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have been extensively studied. In the paper, we study theories of näıve consequence and
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then develop a fully compositional theory of truth and consequence in our non-reflexive

framework.
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1. Introduction

Interest in substructural logics and in their application to logical and seman-
tic paradoxes has grown considerably in recent years. Many recent works
focus on non-transitive approaches to paradox [3–5,8,9,44–47], and non-
contractive approaches have also received considerable attention [7,15,23,
24,27,36,40,41,48,53]. Non-reflexive theories have been investigated less.1

Nevertheless, non-reflexive theories are especially promising to model the
interplay between näıve truth and consequence [38]. However, a systematic

1Some works touching upon non-reflexive logics and their relationship to paradox in-
clude [22,25,26,34,38,43]. A brief comparison of our paper with those work might be
helpful: [26], [43], and [25] motivate the non-reflexive approach without providing a model-
theory or a proof-theory; our work integrates those with a more comprehensive model- and
proof-theoretic analysis. As explained in [38], a model-theory for a non-reflexive “validity”
predicate is provided in [34], but the construction differs form our in that it does not
validate many desirable principles (e.g. contraction and cut). [22] studies a pure logic of
disquotational truth based on a three-sided logical system: our two-sided approach com-
bines well with a semantics, and can be neatly extended to a fully fledged compositional
theory of truth over a non-logical syntactic base.
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study of the logic, the semantics, and the proof-theory of non-reflexive the-
ories of näıve truth and consequence is currently lacking, and so does a
thorough philosophical analysis (and defence).2

The purpose of this paper is to fill this lacuna, at least in part. First,
we introduce the basics of non-reflexive logic(s) and semantics, and their
extensions with näıve consequence (and truth) rules (§2-3). The two main
sections of the paper are §4 and §5. In the former, we first build on the
work carried out in [37] on logics of truth to investigate the proof-theory of
non-reflexive logics of consequence, with a special focus on cut-elimination
proofs. In §5 we study the interaction between truth and consequence in
non-reflexive systems: this is achieved by providing a compositional theory
of truth and consequence, by establishing the adequacy of such a theory
with respect to the semantics provided in §3, and by investigating its proof-
theoretic properties.

The present work is mainly a technical study, which aims to consolidate
non-reflexive logics as a viable basis to address semantic paradoxes, and to
develop satisfactory theories of näıve semantic notions. Its main findings are
that (i) naive consequence rules can be added to a non-reflexive logic while
preserving an intuitive semantics and remarkable proof-theoretic properties
(above all, the eliminability of cut); (ii) it is possible to provide a fully
compositional theory of truth over a non-reflexive logic that admits näıve
rules for truth and consequence and that axiomatizes a generalization of a
standard fixed-point construction for truth.

2. Logics of Transparent Truth and Consequence

Let L be a first-order language with logical constants ¬,∧,∀, � and LC :=
L ∪ {C} its expansion with a binary predicate C(x, y) intended to express
object-linguistic consequence.3 Variables are denoted with x, y, z, . . ., and
terms with r, s, t, . . . . We assume that L contains constants �ϕ� for any for-
mula ϕ of the language LC. The nature of the names �ϕ� is not fully fixed
by the theory: as customary practice when dealing with logics of semantic
concepts, one can assume that the denotation of �ϕ� in all models of the

2In a recent paper [12], a non-monotone approach to the paradoxes—obtained by drop-
ping structural weakening—is studied by Bruno Da Ré.

3We define ∨,∃ in the usual way. ⊥ can be of course defined as ¬� (or viceversa).
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theory is ϕ itself [30,44]. Such extra-theoretic assumptions will become re-
dundant once a proper theory of syntax will be assumed in the final sections
of the paper.

Definition 1. (LPC) The system LPC in LC contains the following ini-
tial sequents and rules, where Γ, Δ —possibly with subscripts— are finite
multisets of formulae of LC.

(ref
−
)

Γ, ϕ ⇒ ϕ, Δ
with ϕ ∈ AtFmlL

Γ ⇒ Δ, ϕ ϕ, Γ ⇒ Δ
(cut)

Γ ⇒ Δ

(�) Γ ⇒ �, Δ (⊥) Γ,⊥ ⇒ Δ

Γ ⇒ Δ, ϕ ψ, Γ ⇒ Δ
(Cl)

Γ, C(�ϕ�, �ψ�) ⇒ Δ
Γ, ϕ ⇒ ψ, Δ

(Cr)

Γ ⇒ C(�ϕ�, �ψ�), Δ

Γ ⇒ ϕ, Δ
(¬l)

Γ,¬ϕ ⇒ Δ
Γ, ϕ ⇒ Δ

(¬r)
Γ ⇒ ¬ϕ, Δ

Γ, ϕ, ψ ⇒ Δ
(∧l)

Γ, ϕ ∧ ψ ⇒ Δ
Γ ⇒ ϕ, Δ Γ ⇒ ψ, Δ

(∧r)
Γ ⇒ Δ, ϕ ∧ ψ

Γ,∀xϕ, ϕ(s) ⇒ Δ
(∀l)

Γ,∀xϕ ⇒ Δ
Γ ⇒ ϕ(y), Δ

(∀r) y /∈ FV(Γ, Δ,∀xϕ)
Γ ⇒ Δ,∀xϕ

Remark 2.

(i) AtFmlL denotes the set of atomic formulae of L, i.e. the language
without the consequence predicate, and FV(Γ) denotes the set of free
variables of Γ.

(ii) We can define a theory of full disquotational truth LPT – studied in
[37] – as a sub-theory of a definitional extension of LPC obtained by
defining Tr(x) as C(���, x).4 In fact, in the theory LPT the rules Cl

and Cr are easily shown to be admissible in LPT.

(iii) The combination of the rules (Cl) and (Cr) with unrestricted initial
sequents, even in the absence of (¬r), results in inconsistency. This is
essentially a version of Curry’s paradox that has recently received some

4Similarly, we can define a theory of predication or ‘true of’ by generalizing the semantic
rules to open formulae.
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attention [6,38].5 (Cr) is in fact a version of the rule VP of Beall and
Murzi, generalized to include arbitrary context, while (Cl) is a meta-
inferential version of their rule VD. The intended reading of C(x, y)
is “grounded consequence” in the sense of [38]. As explained in [38,
§2.3], C(x, y) differs also from a formal provability predicate, in that
it does not generate a hierarchical concept of consequence – by Löb’s
theorem, formal provability in arithmetic can in fact only validate
naive principles for C(x, y) if one ascends to a stronger system.

(iv) As it happens in the standard G3 systems on which it is based, the
formulation of LPC with context-sharing rules is justified by the ad-
missibility of weakening and contraction in the system, established
below.

3. Fixed-Point Semantics

The semantics for the logical rules of LPC is provided by a substructural
(non-reflexive) logical consequence relation defined over strong Kleene se-
mantics (K3), i.e. the tolerant-strict consequence relation (TS) defined in
[8] with the assumption that atomic, truth-free formulae always receive a
classical semantic value. This semantics can then be incorporated into a
simple fixed-point construction (introduced in [38], and to be recalled), in
order to interpret the consequence predicate of LPC. Let us start from the
former. In the following, we take for granted the notion of a strong Kleene
(K3) evaluation, with values 1 for true, 0 for false, and n for neither – see
for instance [13].

Definition 3. Let v be a K3 evaluation function. The argument from Γ
to Δ is TS-valid (for Tolerant-Strict), in symbols Γ �ts Δ if: for any K3
evaluation function v, if for every ϕ ∈ Γ, v(ϕ) = 1 or n, then there is at
least one ψ ∈ Δ s.t. v(ψ) = 1.

A few basic features of TS are easily stated. Just like strong Kleene logic
K3, TS does not have any classical laws not involving � and ⊥. In other
words, no such sequent of the form ⇒ ϕ, for ϕ classically valid, is TS-valid. In
addition, and unlike K3, TS does not validate any classical inferences – with
the same restriction –, i.e. no classically valid sequent of the form Γ ⇒ Δ is

5Of course a contradiction arises only in the presence of contraction: however contrac-
tion is admissible in LPT. See Lemma 12 below. For an alternative approach, based on a
restriction of cut and of the side sequents in the validity rules, see [5].
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TS-valid. This includes, of course, reflexivity: to see that the inference from
ϕ to ϕ is not unrestrictedly TS-valid, just consider a K3-evaluation which
assigns value n to ϕ. However, and again unlike K3, TS is closed under all
the meta-inferences (with no non-empty premises) of the classical sequent
calculus G3 [52].

