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1. Introduction

Consider a sentence that expresses some mathematical statement. To specify
the intended meaning of that sentence, the established practice in mathe-
matical logic is to provide a structure A for the language of the sentence. In
the formalism of Enderton [16, Section 2.2], if the sentence is written in a
first-order language, then

(i). to each nonlogical predicate symbol P in the language, the structure
assigns a set-theoretic relation PA;

(ii). to each function symbol f in the language, the structure assigns a
set-theoretic function fA;

(iii). to the quantifier symbol in the language, the structure assigns a
nonempty set |A|; and

(iv). to each constant symbol in the language, the structure assigns a mem-
ber of |A|.

The sentence is understood to be a statement about these set-theoretic ob-
jects (that is, these relations, functions, and members of the set |A|). In this
sense, the mathematical statement is a statement about sets.
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Now consider a sentence that expresses a statement about the physical
universe. If this sentence is written in a first-order language, then a structure
may assign set-theoretic objects to the symbols in the language, as was
done in the previous paragraph. But this sentence is a statement about
the physical universe, not a statement about sets. To specify the intended
meaning of the sentence, we can choose to associate a physical meaning with
some of those set-theoretic objects.1 This association of physical meaning
with some of the objects in the structure provides a physical semantics for
the structure. We will say that this structure, together with its physical
semantics, form a physical model. 2

This article is concerned with the physical semantics of computable phys-
ical models. Computable physical models were previously introduced by the
author [36,37] to formalize the notion of a computer model for a physical
phenomenon [37, pp. 482–483]. We begin the present article by reformulating
the definition of a computable physical model so that techniques from math-
ematical logic (especially from model theory) can be applied more directly.
In particular, in Section 2 we introduce a family of many-sorted first-order
languages, and we define the notion of a nonnegative integer physical model.
Some basic properties of these models are discussed in Section 3. Informal
models that are commonly encountered in the sciences, including discrete
models, continuous models, and statistical models, can often be formalized
as nonnegative integer physical models. And the definition of a nonnegative
integer physical model allows one to discuss, in a straightforward manner,
the computability of these models. Issues related to computability are dis-
cussed in Section 4. In particular, we introduce computable physical models,
and we provide a formulation of the computable universe hypothesis. De-
rived observable quantities are then formalized in Section 5, and in Section 6
we discuss the restriction of a nonnegative integer physical model to a set
of possible measurement results. These concepts are illustrated in an ex-
tended example in Section 7. Up to this point, we will have only discussed
discrete models. The last three sections of the article are concerned with
continuous models and statistical models. In particular, nonnegative integer
physical models that are specified by a nonempty closed set of real numbers

1 This sort of approach to specifying the meaning of a physical statement is known as
the semantic approach, and it is often contrasted with the syntactic approach of the logical
positivists. Liu [25, pp. 149–154] provides brief summaries of both approaches.

2 We sometimes omit the adjective “physical” when it is clear that the models be-
ing discussed are physical models, or when the semantics being discussed are physical
semantics.
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are described in Section 8. This idea is generalized to topological spaces
with countable bases in Section 9. Then, probabilities are introduced to
nonnegative integer physical models in Section 10.

Throughout this article, we assume that readers are familiar with the
notational and terminological conventions in Enderton’s logic textbook [16].

2. Nonnegative Integer Physical Models

A language for first-order number theory3 can be regarded as a many-sorted
language that has only one sort: the sort N of nonnegative integers. We
define a nonnegative integer physical language to be any many-sorted first-
order language that can be obtained from a language for first-order number
theory by introducing

(i). One or more new sorts, one of which is designated as sort S;

(ii). One or more function symbols of sort 〈S, N〉 (these are said to be the
symbols for observable quantities); and

(iii). Zero or more additional symbols of any sort.

The symbols introduced in parts (ii) and (iii) are said to be the physical
symbols in the language. Then, a nonnegative integer physical model is

(i). A structure A for a nonnegative integer physical language, such that
the nonlogical symbols of first-order number theory are assigned their
traditional set-theoretic meanings (in particular, |A|N is the set N of
nonnegative integers); together with

(ii). A rule, such that for each symbol for an observable quantity that is in
the language of A, the rule assigns a physical measuring operation to
the symbol, and this operation encodes the result of each measurement
as a nonnegative integer.4

3 There are various standard ways to formulate a first-order language of number theory.
We assume that the language has a predicate symbol for equality, function symbols for
addition and multiplication, and possibly other nonlogical symbols. See Enderton [16,
Section 3.0] and Rogers [33, p. 96], for example.

4 Although it might be more traditional (for example, see Rosen [35, p. 26]) to use real
numbers as the results of measurements, nonnegative integers can be used without any
loss of generality because, in actual practice, the result of every measurement is recorded
as a finite sequence of symbols chosen from a finite alphabet, and such sequences can be
encoded as nonnegative integers.
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The members of |A|S are said to be the states of the nonnegative integer
physical model.

If f is a symbol for an observable quantity, we say that fA is the cor-
responding observable quantity, and we use op(f) to denote the physical
measuring operation that is assigned to f . In a faithful 5 nonnegative inte-
ger physical model, fA and op(f) are associated in the following manner.

Definition 2.1. Let A be a structure for a nonnegative integer physical
model. The model is said to be faithful if and only if, for each symbol f for
an observable quantity and each nonnegative integer n, if a measurement
result of op(f) is ever equal to n, then there exists a state s ∈ |A|S such
that fA(s) = n.

One example of a nonnegative integer physical model, chosen from par-
ticle physics, is the following.

Model 2.2. Consider a two-sorted nonnegative integer physical language
with a symbol f for an observable quantity, and with no additional physical
symbols. Let A be a structure for this language, where |A|S is the set of
all s ∈ N. Define op(f) to be an operation that counts the total number
of baryons and antibaryons produced in a collision of two protons, and let
fA(s) = 2s + 2.

The law of baryon number conservation implies that this model is faithful.6

And assuming that it is faithful, the model predicts that the total number
of baryons and antibaryons produced in a collision of two protons can never
be an odd number.

Following the semantic approach of Dalla Chiara Scabia and Toraldo di
Francia [10, p. 5], we insist that “operations that define a quantity via a
measurement procedure need not exclude, indeed necessarily include, a cer-
tain amount of data processing.” Going further, we identify the concept of a
measuring operation with a generalization of the concept of an effective pro-
cedure [16, Section 1.7]. This generalization can be obtained by allowing, in
addition to the usual data processing instructions of an effective procedure,
instructions for interacting with the physical universe, where any interaction

5 Our notion of faithfulness plays a role that is similar to that of van Fraassen’s empirical
adequacy [40, p. 12].

6 Protons are baryons, and the law of baryon number conservation states that the
number of baryons minus the number of antibaryons is always conserved [19, Section 1.6].
Although violations of this law have been suspected to exist, no violation has ever been
observed [28, Section 3.8].
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is treated as a nondeterministic oracle.7 In the spirit of the concept of an
effective procedure, we place no bounds on the time, resources, or prepara-
tions that might be required to perform a measuring operation. A measuring
operation may be a simple act, such as listening for a particular sound with
one’s ears, and recording a 1 or 0 to signify whether or not the sound was
heard. Alternatively, a measuring operation may require elaborately con-
structed measuring instruments. A measuring operation might extend for a
period of time that is much longer than the duration of the phenomenon
being observed, especially if the operation requires time-consuming prepa-
rations or a lengthy mathematical analysis of data that has been collected.
If an error analysis of the collected data is part of the process of producing
the measurement result, then that error analysis is necessarily part of the
measuring operation.8 And a nonnegative integer physical model, even if
it is faithful, does not guarantee that the measuring operations can always
be performed, or performed to completion. Indeed, a measuring operation
might require more resources than are available in the entire universe. But
Definition 2.1 does guarantee that for a faithful nonnegative integer physical
model with structure A, if a measuring operation op(f) can be performed
to completion, then the result of that measurement will be equal to fA(s)
for some state s ∈ |A|S .

We use Cantor’s pairing function J(a, b) = 1
2

(
(a+ b)2 +3a+ b

)
to encode

any ordered pair 〈a, b〉 of nonnegative integers as a single nonnegative inte-
ger. We write J(a, b, c) as an abbreviation for J

(
J(a, b), c

)
, to encode ordered

triples of nonnegative integers. We also write J(a, b, c, d) as an abbreviation
for J

(
J
(
J(a, b), c

)
, d

)
, to encode ordered quadruples of nonnegative integers,

and so on. Any measuring operation that encodes the results of two or more
measuring operations in this manner is said to be a joint measuring opera-
tion. For example, consider the following nonnegative integer physical model
for the motion of a projectile fired from a cannon at 5 meters per second in
an inertial reference frame, and in the absence of any external forces, such
as gravity or air resistance.
Model 2.3. Consider a two-sorted nonnegative integer physical language
with a symbol f for an observable quantity, and with no additional physical
symbols. Let A be a structure for this language, where |A|S is the set of all
t ∈ N. Define op(f) to be an operation that measures the nonnegative integer

7 Oracles and nondeterministic computations are described in theoretical computer
science textbooks, such as the textbook by Davis et al. [12].

8 Error bounds on a data point can be encoded as a nonnegative integer, as described
in Section 8.
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number of seconds s since the projectile was fired, together with the number
of meters m between the cannon and the projectile at that time.9 The result
of this joint measuring operation is encoded as J(s, m). Let fA(t) = J(t, 5t).

If one asserts that this model is faithful, then one asserts that for each
measurement J(s,m), there exists a t ∈ N such that J(s, m) = J(t, 5t).

More complicated examples of nonnegative integer physical models are
described in subsequent sections. Notable examples include a model for the
pressure, volume, and temperature of one mole of a gas (Model 8.2), a model
for lower and upper bounds on the number of molecules in a sample of a
chemical compound (Model 9.3), and a model for β− decay in a sample of
copper-64 (Model 10.1).

3. Properties of Nonnegative Integer Physical Models

Given a nonnegative integer physical model, one of the most central ques-
tions is whether that model is faithful. But there are other questions that
can also be asked about nonnegative integer physical models. For example,
given a structure A for a nonnegative integer physical language where the
nonlogical symbols of first-order number theory are assigned their tradi-
tional set-theoretic meanings, one can ask whether there exists any faithful
model that has the given structure A. The following theorem shows that this
question has a trivial answer.

