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Abstract. This paper discusses some key connexive principles construed as principles

about reasons, that is, as principles that express logical properties of sentences of the form

‘p is a reason for q’. Its main goal is to show how the theory of reasons outlined by Crupi

and Iacona, which is based on their evidential account of conditionals, yields a formal

treatment of such sentences that validates a restricted version of the principles discussed,

overcoming some limitations that affect most extant accounts of conditionals.
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1. Preliminary Clarifications

Let us start with the following list of connexive principles:

P1 ¬(¬p → p)

P2 ¬(p → ¬p)

P3 ¬((p → q) ∧ (p → ¬q))

P4 (p → q) → ¬(p → ¬q)

P5 (p → ¬q) → ¬(p → q)

P6 ¬((p → q) ∧ (¬p → q))

P7 (p → q) → ¬(¬p → q)

P8 (¬p → q) → ¬(p → q)

P1 and P2 are known as Aristotle’s Thesis.1 P3 is known as Abelard’s First
Principle, and is sometimes phrased in conditional form as Weak Boethius

1The reference is to Aristotle, Prior Analytics 57b14, where a statement of the form
‘If not-p, p’ is rejected as impossible.
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Thesis: (p → q) ⊃ ¬(p → ¬q).2 P4 and P5 are alternative formulations
of Boethius Thesis, which is stronger than Weak Boethius Thesis on the
assumption that → is stronger than ⊃.3 P6 is sometimes called Aristotle’s
Second Thesis.4 Finally, P7 and P8 may be called Boethius Left Thesis.5

These two principles bear to P6 the same relation that P4 and P5 bear to
P3: if one replaces the main connective in P7 and P8 with ⊃, one obtains a
weaker claim which is equivalent to P6.

The principles listed above—especially Aristotle’s Thesis and Boethius
Thesis—have been discussed mostly in relation to the logic of conditionals,
so their plausibility has been measured against the standard of the ordinary
use of ‘if’. But the symbol → can be construed in different ways, and this
paper focuses precisely on one alternative interpretation of it. The expression
p → q will be used here to represent a sentence of the form ‘p is a reason for
q’. To mark the difference between conditionals and sentences about reasons,
‘If p, then q’ will be represented as p > q.

More specifically, the interpretation of → that will be considered concerns
epistemic reasons, that is, reasons for belief. So it is not intended to model
practical reasons, that is, reasons for action. For any two propositions p and
q, to say that p is a reason for q in the sense that matters here is to say that
assuming p provides a justification for believing q. For example, assuming
that Fido is a dog provides a justification for believing that Fido can bark.
In other words, p → q holds when p supports q.

A reason in this sense is a sufficient reason. To assert p → q is to say
that the justification provided by p suffices for believing q: Fido’s being a
dog suffices for believing that he can bark. It is important to note, however,
that sufficiency so understood is consistent with defeasibility. The relation
expressed by → is non-monotonic, in that it can happen that p → q holds
but (p ∧ r) → q does not hold for some r. In this case r acts as a defeater
for p → q. For example, on the assumption that Fido is a dog and is mute,
it is not reasonable to think that Fido can bark. So ‘sufficient’ is to be read
as ‘defeasibly sufficient’.

How is → to be defined in order to provide an adequate account of the
logical properties of sentences about reasons? This question, which is crucial

2See Wansing [33]. This principle is not mentioned in McCall’s characterization of
connexivity, see McCall [19], p. 435. In Angell [2], P3 is called ‘principle of subjunctive
contrariety’.

3The reference is to Boethius, De Syllogismo Hypothetico 843D, see Wansing [33].
4This label is used in McCall [20].
5In Francez [8], P7 and P8 are called ‘Boethius ¬l Thesis’, where l stands for ‘left’.
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to any formal study of reasons, has been addressed by different authors
and from different angles.6 However, the role of connexivity in the logic of
reasons has not yet received the attention it deserves, or so it appears. It is
quite natural to wonder whether P1–P8 can be part of a theory of reasons,
because they look very plausible when one considers ordinary statements
about reasons.