As announced above, the consequence relation defined by TS can be easily
combined with a Kripke-style, fixed-point interpretation of the consequence
predicate C(x, y) [31]. That this is generally possible is guaranteed by the
fact that the K3 evaluation scheme is monotone in the evaluation ordering.6

For simplicity and definiteness, we develop the model-theoretic construction
in an arithmetical setting, thus identifying � and ⊥ with some arithmetical
truth and falsity, respectively.7 Let then LN be the language of arithmetic
and LC

N
:= LN ∪ {C}. We assume that the language of arithmetic includes

the signature {0, S, +,×} plus finitely many symbols for primitive recursive
functions, which facilitates the development of formal syntax. For instance,
it will contain symbols for the syntactic operations:

s, t 	→ C(�s�, �t�) (1)

n, r, s, t 	→ C(�r�, �C(�r�, . . . �C(�r�
︸ ︷︷ ︸

n−1-times

, �C(�s�, �t�)�)...�) (2)

The use of LN presupposes a more comprehensive formalization of the syntax
of LC. The meaning of the Gödel quotes is now fixed by a canonical Gödel
numbering and a standard formalisation of syntactic notions and operations.
In what follows, we keep assuming a canonical coding of finite sets. A sequent
is thus simply a pair of finite sets. We write (Γ; Δ) for (the code of) the
sequent Γ ⇒ Δ. For simplicity, we identify syntactic objects and their codes.

The semantic clauses of the jump given in the next definition correspond
to standard, classically valid sequent rules – i.e. classical rules to introduce
complex formulae to the left and to the right of the sequent arrow – plus rules
for the consequence predicate that internalize them. As remarked above, the
semantics for LPC is closed under a version of all classical sequent rules,
so it’s no surprise that a semantics for LPC follows the same patterns to
interpret the logical vocabulary.

6See the Fixed-Model Theorem in [2,16].
7It is possible, but somewhat tedious, to generalize the construction to a standard

model of syntax theory, thus avoiding the usual arithmetical interpretation of the coding
scheme. We stick to the arithmetical framework for simplicity and legibility.
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Definition 4. [C-jump [38]] For S ⊆ ω, the operator Ψ: P(ω) → P(ω) is
defined as follows:

n ∈ Ψ(S) :↔ n ∈ S, or

n = (Γ; j = k,Δ) and N � j = k, or

n = (Γ, j = k; Δ) and N � j = k, or

n = (Γ; C(�ϕ�, �ψ�), Δ) and (Γ, ϕ; ψ, Δ) ∈ S, or

n = (Γ, C(�ϕ�, �ψ�); Δ) and (Γ;ϕ, Δ) ∈ S, (Γ, ψ; Δ) ∈ S, or

n = (Γ,¬ϕ; Δ) and (Γ;ϕ, Δ) ∈ S, or

n = (Γ;¬ϕ, Δ) and (Γ, ϕ; Δ) ∈ S, or

n = (Γ, ϕ ∧ ψ; Δ) and (Γ, ϕ, ψ; Δ) ∈ S, or

n = (Γ;ϕ ∧ ψ, Δ) and (Γ;ψ, Δ) ∈ S, (Γ;ϕ, Δ) ∈ S, or

n = (Γ,∀xϕ; Δ) and (Γ,∀xϕ, ϕ(m); Δ) ∈ S for some m, or

n = (Γ;∀xϕ,Δ) and (Γ;ϕ(m), Δ) ∈ S for all m.

Iterations of Ψ can be defined as usual, by letting Ψ0(S) = S and
putting:8

Ψα(S) = Ψ(
⋃

β<α

Ψβ(S)).

The operator Ψ is both increasing – i.e. S ⊆ Ψ(S) for any S –, and mono-
tonic: S0 ⊆ S1 entails Ψ(S0) ⊆ Ψ(S1). The latter property entails the exis-
tence of fixed points of Ψ, i.e. sets T s.t. Ψ(T ) = T . A fixed point T is said
to be inconsistent if, for some sentence ϕ, both (;ϕ) and (;¬ϕ) are in T ,
and consistent otherwise. We are mainly interested in the minimal of these
fixed points IΨ :=

⋃

α∈Ord Ψα(∅). We also write Iα
Ψ for Ψα(∅). It can be

shown that the minimal fixed point is indeed consistent [38].
The following lemma, proved in [38], shows that IΨ is a model of a näıve,

self-applicable consequence predicate.
Lemma 5. ([38, Lemma 9])

(i) (Γ; Δ, ϕ) ∈ IΨ and (ψ, Γ; Δ) ∈ IΨ if and only if (C(�ϕ�, �ψ�), Γ; Δ) ∈
IΨ;

(ii) (Γ, ϕ; ψ, Δ) ∈ IΨ if and only if (Γ; C(�ϕ�, �ψ�), Δ) ∈ IΨ.
Via the definition Tr(x) :↔ C(�0 = 0�, x) the minimal fixed point for

self-referential truth from [31] essentially “lives” inside IΨ. In particular,

8For more details, see [35], Chapter 1.
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one can restrict the construction above to empty contexts, and the clauses
for C(x, y) then obviously can be restricted to:

(; C(�0 = 0�, �ϕ�)) ∈ Ψ(S), if (;ϕ) ∈ S;

(C(�0 = 0�, �ϕ�); ) ∈ Ψ(S), if (ϕ; ) ∈ S.

This restriction of the monotone operator Ψ above reaches then fixed
points X in which

(;ϕ) ∈ X iff (; Tr�ϕ�) ∈ X (3)

(; ¬ϕ) ∈ X iff (; ¬Tr�ϕ�) ∈ X. (4)

Properties (3) and (4) correspond to the so-called “intersubstitutivity”
of truth. For definiteness, let’s call J the set of truths of the minimal fixed
point X0 so obtained, that is:

J := {ϕ | (;ϕ) ∈ X0}.

It’s clear that we can express Ψ(·) as a formula of the language L2 of second-
order arithmetic in such a way that

Ψ(S) = {n | N � F(x,X) [n, S]}
for F(x,X) arithmetical and X occurring only positively – i.e. not in the
scope of an odd number of negation symbols – in it. Therefore

n ∈ IΨ ⇔ (∀X)
(

(∀x)(F(x,X) → x ∈ X) → n ∈ X
)

.

So IΨ ∈ Π1
1. Moreover, by the relationships between J and IΨ outlined above,

and by Π1
1-hardness of J,9 we have:

Corollary 6. IΨ is Π1
1-complete.

It is well-known that Π1
1-sets have a natural presentation in terms of

cut-free infinitary derivability [1,42]. The case we are considering is not
an exception, and a suitable infinitary calculus LPC∞ can be developed
along the lines of the infinitary system for non-reflexive truth developed
in [37]. LPC∞ is obtained from LPC by (essentially): replacing the axioms
for ⊥ and � with corresponding rules for arithmetical truth and falsity,
and replacing (∀r) with an ω-rule.10 By adapting the analysis in [37], it
can be shown that LPC∞ has nice proof-theoretical properties: weakening
and contraction can be proved to be admissible in a way that preserves

9See [31,33].
10Two more technical amendments are omitting free variables, and generalizing Cl and

Cr to arbitrary terms which code formulae. See [37] for details.
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the (possibly infinite) length of the derivation, its rules are invertible, and
(crucially) cut is eliminable in it.

In addition, it is possible to show that (possibly infinitary) proofs in
LPC∞ closely “match” the construction of IΨ. More precisely: the ordinal
stage of the inductive definition in which a sequent Γ ⇒ Δ enters in IΨ —
i.e. its ordinal norm — can be associated to the lengths of cut-free proofs of
Γ ⇒ Δ in LPC∞. By a well-known result, this ordinal norm cannot exceed
the first non-recursive (countable) ordinal ωCK

1 :11

(i) If there is a cut-free LPC∞-proof of length ≤ α < ωCK
1 of the sequent

Γ ⇒ Δ, then (Γ; Δ) ∈ Iα+1
Ψ .

