in the view of (A12), we have A → (B → ¬B) /∈ Π. After a double
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application of Lemma 6, we obtain that there exists a non-trivial prime
MeC-theory Π′, such that A ∈ Π′, B ∈ Π′ and ¬B /∈ Π′.

Lemma 8. If Π is a non-trivial prime negation complete qMeC3-theory
and ¬(A → B) /∈ Π, then there exists a non-trivial prime negation complete
qMeC3-theory Π′ such that Π ⊆ Π′, ¬A /∈ Π′ and ¬B /∈ Π′.

Proof. Let Π be a non-trivial prime negation complete qMeC3-theory and
¬(A → B) /∈ Π. Then, due to the closure of Π under 
qMeC3, we obtain
Π �
qMeC3 ¬(A → B). From this, using Lemma 5, we have that there
exists a non-trivial prime negation complete qMeC3-theory Π′ such that
Π ⊆ Π′ and Π′ �
qMeC3 ¬(A → B). Then, using the reflexivity of 
qMeC3

and subsequently applying (A13), (A4) and (A5), we obtain ¬A /∈ Π′ and
¬B /∈ Π′

A canonical model for MeC is the structure 〈Wc,≤c, Ic〉 defined as fol-
lows:

• Wc is the set of all non-trivial prime MeC-theories;

• for any T , T ′ ∈ Wc, T ≤c T ′ iff T ⊆ T ′;

• Ic is the canonical valuation defined for any p ∈ P and T ∈ Wc so that

1 ∈ Ic(p, T ) ⇔ p ∈ T , 0 ∈ Ic(p, T ) ⇔ ¬p ∈ T .

In the next lemma, it will be shown that the canonical valuation has a
suitable generalization for all formulae of L .

Lemma 9. Let 〈Wc,≤c, Ic〉 be a canonical model for MeC. Then, for all
A ∈ F and all T ∈ Wc:

1 ∈ Ic(A, T ) ⇔ A ∈ T , 0 ∈ Ic(A, T ) ⇔ ¬A ∈ T .

Proof. By induction on the complexity of A. We abbreviate ‘inductive
hypothesis’ by ‘IH’. The basis case is by the foregoing definition of canonical
valuation. Since the cases for negative, conjunctive, and disjunctive formulas
are provable in a similar way to C and C3, we consider only the cases for
implication.

Let A = B → C. We start with the case of

0 ∈ Ic(B → C, T ) ⇔ ¬(B → C) ∈ T .

From left to right, assume that ¬(B → C) /∈ T . Then, by Lemma 7, there
exists a non-trivial prime MeC-theory T ′ such that T ⊆ T ′, B ∈ T ′,
¬C /∈ T ′ and C ∈ T ′. Applying (IH), we obtain that there exists a non-
trivial prime MeC-theory T ′ such that T ⊆ T ′, 1 ∈ Ic(B, T ′), 0 /∈ Ic(C, T ′)
and 1 ∈ Ic(C, T ′). From this, we obtain 0 /∈ Ic(B → C, T ).
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From right to left, let’s suppose that ¬(B → C) ∈ T , B ∈ T ′ and
C ∈ T ′ for any T ′ such that T ⊆ T ′. From the latter, it follows that
¬(B → C) ∈ T ′. Then, applying (A12), we have B → (C → ¬C) ∈ T ′, and
then, after double application of (MP), we obtain ¬C ∈ T ′. Applying (IH),
we have the sufficient condition to obtain 0 ∈ Ic(B → C, T ).

Finally, we consider the case of

1 ∈ Ic(B → C, T ) ⇔ B → C ∈ T .

From left to right, assume that 1 ∈ Ic(B → C, T ) and B → C /∈ T . From
the latter, using Lemma 6, we obtain that there exists a non-trivial prime
MeC-theory T ′ such that T ⊆ T ′, B ∈ T ′ and C /∈ T ′. Applying (IH), we
obtain that there exists a non-trivial prime MeC-theory T ′ such that T ⊆
T ′, 1 ∈ Ic(B, T ′) and 1 /∈ Ic(C, T ′). This implies that 1 /∈ Ic(B → C, T ),
thereby producing a contradiction with the initial assumption.