Consider P1 and P2. Clearly, Fido’s not being a dog is not a reason for
thinking that he is a dog, and Fido’s being a dog is not a reason for thinking
that he is not a dog. Consider P3. Clearly, it is not the case that Fido’s
being a dog is both a reason for thinking that he can bark and a reason
for thinking that he cannot bark. P4 is equally compelling: assuming that
Fido’s being a dog is a reason for thinking that he can bark, it is reasonable
to deny that his being a dog is also a reason for thinking that he cannot
bark. P5 is similar to P4. Consider P6. Clearly, it is not the case that both
Fido’s being a dog and his not being a dog are reasons for thinking that he
can bark. P7 is equally compelling: assuming that Fido’s being a dog is a
reason for thinking that he can bark, it is reasonable to deny that Fido’s
not being a dog is also a reason for thinking that he can bark. P8 is simlar
to P7.

As it emerges from the examples just provided, P1–P8 are prima facie
plausible when → is read as ‘is a reason for’. Or at least, they are no less
intuitive than they are when → is understood as ‘if’. This should not be
surprising. Sentences about reasons are typically expressed by means of hy-
pothetical constructions, so it is sensible to expect that the logic of reasons
is somehow related to the logic of conditionals. The material presented in
the following sections is intended to shed some light on the relation between
reasons and conditionals.

2. Classicality

In order to assess the prospects of an account of conditionals for the purpose
of providing an analysis of ‘p is a reason for q’, at least three key issues must
be addressed. The first concerns the link between → and logical consequence
as understood in classical logic. Here the symbol |= will be used to indicate
the latter relation. Most extant accounts of conditionals validate the princi-
ple known as Supraclassicality, according to which p |= q entails p > q. So it
is quite natural to ask whether the same principle should hold for reasons,

6The works on the logic of reasons include Pollock [22,23], Reiter [25], Horty [10,11],
Spohn [29].
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that is, whether p |= q should entail p → q. Yet there is no obvious answer
to this question, for it is an open issue whether every case in which p |= q is
plausibly a case in which p is a reason for q.

In particular, two notoriously controversial cases are to be considered,
the case in which p is logically false and the case in which q is logically true.
Consider the following sentences:

(1) If it is raining and it is not raining, God exists

(2) If God exists, either it is raining or it is not raining

As long as one is inclined to grant that in (1) and (2) the antecedent entails
the consequent in the sense of ‘entails’ that matters to logic, one will also be
apt to think that the antecedent supports the consequent in virtue of that
relation. By contrast, if one is inclined to question (1) and (2) as genuine
cases of entailment, arguing that they lack the right sort of relevance link,
one will be willing to claim that there are classically valid arguments in
which the premises do not support the conclusion.

As long as the cases of the two kinds considered are left aside, it is
definitely less controversial that p |= q entails p → q. Consider the following
principle, which may be called Restricted Classicality : if p is not logically
false, q is not logically true, and p |= q, then p is a reason for q. Restricted
Classicality is weaker than Supraclassicality in that it rules out cases in
which q logically follows from p merely in virtue of some property—logical
truth or logical falsity—that one of them possesses independently of the
other. So it guarantees that the combination of the truth of p with the
falsity of q is ruled out by some logical relation between p and q, which
plausibly justifies the claim that p is a reason for q.

Arguably, Restricted Classicality follows from two basic assumptions that
any theory of reasons should grant. The first is that there is an essential con-
ceptual link between reasons and inferences: to say that p is a reason for q
is to say that the inference from p to q is justified. The second is that the
inference from p to q is justified when p is not logically false, q is not log-
ically true, and p |= q. Logical consequence—once potentially controversial
cases such as those considered above are left aside—may be regarded as the
strongest form of support that a premise p can provide for a conclusion q.
Given these two assumptions, it seems correct to conclude that Restricted
Classicality should hold.

Of course, the further question remains of whether Supraclassicality should
hold as well. Supraclassicality, unlike Restricted Classicality, conflicts with
P1–P8. Consider P1. If p is a classical tautology, we have that ¬p |= p. By
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Supraclassicality it follows that ¬p → p is true, hence ¬(¬p → p) is false.
Similar counterexamples can be found for P2–P8. Note that, in a modal
semantics, it is not even necessary to use classical tautologies, or contradic-
tions, to generate such counterexamples, for it suffices to consider formulas
that are true, or false, in all worlds in some model. For example, ¬(¬p → p)
is false in a world in a model if p is true in all worlds in that model. In any
case, one cannot have both Supraclassicality and P1–P8.7

This dilemma opens two divergent routes for a theory of reasons. One
option is to maintain Supraclassicality and opt for some suitably restricted
version of P1–P8. The other is to maintain P1–P8 and replace Supraclas-
sicality with Restricted Classicality. The first route is for those who have
classical inclinations about (1) and (2), while the second is for those who
regard (1) and (2) as seriously problematic. Although both routes deserve
careful consideration, here I will explore only the first.