(ii) If (Γ; Δ) ∈ Iα
Ψ, α < ωCK

1 , then there there is a cut-free LPC∞-proof of
length ≤ α + n < ωCK

1 of Γ ⇒ Δ, for some n ∈ ω.

If one restricts their attention to pairs of sentences, the above result
entails the existence of a tight correspondence between the extension of the
consequence predicate in IΨ, and the consequence ascriptions derivable in
LPC∞. More specifically, for all ϕ,ψ ∈ LC, the following are equivalent

(i) LPC∞ � ϕ ⇒ ψ;

(ii) LPC∞ � ⇒ C(�ϕ�, �ψ�);

(iii) (ϕ; ψ) ∈ IΨ.

4. Proof Theory of LPC

In this section we focus on the proof-theoretic properties of LPC. Our anal-
ysis culminates in the full eliminability of cut in it. The key technical in-
sight that makes cut fully eliminable—and that is extensively investigated
in [37]—is a strong form of invertibility of the C-rules (Lemma 10). This sec-
tion is essentially an adaptation to the setting with primitive consequence
of the proof-theoretic analysis of [37].

The notions of length of a derivation is standardly defined [49,52].12 Given
a calculus with rules that are at most α-branching, the length of a derivation
D is the supremum of the lengths of its direct sub-derivations Dγ increased
by one:

d = sup{dγ + 1 | γ < α}

11See for instance, [42, Thm. 6.6.4].
12Our notion of length amounts to what is called depth in [52].
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Clearly, for LPC, α = 2 and the length of derivations is finite. We will write
�LPC Γ ⇒ Δ to indicate that there is a derivation of the sequent Γ ⇒ Δ in
LPC, and D �LPC ϕ to indicate that D is a proof of ϕ in LPC.

In developing the proof theory of LPC, it is convenient to work in a
system that is extensionally equivalent to LPC, but that features an ex-
plicit labelling of formulae in sequents in a proof. Extensional equivalence
means in this context that labelling does not allow one to obtain new proofs,
but only to keep track of existing ones. This machinery is left implicit in
work on the restriction of identity sequents [21,50], but it’s required for a
formally precise cut-elimination argument, and in particular to define the
main measure of complexity – called C-complexity – for applications of the
C-rules to formulae in derivations. For each proof D, we assume a labelling
function lD : FormLC → ω \ {0, 1} applying to formulae in initial sequents.
Labels then expand in a uniform way depending on the rule employed. For
instance, for different rules configurations, we have:

γk, ϕl ⇒ ψm, δn

γ(1,k) ⇒ C(�ϕ�, �ψ�)(l,m), δ(1,n)
,

γk, ϕl ⇒ δm

γ(1,k) ⇒ ¬ϕ(1,l), δ(1,m)
,

γk ⇒ ϕl, δm γn ⇒ ψp, δq

γ(k,n) ⇒ ϕ ∧ ψ(l,p), δ(m,q)
.

All other rules conform to one of these patterns, and are labelled in an
analogous way. Full details of the labelling machinery, including its extension
to infinitary rules, can be found in [37]. Once we know in principle that we
can always employ labels to uniquely refer to formulae and their “history”
throughout a proof, we can choose to omit labels for the sake of readability.
We will often choose to do so.

In a nutshell, the C-complexity of a formula keeps track of the applica-
tions of the C-rules: initial sequents and L-formulae have complexity 0, and
the only way to increase the C-complexity of a formula is by introducing
the consequence predicate.

Definition 7. (C-complexity) The ordinal C-complexity κ(·) of a formula
ϕ of LC in a derivation D is defined inductively as follows:

(i) formulae of L have C-complexity 0 in any D;

(ii) If D is just

Γ, ϕ ⇒ ϕ, Δ

with ϕ ∈ LC, then κ(ψ) = κ(ϕ) = 0 for all ψ ∈ Γ, Δ. Similarly for
(�), (⊥).



956 C. Nicolai, L. Rossi

(iii) If D ends with

Γ ⇒ Δ, ϕ

¬ϕ, Γ ⇒ Δ

then κ(ϕ) = κ(¬ϕ) and the C-complexity of the formulae in Γ, Δ is
unchanged. Similarly for (¬r) and (∀r).

(iv) If D ends with

Γ, ϕ, ψ ⇒ Δ
ϕ ∧ ψ, Γ ⇒ Δ

then κ(ϕ∧ψ) = max(κ(ϕ), κ(ψ)) and the C-complexity of the formu-
lae in Γ, Δ is unchanged.

(v) If D ends with

Γ ⇒ Δ, ϕ Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ ∧ ψ

then κ(ϕ ∧ ψ) = max(κ(ϕ), κ(ψ)) and the complexity of occurrences
in side formulae is the maximum of the corresponding occurrences of
side formulae in premisses.

(vi) If D ends with

Γ, ϕ ⇒ ψ, Δ
Γ ⇒ C(�ϕ�, �ψ�), Δ

then κ(C(�ϕ�, �ψ�)) = max(κ(ϕ), κ(ψ)) + 1 and the C-complexity of
the formulae in Γ, Δ is unchanged.

(vii) If D ends with

Γ ⇒ Δ, ϕ ψ, Γ ⇒ Δ
Γ, C(�ϕ�, �ψ�) ⇒ Δ

then κ(C(�ϕ�, �ψ�)) = max(κ(ϕ), κ(ψ)) + 1 and the complexity of
occurrences in side formulae is the maximum of the corresponding
occurrences of side formulae in premisses.

(viii) If D ends with

Γ,∀xϕk, ϕ(t) ⇒ Δ
∀xϕl, Γ ⇒ Δ

then κ(∀xϕl) = max(κ(∀xϕk), κ(ϕ(t))) and the C-complexity of the
formulae in Γ, Δ is unchanged.
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(ix) If D ends with

Γ ⇒ Δ, ϕ ϕ, Γ ⇒ Δ
Γ ⇒ Δ

then the complexity of occurrences in side formulae is the maximum
of the corresponding occurrences of side formulae in premisses. In
this case the complexity of the cut formula is the maximum of its two
active occurrences.

We start by observing that, in proofs of sequents containing � on the left,
and ⊥ on the right, the occurrences of such constants can be omitted. Both
claims follow by a straightforward induction on the length of the proof that
preserves the C-complexity of the formulae in the contexts.

Lemma 8.

(i) If �LPC �, Γ ⇒ Δ, then �LPC Γ ⇒ Δ and the C-complexity of the
formulae in the contexts is unchanged.

(ii) If �LPC Γ ⇒ Δ,⊥, then �LPC Γ ⇒ Δ and the C-complexity of the
formulae in the contexts is unchanged.

In both claims, the length of the derivation is preserved.

Next, we turn to subsitution and weakening lemmata. Again, a proof by
induction on the length of derivations is required. In the proof of weaken-
ing, the formulation of (ref), (�), (⊥) with arbitrary contexts is of course
essential.

Lemma 9. (Substitution, Weakening)

(i) If Γ ⇒ Δ is derivable in LPC, then Γ∗ ⇒ Δ∗ is LPC-derivable, where
Γ∗, Δ∗ are obtained by uniformly replacing in Γ, Δ, a variable x by a
term t which is free for x and does not contain variables employed in
applications of (∀r) in the proof of Γ ⇒ Δ. Moreover, the C-complexity
of the formulae involved in the substitution and in the contexts does not
change.

(ii) Weakening is κ-admissible in LPC. That is, if we prove Γ ⇒ Δ, we
can prove Γ ⇒ ϕ, Δ (or Γ, ϕ ⇒ Δ), so that κ(ϕ) = 0.

In both claims, the length of the derivation is preserved.

The next lemma marks out the key property of LPC which makes it
possible to generalize the standard G3-strategy for the admissiblity of cut
to the present setting. All rules of LPC, including the rules for the conse-
quence predicate, are invertible in a strong sense that preserves, and in the
appropriate cases reduces, the C-complexity of formulae.
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Lemma 10. (κ-invertibility of LPC-rules)

(i) If D �LPC Γ, C(�ϕ�, �ψ�) ⇒ Δ, then there are D′ �LPC Γ ⇒ Δ, ϕ and
D′′ �LPC ψ, Γ ⇒ Δ with

κ(ϕ), κ(ψ) = κ(C(�ϕ�, �ψ�)), if κ(C(�ϕ�, �ψ�)) = 0, or

κ(ϕ), κ(ψ) < κ(C(�ϕ�, �ψ�)), if κ(C(�ϕ�, �ψ�)) > 0,

and in which the C-complexity of the side formulae does not increase.