Theorem 3.1. Let A be any structure for a nonnegative integer physical
language where the nonlogical symbols of first-order number theory are as-
signed their traditional set-theoretic meanings. Then there exists a faithful
nonnegative integer physical model A that has the structure A.

Proof. Define A to be a nonnegative integer physical model that has the
structure A, and such that, for each symbol f for an observable quan-
tity, op(f) is a physical measuring operation that always fails and can

9 We require the cannon to be at rest in the inertial reference frame, and for the
time and distance measurements to be made relative to this frame. We also require the
distance measurement to be made within ±Δs seconds of the nonnegative integer number
of seconds, and to be accurate to within ±Δm meters, where 5|Δs| + |Δm| < 0.5. The
resulting distance is then rounded to the nearest nonnegative integer.
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never be completed.10 Then it is vacuously true, by Definition 2.1, that A
is faithful.

Various relations between structures are studied in mathematical logic.
For example, a structure B might be a reduct of, an extension of, or isomor-
phic to a structure A. In many-sorted first-order logic, these relations can
be defined as follows. A structure B is said to be a reduct of a structure A

if and only if

(i). each nonlogical symbol and each equality symbol in the language of B
is a nonlogical symbol or equality symbol, respectively, in the language
of A; and

(ii). in the structure B, each nonlogical symbol is assigned the same set-
theoretic object that it is assigned in the structure A.

A structure B is said to be an extension of a structure A if and only if

(i). A and B have the same language;

(ii). for each sort i, |A|i ⊆ |B|i;
(iii). for each n-place predicate symbol P of sort 〈i1, . . . , in〉, PA is the

restriction of PB to |A|i1 × · · · × |A|in
;

(iv). for each n-place function symbol f of sort 〈i1, . . . , in, in+1〉, fA is the
restriction of fB to |A|i1 × · · · × |A|in

; and

(v). for each constant symbol c, cA = cB.

And we say that a structure B is isomorphic to a structure A if and only if

(i). A and B have the same language;

(ii). for each sort i there is a one-to-one correspondence hi from |B|i onto
|A|i;

(iii). for each n-place predicate symbol P of sort 〈i1, . . . , in〉, and for each
〈b1, . . . , bn〉 in |B|i1 × · · · × |B|in

, 〈b1, . . . , bn〉 ∈ PB if and only if〈
hi1(b1), . . . , hin

(bn)
〉 ∈ PA;

(vi). for each n-place function symbol f of sort 〈i1, . . . , in, in+1〉, and for each
〈b1, . . . , bn〉 in |B|i1×· · ·×|B|in

, hin+1

(
fB(b1, . . . , bn)

)
=fA

(
hi1(b1), . . . ,

hin
(bn)

)
; and

(v). for each constant symbol c of sort i, hi(cB) = cA.

10 This measuring operation is analogous to an effective procedure for the computable
partial function whose domain is empty [16, p. 252]. That is, it is analogous to a computer
program that always aborts, or that always goes into an infinite loop.
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Note that in the special case when A and B are structures for nonnegative
integer physical models, it can be shown [1, Chap. 2, Thm. 3.4] that if A
and B are isomorphic, then hN is necessarily the identity function.

Now, these relations can be generalized in the following manner.

Definition 3.2. Let A be a nonnegative integer physical model with a
structure A, and let B be a nonnegative integer physical model with a struc-
ture B. We say that the model B is a reduct of, an extension of, or isomorphic
to the model A if and only if

(i). The structure B is a reduct of, an extension of, or isomorphic to the
structure A, respectively; and

(ii). For each symbol f for an observable quantity in the language of B, f
is assigned the same measuring operation in both models.

In addition, we say that A is an expansion of B if and only if B is a reduct
of A. And we say that A is a submodel of B if and only if B is an extension
of A.

This definition ensures that if A and B are isomorphic nonnegative integer
physical models, then A is faithful if and only if B is faithful. We also have
the following corollaries of Definition 3.2.

Corollary 3.3. Let A and B be any nonnegative integer physical models
such that B is a reduct of A. If A is faithful, then B is faithful.

Proof. Let A be the structure of A, and let B be the structure of B.
Suppose that A is faithful. Now consider any symbol f for an observable
quantity of B, consider any nonnegative integer n, and suppose that a mea-
surement result of op(f) is equal to n. Because B is a reduct of A, f is also a
symbol for an observable quantity of A. And since A is faithful, there exists
an s ∈ |A|S = |B|S such that n = fA(s) = fB(s). By Definition 2.1, B is
faithful.

Corollary 3.4. Let A be any nonnegative integer physical model, and let
B be the set of all reducts of A that are nonnegative integer physical models
with exactly one symbol for an observable quantity. Then, A is faithful if
and only if every member of the set B is faithful.

Proof. If A is faithful, then by Corollary 3.3, every member of B is faithful.
Conversely, suppose that every member of B is faithful. Now consider any
symbol f for an observable quantity of A, consider any nonnegative integer
n, and suppose that a measurement result of op(f) is equal to n. Let B be a
member of B that has f as its only symbol for an observable quantity, and let
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A and B be the structures of A and B, respectively. Because every member of
B is faithful, there exists an s ∈ |B|S = |A|S such that n = fB(s) = fA(s).
By Definition 2.1, A is faithful.

Corollary 3.5. Let A and B be any nonnegative integer physical models
such that B is an extension of A. If A is faithful, then B is faithful.

Proof. Let A be the structure of A, and let B be the structure of B. Sup-
pose that A is faithful. Now consider any symbol f for an observable quantity
of B, consider any nonnegative integer n, and suppose that a measurement
result of op(f) is equal to n. Because A is faithful, there exists an s ∈ |A|S
such that fA(s) = n. But B is an extension of A, so s ∈ |A|S ⊆ |B|S and
n = fA(s) = fB(s). By Definition 2.1, B is faithful.

Hence, every extension of a faithful nonnegative integer physical model is
itself faithful. But in a certain sense, an extension of a model is also weaker
than the original model. This notion of the relative strength or weakness of
a nonnegative integer physical model is formalized in the following manner.

Consider any nonnegative integer physical models A and B with struc-
tures A and B, respectively. Suppose that both models have the same lan-
guage and measuring operations, and consider any symbol f for an observ-
able quantity. Let ran( fA) denote the range of fA, and similarly for fB.
That is,

ran( fA) =
{

fA(s)
∣
∣ s ∈ |A|S

}
.

Note that if A is faithful, then every measurement result for op(f) is a
member of ran( fA). For this reason, we regard ran( fA) as the set of possible
measurement results for op(f) that are allowed by the model A. And if
ran( fA) ⊆ ran( fB), then A might allow fewer possible values for op(f) than
the model B allows. In this sense, the observable quantity fA is stronger than
the observable quantity fB. A similar notion of relative strength was used
by Popper. In particular, Popper [30, Section 20] identified the strength of a
theory with its “degree of falsifiability”, stating that a theory is strengthened
if it “now rules out more than it did previously: it prohibits more.” In a
similar way, we say that the model A is stronger than the model B if and
only if, for each symbol f for an observable quantity, ran( fA) ⊆ ran( fB).
This notion is also expressed by saying that B is weaker than A.

Because an extension of a nonnegative integer physical model is always
weaker than the original model, Corollary 3.5 is a special case of the follow-
ing, more general corollary.
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Corollary 3.6. Let A and B be nonnegative integer physical models that
have the same language and measuring operations, and let A be stronger
than B. If A is faithful, then B is faithful.

Proof. Let A be the structure of A, and let B be the structure of B. Sup-
pose that A is faithful. Now consider any symbol f for an observable quan-
tity, consider any nonnegative integer n, and suppose that a measurement
result of op(f) is equal to n. Because A is faithful, n ∈ ran( fA) ⊆ ran( fB).
Hence, there exists an s ∈ |B|S such that fB(s) = n. By Definition 2.1, B
is faithful.

We define A to be observationally equivalent to B if and only if both A
is stronger than B, and B is stronger than A. That is, A is observationally
equivalent to B if and only if, for each symbol f for an observable quantity,
ran( fA) = ran( fB). If two nonnegative integer physical models are isomor-
phic, then they are also observationally equivalent. In addition, we have the
following corollary of the definition of observational equivalence.

Corollary 3.7. Let A be any nonnegative integer physical model. Then,
there exists a nonnegative integer physical model B with a structure B such
that |B|S = N, and such that A is observationally equivalent to B.

Proof. Let B be a nonnegative integer physical model that has the same
language and measuring operations as A, and that has a structure B which
is defined so that |B|S = N. Let A be the structure of A, and consider any
symbol f for an observable quantity. Because ran( fA) ⊆ N is countable,
there is a function with domain N and range ran( fA). Define fB to be this
function. Because ran( fA) = ran( fB) for each symbol f for an observable
quantity, A is observationally equivalent to B.

4. Computable Physical Models

Given a faithful nonnegative integer physical model with a structure A and
a symbol f for an observable quantity, each measurement result of op(f)
is necessarily a member of ran( fA). But ran( fA) might contain additional
values that are not measurement results for op(f). The set that contains
exactly those nonnegative integers which are measurement results for op(f)
is denoted Of . Then, we say that a nonnegative integer physical model with
a structure A is maximally faithful if and only if, for each symbol f for
an observable quantity, ran( fA) = Of . One consequence of this definition
is that if a model is maximally faithful, then Of cannot be empty for any
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symbol f for an observable quantity. This is because the definition of a
structure [16, Section 4.3] requires ran( fA) to be nonempty.

Another way to characterize the maximally faithful nonnegative integer
physical models is given by the following theorem.

Theorem 4.1. A nonnegative integer physical model A is maximally faith-
ful if and only if

(i). A is faithful; and

(ii). every faithful nonnegative integer physical model that has the same lan-
guage and measuring operations as A is weaker than A.

Proof. Consider any nonnegative integer physical model A with a structure
A, and suppose that A is maximally faithful. Then consider any symbol f
for an observable quantity of A, consider any nonnegative integer n, and
suppose that a measurement result of op(f) is equal to n. Because A is
maximally faithful, n ∈ Of = ran( fA). Hence, there exists an s ∈ |A|S
such that fA(s) = n. By Definition 2.1, A is faithful. Now consider any
faithful nonnegative integer physical model B that has the same language
and measuring operations as A. Let B be the structure of B. Because B
is faithful, ran( fA) = Of ⊆ ran( fB). Thus, B is weaker than A. We have
shown that conditions (i) and (ii) hold if A is maximally faithful.