The idea that guides this choice is that the initial plausiblity of P1–P8 can
be explained without assuming that they hold unrestrictedly. More precisely,
they can be explained by the following restricted versions of P1–P8, which
are consistent with Supraclassicality:

P9 ♦¬p ⊃ ¬(¬p → p)

P10 ♦p ⊃ ¬(p → ¬p)

P11 ♦p ⊃ ¬((p → q) ∧ (p → ¬q))

P12 ♦p ⊃ ((p → q) → ¬(p → ¬q))

P13 ♦p ⊃ ((p → ¬q) → ¬(p → q))

P14 ♦¬q ⊃ ¬((p → q) ∧ (¬p → q))

P15 ♦¬q ⊃ ((p → q) → ¬(¬p → q))

P16 ♦¬q ⊃ ((¬p → q) → ¬(p → q))

Note that the examples used in Section 1 to show the initial plausibility of
P1–P8 are cases in which the antecedents of P9–P16 are satisfied. Arguably,
this holds in general for any example that might convincingly be invoked in
support of P1–P8, for there seem to be no clear intuitions about the cases
in which the antecedents of P9–P16 are not satisfied.8

7A key assumption of the reasoning just stated, of course, is that the falsity of ¬(¬p →
p) entails its non-truth. That entailment, however, might not hold, for example as in
Wansing’s C, in which case there would be no counterexample.

8This is essentially the view advocated in Iacona [12]. Restricted forms of connexivity
are discussed in Unterhuber [32], Kapsner [14], and Lenzen [15].
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3. Aristotle’s Second Thesis

The second issue to be addressed concerns Aristotle’s Second Thesis. Most
extant accounts of conditionals do not preserve this principle, no matter
whether it is restricted or not. Here it will suffice to consider three well
known accounts that rely on the Ramsey Test, the idea that in order to
assess p > q one must check whether q holds on the supposition that p holds.
The first is the probabilistic view developed by Adams, which defines the
acceptability of a conditional as a function of the conditional probability of
its consequent given its antecedent. On this view, p > q is acceptable to the
extent that P (q|p) is high.9 The second is the possible-world view advocated
by Stalnaker and Lewis, according to which p > q is true just in case q is true
in the closest world, or worlds, in which p is true.10 The third is the belief
revision view elaborated by Gärdenfors and others. On this view, p > q is
acceptable relative to a belief state K if and only if q ∈ f(K, p), where f
is a function that takes belief states and sentences as arguments and yields
revised belief states as values.11

The three accounts just mentioned invalidate P14 because they imply
that both p > q and ¬p > q can hold, typically when q is very likely
independently of p. The first contemplates cases in which P (q|p) and P (q|¬p)
are both high, the second contemplates cases in which q is true both in the
closest worlds in which p is true and in the closest worlds in which p is false,
and the third contemplates cases in which q ∈ f(K, p) and q ∈ f(K, ¬p).
Consider for example the following conditionals:

(3) If the coin lands heads, Fido can bark

(4) If the coin lands tails, Fido can bark

On each of the three accounts considered, (3) and (4) turn out to be both
acceptable, given that very likely Fido can bark regardless of the outcome
of the coin toss.12

Independently of whether this result is desirable within an account of
conditionals, it is certainly not desirable as part of an analysis of ‘p is a
reason for q’, for the cases of the kind described are intuitively cases in
which p does not support q. It would be implausible to say that the coin

9Adams [1].
10Stalnaker [31], Lewis [17].
11Gärdenfors [9], Levi [16], Arlo-Costa [3].
12Another account of conditionals that invalidates P14 is the trivalent theory developed

in Egré et al. [7].



Connexivity in the Logic of Reasons 331

landing heads, or tails, provides a reason for thinking that Fido can bark.
More generally, as long as we rule out the limiting situation in which q is
necessary, it seems that p → q and ¬p → q cannot both hold. This suggests
that none of the three accounts considered can provide a fully satisfactory
interpretation of →.