(ii) If D �LPC Γ ⇒ C(�ϕ�, �ψ�), Δ, then there is a D′ �LPC Γ, ϕ ⇒ ψ, Δ
with

κ(ϕ), κ(ψ) = κ(C(�ϕ�, �ψ�)), if κ(C(�ϕ�, �ψ�)) = 0, or

κ(ϕ), κ(ψ) < κ(C(�ϕ�, �ψ�)), if κ(C(�ϕ�, �ψ�)) > 0,

and in which the C-complexity of the side formulae is no greater than
their κ-maximal occurrence in the premisses.

(iii) If D �LPC Γ,¬ϕ ⇒ Δ, there there is a D′ �LPC Γ ⇒ ϕ, Δ with
κ(ϕ) ≤ κ(¬ϕ) and in which the C-complexity of the side formulae does
not increase.

(iv) If D �LPC Γ ⇒,¬ϕ, Δ, there there is a D′ �LPC Γ, ϕ ⇒ Δ with κ(ϕ) ≤
κ(¬ϕ) and in which the C-complexity of the side formulae does not
increase.

(v) If D �LPC Γ, ϕ ∧ ψ ⇒ Δ, then there is a D′ �LPC Γ, ϕ, ψ ⇒ Δ with
κ(ϕ), κ(ψ) ≤ κ(ϕ ∧ ψ) and in which the C-complexity of the side for-
mulae does not increase.

(vi) If D �LPC Γ ⇒ ϕ ∧ ψ, Δ, then there are D′ �LPC Γ ⇒ Δ, ϕ and
D′′ �LPC Γ ⇒ Δ, ψ with κ(ϕ), κ(ψ) ≤ κ(ϕ ∧ ψ) and in which the
C-complexity of the side formulae is no greater than their κ-maximal
occurrence in the premisses.

(vii) If D �LPC Γ ⇒ Δ,∀xϕ, then there is D′ �LPC Γ ⇒ Δ, ϕ(y), for any
y not free in Γ, Δ,∀xϕ, with κ(ϕ(y)) ≤ κ(∀xϕ) and in which the C-
complexity of the side formulae does not increase.

Crucially, the invertibility of the rules preserves the length of the proof.

Proof. We proceed by induction on the length of the proof D but only
show (i). The other cases are similar or easier. For (vii), one essentially
employs the substitution lemma (Lemma 9(i)).

If Γ, C(�ϕ�, �ψ�) ⇒ Δ is an initial sequent, then it is for the form
Γ0, χ,C(�ϕ�, �ψ�) ⇒ χ,Δ0, or Γ := Γ0,⊥, or Δ := Δ0,�. In all such cases
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the claim is trivially obtained since Γ ⇒ Δ, ϕ and ψ, Γ ⇒ Δ are also initial
sequents.

If Γ, C(�ϕ�, �ψ�) ⇒ Δ is not an axiom, there are two cases to consider.
The first in which C(�ϕ�, �ψ�) is principal in the last inference of D, the
second in which it is not. In the former case, κ(C(�ϕ�, �ψ�)) > 0, and the
claim follows immediately by definition of C-complexity in the case of an
application of (Cl). In the latter case, suppose that D ends with

D0

C(�ϕ�, �ψ�)k0 , Γ0 ⇒ Δ0

D1

C(�ϕ�, �ψ�)k1 , Γ1 ⇒ Δ1
(r)

C(�ϕ�, �ψ�)k2 , Γ ⇒ Δ

(we treat the case of an arbitrary binary rule, the case of unary rules is
simpler). The induction hypothesis applied to D0 and D1 yields derivations

D00 �LPC Γ0 ⇒ Δ0, ϕ
k00 D01 �LPC ψk01 , Γ0 ⇒ Δ0

D10 �LPC Γ1 ⇒ Δ1, ϕ
k10 D11 �LPC ψk11 , Γ1 ⇒ Δ1

such that, in both cases, κ(ϕ), κ(ψ) = κ(C(�ϕ�, �ψ�)), if κ(C(�ϕ�, �ψ�)) =
0, and κ(ϕ), κ(ψ) < κ(C(�ϕ�, �ψ�)), otherwise. Therefore the required deriva-
tions are obtained by applications of (r) to D00 and D11, and D10 and D01,
respectively.

Remark 11. In the presence of unrestricted initial sequents (ref), the in-
version strategy considered above will not go through. For instance, the
derivability of a sequent of the form Γ, C(�ϕ�, �ψ�) ⇒ C(�ϕ�, �ψ�), Δ does
not guarantee, for instance, the derivability of a sequent Γ, ϕ ⇒ ψ, Δ with
κ(ϕ) ≤ κ(C(�ϕ�, �ψ�)). This fact is crucial for the next lemma, in which
contraction is shown to be κ-admissible.

Lemma 12. (κ-admissibility of contraction)

(i) If D �LPC Γ, ϕk0 , ϕk1 ⇒ Δ, then there is a D′ �LPC Γ, ϕ ⇒ Δ with
κ(ϕ) ≤ max(κ(ϕk0), κ(ϕk1)) and in which the C-complexity of the side
formulae does not increase.

(i) If D �LPC Γ ⇒ ϕk0 , ϕk1 , Δ, then there is a D′ �LPC Γ ⇒ ϕ, Δ with
κ(ϕ) ≤ max(κ(ϕk0), κ(ϕk1)) and in which the C-complexity of the side
formulae does not increase.

Crucially, in both claims the length of the original derivation is preserved.

Proof. The proof is by induction on the length of D. One proves (i) and
(ii) simultaneously.
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The case of initial sequents follows immediately by the definition of C-
complexity. The sub-case of the induction step in which neither ϕk0 nor ϕk1

is principal in the last inference is immediate by induction hypothesis.

What remains is the case in which Γ, ϕk0 , ϕk1 ⇒ Δ or Γ ⇒ ϕk0 , ϕk1 , Δ are
not initial sequents, and one of ϕk0 or ϕk1 is principal in the last inference.
We treat the crucial cases in which ϕ is C(�ϕ�, �ψ�).

For (i), if C(�ϕ�, �ψ�)k0 is principal in the last inference, then D is of the
form:

D0

Γ, C(�ϕ�, �ψ�)k10 ⇒ Δ, ϕk00

D1

ψk01 , Γ, C(�ϕ�, �ψ�)k11 ⇒ Δ
(Cl)

Γ, C(�ϕ�, �ψ�)k0 , C(�ϕ�, �ψ�)k1 ⇒ Δ

such that κ(ϕk00), κ(ψk01) < κ(C(�ϕ�, �ψ�)k0).