From right to left, assume B → C ∈ T and 1 /∈ Ic(B → C, T ). From
the latter, by the truth condition of implication, we obtain that there exists
a non-trivial prime MeC-theory T ′ such that T ⊆ T ′, 1 ∈ Ic(B, T ′) and
1 /∈ Ic(C, T ′). Applying (IH), we obtain that there exists a non-trivial prime
MeC-theory T ′ such that T ⊆ T ′, B ∈ T ′ and C /∈ T ′. Notice that T ⊆ T ′

implies B → C ∈ T ′. From this and B ∈ T ′, applying (MP), follows C ∈ T ′.
A contradiction.

Now, we move toward qMeC3. A canonical model for qMeC3 is a struc-
ture 〈Wc,≤c, Ic〉 defined as follows:

• Wc is the set of all non-trivial prime negation complete qMeC3-theories;

• for any T , T ′ ∈ Wc, T ≤c T ′ iff T ⊆ T ′;

• Ic is the canonical valuation defined for any p ∈ P and T ∈ Wc so that

1 ∈ Ic(p, T ) ⇔ p ∈ T , 0 ∈ Ic(p, T ) ⇔ ¬p ∈ T .

Again, we have to show that the canonical valuation of qMeC3 has a suit-
able generalization for all formulae of L .

Lemma 10. Let 〈Wc,≤c, Ic〉 be a canonical model for qMeC3. Then, for
all A ∈ F and all T ∈ Wc:

1 ∈ Ic(A, T ) ⇔ A ∈ T , 0 ∈ Ic(A, T ) ⇔ ¬A ∈ T .

Proof. The method of proving this lemma is identical to the method we
used in Lemma 9. We use the same abbreviation for ‘inductive hypothesis’
and consider only the case of implication.
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Let A = B → C. Again, we start with the case of

0 ∈ Ic(B → C, T ) ⇔ ¬(B → C) ∈ T .

From left to right, assume that ¬(B → C) /∈ T . Then, by Lemma 8, there
exists a non-trivial prime negation complete qMeC3-theory T ′ such that
T ⊆ T ′, ¬B /∈ T ′ and ¬C /∈ T ′. Applying (IH), we obtain that there exists
a non-trivial prime negation complete qMeC3-theory T ′ such that T ⊆ T ′,
0 /∈ Ic(B, T ′) and 0 /∈ Ic(C, T ′). From this, we obtain 0 /∈ Ic(B → C, T ).

From right to left, assume ¬(B → C) ∈ T and ¬B /∈ T ′ for any T ′ such
that T ⊆ T ′. From T ⊆ T ′ and ¬(B → C) ∈ T , we obtain ¬(B → C) ∈ T ′.
Then, using (A13) and the primeness of T ′, we obtain ¬C ∈ T ′. Applying
(IH), we obtain that for any T ′ such that T ⊆ T ′: if 0 /∈ Ic(B, T ′) then
0 ∈ Ic(C, T ′). From this, it follows that 0 ∈ Ic(B → C, T ).

The proof of the case of

1 ∈ Ic(B → C, T ) ⇔ (B → C) ∈ T
is similar to the one from Lemma 9. Notice that Lemma 6 plays a crucial
role therein.

We can now state the following completeness theorem.

Theorem 2. For any L from {MeC,qMeC3}, if Γ �L A then Γ 
L A.

Proof. Using Lemma 4, 5, Lemma 9, and Lemma 10.

Finally, we can state the following soundness theorem, whose proof is
standard and left for an interested reader.

Theorem 3. For any L from {MeC,qMeC3}, if Γ 
L A then Γ �L A.

6. Constructivity and Decidability of MeC

In this section, we prove constructivity and decidability of MeC. In doing so,
we rely on the embedding technique used by many authors; see, for example,
[13,17,21].

We define a formula A to be in a negative normal form if it contains
negations only before propositional variables; that is, if ¬B is a subformula
of A then B is a propositional variable.