A fourth account, which fares better in this respect, is the difference-
making view of conditionals suggested by Rott and embedded in Spohn’s
theory of reasons. This view can be phrased in terms of possible worlds as
follows: p > q is acceptable if and only if (i) q holds in the closest worlds in
which p holds, and (ii) it is not the case that q holds in the closest worlds
in which ¬p holds. (i) is the Ramsey Test as understood by Stalnaker and
Lewis, while (ii) is an additional condition designed to capture the intuition
that p must be relevant for q. As is easy to see, (ii) rules out cases of
irrelevance such as those considered. For example, (3) and (4) turn out to
be unacceptable, because plausibly Fido can bark both in the closest worlds
in which the coin lands tails and in those in which it lands heads. More
generally, Rott’s account makes ¬p → q incompatible with p → q, so it
validates P14.13

As the foregoing remarks suggest, Aristotle’s Second Thesis provides an
interesting measure of adequacy for an interpretation of in terms of support.
This emerges with clarity if one compares P14 with P11. While all the four
accounts of conditionals considered, as well as others, validate P11, only
the fourth validates both P11 and P14. But as far as the logic of reasons is
concerned, P14 is at least as important as P11, or so is reasonable to believe.
Similar considerations hold for P15 and P16, which are stronger than P14
in the same way in which P12 and P14 are stronger than P11. The next
section deals precisely with these stronger principles.

4. Boethius Thesis and Boethius Left Thesis

The third issue to be addressed concerns Boethius Thesis and Boethius Left
Thesis, which involve embedded occurrences of →. Quite often, theorists of
conditionals do not deal with such constructions, either because they have
qualms about their truth or assertibility conditions, or simply because they
want to avoid technical complications. A well known example is Adams’
probabilistic semantics, which is designed for conditional formulas whose

13Rott [26,27], Spohn [30]. This formulation of the difference-making view is in terms
of possible worlds, although Rott and Spohn rely on the AGM formalism and ranking
functions respectively.
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constituents are strictly Boolean formulas. Similar limitations affect other
accounts of conditionals, such as Rott’s difference-making view. So, not all
theories of conditionals have the syntactic resources to handle Boethius The-
sis or Boethius Left Thesis.14

Yet it would definitely make sense to include these principles in a theory
of reasons, because they display interesting connections between different
orders of reasons, so to say. Consider P12. As we saw in Section 1, the
assumption that Fido’s being a dog is a reason for thinking that he can
bark is itself a reason for thinking that it is not the case that Fido’s being
a dog is a reason for thinking that he cannot bark. If we call p a first-order
reason for q when p is not itself a proposition about reasons, we call p a
second-order reason for q when p is a proposition about first-order reasons,
and so on, then P12 expresses a relation between different orders of reasons:
assuming that p is first-order, p → q is a second-order reason for ¬(p → ¬q),
or equivalently, p → q is a second-order reason against p → ¬q. Similar
considerations hold for P13, P15, and P16.

One remarkable fact about the relations displayed by these principles is
that they show some characteristic ways in which first-order reasons may act
as defeaters. The discussions on the non-monotonicity of conditionals mostly
focus on rebutting defeaters: a defeater r for p → q is rebutting if it provides
a reason against q, thus preventing p ∧ r → q from being acceptable. For
example, Fido’s being mute is a reason against the conclusion that Fido can
bark, and this is why the conjunction of Fido being a dog and his being mute
does not support that conclusion. However, there is another kind of defeaters
which is no less important for the purposes of a theory of reasons, namely,
undercutting defeaters: a defeater r for p → q is undercutting if it questions
the connection between p and q, thus providing a reason against p → q.15

Boethius Thesis and Boethius Left Thesis may be regarded as higher-order
principles about undercutting defeaters, where r is itself a proposition of the
form p → q.

14An interesting exception is the trivalent theory mentioned in footnote 11. This theory
allows embeddings, however it invalidates Boethius Left Thesis.