Conversely, suppose that conditions (i) and (ii) hold. Let B be a nonneg-
ative integer physical model that has the same language and measuring op-
erations as A, and that has a structure B which is defined so that |B|S = N,
and so that

ran( fB) =

{
Of if Of is nonempty
N − {af} otherwise

for each symbol f for an observable quantity, where af denotes the smallest
nonnegative integer in ran( fA), and where N−{af} denotes the complement
of {af}. By Definition 2.1, B is faithful. Hence, by condition (ii),

ran( fA) ⊆ ran( fB)

for each symbol f for an observable quantity. But if Of is empty, then

af ∈ ran( fA) ⊆ ran( fB) = N − {af}.

This is impossible, since af /∈ N − {af}. Hence, it must be the case that
Of is nonempty. It then follows that ran( fA) ⊆ ran( fB) = Of for each
symbol f for an observable quantity. And by condition (i), Of ⊆ ran( fA).
Therefore, ran( fA) = Of for each symbol f for an observable quantity.
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We have shown that if conditions (i) and (ii) hold, then A is maximally
faithful.

Now, the existence [31] of a noncomputable weak solution to the wave
equation, with computable initial conditions, is a well-known example of
a noncomputability result in mathematics. But it is an open question [43,
pp. 330–331] whether this sort of noncomputability can be observed in the
physical universe. One way to formalize this question is to ask whether or
not the following hypothesis is true.

The Computable Universe Hypothesis. For every physical measuring
operation, the set that contains exactly those nonnegative integers which are
measurement results for the operation is a recursively enumerable set.

That is, the computable universe hypothesis states that for each non-
negative integer physical model A, and for each symbol f for an observable
quantity in the language of A, the set Of is recursively enumerable.11 In
the context of this hypothesis, it is natural to consider nonnegative integer
physical models of the following form.

Definition 4.2. A nonnegative integer physical model with a structure A

is said to be a computable physical model12 if and only if

(i). |A|S is a recursively enumerable set of nonnegative integers; and

(ii). for each symbol f for an observable quantity, fA is a recursive partial
function that has |A|S as its domain.

An immediate corollary of this definition is that every nonnegative integer
physical model that is a reduct of a computable physical model is itself a
computable physical model. Another corollary is that for any computable
physical model with a structure A, and with a symbol f for an observ-
able quantity, ran( fA) is a nonempty recursively enumerable set. Note that

11 Statements such as this are sometimes called the physical form of the Church-Turing
thesis. See Rosen [34, p. 377], for example. But to avoid confusion with the Church-Turing
thesis, which is a distinct hypothesis [18, Section 1], we refrain from using that terminology.

12 In previous publications [36,37], the definition of a computable physical model was
slightly different from the definition given here. In those previous publications, |A|S was
required to be a recursive set (in other words, a computable set), and for each symbol f for
an observable quantity, fA was required to be a recursive total function (in other words, a
computable function) whose domain is restricted to |A|S . But the two different definitions
are equivalent, in the sense that if a nonnegative integer physical model is computable
according to either definition, then it is isomorphic to a model that is computable according
to the other definition. See Szudzik [37, Thm. 10.5].
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Models 2.2 and 2.3 are examples of computable physical models. And Corol-
lary 3.7 can be adapted to computable physical models in the following
manner.

Corollary 4.3. Let A be any computable physical model. Then, there ex-
ists a computable physical model B with a structure B such that |B|S = N,
and such that A is observationally equivalent to B.

Proof. Let B be a nonnegative integer physical model that has the same
language and measuring operations as A, and that has a structure B which
is defined so that |B|S = N. Let A be the structure of A, and consider any
symbol f for an observable quantity. Because A is a computable physical
model, ran( fA) is a nonempty recursively enumerable set. Therefore, there
exists [12, p. 82, Thm. 4.9] a recursive partial function with domain N and
range ran( fA). Define fB to be this function. Then B is a computable
physical model. And because ran( fA) = ran( fB) for each symbol f for an
observable quantity, A is observationally equivalent to B.

Alternate characterizations of the computable universe hypothesis are
provided by the following theorems.

Theorem 4.4. The computable universe hypothesis is true if and only if ev-
ery maximally faithful nonnegative integer physical model is observationally
equivalent to a computable physical model.

Proof. Suppose that the computable universe hypothesis is true, and con-
sider any maximally faithful nonnegative integer physical model A with a
structure A. Let B be a nonnegative integer physical model that has the
same language and measuring operations as A. Define the structure B of B
so that |B|S = N. Because A is maximally faithful, ran( fA) = Of for each
symbol f for an observable quantity. Thus, Of is nonempty. And because we
are assuming the computable universe hypothesis, Of is recursively enumer-
able. Since Of is a nonempty recursively enumerable set, there must exist
a recursive partial function with domain N and range Of . Define fB to be
this function. Then B is a computable physical model that is observationally
equivalent to A because ran( fA) = Of = ran( fB) for each symbol f for
an observable quantity. We have shown that if the computable universe hy-
pothesis is true, then every maximally faithful nonnegative integer physical
model A is observationally equivalent to a computable physical model B.

Alternatively, suppose that the computable universe hypothesis is false.
Then there exists a physical measuring operation such that the set con-
taining exactly those nonnegative integers which are measurement results
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for the operation is not a recursively enumerable set. This set is necessarily
nonempty, since the empty set is recursively enumerable. Now let A be a non-
negative integer physical model with a structure A, and with f as the only
symbol for an observable quantity. Define op(f) to be the aforementioned
measuring operation, and define fA so that ran( fA) = Of . By definition, A
is maximally faithful. Next, consider any nonnegative integer physical model
B that is observationally equivalent to A, and let B be the structure of B.
By the definition of observational equivalence, ran( fB) = ran( fA) = Of .
Because this is not a recursively enumerable set, B cannot be a computable
physical model. We have shown that if the computable universe hypothe-
sis is false, then there is a maximally faithful nonnegative integer physical
model A that is not observationally equivalent to any computable physical
model B.

Theorem 4.5. The computable universe hypothesis is true if and only if,
for each faithful nonnegative integer physical model A, there is a faithful
computable physical model that has the same language and measuring oper-
ations as A, and that is stronger than A.

Proof. Suppose that the computable universe hypothesis is true, and con-
sider any faithful nonnegative integer physical model A with a structure A.
Because A is faithful, Of ⊆ ran( fA) for each symbol f for an observable
quantity. Now let B be a nonnegative integer physical model that has the
same language and measuring operations as A. Define the structure B of B
so that |B|S = N. For each symbol f for an observable quantity, the com-
putable universe hypothesis implies that Of is a recursively enumerable set.
There are two cases to consider.

Case 1. If Of is nonempty, then there exists a recursive partial function
with domain N and range Of . Define fB to be this function. Note
that ran( fB) = Of ⊆ ran( fA).

Case 2. If Of is the empty set then, for each s ∈ N, define fB(s) = af , where
af denotes the smallest nonnegative integer in ran( fA). Note that
ran( fB) = {af} ⊆ ran( fA).

In either case, fB is a recursive partial function with domain N, and Of ⊆
ran( fB) ⊆ ran( fA). By definition, B is a faithful computable physical model
that is stronger than A.

Conversely, suppose that for each faithful nonnegative integer physical
model A, there is a faithful computable physical model that has the same
language and measuring operations as A, and that is stronger than A. Then
for each maximally faithful nonnegative integer physical model A, there is a
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faithful computable physical model B that has the same language and mea-
suring operations as A, and that is stronger than A. But by condition (ii) of
Theorem 4.1, B is also weaker than A. Hence, B is observationally equiva-
lent to A. We have shown that every maximally faithful nonnegative integer
physical model A is observationally equivalent to a computable physical
model B. Therefore, by Theorem 4.4, the computable universe hypothesis is
true.

Now consider any two-sorted nonnegative integer physical language that
has symbols for observable quantities, a predicate symbol for equality of sort
〈S, S〉, a function symbol convS→N of sort 〈S, N〉, and no additional physical
symbols. Let A be the structure of a computable physical model that has this
language. Letting convA

S→N (n) = n for each nonnegative integer n ∈ |A|S ,
A satisfies

∀S s ∀S t
(
convS→N (s) = convS→N (t) → s = t

)
(1)

and

∀N x
(

φ(x) ↔ ∃S s
(
convS→N (s) = x

) )
, (2)

where φ(x) is a formula that defines the set |A|S within the standard model
N of first-order number theory. And for each symbol f for an observable
quantity, A satisfies

∀N x ∀N y
(

ψf (x, y) ↔ ∃S s
(
convS→N (s) = x ∧ f(s) = y

) )
, (3)

where ψf (x, y) is a formula that defines fA as a relation in N. Taken to-
gether, we can regard formulas (1) and (2), together with a formula of the
form (3) for each symbol f for an observable quantity, as axioms that ex-
tend first-order number theory. Note that every ω-model13 of these axioms
is isomorphic to the structure A of the computable physical model.

5. Definitional Expansions

Many axiom systems have languages with a small number of symbols. The
axioms of set theory, for example, are often written in a language where
= and ∈ are the only predicate symbols. A structure A for set theory is
a structure for this language. Other predicate symbols that are commonly

13 An ω-model of the axioms is any structure that satisfies the axioms and that assigns
the nonlogical symbols of first-order number theory their traditionally intended meanings.
See Enderton [16, p. 304] and Barwise [2, p. 42].
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used by set theorists, such as the subset symbol (⊆) and proper subset
symbol (�), are usually defined in terms of = and ∈. But the structure
A can be expanded to incorporate these defined symbols into its language.
This expanded structure is known as a definitional expansion14 of A.

Defined symbols for observable quantities can also be introduced to the
language of a nonnegative integer physical model. In some cases, there is a
natural way to assign measuring operations to these symbols. For example,
let A be a nonnegative integer physical model with a structure A, and with
a symbol f for an observable quantity. An expansion A′, with a structure
A′, can be constructed by introducing a new symbol g for an observable
quantity. Define

gA
′
= h ◦ fA,

where h is a recursive partial function whose domain includes ran( fA). We
say that this observable quantity is derived from fA. Note, in this case, that
A′ is a definitional expansion of A.