Definition 1. A transformation (.) of formulas in L is defined as follows

1. p := p, ¬p := ¬p, for any p ∈ P;

2. ¬¬A := A, for any A ∈ F ;
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3. A � B := A � B, for any A,B ∈ F and � ∈ {∧,∨,→};

4. ¬(A ∧ B) := ¬A ∨ ¬B, for any A,B ∈ F ;

5. ¬(A ∨ B) := ¬A ∧ ¬B, for any A,B ∈ F ;

6. ¬(A → B) := A → (B → ¬B), for any A,B ∈ F ;

Lemma 11. For any A ∈ F , it holds that 
MeC A ↔ A.

Proof. By induction on the complexity of A. We consider the most dis-
tinctive case. Let A = ¬(B → C). Then, by Definition 1, ¬(B → C) := B →
(C → ¬C). Applying the inductive hypothesis, we obtain that B → (C →
¬C) is equivalent to B → (C → ¬C). Finally, applying (A12), we obtain
¬(B → C) ↔ (B → (C → ¬C)). Therefore, ¬(B → C) ↔ ¬(B → C).

Given the set P of propositional variables of L , we define the set P ′ =
{p′ | p ∈ P}. We now define the language L + of positive intuitionistic logic
by deleting ¬ from L and adding P ′. For a language L +, we write F+

for the set of all formulas of L +.

Definition 2. The transformation (.)∗ of formulas from F into F+ is
defined as follows.

1. For any p ∈ P, (p)∗ := p, (¬p)∗ := p′, where p′ ∈ P ′;

2. (A � B)∗ := (A)∗ � (B)∗, for all A,B ∈ F in negative normal form and
� ∈ {∧,∨,→};

3. (A)∗ := (A)∗, for any A ∈ F not in negative normal form.

Let us denote positive intuitionistic propositional logic as Int+ whose
axiomatization can be obtained by dropping (A9)-(A12) from the axioma-
tization of MeC. An expression (Γ)∗ denotes the result of replacing every
occurrence of a formula B in Γ with an occurrence of (B)∗.

Theorem 4. Γ 
MeC A iff (Γ)∗ 
Int+ (A)∗.

Proof. By induction of the length of proofs. Again, we consider only the
most distinctive case. Let A be axiom (A12) of the calculus of MeC; that
is, A = (B → (C → ¬C)) ↔ ¬(B → C). Then, by several applications of
Definition 2, we obtain

((B)∗ → ((C)∗ → (¬C)∗)) ↔ (¬(B → C))∗.

Applying Definition 1, we obtain

((B)∗ → ((C)∗ → (¬C)∗)) ↔ (B → (C → ¬C))∗.
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Since (.)∗ preserves all positive connectives and due to Lemma 11, for any
D ∈ F , 
MeC D ↔ D, we have

((B)∗ → ((C)∗ → (¬C)∗)) ↔ (B → (C → ¬C))∗.

Again, applying Definition 2, we obtain

((B)∗ → ((C)∗ → (¬C)∗)) ↔ ((B)∗ → ((C)∗ → (¬C)∗))

which is a theorem of Int+. The other cases are provable in a similar
manner.

In light of the well-known results regarding Int+ (see, for example, [4,
Section 2]), Theorem 4 implies several fundamental results concerning MeC.

Corollary 1. The logic MeC is decidable.

Corollary 2. The logic MeC satisfies the following disjunction and the
constructible falsity properties:

• If 
MeC A ∨ B, then 
MeC A or 
MeC B;

• If 
MeC ¬(A ∧ B), then 
MeC ¬A or 
MeC ¬B.

7. Mesoconnexive Logics and Their Relatives

Just like Nelson’s logic N4, Wansing’s C has some interesting extensions.
As we’ve remarked in the course of the present paper, one of such extensions
is Omori and Wansing’s C3. It can be obtained by adding the law of ex-
cluded middle (A16) to the calculus of C. Another simple modification of C
results in what is known as ‘material connexive logic’ MC, also developed
by Wansing [22]. It can be obtained by adding Peirce’s law (P) to C.

((A → B) → A) → A. (P)

Lastly, we can get Cantwell’s logic CN [3] by adding (A14) to MC. These
facts are thoroughly discussed in the relevant literature (see, e.g. [19]).

It can be questioned whether there are similar extensions of MeC. After
some scrutinizing, we will show that some of them are not just similar but
identical.