15The distinction between rebutting and undercutting defeaters goes back to Pollock
[21], pp. 73–74.
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5. The Evidential Interpretation

As it emerges from Sections 2–4, there seems to be no clear answer to the
question of how → is to be interpreted in order to validate P9–P16. Al-
though some extant account of conditionals validate P9–P11, the same does
not hold for P12–P16. Now it will be shown that there is at least one coher-
ent analysis of ‘p is a reason for q’ that yields the logical properties desired:
it is the analysis articulated by Crupi and Iacona on the basis of their evi-
dential account of conditionals. According to this analysis—that I will call
evidential interpretation—p is a reason for q when a suitably defined relation
of incompatibility holds between p and ¬q.16

The idea that a conditional is true when its antecedent is incompatible
with the negation of its consequent goes back to Chrysippus. Sextus Empir-
icus reports Chrysippus’ view as follows:

Those who introduce connectedness say that a conditional is sound
when the opposite of its consequent conflicts with its antecedent.17

This notion of incompatibility is inextricably tied to the idea of connexivity.
As a matter of fact, when McCall introduced the label “connexive implica-
tion”, he did it precisely by making reference to Sextus Empiricus’s report
of Chrysippus view.18

The incompatibility condition suggested by Crupi and Iacona is spelled
out in terms of possible worlds as follows:

Definition 1. p and ¬q are incompatible iff for every world where p is true
and q is false,

(a) p and q have the same value in some of the closest worlds;

(b) in the closest worlds in which p is true, q is also true;

(c) in the closest worlds in which ¬q is true, ¬p is also true.

To explain this definition, let us consider (a)–(c) one by one. (a) requires
that p and ¬q have different values at least in some of the closest worlds,

16Crupi and Iacona [6] presents the theory of reasons. The account of conditionals is
developed in Crupi and Iacona [4] and in Raidl et al. [24].

17Sextus Empiricus, Outlines of Scepticism, II, 111, edited and translated by J. Annas
and J. Barnes, in Sextus Empiricus [28], p. 96. The attribution of this view Chrysippus
is based on further sources, such as Cicero De Fato, 12, and Diogenes Laertius, Lives of
Eminent Philosophers, vii, 73.

18McCall [18], p. 151.
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which may be regarded as a minimal condition for their incompatibility. (b)
is the Ramsey Test as understood by Stalnaker and Lewis. This condition
implies that if p is true, ¬q cannot easily be true. Note that, given (b), the
only interesting case ruled out by (a) is that in which p is false and q is true
in all the closest worlds. So, (a) prevents the incompatibility condition from
obtaining when (b) and (c) are satisfied only because p is very unlikely and
q is very likely for independent reasons. Finally, (c) reverses the Ramsey
Test, as it requires that the closest worlds in which ¬q is true make p false:
if ¬q is true, p cannot easily be true.19

To say that (a)–(c) are jointly satisfied is to say that the combination of
p and ¬q is a remote possibility. So the incompatibility condition stated in
Definition 1 may be phrased as follows: if there are worlds in which p and ¬q
are both true, such worlds are comparatively remote. Note that when there
are no worlds in which p is true and q is false, the conditional is vacuously
true. In this case p and ¬q are absolutely incompatible, as it were. Instead,
when there are worlds in p is true and q is false, the satisfaction of (a)–
(c) ensures that p and ¬q are relatively incompatible, as it were. Absolute
incompatibility between p and ¬q amounts to p being a conclusive reason
for q, while relative incompatibility between p and ¬q amounts to p being a
non-conclusive reason for q.

To see how the evidential interpretation differs from Rott’s difference-
making account of conditionals, let us compare (c) with condition (ii) of
that account. Like (ii), (c) yields the desired result in cases of irrelevance
such as (3) and (4). (3) fails because it is not the case that the coin does not
land heads in the closest possible worlds in which Fido does not bark, and (4)
fails for a similar reason. Nonetheless, (c) does not entail difference-making.
As far as Definition 1 is concerned, p can be incompatible with ¬q even
though it does not make a difference for q in Rott’s sense, and arguably this
is a virtue of the evidential interpretation. Consider the following conditional
about a series of coin tosses:

(5) If there are at least 3 heads in the first 10 tosses, there are at least 4
heads in the first 20 tosses

Since the closest worlds in which there are less than 3 heads in the first 10
tosses are still worlds in which there are at least 4 heads in the first 20 tosses,
(ii) is not satisfied, hence Rott’s account predicts that (5) is unacceptable,

19The formulation just provided differs from the one given in [6] as it includes (a) in
addition to (b) and (c), see [5] for further details. Nothing important will depend on this
difference, though, given that (a) is not necessary for the proofs that follow.
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in spite of the fact that there is an obvious relation of support between
its antecedent and its consequent. The incompatibility condition stated in
Definition 1, by contrast, is satisfied because (c) holds in addition to (a) and
(b): plausibly, the closest worlds in which there are less than 4 heads in the
first 20 tosses are worlds in which there are less than 3 heads in the first 10
tosses.