But because h is a recursive partial function, there is an effective proce-
dure for calculating h. We can then define op(g) to be the following two-step
measuring operation:

Step 1. Perform the operation op(f) to obtain a measurement result
m.

Step 2. Apply the procedure for h to calculate h(m). This is the mea-
surement result for op(g).

We say that this is a natural measuring operation for the derived observable
quantity. But note that if model A is not faithful, then a measurement result
of op(f) might be outside the range of fA, and the effective procedure in
Step 2 might not produce any result in a finite number of steps. If Step 2
does not produce a result in a finite number of steps, then op(g) fails to
produce a measurement result.15

Theorem 5.1. Let A be any nonnegative integer physical model, and let A′

be an expansion of A that is obtained by introducing a derived observable
quantity with a natural measuring operation. Then, A′ is faithful if and only
if A is faithful.

14 Definitional expansions are described in greater detail by Hodges [22, pp. 59–60].
15 Of course, an individual performing this operation might never know that it fails.

See Davis [11, p. 10], for example.
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Proof. Suppose that A′ is faithful. Because A is a reduct of A′, it follows
from Corollary 3.3 that A is faithful. Conversely, suppose that A is faithful.
Let A and A′ be the structures of A and A′, respectively. Consider any
symbol g for an observable quantity of A′, consider any nonnegative integer
n, and suppose that a measurement result of op(g) is equal to n. There are
two cases to consider.

Case 1. If g is a symbol for an observable quantity of A, then because A
is faithful, there exists an s ∈ |A|S = |A′|S such that n = gA(s) =
gA

′
(s).

Case 2. If g is the symbol for the derived observable quantity that was
introduced to A′, then gA

′
= h ◦ fA, where f is a symbol for an

observable quantity of A, and where h is a recursive partial function
whose domain includes ran( fA). By the definition of op(g), there is
a measurement result m of op(f) such that h(m) = n. And because
A is faithful, there exists an s ∈ |A|S = |A′|S such that m = fA(s).
Thus, there is an s ∈ |A′|S such that

n = h(m) = h ◦ fA(s) = gA
′
(s).

In either case, there exists an s ∈ |A′|S such that n = gA
′
(s). By Defini-

tion 2.1, A′ is faithful.

As another application of definitional expansions, consider a structure
A for a nonnegative integer physical model A. Let A′ be the definitional
expansion of A that is obtained by introducing, for each symbol f for an
observable quantity, a new predicate symbol Pf of sort N that has the
following definition:

∀N x
(

Pf (x) ↔ ∃S s
(
f(s) = x

) )
. (4)

We say that these are the observational predicate symbols introduced into
the language. Now let the observational structure of A be the reduct of A′

whose only sort is the sort N , and whose only symbols are the observational
predicate symbols, together with the symbols of first-order number theory.
We have the following immediate corollary.

Corollary 5.2. Let A and B be any nonnegative integer physical models
that have the same language and measuring operations. Then, A and B are
observationally equivalent if and only if they have the same observational
structures.
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Proof. Let A and B be the structures of A and B, respectively. By for-
mula (4), PA′

f = ran( fA) for each symbol f for an observable quantity, and
similarly for B. Therefore, A is observationally equivalent to B if and only
if, for each symbol f for an observable quantity, PA′

f = PB′
f . That is, A

is observationally equivalent to B if and only if A and B have the same
observational structures.

6. Restrictions of Models

Recall that Model 2.2 is a nonnegative integer physical model with a struc-
ture A such that |A|S = N, with a symbol f for an observable quantity such
that fA(s) = 2s + 2, and with a measuring operation op(f) that counts
the total number of baryons and antibaryons produced in a collision of two
protons. Assuming the law of baryon number conservation, Model 2.2 is
faithful.

Now consider a submodel of Model 2.2. In particular, let B be the sub-
model of Model 2.2 with |B|S = N − {0}, where B denotes the structure of
B. Although ran( fA) contains all even positive integers, note that ran( fB)
only contains those even positive integers that are greater than two. By the
definition of a submodel (Definition 3.2), both models have the same mea-
suring operation. But because collisions of protons have been observed16

where the total number of baryons and antibaryons produced is equal to 2,
model B is not faithful. Hence, a faithful model such as Model 2.2 may have
a submodel that is not faithful.

Now consider a nonnegative integer physical model C that is identical to
B, except that op(f) is only intended to be performed when the total number
of baryons and antibaryons produced is greater than two, and op(f) fails to
produce a measurement result if this is not the case. In contrast to model
B, model C is faithful. We say that model C is a restriction of Model 2.2
to the positive integers greater than two. The concept of a restriction of
a nonnegative integer physical model can be formalized in the following
manner. In this definition, we use opA(f) to denote the measuring operation
assigned to f in a model A, and opB(f) to denote the measuring operation
assigned to f in a model B. Note that for each recursively enumerable set
Q, there is [16, p. 63] a semidecision procedure for testing membership in
Q.

16 For example, see Batson and Riddiford [3].
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Definition 6.1. Let A and B be nonnegative integer physical models that
have the same language, and that have f as the only symbol for an observable
quantity. Let A and B be the structures of A and B, respectively. And
let Q be a recursively enumerable set of nonnegative integers such that
ran( fA) ∩ Q = ∅. Then, we say that B is a restriction of A to the set Q if
and only if

(i). B is the substructure of A such that |B|S =
{
s ∈ |A|S

∣
∣ fA(s) ∈ Q

}
;

and

(ii). opB(f) is the following two-step measuring operation:

Step 1. Perform the operation opA(f) to obtain a measurement result n.
Step 2. Use the semidecision procedure for Q to test whether n ∈ Q. If this

procedure verifies that n ∈ Q, then let n be the measurement result
for opB(f). Otherwise, opB(f) fails to produce a measurement result.

One corollary of this definition is that if A is a computable physical
model, then any restriction of A to a recursively enumerable set is also a
computable physical model. We also have the following corollary.

Corollary 6.2. Let A be a nonnegative integer physical model with a struc-
ture A, and with f as the only symbol for an observable quantity. Let Q be a
recursively enumerable set of nonnegative integers such that ran( fA) ∩ Q =
∅, and let B be a restriction of A to the set Q. If A is faithful, then B is
faithful.

Proof. Let B be the structure of B. Now suppose that A is faithful, con-
sider any nonnegative integer n, and suppose that a measurement result
of opB(f) is equal to n. By part (ii) of Definition 6.1, it must be the case
that n ∈ Q, and that n is a measurement result for opA(f). Thus, because
A is faithful, there exists an s ∈ |A|S such that fA(s) = n. But then, by
part (i) of Definition 6.1, s ∈ |B|S and fB(s) = fA(s) = n. Therefore, by
Definition 2.1, B is faithful.

7. An Example

At this point, an example that illustrates the use of some of the corollaries
and theorems might be instructive. Recall that Model 2.3 describes the
trajectory of a projectile fired from a cannon at 5 meters per second in
an inertial reference frame, and in the absence of any external forces. The
model has a structure A such that |A|S is the set of all t ∈ N, the model has
a symbol f for an observable quantity such that fA(t) = J(t, 5t), and the
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model has an operation op(f) that jointly measures the number of seconds s
since the projectile was fired, together with the number of meters m between
the cannon and the projectile at that time.

Let K : N → N and L : N → N be the recursive functions [16, p. 278] that
satisfy the equations

K
(
J(a, b)

)
= a and L

(
J(a, b)

)
= b

for all nonnegative integers a and b. Now consider the following sequence of
constructions.

For each nonnegative integer u, define Bu to be the restriction of Model 2.3
to the set { J(u, b) | b ∈ N }. Then |Bu|S = {u} and fBu(u) = J(u, 5u),
where Bu denotes the structure of Bu. The measuring operation opBu

(f)
produces results of the form J(u,m), where m is the number of meters
between the cannon and the projectile, measured u many seconds after the
projectile was fired. By Corollary 6.2, Bu is faithful if Model 2.3 is faithful.17

For each nonnegative integer u, define Cu to be the expansion of Bu that
is obtained by introducing the derived observable quantity

gCu
u = L ◦ fBu

with a natural measuring operation, where Cu denotes the structure of Cu.
Note that |Cu|S = {u}, fCu(u) = J(u, 5u), and gCu

u (u) = 5u. The measuring
operation op(gu) produces the number of meters between the cannon and
the projectile, measured u many seconds after the projectile was fired. By
Theorem 5.1, Cu is faithful if and only if Bu is faithful.

For each nonnegative integer u, let Du be the reduct of Cu that has gu as
its only symbol for an observable quantity. By Corollary 3.3, Du is faithful
if Cu is faithful.

For each nonnegative integer u, let Eu be a nonnegative integer physical
model that has the same language and measuring operation as Du, and
define its structure Eu so that |Eu|S = {0} and gEu

u (0) = 5u. Then Eu is
isomorphic to Du. Therefore, Eu is faithful if and only if Du is faithful.

And finally, let F be a nonnegative integer physical model that has { gu |
u ∈ N } as the set of symbols for its observable quantities, and that has no
additional physical symbols. Define F so that, for each nonnegative integer
u, Eu is a reduct of F . Then |F|S = {0}, where F denotes the structure of
F . And for each nonnegative integer u, gFu(0) = 5u and op(gu) produces the

17 But the converse of this statement does not necessarily hold. For example, it might be
the case that Model 2.3 is not faithful, but that Bu is faithful because there are insufficient
resources in the universe to perform Step 2 in Definition 6.1.
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number of meters between the cannon and the projectile, measured u many
seconds after the projectile was fired. By Corollary 3.4, F is faithful if and
only if, for each u ∈ N, Eu is faithful.

In the context of Einstein’s theory of relativity, the trajectory of a pro-
jectile is often thought of as a static line that exists in a single state in
space-time. The projectile’s position at a particular time u is then thought
of as a property of the line that is measured by sampling a single point along
the length of the line. De Broglie [13, p. 114] described this conception as
follows:

In space-time, everything which for each of us constitutes the past,
the present, and the future is given in block, and the entire collection
of events, successive for us, which form the existence of a material
particle is represented by a line, the world-line of the particle. . . .
Each observer, as his time passes, discovers, so to speak, new slices of
space-time which appear to him as successive aspects of the material
world, though in reality the ensemble of events constituting space-time
exist prior to his knowledge of them.