Let us start with an extension of MeC obtained by adding (P). We will
denote this system as MeCp. Since adding (P) to C results in a four-valued
logic MC, by parity of reasoning, we might expect that MeCp coincides with
a four-valued logic MMC from [2]. Despite the fact that this is actually true,
the original axiomatization of MMC is essentially different from MeCp, as
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it doesn’t contain (A12) among the set of axiomatic schemata but instead,
it contains the following ones.

(A → ¬B) → ¬(A → B), (B1)

B → (¬(A → B) → (A → ¬B)), (1)

B ∨ ¬(A → B). (2)

Nevertheless, it can be proven that the two systems are equivalent. The
following proof schemata show that (A12) is provable in the original formula-
tion of MMC from [2]. We use ‘D. T.’ to denote an application of deduction
theorem.

1. ¬(A → B) (assumption)

2. A (assumption)

3. B (assumption)

4. B → (¬(A → B) → (A → ¬B)) (Ax. of
MMC)

5. ¬(A → B) → (A → ¬B) (4,3, (MP))

6. A → ¬B (5,1, (MP))

7. ¬B (6,2, (MP))

8. B → ¬B (D.T.)

9. A → (B → ¬B) (D.T.)

10. ¬(A → B) → (A → (B → ¬B)) (D.T.)

1. A → (B → ¬B) (assumption)

2. B (assumption)

3. (A → ¬B) → ¬(A → B) (Ax. of
MMC)

4. B ∨ ¬(A → B) (Ax. of MMC)

5. (A → (B → ¬B)) → (B → (A → ¬B))
(provable in MMC)

6. B → (A → ¬B) (5,1, (MP))

7. A → ¬B (6,2, (MP))

8. ¬(A → B) (3,7, (MP))

9. B → ¬(A → B) (D.T.)

10. ¬(A → B) → ¬(A → B) (provable in
MMC)

11. (B ∨ ¬(A → B)) → ¬(A → B) (using
(A3), 9, 10, (MP))

12. ¬(A → B) (11,4, (MP))

13. (A → (B → ¬B)) → ¬(A → B) (D.T.)

We now show that all theorems of MMC are provable in MeCp; it suffices
to prove B1, (1), and (2) in MeCp. The proofs are in order.

1. A → ¬B (assumption)

2. (A → (B → ¬B)) → ¬(A → B) (A12)

3. (B → (A → ¬B)) ↔ (A → (B → ¬B))
(provable in MeCp)

4. (A → ¬B) → (B → (A → ¬B)) (A1)

5. B → (A → ¬B) (4,1, (MP))

6. A → (B → ¬B) (3,5, (MP))

7. ¬(A → B) (2,6, (MP))

8. (A → ¬B) → ¬(A → B) (D.T.)

1. B (assumption)

2. ¬(A → B) (assumption)

3. ¬(A → B) → (A → (B → ¬B)) (A12)

4. A → (B → ¬B) (3,2, (MP))
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5. (A → (B → ¬B)) → (B → (A → ¬B))
(provable in MeCp)

6. B → (A → ¬B) (5,4, (MP))

7. A → ¬B (6,1, (MP))

8. ¬(A → B) → (A → ¬B) (D.T.)

9. B → (¬(A → B) → (A → ¬B)) (D.T.)

1. (B ∨ ¬(A → B)) → (A → ¬B) (assumption)

2. B (assumption)

3. B → (B ∨ ¬(A → B)) (A4)

4. B ∨ ¬(A → B) (3,2, (MP))

5. A → ¬B (1,4, (MP))

6. B → (A → ¬B) (D.T.)

7. (B → (A → ¬B)) → (A → (B → ¬B)) (provable in MeCp)

8. A → (B → ¬B) (7,6, (MP))

9. (A → (B → ¬B)) → ¬(A → B) (A12)

10. ¬(A → B) (9,8, (MP))

11. ¬(A → B) → (B ∨ ¬(A → B)) (A5)

12. B ∨ ¬(A → B) (11,10, (MP))

13. ((B ∨ ¬(A → B)) → (A → ¬B)) → (B ∨ ¬(A → B)) (D.T.)

14. (((B ∨ ¬(A → B)) → (A → ¬B)) → (B ∨ ¬(A → B))) → (B ∨ ¬(A → B)) (P)

15. B ∨ ¬(A → B) (14,13, (MP))

It follows that MMC from [2] is deductively equivalent to MeCp.