All things considered, the evidential interpretation provides a fairly close
approximation to the notion of relevance typically involved in the ordinary
use of sentences about reasons. This is not quite the same thing as to say
that it matches perfectly well our intuitions about relevance. For example,
it might sill be contended that in (1) and (2), as well as in similar examples
of conditionals with impossible antecedent or necessary consequent, the an-
tecedent is intuitively not relevant for the consequent, in spite of the fact
that the incompatibility condition stated in Definition 1 is vacuously sat-
isfied. Note, however, that the same objection would apply to any account
of reasons that grants the classical understanding of conclusive inference
as necessary truth preservation, in line with Supraclassicality, so it would
not specifically concern the evidential interpretation. Moreover, and more
importantly, it is reasonable to expect that no formal analysis of sentences
about reasons can match our intuitions about relevance perfectly well, so it
is an open question whether such an analysis can coherently disqualify sen-
tences such as (1) and (2) without yielding consequences that are at least
as counterintuitive.

6. Definitions

Now it will be shown how the evidential interpretation can be defined in a
proper formal framework. Let L be a language whose alphabet is constituted
by a set P of sentence letters p, q, r, ..., the connectives ¬,⊃,�,→, and the
brackets (, ). The formulas of L are defined as follows: the sentence letters
are atomic formulas; if α is a formula, then ¬α and �α are formulas; if α
and β are formulas, then α ⊃ β and α → β are formulas. The connectives
∧,∨,♦ are definable in terms of ¬,⊃,�, as usual.

L differs from the language adopted by Crupi and Iacona in one important
respect, namely, that it allows embedding for →. Although Crupi and Iacona
do not consider complex formulas containing multiple occurrences of →,
nothing prevents their language from being extended so as to include such
constructions.
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The semantics of L is a preferential semantics, in that it is based on
models defined in the following way:

Definition 2. A model M is a quadruple 〈W,A, ≺, V 〉, where

• W is a nonempty set

• A assigns to each x ∈ W a subset Wx of W ;

• ≺ assigns to each x ∈ W an irreflexive and transitive relation ≺x on Wx

• V assigns to each x ∈ W and α ∈ P one element of {0, 1}.

W is a set of worlds. A is a function that determines a sphere of acces-
sibility Wx for each x ∈ W . ≺ is a function that assigns to each x ∈ W an
order of preference. To say that y ≺x z is to say that y is preferred to z
relative to x, or equivalently that y is strictly closer than z relative to x.
This order implies that, for any S ⊆ W , some worlds are x-minimal with
respect to S:

Definition 3. Minx(S) is the set of all y ∈ S ∩ Wx such that there is no
z ∈ S ∩ Wx such that z ≺x y.

For the sake of simplicity, I will write Minx(α) for Minx(S) when S is
||α||, the set of worlds in which α is true. When S is Wx itself, I will simply
write Minx.

Definitions 2 and 3 are very general, in that they apply to a wide variety
of models. Here, however, I will restrict considerations to models that satisfy
the following conditions, which hold in the semantics adopted by Crupi and
Iacona:

(Uni) Wx = W

(LA) If ||α|| ∩ Wx �= ∅, then Minx(α) �= ∅.

(Uni) is Universality : every world is accessible from any world. (LA) is the
Limit Assumption, which ensures that we always reach x-minimality for
every α, ruling out infinitely descending chains.

The truth of a formula in a world x in a model is defined as follows:

Definition 4.

1 [α]x = 1 iff V (x, α) = 1 for every α ∈ P ;

2 [¬α]x = 1 iff [α]x = 0;

3 [α ⊃ β]x = 1 iff [α]x = 0 or [β]x = 1;

4 [�α]x = 1 iff [α]y = 1 for all y ∈ Wx;
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5 [α → β]x = 1 iff for every y ∈ Wx, if [α]y = 1 and [β]y = 0, then

(a) some z ∈ Minx is such that [α]z = [β]z;
(b) for every z ∈ Minx(α), [β]z = 1;
(c) for every z ∈ Minx(¬β), [¬α]z = 1.

Clauses 1–4 are standard. Clause 5 is the crucial one, as it specifies the
meaning of → in accordance with Definition 1: p → q is true just in case p
and ¬q are incompatible in the sense defined.