This static conception of the trajectory of the projectile in Model 2.3 is
formalized by model F in the sense that model F has a single state, and
there is a separate observable quantity for the position of the projectile at
each time u. Moreover, through the chain of implications in the preceding
paragraphs, we have shown that if Model 2.3 is faithful, then F is faithful.

8. Real Numbers

A commonly encountered form of measurement [23, Section 4.3.7] measures
lower and upper bounds for a value,18 rather than measuring the value di-
rectly. For example, Perrin [29, Section 11] determined that the number of
molecules in 2 grams of molecular hydrogen gas19 is strictly greater than
45 × 1022, and strictly less than 200 × 1022. Hence, in units of septillions of
molecules (that is, 1024 molecules), he determined that there are between
0.45 septillion and 2.0 septillion molecules in 2 grams of molecular hydrogen
gas. Conventionally [38, pp. 13–16], we express this by stating that Perrin

18 For any real numbers b and x, we say that b is a lower bound for x if and only if
b ≤ x, and we say that b is a strict lower bound for x if and only if b < x. Of course, every
strict lower bound is also a lower bound, and similarly for upper bounds.

19 Perrin [29, Section 6] defined Avogadro’s constant to be equal to this number, but
a different definition [8, p. 134] for Avogadro’s constant is used nowadays.
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measured the value to be equal to 1.2 ± 0.8 septillion molecules. Conven-
tions also require the lower and upper bounds to have only finitely many
digits in their decimal expansions. As a consequence, the bounds are rational
numbers.

Now, an integer i can be encoded as a nonnegative integer int(i) using
the function

int(i) =

{
2i if i ≥ 0
−2i − 1 otherwise

.

And any rational number a
b that is in lowest terms with b > 0 can be encoded

as a nonnegative integer rat
(

a
b

)
using

rat
(a

b

)

= int
(
(sgn a)2int(α1−β1)3int(α2−β2)5int(α3−β3)7int(α4−β4)11int(α5−β5) · · ·

)
,

where

a = (sgn a)2α13α25α37α411α5 · · ·
and

b = 2β13β25β37β411β5 · · ·
are the prime factorizations of a and b, respectively. We write (p ;q), where
p < q, to denote the open interval with endpoints p and q. We say that
the interval is rational if and only if p and q are both rational numbers. A
rational open interval (p ;q) can be encoded as a nonnegative integer ival(p ;q)
using

ival(p ;q) = J
(
rat(p), rat(q)

)
.

We use ival(p ;q) to encode any joint measurement of a strict lower bound p
and a strict upper bound q.

For example, consider the claim that every electron has a mass of m
kilograms, where m is some real number. One plausible way to formalize
this claim is to state that every strict lower bound that is measured for
the mass of an electron is less than m kilograms, and every strict upper
bound measured for the mass is greater than m kilograms. A closely related
way to formalize the claim is to state that for every joint measurement of
a strict lower bound p and a strict upper bound q for the electron’s mass,
m ∈ (p ;q). Similarly, the claim can be formalized by asserting that the
following nonnegative integer physical model is faithful.
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Model 8.1. Consider a two-sorted nonnegative integer physical language
with a symbol f for an observable quantity, and with no additional physical
symbols. Let A be a structure for this language, where |A|S is the set of all
rational open intervals (p ;q) that contain the real number m. Define op(f)
to be an operation that jointly measures strict lower and upper bounds for
the mass of an electron (in kilograms), and let fA(p ;q) = ival(p ;q).

Note that the states in this model can be thought of as corresponding to
different states of the measurer, with different lower and upper bounds being
measured in different states.

Now, any Cartesian product (p1 ;q1) × (p2 ;q2) × · · · × (pd ;qd) of open
intervals is said to be an open rectangle. We say that the rectangle is rational
if and only if each interval is rational. And we use the function

rectd(i1 × i2 × · · · × id) = J
(
ival(i1), ival(i2), . . . , ival(id)

)
,

where d is a positive integer, to encode each rational open rectangle i1 ×
i2 × · · · × id as a nonnegative integer.20 In addition, we refer to any joint
measurement of strict lower and upper bounds as a measurement of strict
bounds.

Now consider one mole of a gas at thermodynamic equilibrium in a sealed
container. The ideal gas law [5, pp. 9–10 & 70] states that the gas’s pressure
P , volume V , and temperature T , in standard SI units, are real numbers
that satisfy the equation

PV = NAkBT, (5)

where NA and kB are constants.21 Given any point 〈P, V, T 〉 in R
3, the

claim that P , V , and T are the gas’s pressure, volume, and temperature,
respectively, can be formalized by stating that

〈P, V, T 〉 ∈ (p1 ;q1) × (p2 ;q2) × (p3 ;q3)

for every measurement ival(p1 ;q1) of strict bounds for the pressure, for every
measurement ival(p2 ;q2) of strict bounds for the volume, and for every mea-
surement ival(p3 ;q3) of strict bounds for the temperature. Using a similar
idea, the claim that the gas satisfies the ideal gas law can be formalized by
asserting that the following nonnegative integer physical model is faithful.

20 We define J(a) = a for each a ∈ N. Hence, for the d = 1 case, rect1(i1) = ival(i1).
21 These are Avogadro’s number and Boltzmann’s constant, respectively. By defini-

tion [8, pp. 133–134], NA is the integer 602214076 × 1015, and the numerical value of kB

is exactly equal to the rational number 1380649 × 10−29 when the constant is expressed
in SI units.
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Model 8.2. Consider a two-sorted nonnegative integer physical language
with a symbol f for an observable quantity, and with no additional physi-
cal symbols. Let A be a structure for this language, where |A|S is the set of
all

〈〈P, V, T 〉, r〉 such that P , V , and T are real numbers that satisfy equa-
tion (5), and such that r is a rational open rectangle containing the point
〈P, V, T 〉. Define op(f) to be an operation that measures, in SI units, strict
bounds b1 for the gas’s pressure, strict bounds b2 for the gas’s volume, and
strict bounds b3 for the gas’s temperature. The result of this joint measure-
ment is encoded as J(b1, b2, b3). Let fA

〈〈P, V, T 〉, r〉 = rect3(r).

Throughout the sciences, it is often the case that a model is specified by
describing a nonempty closed set in R

d, for some positive integer d. The ideal
gas law for one mole of gas is an example of such a model, since the set of
all triples 〈P, V, T 〉 of real numbers that satisfy equation (5) is a nonempty
closed set in R

3. For any such nonempty closed set, we can define a complete
basic neighborhood model for the set, as follows.

Definition 8.3. Let d be a positive integer, and let A be any nonempty
closed set in R

d. We say that a nonnegative integer physical model with a
structure A is a complete basic neighborhood model for A if and only if

(i). the language for A has only one symbol f for an observable quantity;

(ii). |A|S is the set of all ordered pairs 〈x, r〉 such that x ∈ A and such that
r is a rational open rectangle that contains x; and

(iii). fA〈x, r〉 = rectd(r) for each 〈x, r〉 ∈ |A|S .

Note that a complete basic neighborhood model can have any measuring
operation. But typically, when a model is informally specified by a nonempty
closed set in R

d, the ith component of each point in R
d is identified with

a physical quantity Pi, such as a pressure, volume, or temperature. In this
case, one may consider a measuring operation that jointly measures strict
bounds b1, b2, . . . , bd for P1, P2, . . . , Pd, respectively, with the result of the
joint measurement encoded as J(b1, b2, . . . , bd). If such an operation exists,
then the informal model can be formalized as a complete basic neighborhood
model with this measuring operation. Model 8.2 formalizes the ideal gas law
for one mole of gas in exactly this sense.

Another example is the simple harmonic oscillator model [39, Section
3.2] for a mass that is constrained to move in one dimension, and that
is subject to a linear restoring force when the mass is displaced from its
equilibrium position. This model specifies that when measured in SI units,
the amplitude a of the mass’s oscillations about the equilibrium position,



Semantics of Computable Physical Models 803

the angular frequency ω of those oscillations, the time t, a time t0 at which
the mass achieves maximum displacement, and the displacement x of the
mass at time t are all real numbers such that

a cos(ωt − ωt0) = x.

The set of all quintuples 〈a, ω, t, t0, x〉 of real numbers satisfying this equa-
tion is a nonempty closed set in R

5, and there is a measuring operation that
jointly measures strict bounds for the five physical quantities in the model
(that is, for the amplitude of the oscillations about the equilibrium position,
the angular frequency of those oscillations, and so on). Hence, the simple
harmonic oscillator model can be formalized as a complete basic neighbor-
hood model with this measuring operation.

9. Topological Spaces

The formalism discussed in the previous section can be extended from R
d

to more general topological spaces.22 In particular, a model can be specified
by describing a nonempty closed set A in a topological space 〈X, τ〉. In this
more general setting, Weihrauch and Zhong [43, pp. 329–330] suggest that
the elements in a countable basis or subbasis (assuming that such a basis
or subbasis exists for the space) play a role that is analogous to that of the
rational open intervals in the usual topology on R. Using this analogy, the
definition of a complete basic neighborhood model can be generalized as
follows.
Definition 9.1. Let A be any nonempty closed 23 set in a topological space
〈X, τ〉. We say that a nonnegative integer physical model with a structure
A is a complete basic neighborhood model for A in the space 〈X, τ〉 if and
only if

(i). the language for A has only one symbol f for an observable quantity;

(ii). 〈X, τ〉 has a countable basis β;

(iii). |A|S is the set of all ordered pairs 〈x, r〉 such that x ∈ A and such that
r is an element of β that contains x; and

22 We assume that the reader is familiar with the terminological conventions in, for
example, McCarty’s topology textbook [27].

23 One could generalize the definition of a complete basic neighborhood model to allow
sets A that are not closed, but any such model formalizes the informal model specified by
A in a much weaker sense. In particular, if one removes the requirement that A must be
closed, then Theorem 9.4 and Corollary 9.5 fail to hold.
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(vi). fA〈x, r〉 = enc(r) for each 〈x, r〉 ∈ |A|S , where enc: β → N is a one-to-
one function for encoding the elements of β as nonnegative integers.