We can then apply the inversion Lemma to D0 to obtain a

D′
0 �LPC Γ ⇒ Δ, ϕk′

00 , ϕl

with

κ(ϕl) = κ(C(�ϕ�, �ψ�)k10) if κ(C(�ϕ�, �ψ�)k10) = 0

κ(ϕl) < κ(C(�ϕ�, �ψ�)k10) if κ(C(�ϕ�, �ψ�)k10) �= 0

Similarly, inversion applied to D1 yields

D′
1 �LPC ψm, ψk′

11 , Γ ⇒ Δ

with

κ(ψm) = κ(C(�ϕ�, �ψ�)k10) if κ(C(�ϕ�, �ψ�)k10) = 0

κ(ψm) < κ(C(�ϕ�, �ψ�)k10) if κ(C(�ϕ�, �ψ�)k10) �= 0

By induction hypothesis, we obtain:

D′′
0 �LPC Γ ⇒ ϕ, Δ

D′′
1 �LPC ψ, Γ ⇒ Δ

An application of (Cl) yields the desired

D′ �LPC Γ, C(�ϕ�, �ψ�) ⇒ Δ

with the required C-complexity

κ(C(�ϕ�, �ψ�)) = max(κ(ϕ), κ(ψ)) + 1

≤ max(κ(C(�ϕ�, �ψ�)k0 , κ(C(�ϕ�, �ψ�)k1))
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For (ii), if C(�ϕ�, �ψ�)k0 is principal in the last inference, then D is of
the form:

D0

Γ, ϕk00 ⇒ ψk01 , C(�ϕ�, �ψ�)k10 , Δ
Γ ⇒ C(�ϕ�, �ψ�)k0 , C(�ϕ�, �ψ�)k1 , Δ

Inversion applied to D0 yields a proof D′
0 ending with

Γ, ϕl0 , ϕk′
00 ⇒ ψk′

01 , ψl1 , Δ

By two applications of the induction hypothesis, we obtain a proof D′′
0 of

Γ, ϕ ⇒ ψ, Δ

with

κ(ϕ) ≤ max(κ(ϕk′
00), κ(ϕl0)) (=: α)

κ(ψ) ≤ max(κ(ψk′
01), κ(ψl1)) (=: β)

Therefore, by (Cr), one obtains a derivation of Γ ⇒ C(�ϕ�, �ψ�), Δ with

κ(C(�ϕ�, �ψ�))=max(α, β)+1 ≤ max(κ(C(�ϕ�, �ψ�)k0), κ(C(�ϕ�, �ψ�)k1)).

It is worth noticing that the formulation of (∀l) and its associated C-
complexity renders the case of (i) in which one of the ϕ’s is principal in the
last inference and of the form ∀xϕ straightforward.

We can finally state and prove the cut-elimination lemma for LPC. We
start with the reduction lemma.

Lemma 13. (Reduction) If D0 is a cut-free proof of Γ ⇒ Δ, ϕk in LPC, and
D1 is a cut-free LPC-proof of ϕl, Γ ⇒ Δ, then there is a cut-free proof D
of Γ ⇒ Δ in which the C-complexity of the side formulae is no greater than
their κ-maximal occurrence in the premisses.

Proof. The proof is by a main induction on κ(ϕ) = max(κ(ϕl), κ(ϕk)),
with side inductions on the logical complexity of ϕ and on the sum d0 + d1

of the lengths of D0 and D1. We consider the main cases.
Case 1. One of D0, D1 is an initial sequent, say D0. If ϕ is not principal,

then Γ ⇒ Δ is already an initial sequent. If ϕ is principal in it, then we can
distinguish two cases. If D0 � Γ0, ϕ ⇒ ϕk, Δ, then we can apply Lemma 12
to D1 to obtain a derivation of Γ ⇒ Δ whose formulae have the required
C-complexity. If D0 � Γ ⇒ �k, Δ, then D1 � �l, Γ ⇒ Δ. By Lemma 8(i),
Γ ⇒ Δ is derivable with the expected C-complexity.

Case 2. The cut formula is not principal in one of the premises, say D1.
For instance the last inference of D1 is an application of (Cl). Then, with
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Γ := C(�ϕ�, �ψ�), Γ0, the derivation D ends with:

D0

C(�ϕ�, �ψ�), Γ0 ⇒ Δ, χ

D10

χ,Γ0 ⇒ Δ, ϕ

D11

χ, ψ,Γ0 ⇒ Δ
χ,C(�ϕ�, �ψ�), Γ0 ⇒ Δ

C(�ϕ�, �ψ�), Γ0 ⇒ Δ

By the weakening lemma, D can be transformed into a derivation D′

whose last inference is an application of (Cl), whose premises are

D′
0

C(�ϕ�, �ψ�), Γ0 ⇒ Δ, ϕ, χ

D′
10

χ,C(�ϕ�, �ψ�), Γ0 ⇒ Δ, ϕ

C(�ϕ�, �ψ�), Γ0 ⇒ Δ, ϕ

and

D
′′
0

ψ, C(�ϕ�, �ψ�), Γ0 ⇒ Δ, χ

D′
11

χ, ψ,C(�ϕ�, �ψ�), Γ0 ⇒ Δ
ψ, C(�ϕ�, �ψ�), Γ0 ⇒ Δ

Therefore D′ � C(�ϕ�, �ψ�), C(�ϕ�, �ψ�), Γ0 ⇒ Δ. The upper cuts in D′ can
be eliminated by side induction hypothesis, since d′

0+d′
11, d

′
0+d′

10 < d0+d1.
Moreover, since the weakened formulae have lowest possible C-complexity,
an application of the contraction lemma to the transformed derivation yields
the claim. The other cases in which the cut formula is not principal are easier.

Case 3. The cut formula is principal in the last inference of D0 and D1.
The case in which the cut formula is C(�ϕ�, �ψ�) is particularly easy, by
main induction hypothesis, because the cut can be pushed upwards and
applied to the ancestors of the cut formula, which have strictly smaller C-
complexity. The case in which the cut formula is principal and of the form
∀xϕ is treated standardly as well but one has first to get rid of the universal
quantifier in the premise of (∀l). This involves an essential application of
the substitution lemma [52, § 4.1].

Remark 14. Although our proof of lemma 13 above relies heavily on lemma
12, the role of κ-admissibility of contraction can be circumscribed to the role
it plays in Case 1 – that is, the case in which one of the premisses is an axiom
and the cut formula is principal.

In Case 2, and in the specific sub-case treated above, one can apply the
inversion lemma to D0 to obtain LPC-proofs D′

00 � Γ0 ⇒ Δ, ϕ, χ and D′
01 �

ψ, Γ0 ⇒ Δ, χ. These can then be combined with D10 and D11 respectively,
and then (Cl) applied to the results of the shorter cuts. Such a template,
with inversion playing the fundamental role, can be applied to all other
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sub-cases of Case 2 except of course (∀l). In such case, D has the form:

D00

Γ0, ϕ(s),∀xϕ ⇒ Δ, χ

Γ0,∀xϕ ⇒ Δ, χ

D1

χ,Γ0,∀xϕ ⇒ Δ
Γ0,∀xϕ ⇒ Δ

In such case, one can therefore weaken D1, apply cut to such weakened
derivation and D00, and then apply (∀l).

By repeated applications of the Reduction Lemma, we can then obtain:

Corollary 15. The rule (cut) is eliminable in LPC.

Since the cut-elimination proof above displays standard bounds for the
reduction, Corollary 15 can be formalized in IΔ0 + superexp, where IΔ0 is
the subsystem of PA featuring only bounded induction, and

superexp := ∀x∃y(2x
x = y),

with 2x
0 = x, 2x

y+1 = 22x
y .

The strategy leading to the cut-elimination theorem above clearly gener-
alizes to the case of the theory obtained by replacing the C-rules with the
rules (Tr-l) and (Tr-r). One simply has to replace the C-complexity with a
truth complexity measure (cf. Sect. 5 below). Similarly, one can apply the
strategy to a theory of näıve abstraction (or property predication) based on
rules of the form

Γ ⇒ Δ, ϕ(t)∈r
Γ ⇒ Δ, t ∈ {x | ϕ}

ϕ(t), Γ ⇒ Δ∈l
t ∈ {x | ϕ}, Γ ⇒ Δ

where instead of a naming device one assumes a term-forming abstraction
operator {· | ·} – e.g. along the lines of the one employed for a contraction-free
set theory in [7]. ∈-complexity is then defined in the obvious way: given a
derivation D ending with ∈l, the ∈-complexity of t ∈ {x | ϕ} is defined as the
∈-complexity of ϕ(t) plus one. On can then follow the template of Definition
7. All results above then carry over with only minimal modifications.