Logical consequence, indicated by the symbol |=, is defined in the usual
way as preservation of truth in every world in every model:

Definition 5. Γ |= α iff for any model, there is no x such that [β]x = 1 for
every β ∈ Γ and [α]x = 0.

7. Proof of P9–P16

Now it will be shown that the semantics just outlined validates P9–P16.

Fact 1. |= ♦α ⊃ ¬(α → ¬α)

Proof. Assume that [♦α]x = 1, that is, [α]y = 1 for some y ∈ Wx. In this
case, [α → ¬α]x = 0 because [α]y = 1 and [¬α]y = 0, but conditions (a)–(c)
of clause 5 of Definition 4 cannot be satisfied. Therefore, [¬(α → ¬α)]x =
1.

Fact 2. |= ♦α ⊃ ¬(¬α → α)

Proof. Like the proof of Fact 1, replacing α with ¬α.

Fact 3. |= ♦α ⊃ ¬((α → β) ∧ (α → ¬β))

Proof. Assume that [♦α]x = 1, that is, [α]y = 1 for some y ∈ Wx. Then
either [α]y = 1 and [β]y = 0, or [α]y = 1 and [¬β]y = 0, which entails that,
for at least one of the formulas α → β and α → ¬β, clause 5 of Definition 4
is not vacuously satisfied. So, three cases are to be considered.
Case 1. Clause 5 of definition 3 is vacuously satisfied for neither of the two
formulas. In this case we get that [α → β]x = 0 or [α → ¬β]x = 0 because
(b) cannot hold for both formulas: for any z ∈ Minx(α), it cannot be the
case that [β]z = 1 and [¬β]z = 1.
Case 2. Clause 5 of definition 3 is vacuously satisfied only for α → ¬β. In
this case [α → β]x = 0 because there is no z ∈ Wx such that [α]z = [β]z = 1,
so (b) does not hold.
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Case 3. Clause 5 of definition 3 is vacuously satisfied only for α → β. In this
case [α → ¬β]x = 0 because there is no z ∈ Wx such that [α]z = [¬β]z = 1,
so (b) does not hold.
From cases 1–3 we get that [(α → β)∧ (α → ¬β)]x = 0. Therefore, [¬((α →
β) ∧ (α → ¬β))]x = 1.

Fact 4. |= ♦α ⊃ ((α → β) → ¬(α → ¬β))

Proof. Assume that [♦α]x = 1, that is, [α]y = 1 for some y ∈ Wx. As the
proof of Fact 3 shows, for any z ∈ Wx, [(α → β) ∧ (α → ¬β)]z = 0. This
means that there is no z ∈ Wx such that [α → β]z = 1 and [¬(α → ¬β)]z =
0. But then [(α → β) → ¬(α → ¬β)]x = 1 because clause 5 of Definition 4
is vacuously satisfied.

Fact 5. |= ♦α ⊃ ((α → ¬β) → ¬(α → β))

Proof. Like the proof of Fact 4, replacing β with ¬β.

Fact 6. |= ♦¬β ⊃ ¬((α → β) ∧ (¬α → β))

Proof. Assume that [♦¬β]x = 1, that is, [β]y = 0 for some y ∈ Wx. Then
either [α]y = 1 and [β]y = 0, or [¬α]y = 1 and [β]y = 0, which entails that,
for at least one of the formulas α → β and ¬α → β, clause 5 of Definition 4
is not vacuously satisfied. So, three cases are to be considered.
Case 1. Clause 5 of Definition 4 is vacuously satisfied for neither of the two
formulas. In this case we get that [α → β]x = 0 or [¬α → β]x = 0 because
(c) cannot hold for both formulas: for any z ∈ Minx(¬β), it cannot be the
case that [¬α]z = 1 and [¬¬α]z = 1.
Case 2. Clause 5 of definition 3 is vacuously satisfied only for ¬α → β. In this
case [α → β]x = 0 because there is no z ∈ Wx such that [¬α]z = [¬β]z = 1,
so (c) does not hold.
Case 3. Clause 5 of definition 3 is vacuously satisfied only for α → β. In this
case [¬α → β]x = 0 because there is no z ∈ Wx such that [¬¬α]z = [¬β]z =
1, so (c) does not hold.
From cases 1–3 we get that [(α → β)∧ (¬α → β)]x = 0. Therefore, [¬((α →
β) ∧ (¬α → β))]x = 1.