Note that the set of all rational open rectangles in R
d is a countable basis

for the usual Euclidean topology on R
d, and rectd is a one-to-one encoding

for the basis. Therefore, Definition 8.3 is a special case of Definition 9.1.
As an example of a model specified by a nonempty closed set in a topo-

logical space, consider the claim that a sample of some chemical compound
contains exactly n molecules of the compound, where n is a nonnegative
integer. We will use 〈N, δ〉 to denote the set of all nonnegative integers with
the discrete topology. Every set of points is closed in 〈N, δ〉, and the collec-
tion

{ {a} ∣
∣ a ∈ N

}
of all singleton sets is a countable basis for the space.

Define sing
({a})

= a for each a ∈ N. Then, the claim that the sample con-
tains exactly n molecules can be formalized by asserting that the following
complete basic neighborhood model for the set {n} in 〈N, δ〉 is faithful.

Model 9.2. Consider a two-sorted nonnegative integer physical language
with a symbol f for an observable quantity, and with no additional physical
symbols. Let A be a structure for this language where |A|S =

{ 〈
n, {n}〉 }

.
Define op(f) to be an operation that measures the exact number of molecules
in the sample, and let fA

〈
n, {n}〉

= sing
({n})

.

Alternatively, the claim can be formalized using an operation that jointly
measures lower and upper bounds for the number of molecules, rather than
measuring the number of molecules exactly. Note that

{ {a, a + 1, a + 2, . . . , a + k} ∣∣ a ∈ N and k ∈ N
}

is a countable basis for 〈N, δ〉, and define

seg
({a, a + 1, a + 2, . . . , a + k})

= J(a, k)

for all nonnegative integers a and k. The claim can then be formalized by
asserting that the following complete basic neighborhood model for {n} in
〈N, δ〉 is faithful.

Model 9.3. Consider a two-sorted nonnegative integer physical language
with a symbol f for an observable quantity, and with no additional physical
symbols. Let A be a structure for this language, where |A|S is the set of all

〈
n, {a, a + 1, a + 2, . . . , a + k}〉

such that a and k are nonnegative integers with n ∈ {a, a+1, a+2, . . . , a+k}.
Define op(f) to be an operation that measures a lower bound b and an upper
bound b + m for the number of molecules in the sample, where b and m are
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nonnegative integers. The result of this joint measuring operation is encoded
as J(b,m). Let fA〈n, r〉 = seg(r) for each 〈n, r〉 ∈ |A|S.

Note that the preceding two models have distinct bases, encodings, and
measuring operations, despite the fact that they are both complete basic
neighborhood models for the same set {n} in the same space 〈N, δ〉.

Now, the following theorem shows that when a complete basic neigh-
borhood model is constructed for a nonempty closed set A in a topological
space, A is uniquely determined by the set ran( fA) of possible measurement
results that are allowed by the model.24

Theorem 9.4. Let A be the structure of a complete basic neighborhood
model for a nonempty closed set A in a topological space 〈X, τ〉 with a basis
β and encoding enc. Let f be the symbol for the observable quantity in the
language of A. Then, for each point x in X, x ∈ A if and only if

{
enc(r)

∣
∣ r ∈ β and x ∈ r

} ⊆ ran( fA). (6)

Proof. Consider any x ∈ X, and suppose that x ∈ A. By part (iii) of
Definition 9.1,

{ 〈x, r〉 ∣∣ r ∈ β and x ∈ r
} ⊆ |A|S .

Therefore, by part (iv) of Definition 9.1, condition (6) holds. We have shown
that x ∈ A implies condition (6).

Conversely, suppose that condition (6) holds. By part (iv) of Defini-
tion 9.1, it must be the case that for each basis element r that contains
x, there is a y ∈ A such that 〈y, r〉 ∈ |A|S . Hence, by part (iii) of Defini-
tion 9.1, for each basis element r that contains x, there is a y ∈ A such that
y ∈ r. That is, every basis element that contains x intersects A. So every
neighborhood of x intersects A. Hence, x is in the closure of A. But since A
is closed, x ∈ A. We have shown that condition (6) implies x ∈ A.

This theorem has the following corollary.

Corollary 9.5. Let A be a complete basic neighborhood model for a
nonempty closed set A in a topological space 〈X, τ〉, let B be a complete
basic neighborhood model for a nonempty closed set B in 〈X, τ〉, and let A
and B have the same basis β, the same encoding enc, the same language,
and the same measuring operation. Then, A = B if and only if A is obser-
vationally equivalent to B.

24 In this case, the function that maps ran( fA) to the set A that is determined by
ran( fA) is closely related to the inner representation for closed sets, as described by
Weihrauch and Grubba [42, pp. 1388–1389].
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Ideas from Weihrauch’s theory of type-two effectivity [41] can be used to
define computable functions from one topological space into another topo-
logical space. In particular, given any topological space 〈X, τ〉 with a count-
able basis β and with a one-to-one function enc: β → N for encoding the
elements of β, we say that a function φ : N → N is an oracle for a point
x ∈ X if and only if

ran(φ) =
{

enc(r)
∣
∣ r ∈ L

}

for some L ⊆ β that is a local basis for x. Let νenc : ran(enc) → β be the
function that is defined so that νenc

(
enc(r)

)
= r for each r ∈ β. Thus, if c is

any nonnegative integer in ran(enc), then νenc(c) is the basis element that is
encoded by c. We say that an oracle φ is nested if and only if νenc

(
φ(i+1)

) ⊆
νenc

(
φ(i)

)
for each i ∈ N. And we say that the encoding enc: β → N has a

recursively enumerable subset relation if and only if the set
{

J(c1, c2)
∣∣ νenc(c1) ⊆ νenc(c2) and c1 ∈ ran(enc) and c2 ∈ ran(enc)

}

is recursively enumerable.

Now let 〈X1, τ1〉 and 〈X2, τ2〉 be topological spaces with countable bases
β1 and β2, respectively, and with one-to-one encodings enc1 : β1 → N and
enc2 : β2 → N. Given these bases and encodings, we say that a function g
from 〈X1, τ1〉 into 〈X2, τ2〉 is computable if and only if there is a recursive
partial function h of one function variable and one number variable25 such
that if φ is a nested oracle for any point x in X1, then λm[ h(φ, m) ] is a
nested oracle for the point g(x) in X2.26 This definition of a computable
function from 〈X1, τ1〉 into 〈X2, τ2〉 generalizes the Grzegorczyk-Lacombe
definition [20] of a computable function from R into R.

In particular, the set of all rational open intervals is a countable basis
for the usual topology on R, and ival is a one-to-one encoding of these basis
elements. In this context, a function φ : N → ran(ival) is a nested oracle for
a real number x if and only if

νival
(
φ(0)

)
, νival

(
φ(1)

)
, νival

(
φ(2)

)
, . . .

25 See Rogers [33, p. 347] for the definition of a recursive partial function of one function
variable and one number variable, and for related notation.

26 Note that if the space 〈X2, τ2〉 is T0, then g(x) is uniquely determined by the oracle
λm[ h(φ, m) ]. But if 〈X2, τ2〉 is not T0, then this might not be the case.
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is a sequence of nested intervals that form a local basis for x.
The Grzegorczyk-Lacombe computable functions are then the functions from
R into R that are computable using these oracles for points in R.27

In many cases, the nonempty closed sets that are used to specify models
are the graphs of functions. The following theorem shows that if the graph of
a computable function is a nonempty closed set, and if the encodings asso-
ciated with the function have recursively enumerable subset relations, then
the graph has a complete basic neighborhood model that is observationally
equivalent to a computable physical model.
Theorem 9.6. Let 〈X1, τ1〉 and 〈X2, τ2〉 be topological spaces with countable
bases β1 and β2, respectively, and with one-to-one encodings enc1 : β1 →
N and enc2 : β2 → N with recursively enumerable subset relations. Let g
be a computable function from 〈X1, τ1〉 into 〈X2, τ2〉 with these bases and
encodings, and let the graph of g be a nonempty closed set in the product
topology on X1 × X2. Then, any complete basic neighborhood model for the
graph that has the basis β1,2 = { r1 × r2 | r1 ∈ β1 and r2 ∈ β2 } and
encoding enc1,2(r1×r2) = J

(
enc1(r1), enc2(r2)

)
is observationally equivalent

to a computable physical model.28

Proof. Let A =
{ 〈

x, g(x)
〉 ∣∣ x ∈ X1

}
be the graph of g, and let A be the

structure of any complete basic neighborhood model for A that has the basis
β1,2 and encoding enc1,2. Let f be the symbol for the observable quantity
in the language of A. Then let B be the set of all nonnegative integers of
the form

J
(
a, b, J(c0, c1, . . . , cb)

)
,

where a and b are nonnegative integers with a ≤ b, and where c0, c1, . . . , cb

are members of ran(enc1) such that the basis element encoded by ci+1 is a
subset of the basis element encoded by ci (that is, νenc1(ci+1) ⊆ νenc1(ci)) for
each nonnegative integer i < b. Because the encoding enc1 has a recursively
enumerable subset relation, B is a recursively enumerable set. For each finite
sequence 〈c0, c1, . . . , cb〉 of nonnegative integers, and for each nonnegative
integer i, define

seq〈c0,c1,...,cb〉(i) =

{
ci if i ≤ b

0 otherwise
.

27 See Weihrauch [41, p. 251] and Szudzik [37, Thms. 11.2 & 11.3].
28 The theorem also holds more generally for encodings of the form enc1,2(r1 × r2) =

e
(
enc1(r1), enc2(r2)

)
, where e is any one-to-one recursive partial function whose domain

includes ran(enc1) × ran(enc2).
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Now, because g is a computable function, there exists a recursive partial
function h of one function variable and one number variable such that if φ
is a nested oracle for any point x in X1, then λm[ h(φ, m) ] is a nested oracle
for g(x). Choose an effective procedure for calculating the function h. Then
let p be the recursive partial function such that, for each nonnegative integer
i, p(i) is calculated according to the following two-step procedure:

Step 1. Use a semidecision procedure for B to verify that i ∈ B. If i /∈ B,
then p(i) is undefined.

Step 2. Let a, b, c0, c1, . . . , cb be nonnegative integers such that

i = J
(
a, b, J(c0, c1, . . . , cb)

)
.

Then use the procedure for calculating h to verify that

(i). h(seq〈c0,c1,...,cb〉, a) is defined; and
(ii). seq〈c0,c1,...,cb〉 is not given any input greater than b in the

course of the calculation for h(seq〈c0,c1,...,cb〉, a).