5. A Compositional Theory of Non-Reflexive Truth and
Consequence

In their [29], Halbach and Horsten develop a formal system, called PKF (for
Partial Kripke-Feferman), which axiomatizes Kripke’s fixed point models
over Peano Arihtmetic (PA) in strong Kleene logic. PKF constitutes the ba-
sis of any theory of truth that extends Kripke’s theory with extra-resources
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– e.g. a new conditional [19,20,32]. In this section, we develop a twin theory
of PKF – or better, a version of PKF based on the logic K3 –, which we
call RKF, whose logic is based – somewhat unsurprisingly – on a restriction
of (ref). PKF and RKF are twins in the sense that for X a fixed point
model for the language LTr obtained in the manner suggested in Sect. 3
(that serves as the extension of the truth predicate),

(N, X) �k3 PKF iff (N, X) �ts RKF

This obviously entails that RKF is also a theory of näıve truth, and in
fact an axiomatisation of Kripke’s theory of truth in partial (substructural)
logic. Actually, RKF is still richer: it is also a theory of näıve consequence,
whereas PKF cannot be. In fact, just as a näıve truth predicate can be
defined from the näıve consequence predicate of LPC, so can a predicate for
näıve consequence (obeying the rules (Cl) and (Cr)) be defined from the
näıve truth predicate of RKF (the näıveté of the latter, in turn, follows from
the compositional rules of RKF). Definition 16, Lemma 20, and Corollary
21 will establish this claim more precisely. By contrast, since PKF is a fully
structural theory, the presence of näıve consequence rules would immediately
entail triviality by an internalized version of Curry’s paradox–the V-Curry
paradox by [6].

In addition to the vicinity of RKF to well-known theories with restricted
operational rules, RKF displays some important theoretical virtues. First, it
admits a nice semantics (via the simple, inductive construction reviewed in
Sect. 3) which is matched by the axiomatic theory. More specifically, RKF
enjoys an adequacy result with respect to the fixed points of the inductive
construction (Proposition 22). Adequacy results have been defended as a
theoretical virtue for theories of truth, e.g. by [18]. Moreover, non-reflexive
approaches of the kind we discuss here admit a full inter-definability of
näıve validity and näıve truth (via the conditional), and both notions enjoy
fully symmetric rules (Lemma 20 and Corollary 21). Here, we leave open the
question of which approach is ultimately preferable as an environment to for-
malize näıve semantic notions. This work is aimed at producing new results
concerning non-reflexive theories, in order to better assess their prospects
as formal approaches to näıve semantic notions.

As anticipated above, in order to formulate RKF, it is more convenient
to take the truth predicate as primitive. Let LTr be the language given
by adding a fresh unary predicate Tr to the language of arithmetic, i.e.
LN ∪ {Tr}. In this language, we can define the consequence predicate via a
combination of truth and conditional, putting C(x, y) :↔ (Tr(x) → Tr(y)),
i.e. ¬(Tr(x)∧¬Tr(y)). Due to the fact that the logic TS has all the classical
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meta-inferences, and thus the conditional can be introduced and eliminated
just as the consequence predicate, one can easily define truth in terms of
consequence and the other way around.

One last piece of notation, following [17]. Let num(x) be the function
symbol representing the primitive recursive function that sends each number
to its numeral. Given a formula ϕ(v), we write �ϕ(ẋ)� for the result of
formally substituting the variable v for the numeral of x in ϕ (see e.g. [51]).
Moreover, x(y/v) stands for the result of formally substituting y for the
(code of) the variable v in x (we follow the conventions in [28])

Definition 16. (RKF) The theory RKF in LTr has the following compo-
nents:

(i) The logical component of LPC, that is the initial sequents and rules of
LPC except (Cl) and (Cr)

(ii) The initial sequents Γ ⇒ Δ, ϕ for ϕ a basic axiom of PA, including
identity axioms:

Γ ⇒ Δ, t = t;
Γ ⇒ Δ, P (s)

Γ, s = t ⇒ Δ, P (t)
for P an atom of LTr

(iii) All instances of the induction schema for all formulae ϕ(v) of LTr:

Γ ⇒ ϕ(0), Δ Γ, ϕ(x) ⇒ ϕ(x + 1), Δ
Γ ⇒ ∀xϕ,Δ

with x not free in Γ, Δ,∀xϕ.

(iv) The following truth rules:

Γ ⇒ P (x1, . . . , xn), Δ
(Trat1)

Γ ⇒ Tr(�P (ẋ1, . . . , ẋn)�), Δ
P (x1, . . . , xn) an atom of LN

Γ, P (x1, . . . , xn) ⇒ Δ
(Trat2)

Γ, Tr(�P (ẋ1, . . . , ẋn)�) ⇒ Δ
P (x1, . . . , xn) an atom of LN

Γ ⇒ Tr(x), Δ
(Tr1)

Γ ⇒ Tr�Tr(ẋ)�, Δ
Γ, Tr(x) ⇒ Δ

(Tr2)
Γ, Tr�Tr(ẋ)� ⇒ Δ

Γ ⇒ ¬Tr(x), Δ
(Tr¬1)

Γ ⇒ Tr(¬. x), Δ
Γ,¬Tr(x) ⇒ Δ

(Tr¬2)
Γ, Tr(¬. x) ⇒ Δ
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Γ ⇒ Tr(x), Δ Γ ⇒ Tr(y), Δ
(Tr∧1)

Γ ⇒ Tr(x∧. y), Δ
Γ, Tr(x), Tr(y) ⇒ Δ

(Tr∧2)
Γ, Tr(x∧. y) ⇒ Δ

Γ ⇒ Tr(x(ẏ/v)), Δ
(Tr∀1)

Γ ⇒ Tr(∀.vx), Δ
y ‘not free’ (see remark) in Γ, Δ, Tr(∀.vx)

Γ, Tr(x(t/v)) ⇒ Δ
(Tr∀2)

Γ, Tr(∀.vx) ⇒ Δ

A few comments on the definition:

Remark 17.

(i) Syntactic functions operating on codes of LTr-expressions will be pre-
sented in simplified form for the sake of readability.

(ii) The Tr-rules for connectives and quantifiers are presented in simpli-
fied forms, with variables intended to range over sentences and terms,
according to the form of the rules. For instance, (Tr∧1) is short for:

Γ, SentLTr(x) ⇒ Tr(x), Δ Γ, SentLTr(y) ⇒ Tr(y), Δ
Γ, SentLTr(x∧. y) ⇒ Tr(x∧. y), Δ

where ‘·∧. ·’ represents the operation e1, e2 	→ e1 ∧ e2.
Finally, the non-abbreviated form of (Tr∀1) reads:

Γ, SentLTr(∀.vx) ⇒ Tr(x(ẏ/v)), Δ
Γ, SentLTr(∀.vx) ⇒ Tr(∀.vx), Δ

The consistency of RKF will be a corollary of Proposition 22, whose proof
requires a few preliminary results that have also independent interest.

The following lemma, which follows from a simple external induction on
the length of ϕ, indicates a form of recapture: RKF (and extensions thereof)
features full initial sequents for the language LN.

Lemma 18. RKF proves ϕ ⇒ ϕ for ϕ ∈ LN.

Next, observe that weakening is length-preserving admissible in RKF in
the sense specified in the following lemma.

Lemma 19. (Length-preserving admissibility of Weakening) If there is an
RKF-derivation D of length n of Γ ⇒ Δ, then for any multisets Γ′ ⊇ Γ and
Δ′ ⊇ Δ, there is an RKF-derivation D′ of length n of Γ′ ⇒ Δ′.

We can now show that the näıve rules to introduce the truth predicate
to the left and to the right of the sequent arrow are derivable in RKF.13

13The arguments showing that disquotational principles are not sufficient to derive
compositional ones [e.g. [10] Ch.3] can be adapted to show that the rules of RKF are not
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Lemma 20. Every instance of the näıve truth rules is admissible in RKF:

Γ ⇒ ϕ(x1, . . . , xn), Δ
(Trr)

Γ ⇒ Tr(�ϕ(ẋ1, . . . , ẋn)�), Δ

Γ, ϕ(x1, . . . , xn) ⇒ Δ
(Trl)

Γ, Tr(�ϕ(ẋ1, . . . , ẋn)�) ⇒ Δ

Proof. We prove the admissibility of both Trr and Trl by simultaneous
induction, with the main induction on the logical complexity of ϕ and sec-
ondary induction on the length of the derivations. We do only some cases,
and only for the rule Trr, for the sake of brevity. Call D the derivation of
Γ ⇒ ϕ, Δ in the premiss of Trr.

Case 1. Suppose ϕ has logical complexity 0. Therefore, it is atomic. There
are two cases.