Fact 7. |= ♦¬β ⊃ ((α → β) → ¬(¬α → β))

Proof. Assume that [♦¬β]x = 1, that is, [β]y = 0 for some y ∈ Wx. As the
proof of Fact 6 shows, for any z ∈ Wx, [(α → β) ∧ (¬α → β)]z = 0. This
means that there is no z ∈ Wx such that [α → β]z = 1 and [¬(¬α → β)]z =
0. But then [(α → β) → ¬(¬α → β)]x = 1 because clause 5 of Definition 4
is vacuously satisfied.
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Fact 8. |= ♦¬β ⊃ ((¬α → β) → ¬(α → β))

Proof. Like the proof of Fact 7, replacing α with ¬α.

8. Contraposition

Sections 1–4 suggest that there is an interesting symmetry between P11–P13
and P14–P16, as it is plausible to expect that both P11–P13 and P14–P16
hold. As we have seen, the evidential interpretation preserves this symmetry,
as it entails Facts 3–8. So it significantly differs from the four accounts of
conditionals discussed above.

One straightforward way to explain this result is to point out a distinc-
tive property of the account of reasons outlined, namely, that it validates
Contraposition:

Fact 9. α → β |= ¬β → ¬α

Proof. Assume that [α → β]x = 1. Then either clause 5 is vacuously
satisfied or it isn’t. If it is, there is no y ∈ Wx such that [¬β]y = 1 and
[¬α]y = 0. Therefore, [¬β → ¬α]x = 1 for the same reason. If it isn’t, then
(a) some z ∈ Minx is such that [¬β]z = [¬α]z, (b) for every z ∈ Minx(¬β),
[¬α]z = 1, and (c) for every z ∈ Minx(¬¬α), [¬¬β]z = 1. Therefore, again,
[¬β → ¬α]x = 1.

Since any formula α is logically equivalent to ¬¬α by Definition 4, from
Fact 9 we get that ¬β → ¬α |= α → β, hence that α → β is logically equiv-
alent to ¬β → ¬α. Accordingly, if one assumes P11, one can obtain P14
by simple substitution of logical equivalents, and the other way round. The
same goes for P12 and P15, and for P13 and P16. In other words, Contra-
position makes each negation-right principle equivalent to a corresponding
negation-left principle. So it may be regarded as a more fundamental fact
which constitutes the source of the symmetry.

9. A Final Remark

The theory of reasons presented in Sections 5–8 rests on the idea that p is
a reason for q if and only if the conditional that has p as antecedent and
q as consequent is true. On the assumption that the inference from p to q
is justified just in case p is a reason for q—the first of the two assumptions
in the argument for Restricted Classicality outlined in Section 2—this idea
boils down to the equivalence that I have called Stoic Thesis: the argument
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from p to q is valid if and only if the conditional that has p as antecedent
and q as consequent is true. As I have argued in a previous work, insofar as
validity is construed in a fairly broad sense, which is not limited to deductive
reasoning and includes defeasible inference, the Stoic Thesis is appreciably
more credible than is usually believed.20

The Stoic Thesis provides a straightforward answer to our initial question
concerning the relation between conditionals and sentences about reasons:
sentences about reasons are nothing but conditionals from the logical point
of view. So, the apparent logical similarity between the two kinds of sentences
is explained simply by saying that the logic of → and the logic of > are one
and the same logic.

However, it is important to understand that the main points made in
Sections 5–8 do not essentially depend on the Stoic Thesis, as the evidential
interpretation could equally be appreciated without postulating an equiva-
lence between → and >. One might be unwilling to endorse the account of
conditionals advocated by Crupi and Iacona, and still adopt the definition
of → suggested here as an adequate analysis of ‘p is a reason for q’. In that
case one could consistently maintain that some of the facts proved above
about → do not hold >.

In order to properly question the adequacy or usefulness of the formal
semantics offered here, one would have to provide independent arguments
that specifically concern the logical properties of sentences about reasons.
One could either contend that these sentences do not behave in the way
predicted as to the connexive principles discussed, or offer some alternative
interpretation of → that yields similar results. In any case, the three issues
raised in Sections 2–4 would still stand. In particular, Aristotle’s Second the-
sis, Boethius Thesis, and Boethius Left Thesis pose an interesting challenge
to any theory of reasons that aims at a high level of generality.
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