Let p(i) = J(ca, h(seq〈c0,c1,...cb〉, a)) if both of these conditions hold.
Otherwise, p(i) is undefined.

Because p is a recursive partial function, the range of p is a recursively
enumerable set. Let C be this recursively enumerable set.

Now consider any
〈
x, g(x)

〉 ∈ A and let φ be a nested oracle for x.
Then λa[ h(φ, a) ] is a nested oracle for g(x). Hence, λa

[
J
(
φ(a), h(φ, a)

)]
is

a nested oracle for
〈
x, g(x)

〉
. For each a ∈ N, let b be an integer greater than

or equal to a such that φ is not given an input greater than b in the course
of the calculation for h(φ, a). Because there can only be finitely many steps
in the calculation for h(φ, a), such an integer b must exist. Then, for each
nonnegative integer i ≤ b, let ci = φ(i). It immediately follows that

J
(
φ(a), h(φ, a)

)
= J

(
ca, h(seq〈c0,c1,...,cb〉, a)

)
.

Hence, J
(
φ(a), h(φ, a)

) ∈ C for each a ∈ N. And because λa
[
J
(
φ(a), h(φ, a)

)]

is an oracle for
〈
x, g(x)

〉
, the set

{
νenc1,2

(
J(φ(a), h(φ, a))

) ∣
∣ a ∈ N

}
is a lo-

cal basis for
〈
x, g(x)

〉
. We have shown that for each

〈
x, g(x)

〉 ∈ A, there
exists a K ⊆ C such that { νenc1,2(k) | k ∈ K } is a local basis for

〈
x, g(x)

〉
.

Next, consider any J
(
ca, h(seq〈c0,c1,...,cb〉, a)

)
in C. Let x be any point

in νenc1(cb), and let φ be a nested oracle for x such that φ(i) = ci for
each nonnegative integer i ≤ b. Then ca = φ(a), and because the functions
seq〈c0,c1,...,cb〉 and φ agree for all inputs that are less than or equal to b,
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h(seq〈c0,c1,...,cb〉, a) = h(φ, a). Hence,

J
(
ca, h(seq〈c0,c1,...,cb〉, a)

)
= J

(
φ(a), h(φ, a)

)
.

And because φ is an oracle for x, and λm[ h(φ, m) ] is an oracle for g(x),
there exist basis elements r1 ∈ β1 and r2 ∈ β2 with x ∈ r1 and g(x) ∈ r2
such that φ(a) = enc1(r1) and h(φ, a) = enc2(r2). Hence,

J
(
ca, h(seq〈c0,c1,...,cb〉, a)

)
= J

(
φ(a), h(φ, a)

)

= J
(
enc1(r1), enc2(r2)

)

= enc1,2(r1 × r2),

where r1 × r2 ∈ β1,2 and
〈
x, g(x)

〉 ∈ r1 × r2. But
〈
x, g(x)

〉 ∈ A. Therefore,
we have shown that for each J

(
ca, h(seq〈c0,c1,...,cb〉, a)

) ∈ C, there exists a
point

〈
x, g(x)

〉 ∈ A such that
〈
x, g(x)

〉 ∈ r1 × r2 = νenc1,2

(
J(ca, h(seq〈c0,c1,...,cb〉, a))

)
.

Because enc1 and enc2 have recursively enumerable subset relations, enc1,2

also has a recursively enumerable subset relation. Let D be the set of all
d ∈ ran(enc1,2) such that there exists a c ∈ C with νenc1,2(c) ⊆ νenc1,2(d).
Then D is a recursively enumerable set because C is a recursively enu-
merable set, and because enc1,2 has a recursively enumerable subset rela-
tion. Now consider any d ∈ D. By definition, there exists a c ∈ C with
νenc1,2(c) ⊆ νenc1,2(d). But we have shown that for every c ∈ C there exists
a point

〈
x, g(x)

〉 ∈ A such that
〈
x, g(x)

〉 ∈ νenc1,2(c). Hence, there exists a
point

〈
x, g(x)

〉 ∈ A with
〈
x, g(x)

〉 ∈ νenc1,2(c) ⊆ νenc1,2(d).

But by Definition 9.1, ran( fA) is the set of all d ∈ ran(enc1,2) such that
there exists a point

〈
x, g(x)

〉 ∈ A with
〈
x, g(x)

〉 ∈ νenc1,2(d). Therefore, we
have shown that d ∈ D implies d ∈ ran( fA).

Conversely, suppose that d ∈ ran( fA). By Definition 9.1, there must
exist a point

〈
x, g(x)

〉 ∈ A such that
〈
x, g(x)

〉 ∈ νenc1,2(d). But there is a
set K ⊆ C such that { νenc1,2(k) | k ∈ K } is a local basis for

〈
x, g(x)

〉
.

Therefore, there must exist a k ∈ C such that
〈
x, g(x)

〉 ∈ νenc1,2(k) ⊆
νenc1,2(d). It immediately follows from the definition of D that d ∈ D. In
addition to showing that d ∈ D implies d ∈ ran( fA), we have now shown
that d ∈ ran( fA) implies d ∈ D. Hence, D = ran( fA). We have established
that ran( fA) is a recursively enumerable set. Now let B be a nonnegative
integer physical model that has the same language and measuring operation
as the complete basic neighborhood model for A, and that has a structure
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B which is defined so that |B|S = ran( fA), and so that fB(s) = s for each
s ∈ |B|S . It immediately follows that B is observationally equivalent to the
complete basic neighborhood model for A. And because |B|S is a recursively
enumerable set, B is a computable physical model.

Although the graph of a computable function is not necessarily a nonempty
closed set, most commonly encountered functions have graphs that are
nonempty and closed. In particular, the graph of every continuous func-
tion from a topological space 〈X1, τ1〉 into a Hausdorff space 〈X2, τ2〉 is
necessarily [15, p. 140] closed in the product topology on X1 ×X2. Since ev-
ery computable function is continuous, this implies that every computable
function from a nonempty topological space into a Hausdorff space has a
nonempty closed graph.

Unless explicitly stated otherwise, we will follow the convention in Sec-
tion 8 and use the set of all rational open rectangles in R

d as a basis for the
usual topology on R

d, and we will use rectd as an encoding for the basis.
Given this convention, consider any computable function g : R

c → R
d, where

c and d are positive integers. Because R
c is nonempty, and because the usual

Euclidean topology on R
d is Hausdorff, the graph of g is a nonempty closed

set. The encodings rectc and rectd also have recursively enumerable subset
relations. Therefore, given the graph of a computable function from R

c into
R

d, Theorem 9.6 implies that any complete basic neighborhood model for
the graph that uses our conventional basis and encoding for the usual topol-
ogy on R

c+d is observationally equivalent to a computable physical model.
Various functions from R

c into R
d are known to be computable.29 In partic-

ular, g(P, V ) = 1
NAkB

PV is a computable function from R
2 into R, and the

graph of this function is the set of all triples of real numbers satisfying equa-
tion (5). Hence, Theorem 9.6 implies that the complete basic neighborhood
model for one mole of an ideal gas (Model 8.2) is observationally equivalent
to a computable physical model. Similarly, g(a, ω, t, t0) = a cos(ωt − ωt0) is
a computable function from R

4 into R, so the complete basic neighborhood
model for a simple harmonic oscillator, as described near the end of Sec-
tion 8, is observationally equivalent to a computable physical model. Using
this approach, many commonly encountered models can be formalized as
computable physical models.

29 See Pour-El and Richards [32, pp. 27 & 30], for example.
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10. Probabilities

The language of elementary real analysis30 is the two-sorted first-order lan-
guage that can be obtained from first-order number theory by introducing
a sort R for real numbers, introducing a predicate symbol for equality of
sort 〈R,R〉, introducing function symbols for addition and multiplication of
sort 〈R,R,R〉, and introducing a function symbol convN→R of sort 〈N,R〉.
The symbol convN→R is intended to denote the function that maps each
nonnegative integer n to the corresponding real number that is numerically
equivalent to n.

Many models in the sciences associate real number probabilities with
physical phenomena.31 For example, atoms of the radioactive isotope copper-
64 have been observed [4] to undergo β− decay. But other decay modes
for copper-64, such as β+ decay, have also been observed. Given that an
atom has decayed, its decay mode is usually modeled as having been chosen
randomly, with the model assigning each decay mode a probability of having
been chosen. This probability is said to be the branching ratio for the decay
mode. In a sample where several atoms have undergone radioactive decay,
each atom’s decay is modeled as an independent trial. Hence, in a sample
where i many copper-64 atoms have decayed, the probability that j of those
decays were β− decays is given by a binomial distribution. In particular, the
probability is given by

Bi,b(j) =
(

i
j

)
bj(1 − b)i−j ,

where b is the branching ratio for β− decay in copper-64.32 This model
for β− decay in a sample of copper-64 can be formalized by the following
nonnegative integer physical model, given any real number b such that 0 ≤
b ≤ 1.

Model 10.1. Consider a nonnegative integer physical language that has
three sorts, N , S, and R, and that contains the symbols for elementary real
analysis. The only additional physical symbols in the language are a symbol
f for an observable quantity and a function symbol p of sort 〈S, R〉. Let Ab

be a structure for this language, where the nonlogical symbols of elementary
real analysis are assigned their traditionally intended meanings, and where

30 See Rogers [33, p. 386] for an alternate formulation of elementary real analysis.
31 We assume that readers are familiar with basic terminology for probability and

statistics as found, for example, in Taylor’s textbook [38].
32 Note that we define 00 = 1 for the binomial distribution. See Knuth [24, p. 408].
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|Ab|S is the set of all 〈i, j, q〉 such that i and j are nonnegative integers
with i ≥ j, and q = Bi,b(j). Define op(f) to be an operation that measures
the total number m of copper-64 atoms in the sample that have undergone
radioactive decay, together with the number n of those atoms that have un-
dergone β− decay. The result of this joint measuring operation is encoded
as J(m,n). Let fAb〈i, j, q〉 = J(i, j), and let pAb〈i, j, q〉 = q.