Proposition 5. Γ 
MMC A if and only if Γ 
MeCp A.

But what is more interesting is what would be the effect of adding the law
of excluded middle to both MeCp and MeC. One would expect that the
resulting systems would be new but, in fact, they are not. Partially we have
already touched on this issue in Section 3.2 when we discussed the problem
of extending (→0) to the case of C3.

Let’s take the calculus of MeCp, supply it with (A14) and denote the
resulting system by MeCp

em. It is easy to verify that all axioms of MeCp
em

preserve the validity in the following CN-matrices (the designated values
are 1 and 1/2).
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But this means, given the semantic completeness of CN, that there
should be a proof of HB1 in MeCp

em which heavily relies on (A14). Now,
consider the following proof-schemata in MeCp

em.

1. B ∨ ¬B (A14)

2. (¬B → (A → ¬B)) → [¬(A → B) → (¬B → (A → ¬B))] (A1)

3. ¬B → (A → ¬B) (A1)

4. ¬(A → B) → (¬B → (A → ¬B)) (2, 3, MP)

5. [¬(A → B) → (¬B → (A → ¬B))] → [¬B → (¬(A → B) → (A →
¬B))] (provable in MeCp

em)

6. ¬B → (¬(A → B) → (A → ¬B)) (5,4, (MP))

7. B → (¬(A → B) → (A → ¬B)) (provable in MeCp
em)

8. (B ∨ ¬B) → (¬(A → B) → (A → ¬B)) (6,7, (A3), (MP))

9. ¬(A → B) → (A → ¬B) (8,1, (MP))

It follows that CN is deductively equivalent to MeCp
em.

Proposition 6. Γ 
CN A if and only if Γ 
MeCp
em

A.

Now, we can confidently state that adding the law of excluded middle to
MeCp results in CN. But actually, we can state something else. The effect
of adding excluded middle to the calculus of MeC is similar. If we denote
such a system as MeCem then the proof of HB1 in MeCem will be exactly
the same. Therefore, MeCem and C3 are deductively equivalent as well.

Proposition 7. Γ 
C3 A if and only if Γ 
MeCem
A.

All of these observations are summarized in the following diagrams (pur-
ple arrows indicate what should be added to a system at the bottom of the
arrow, in order to obtain a system placed at the top of the arrow).

CN

MC C3

C

(P)

(P)

(A14)

(A14)

CN

MeCp C3

MeC

(P)

(P)

(A14)

(A14)
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8. Comparison with Omori’s Logic WBK

In [18], Omori studied another way to escape hyperconnexivity. His approach
stems from experimental studies of the negation of indicative conditionals
carried out by Politzer and Egré in [6]. Roughly, the idea is to consider the
following ‘weak’ formula A → ♦¬B as equivalent to ¬(A → B) and provide
a suitable semantic formalization of this equivalence. We briefly review the
basics of the corresponding logic WBK presented by Omori and compare
his approach with the one developed in the present paper and in [2].

Omori’s logic WBK is based on a modal propositional language Lm, ex-
tending L with the falsity constant ⊥, necessity � and possibility ♦ opera-
tors. We will write Fm and Pm for the sets of all formulas and propositional
variables of Lm, respectively.

A WBK-model for Lm is a triple 〈W,R, V 〉 where W is a non-empty set
of states, R is a binary relation on W , and a valuation function V is defined
as follows.

V : Pm × W → {{1, 0}, {1}, {0}, ∅}.

Valuations are then extended to interpretations I in a standard manner,
here we only mention the semantic clause for the falsity of → because it
captures the core idea.

0 ∈ I(A → B,w) ⇔ if 1 ∈ I(A,w) then for some w′ ∈ W it holds (O)

that (wRw′ and 0 ∈ I(B,w′)).

The semantic conditions for other connectives, definitions of consequence
and validity can be found in [18].

One of the interesting features of WBK is that it is not a connexive logic,
but it allows one to obtain connexive theses under certain assumptions.