Case 1.1. ϕ is an atomic formula of LN. In this case, the rule Trat1
provides the desired conclusion:

...
Γ ⇒ P (x1, . . . , xn), Δ

(Trat1)
Γ ⇒ Tr(�P (ẋ1, . . . , ẋn)�), Δ

Case 1.2. ϕ is of the form Tr(x). In this case, the rule Tr1 provides the
desired conclusion:

...
Γ ⇒ Tr(x), Δ

(Tr1)
Γ ⇒ Tr�Tr(ẋ)�, Δ

Case 2. ϕ has logical complexity n + 1. There are 3 main cases.
Case 2.1. ϕ is a negation ¬ψ. We omit this case (it is similar to, and

easier than, the others).
Case 2.2. ϕ is a conjunction ψ ∧ χ. There are two sub-cases.

Footnote 13 continued
admissible in PA (in our non-reflexive logic) extended with the naive rules; any subsystem
of the latter system will feature only a finite number of applications of naive truth rules,
and one can find models of such sub-systems in which compositionality fails for sentences
of a sufficiently high syntactic complexity. Thanks to an anonymous referee for raising this
issue.
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Case 2.2.1. ψ ∧ χ is principal in D. Then, the last rule applied to ψ ∧ χ
in D is ∧r, and D has this form:

D0

Γ ⇒ ψ, Δ
D1

Γ ⇒ χ,Δ
(∧r)

Γ ⇒ ψ ∧ χ,Δ

By the main induction hypothesis, there is a derivation D∗
0 of Γ ⇒ Tr(�ψ�), Δ

from Γ ⇒ ψ, Δ, and a derivation D∗
1 of Γ ⇒ Tr(�χ�), Δ from Γ ⇒ χ,Δ.

Then, we reason as follows:

D∗
0

Γ ⇒ Tr(�ψ�), Δ
D∗

1

Γ ⇒ Tr(�χ�), Δ
(Tr∧1)

Γ ⇒ Tr(�ψ ∧ χ�), Δ

Case 2.2.2. ψ ∧ χ is not principal in D. Therefore, some other rule r is
the last one in D. Suppose r has two premises (the case with one premiss
is analogous). Therefore, D has this form:

D0

Γ0 ⇒ ψ ∧ χ,Δ0

D1

Γ1 ⇒ ψ ∧ χ,Δ1
(r)

Γ ⇒ ψ ∧ χ,Δ

By the secondary induction hypothesis, there is a derivation D∗
0 of Γ0 ⇒

Tr(�ψ ∧χ�), Δ0 from Γ0 ⇒ ψ ∧χ,Δ0, and a derivation D∗
0 of Γ1 ⇒ Tr(�ψ ∧

χ�), Δ1 from Γ1 ⇒ ψ ∧ χ,Δ1. Then, we reason as follows:

D∗
0

Γ0 ⇒ Tr(�ψ ∧ χ�), Δ0

D1

Γ1 ⇒ Tr(�ψ ∧ χ�), Δ1
(r)

Γ ⇒ Tr(�ψ ∧ χ�), Δ

Case 2.3. ϕ is a universally quantified formula ∀xψ. There are three sub-
cases.

Case 2.3.1. ∀xψ is principal in D. There are two sub-cases.

Case 2.3.1.1. The last rule applied to ∀xψ in D is ∀r. Therefore, D has
the following form:

D0

Γ ⇒ ψ(y), Δ
(∀r)

Γ ⇒ ∀xψ,Δ

where y /∈ FV(Γ, Δ,∀xψ). By the main induction hypothesis, there is a
derivation D∗

0 of Γ ⇒ Tr(�ψ(ẏ)�), Δ from Γ ⇒ ψ(y), Δ. We then reason as
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follows:
D∗

0

Γ ⇒ Tr(�ψ(ẏ)�), Δ
(∀r)

Γ ⇒ ∀xTr(�ψ(ẋ)�), Δ
(Tr∀1)

Γ ⇒ Tr(�∀xψ�), Δ

noticing that our assumption entails that y /∈ FV(Γ, Δ,∀xTr(�ψ(ẋ)�)) as
well.

Case 2.3.1.2. The last rule applied to ∀xψ in D is ind. Therefore, D has
the following form:

D0

Γ ⇒ ψ(0), Δ
D1

Γ, ψ(x) ⇒ ψ(x + 1), Δ
(ind)

Γ ⇒ ∀xψ,Δ

By the main induction hypothesis, there is a derivation D∗
0 of Γ ⇒ Tr(�ψ(0)�),

Δ from Γ ⇒ ψ(0), Δ. Moreover, by the secondary induction hypothesis,
there is a derivation D∗

1 of Γ, Tr(�ψ(ẋ)�) ⇒ ψ(x + 1), Δ from Γ, ψ(x) ⇒
ψ(x + 1), Δ, and by the main induction hypothesis, there is also a deriva-
tion D∗∗

1 of Γ, Tr(�ψ(ẋ)�) ⇒ Tr(�ψ(ẋ + 1)�), Δ from the latter (i.e. from
Γ, Tr(�ψ(ẋ)�) ⇒ ψ(x + 1), Δ). We then reason as follows:

D0

Γ ⇒ Tr(�ψ(0)�), Δ
D∗∗

1

Γ, Tr(�ψ(ẋ)�) ⇒ Tr(�ψ(ẋ + 1)�), Δ
(ind)

Γ ⇒ ∀xTr(�ψ(ẋ)�, Δ
(Tr∀1)

Γ ⇒ Tr(�∀xψ�), Δ

Case 2.3.2. ∀xψ is not principal in D. Therefore, some other rule r is
the last one in D. Suppose r has one premiss (the case with two premises
is, as always, analogous). D has the following form:

D0

Γ0 ⇒ ∀xψ,Δ0
(r)

Γ ⇒ ∀xψ,Δ

By the secondary induction hypothesis, there is a derivation D∗
0 of Γ0 ⇒

Tr(�∀xψ�), Δ0 from Γ0 ⇒ ∀xψ,Δ0. We then we can simply apply the rule
r.

The above Lemma also shows that, via the definition of C(x, y) as Tr(x) →
Tr(y), RKF unrestrictedly validates the näıve rules for consequence.
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Corollary 21. Every instance of the näıve consequence rules is admissible
in RKF:

Γ ⇒ Δ, ϕ ψ, Γ ⇒ Δ
(Cl)

Γ, C(�ϕ�, �ψ�) ⇒ Δ
Γ, ϕ ⇒ ψ, Δ

(Cr)

Γ ⇒ C(�ϕ�, �ψ�), Δ
Proof. For Cl:

Γ ⇒ ϕ, Δ
(Trr)

Γ ⇒ Tr(�ϕ�), Δ

Γ, ψ ⇒ Δ
(Trl)

Γ, Tr(�ψ�) ⇒ Δ
(¬r)

Γ ⇒ ¬Tr(�ψ�), Δ
(∧r)

Γ ⇒ Tr(�ϕ�) ∧ ¬Tr(�ψ�), Δ
(¬l)

Γ,¬(Tr(�ϕ�) ∧ ¬Tr(�ψ�)) ⇒ Δ

For Cr:
Γ, ϕ ⇒ ψ, Δ

(Trl)
Γ, Tr(�ϕ�) ⇒ ψ, Δ

(Trr)
Γ, Tr(�ϕ�) ⇒ Tr(�ψ�), Δ

(¬l)
Γ, Tr(�ϕ�),¬Tr(�ψ�) ⇒ Δ

(∧l)
Γ, Tr(�ϕ�) ∧ ¬Tr(�ψ�) ⇒ Δ

(¬r)
Γ ⇒ ¬(Tr(�ϕ�) ∧ ¬Tr(�ψ�)), Δ

Since C(�ϕ�, �ψ�) is defined as ¬(Tr(�ϕ�) ∧ ¬Tr(�ψ�)), this establishes the
claim.

Finally, thanks to the above Corollary, RKF can be shown to be adequate
with respect to the semantics articulated in Sect. 3.