Assuming that the total number of decays measured in the sample is al-
ways greater than or equal to the number of β− decays that are measured,
Model 10.1 is faithful. This is because the model allows all possible mea-
surement results of the form J(i, j) where i ≥ j. Each state 〈i, j, q〉 ∈ |Ab|S
is also labeled with a real number q. This number q is a probability because,
for each nonnegative integer i, the set { 〈j, q〉 | 〈i, j, q〉 ∈ |Ab|S } is the graph
of a binomial distribution. Hence, the statement that “in a sample with
a total of i many decays, the model associates the probability q with the
possibility of j many β− decays” can be expressed33 in the language of the
model as

∃S s
(
f(s) = J(i, j) ∧ p(s) = q

)
.

Statistical tests are often used to compare a model, such as Model 10.1,
with its measurement results.34 For example, consider a sample of copper-
64 with a total of m many decays. Model 10.1 associates a probability of
Bm,b(k) with the possibility that k of those decays are β− decays, and this
probability distribution has a mean value of mb. Given a real number α
such that 0 < α < 1, and given a measurement result J(m,n) for op(f), a
two-tailed statistical test of Model 10.1 is conducted by comparing α with
P (m,n, b), where

P (m,n, b) =
∑

k∈{0,1,2,...,m}
|k−mb| ≥ |n−mb|

Bm,b(k). (7)

In particular, the test is said to reject Model 10.1 with a significance level
of α if and only if 35

P (m,n, b) < α.

33 Note that the function J is definable in first-order number theory.
34 Several commonly encountered statistical tests are described by Taylor [38, pp. 236–

240 & 271–277]. The history of statistical tests in particle physics is surveyed by Franklin
[17].

35 This convention for rejection is used, for example, by Taylor [38, pp. 237 & 272].
Some authors, such as Dekking et al. [14, Section 26.2], use a different convention and
would reject the model if and only if P (m, n, b) ≤ α.
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Typically, the value chosen for α is close to zero. In this case, a rejection
of Model 10.1 implies that in a sample with a total of m many decays, the
model only associates a small probability P (m,n, b) with the possibility that
the number of β− decays is at least as far from the mean as n. That is, this
possibility is improbable according to the model.

As an alternate way to formalize this statistical test, consider any real
numbers α and b such that 0 < α < 1 and 0 ≤ b ≤ 1. Let Bα,b be a submodel
of Model 10.1 whose set of states is the set of all 〈i, j, q〉 ∈ |Ab|S such that

P (i, j, b) ≥ α,

and let Bα,b be the structure of Bα,b. Then, for each measurement result
J(m,n) of op(f),36

P (m,n, b) < α if and only if J(m,n) /∈ ran( fBα,b).

That is, given any measurement result J(m,n) for op(f), the two-tailed
statistical test rejects Model 10.1 with a significance level of α if and only
if J(m,n) /∈ ran( fBα,b). This fact allows statements about the rejection of
Model 10.1 to be expressed as statements about Bα,b. And in this sense, the
model Bα,b provides an alternate way to formalize the two-tailed statistical
test. For example, the statement that there exists a measurement result
for which the statistical test rejects Model 10.1 with a significance level of
α can be expressed by stating that Bα,b is not faithful. Or equivalently,
P (m,n, b) ≥ α for every measurement result J(m,n) of op(f) if and only if
Bα,b is faithful.

Given values for α and b, the faithfulness of Bα,b is determined by the set
Of that was introduced in Section 4. For example, if Of is the set

{
J(m,n)

∣
∣ m ≥ n and m ∈ N and n ∈ N

}
(8)

then, for every choice of α and b, there exists a measurement result J(m,n) ∈
Of such that P (m,n, b) < α. In this case, for every choice of α and b, the
model Bα,b is not faithful. But, if b = 1 and Of = { J(m,m) | m ∈ N }, then
P (m,n, b) = 1 for every J(m,n) ∈ Of . In this case, Bα,b is faithful for every
choice of α.

As another example, if 0 < b < 1 and if Of is any nonempty finite subset
of (8), then there exists a positive real number α such that

min
{

P (m,n, b)
∣
∣ J(m,n) ∈ Of

}
> α.

36 Here we are assuming that m ≥ n.
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And if Of is the empty set, then it is vacuously true that P (m,n, b) ≥ α
for every J(m,n) ∈ Of . Therefore, if 0 < b < 1 and if Of is any finite
subset of (8), then there exists an α such that Bα,b is faithful. Note that
there are various plausible circumstances in which one might suppose that
Of is finite. In particular, if the entire observable universe is finite, then Of

is necessarily a finite set.37

A statistical estimator can be used to estimate a probability or other
parameter that appears in a statistical model.38 For example, consider any
measurement result J(m,n) for op(f) where m ≥ n, and consider any sig-
nificance level α. Let Bm,n,α be the set of all b in the closed interval [ 0 ;1 ]
such that the measurement result J(m,n) is consistent with the claim that
Bα,b is faithful. That is, let

Bm,n,α =
{

b ∈ [ 0 ;1 ]
∣∣ P (m,n, b) ≥ α

}
.

From the assumption that Bα,b is faithful for some b ∈ [ 0 ;1 ], we may deduce
that this b is in the interval [ r ;s ], where r is the greatest lower bound of
Bm,n,α, and s is the least upper bound of Bm,n,α. Under that assumption, the
interval [ r ;s ] provides an estimate for the branching ratio b. For example,
if α = 1/3 and J(m,n) = J(3, 2), then Bm,n,α is the set of all b ∈ [ 0 ;1 ]
such that P (3, 2, b) ≥ 1

3 . It then follows (see Figure 1) that

[
r ;s

]
=

[
1
3 ; 3

√
2
3

]
.

This function for mapping a measurement result J(m,n) to an interval [ r ;s ]
is an interval estimator for the branching ratio in Model 10.1.39 As we will
show, there is an operation for measuring this interval estimate if [ r ;s ] is
suitably encoded as a nonnegative integer.

First, consider any positive integer m, any nonnegative integers n ≤ m
and i < 2m, and any real numbers b1 and b2 in the open interval

(
i

2m ; i+1
2m

)
.

Then, for every k ∈ {0, 1, 2, . . . ,m},

|k − mb1| ≥ |n − mb1| if and only if |k − mb2| ≥ |n − mb2|.

37 We say that the observable universe is finite if and only if every maximally faithful
nonnegative integer physical model is observationally equivalent to a nonnegative integer
physical model that has a finite set of states.

38 Lyons [26, pp. 47–48] describes the methods of statistical parameter estimation that
are most commonly used in particle physics. See Casella and Berger [6, Chaps. 7 & 9] for
the basic theory of statistical estimators.

39 Some other closely-related interval estimators are described, for example, by
Crow [9].
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Figure 1. The graph of P (3, 2, b) as a function of b. Note that P (3, 2, b) ≥
1
3

if and only if the corresponding point in the graph is on or above

the dotted line. The graph intersects the line at b = 3
√

2
3
. There are

discontinuities at b = 1
3
, 1

2
, and 5

6

Hence, by equation (7), there is a polynomial function ψi such that ψi(b) =
P (m,n, b) for every b ∈ (

i
2m ; i+1

2m

)
. That is, P (m,n, b) is a piecewise polyno-

mial function of b where the polynomials’ coefficients are rational numbers.
Also, for each nonnegative integer i ≤ 2m there is a rational number ρi

such that ρi = P (m,n, i
2m). Thus, the statement that b ∈ Bm,n,α can be

expressed in the language of elementary real analysis as
∨

i<2m

(
ψi(b) ≥ α ∧ i

2m < b ∧ b < i+1
2m

)

∨
∨

i≤2m

(
ρi ≥ α ∧ b = i

2m

)
, (9)

where α is a constant of sort R and b is a variable of sort R.40 Moreover,
there is an effective procedure that produces this formula given a positive
integer m and a nonnegative integer n ≤ m.

Next, consider any J(m,n) in the set ran( fAb) of possible measurement
results allowed by Model 10.1. If m = 0 then let Fα(b) denote the formula
0 ≤ b ∧ b ≤ 1. Otherwise, let Fα(b) denote formula (9). The statement that

40 Note that rational number constants and the ≥ and < predicates are definable in
elementary real analysis.
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s is the least upper bound of Bm,n,α can be expressed in elementary real
analysis as

∀R x
(
Fα(x) → x ≤ s

)

∧ ∀R x
(

x < s → ∃R y
(
Fα(y) ∧ y > x

) )
. (10)

But if α is a rational number, then this is also a formula in the language
of real closed fields. In this case, the formula can be put into a prenex
normal form and Collins’ quantifier elimination algorithm [7] can be applied
to obtain41 a squarefree polynomial ϕ(x) that has integer coefficients, and to
obtain a rational open interval

(
c1
c2

;d1
d2

)
. The polynomial has s as a root, and

the interval isolates this root. Given the polynomial and isolating interval, a
root refinement algorithm [21, Section 7] can be used to obtain a program for
a nested oracle for s, written in a computationally universal programming
language. The Gödel number s of this program encodes s. And a similar
procedure can be used to obtain an encoding r of the greatest lower bound
r. Hence, for each rational number α such that 0 < α < 1, there is a recursive
partial function h that maps each J(m,n) ∈ ran( fAb) to J( r, s ).

Now, given any rational number α with 0 < α < 1, and given any real
number b with 0 ≤ b ≤ 1, let Cα,b to be the expansion of Model 10.1 that is
obtained by introducing the derived observable quantity

gCα,b = h ◦ fAb

with a natural measuring operation, where Cα,b denotes the structure of Cα,b.
By the definition of a natural measuring operation, op(g) is an operation
that measures the total number m of copper-64 atoms that have undergone
radioactive decay within a sample, together with the number n of those
atoms that have undergone β− decay, and then uses these values to calculate
J( r, s ). This measurement result is an encoding of the closed interval [ r ;s ],
and in this sense, op(g) measures the interval estimate of the branching ratio
b. Moreover, if Bα,b is faithful then b is contained within this interval. Similar
approaches can be used to measure interval estimates for parameters in other
commonly encountered statistical models.

Incidentally, both Model 10.1 and Cα,b are isomorphic to computable
physical models under the isomorphism that maps 〈i, j, q〉 to J(i, j).

41 The set Bm,n,α is nonempty, and every member of Bm,n,α has 1 as an upper bound.
Hence, Bm,n,α has a unique least upper bound s. In this case [7, pp. 151 & 159–160], Collins’
algorithm outputs the quantifier-free formula

(
ϕ(s) = 0 ∧ c2s − c1 > 0 ∧ d2s − d1 <

0
) ∨ 1 = 0. This formula is equivalent to formula (10).
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