Proposition 8. (Proposition 1, Proposition 3, [18]) The following holds for
WBK:

1. 
WBK ¬(A → ¬A) ↔ (A → ♦A);

2. 
WBK ¬(A → B) → (A → ¬B) if and only if 
WBK ♦B → B;

3. 
WBK (A → ¬B) → ¬(A → B) if and only if 
WBK B → ♦B.

Proposition 8, as Omori observed, implies that WBK collapses into
Wansing’s MC if and only if the possibility operator is trivialized in WBK.
This fact is also interesting in the context of escaping hyperconnexivity. It
turns out that the right amount of connexive theses can be obtained by
admitting quite a natural requirement of 
WBK B → ♦B – that the truth
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of B implies its possibility. In turn, hyperconnexivity depends on the prov-
ability of a rather controversial principle 
WBK ♦B → B. We conjecture
that a proper mesoconnexive variant of WBK can be obtained simply by
requiring the reflexivity of the accessibility relation R but, to the best of our
knowledge, such a logic has not yet been studied in the literature.

On the other hand, we think it is fair to observe that though MeC and
MMC are mesoconnexive in a proper sense, the hyperconnexivity can be
regained under certain assumptions, as the following formulas are provable
in both systems.

B → (¬(A → B) → (A → ¬B)),

¬B → (¬(A → B) → (A → ¬B)),

B → (¬(A → ¬B) → (A → B)),

¬B → (¬(A → ¬B) → (A → B)).

Thus, in MeC and MMC the truth or the falsity of the consequent of a
negated conditional is sufficient to the provability of Hyper-Boethius theses.
As we have seen in the previous section, this fact has interesting conse-
quences when we add the law of excluded middle to both MeC and MMC
(or MeCp).

In a sense, one might say that Omori’s technique of modalizing the con-
sequent of negated conditionals and the approach that was developed in the
present paper and [2] lead to quite similar results. However, WBK is not
connexive in a proper sense, after all. From this point of view, a technique
that underlies MeC and MMC seems to us more preferable and simple. In
order to define WBK it is crucial to use the modal language and this means
that Omori’s idea cannot be expressed in purely propositional languages.
This, again, speaks in favour of the simplicity and general applicability of
our approach.

It should be noted however that the need to use modality doesn’t appear
in the void. As we remarked earlier, it is motivated by the experimental data
supporting the usage of modality in the negation of conditional sentences
among ordinary reasoners. Thus, for a more fair and detailed comparison
of the two approaches it is interesting to consider their combination. More
particularly, one can define semantic clause for → on WBK-models in the
following way.

0 ∈ I(A → B,w) ⇔ if 1 ∈ I(A,w) then for some w′ ∈ W it holds

that (wRw′ and (0 ∈ I(B,w′) or 1 /∈ I(B, w′))).

The study of the effect of replacing (O) with this condition is beyond the
scope of the present paper, but it constitutes an interesting problem for
further investigation.
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9. Concluding Remarks

As promised, we have given a simple way of obtaining logical systems that
escape hyperconnexivity, i.e. block the validity of the converses of Boethius’
Theses and remain minimally connexive in the sense of [11]. We showed that
the falsity condition for implication, borrowed from [2], can be successfully
adapted to the case of constructive connexive logic C. This enabled us to
introduce a new logical system MeC. However, we have seen that the falsity
condition from [2] is not suitable in the case of C3. This forced us to revisit it
to obtain a C3-like mesoconnexive logic qMeC3. Both MeC and qMeC3
were formalized by means of sound and complete axiomatic proof-systems.
The logic MeC was shown to be constructive and decidable. This allows us
to treat MeC as a proper mesoconnexive modification of C.

We have seen that the presence of the law of excluded middle in qMeC3
destroys the constructivity and this is what connects qMeC3 with C3.
However, we cannot say that qMeC3 is a mesoconnexive modification of
C3 because it does not bear analogous relation to MeC as C3 does to C.
We remarked that the semantic conditions for implication in qMeC3 are
closely related to the three-valued implication introduced by Farrell [12].
This observation indicates that qMeC3 and its yet unknown relatives form
quite a distinctive family of mesoconnexive logical systems that deserves in-
dependent study and create a variety of problems for further investigations.
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[8] Égré, P., L. Rossi, and J. Sprenger, De Finettian logics of indicative condi-

tionals part II: proof theory and algebraic semantics, Journal of Philosophical Logic

50(2):215–247, 2021.
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