Proposition 22. (Adequacy) Let S ⊆ ω ×ω and S0 be the set of sentences
ϕ s.t. the sequent (; C(�0 = 0�, �ϕ�)) is in S. Then:

〈N, S0〉 �ts RKF if and only if Ψ(S) = S, and S is consistent

Proof. (Proof sketch) The right-to-left direction is immediate: a quick in-
spection shows that if S is a consistent fixed point of Ψ, then 〈N, S0〉 TS-
satisfies all the axiom and rules of RKF. For the left-to-right direction, notice
that if 〈N, S0〉 �ts RKF, then the set of (codes of) sentences in S0 is consis-
tent and the corresponding sequents are closed under all the logical clauses of
the operator Ψ (for otherwise 〈N, S0〉 would not TS-satisfy the logical rules
of RKF) and, by Corollary 21, also under the näıve consequence-theoretic
clauses of Ψ. Therefore, Ψ(S) = S.

We now turn to the proof-theoretic analysis of RKF. We will establish
an upper-bound for RKF-provability. We show that RKF can be embedded
in the theory PKF – first proposed by [29]. We assume a sequent calculus
formulation of K3 with identity (see, e.g., [39, Appendix A]).
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Definition 23. (PKF) The system PKF extends first-order K3 formulated
in LTr with the basic axioms of PA as initial sequents, the induction princi-
ple

Γ, A(x) ⇒ A(x + 1), Δ
IND(LTr)

Γ, A(0) ⇒ A(t), Δ

for A(v) ∈ LTr (and x not free in Γ, Δ, A(0) and the following initial se-
quents):

(PKF1) Γ, Tr(�P (ẋ1, . . . , ẋn)�) ⇒ P (x1, . . . , xn), Δ

(PKF2) Γ, P (x1, . . . , xn) ⇒ Tr(�P (ẋ1, . . . , ẋn)�), Δ

(PKF3) Γ, SentLTr(x),¬Trx ⇒ Tr¬. x,Δ

(PKF4) Γ, SentLTr(x), Tr¬. x ⇒ ¬Trx,Δ

(PKF5) Γ, SentLTr(x∧. y), Tr(x∧. y) ⇒ Trx ∧ Try, Δ

(PKF6) Γ, SentLTr(x∧. y), Trx ∧ Try ⇒ Tr(x∧. y), Δ

(PKF7) Γ, SentLTr(∀.vx), Tr(∀.vx) ⇒ ∀yTr x(ẏ/v), Δ

(PKF8) Γ, SentLTr(∀.vx),∀yTrx(ẏ/v) ⇒ Tr(∀.vx), Δ

(PKF9) Γ, Tr(x) ⇒ Tr�Tr(ẋ)�, Δ

(PKF10) Γ, Tr�Tr(ẋ)� ⇒ Tr(x), Δ

(PKF11) Γ, SentLTr(x), Trx ⇒ ¬Tr¬. x,Δ

(PKF12) Γ, SentLTr(x),¬Tr¬. x ⇒ Trx,Δ

(PKF13) Γ, SentLTr(x∧. y),¬Tr(x∧. y) ⇒ ¬(Trx ∧ Try), Δ

(PKF14) Γ, SentLTr(x∧. y),¬(Trx ∧ Try) ⇒ ¬Tr(x∧. y), Δ

(PKF15) Γ, SentLTr(∀.vx),¬Tr(∀.vx) ⇒ ¬∀yTr x(ẏ/v), Δ

(PKF16) Γ, SentLTr(∀.vx),¬∀yTrx(ẏ/v) ⇒ ¬Tr(∀.vx), Δ

(PKF17) Γ,¬Tr(x) ⇒ ¬Tr�Tr(ẋ)�, Δ

(PKF18) Γ,¬Tr�Tr(ẋ)� ⇒ ¬Tr(x), Δ

Notational abbreviations have been applied as in the definition of RKF.

The idea of the reduction is as follows: since the sequent arrow of RKF
is modelled after the material conditional of K3, we can translate the prov-
ability of a sequent as provability of the corresponding material conditional,
plus the condition that the sentences in the conclusion are fully classical in
PKF.

Lemma 24. If RKF � Γ ⇒ Δ, then PKF � ⇒ ¬ ∧

Γ,
∨

Δ, where
∧

∅ := �,
and

∨

∅ := ⊥.
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Proof. The proof is by induction on the length of the derivation in RKF.
For the base case: if Γ ⇒ Δ is an initial sequent in RKF, then ϕ ∈ Δ

may be either t = t or a basic axiom of PA. In both cases, PKF ⇒ ϕ; the
claim then follows by logic. If there is a ϕ ∈ LN ∩Γ∩Δ, then again ⇒ ϕ,¬ϕ
is derivable in PKF, and the claim is obtained again by logic.

For the induction step, each rule must be considered. We report the key
cases of induction. The other cases, including the identity rule of RKF, are
straightforward.

If Γ ⇒ Δ,∀xϕ results from an application of induction, then one has by
induction hypothesis (and inversion for ∨-rules) that the following sequents
are provable in PKF:

⇒ ¬
∧

Γ, ϕ(0),
∨

Δ (5)

⇒ ¬
∧

Γ,¬ϕ(x), ϕ(x + 1),
∨

Δ (6)

By the logical rules of K3, we obtain:

ϕ(x) ⇒ ¬
∧

Γ, ϕ(x + 1),
∨

Δ (7)

The sequent (7), together with (5), gives

⇒ ¬
∧

Γ,∀xϕ,
∨

Δ (8)

by the induction rule of PKF and (∀r).
For the logical negation rules, let’s consider (¬l). The case of (¬r) is

analogous. One has (again by employing the inversion properties of ∨-rules):

⇒ ¬
∧

Γ, ϕ,
∨

Δ. (9)

We would like to obtain

⇒ ¬(
∧

Γ ∧ ¬ϕ),
∨

Δ. (10)

However, (9) and (10) are interderivable in PKF by pure logic.

Since PKF proves ⇒ ϕ∨¬ϕ for ϕ ∈ LN, we have the desidered corollary:

Corollary 25. For ϕ ∈ LN, if RKF � ⇒ ϕ, then PKF � ⇒ ϕ.

The study of the proof-theoretic lower bound for RKF appears to be more
involved. Assuming a standard notation for ordinals < ε0, one would hope to
define in RKF the truth predicates of the theory of ramified truth up to the
ordinal ωω (RT<ωω) – see [28, §9.1] for a definition. If one succeeded, then
it would follow that any arithmetical theorem of PKF is also a theorem of
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RKF: this is because RT<ωω is an upper bound for the arithmetical theorems
of PKF. This strategy would be realized if one could show that the rule

Γ,∀ζ ≺ η A(ζ) ⇒ A(η), Δ
TILTr(α) :=

Γ ⇒ ∀ξ ≺ α A(ξ), Δ

is admissible in RKF for each α < ωω. Since each α < ωω has the form
ωk, one may try to mimic the classical proof and prove the claim by first
establishing

Γ,∀α ≺ β A(α) ⇒ ∀α ≺ β + ωk A(α), Δ

via an external induction on k. Troubles already appear in the base step of
this induction. In fact, the main assumption

Γ,∀α ≺ β A(α) ⇒ A(β), Δ

on the progressiveness of A does not suffice to conclude

Γ,∀α ≺ β A(α) ⇒ ∀α ≺ β + 1 A(α), Δ

because of the potential failure of

∀α ≺ β A(α) ⇒ ∀β ≺ α A(α).

We therefore list the claim as an open, although we conjecture a positive
answer to it:
Open problem 26. RKF defines the truth predicates of RT<ωω . That is, there
is a relative interpretation of RT<ωω in RKF that leaves the arithmetical
vocabulary unchanged. Therefore, all arithmetical theorems of RT<ωω are
theorems of RKF.

6. Further Work

Much work remains to be done on non-reflexive systems and their applica-
tions. Just to mention a few: fully compositional, non-reflexive theories of
consequence should be formulated and studied (by analogy with the compo-
sitional, non-reflexive theory of truth presented in Sect. 5). Moreover, the re-
lations between non-reflexive and other non-classical systems (paracomplete,
paraconsistent, non-contractive, and non-transitive) should be fully investi-
gated. For instance, the non-reflexive logic TS is known to be dual to the
non-transitive logic ST, in a precise technical sense:14 therefore, TS-based
theories could be dual, in the same sense, to ST-based theories. Another

14For more on the TS-ST duality, see [11,14].
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nonclassical system in the vicinity of RKF may involve logical constants in-
terpreted by means of other truth functions such as the ones of Weak-Kleene
logic.
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