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Abstract. We give a novel approach to proving soundness and completeness for a logic

(henceforth: the object-logic) that bypasses truth-in-a-model to work directly with validity.

Instead of working with specific worlds in specific models, we reason with eigenworlds (i.e.,

generic representatives of worlds) in an arbitrary model. This reasoning is captured by a

sequent calculus for a meta-logic (in this case, first-order classical logic) expressive enough

to capture the semantics of the object-logic. Essentially, one has a calculus of validity for

the object-logic. The method proceeds through the perspective of reductive logic (as op-

posed to the more traditional paradigm of deductive logic), using the space of reductions as

a medium for showing the behavioural equivalence of reduction in the sequent calculus for

the object-logic and in the validity calculus. Rather than study the technique in general,

we illustrate it for the logic of Bunched Implications (BI), thus IPL and MILL (without

negation) are also treated. Intuitively, BI is the free combination of intuitionistic propo-

sitional logic and multiplicative intuitionistic linear logic, which renders its meta-theory

is quite complex. The literature on BI contains many similar, but ultimately different,

algebraic structures and satisfaction relations that either capture only fragments of the

logic (albeit large ones) or have complex clauses for certain connectives (e.g., Beth’s clause

for disjunction instead of Kripke’s). It is this complexity that motivates us to use BI as a

case-study for this approach to semantics.

Keywords: Logic, Proof theory, Model theory, Semantics, Bunched logic.

1. Introduction

This paper centres around a new approach for proving soundness and com-
pleteness. It is an extended case-study of the method applied to the logic
of Bunched Implications (BI) [24], which is chosen as the subject because
the complexities in the logic’s syntax and meta-theory help expose the more
subtle aspects of how and why the method works. Essentially, the approach
proceeds by showing extensional equivalence of the provability and validity
judgments by showing behavioural equivalence of transition systems (i.e., re-
duction in sequent calculi—see below) for them. This supports the intuition
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that rules for the connectives in a proof system define their meaning, the
central doctrine to proof-theoretic semantics [30], since it is with the rules
of the sequent calculus that the clauses of satisfaction must match in order
to witness soundness and completeness.

A distinguishing feature of BI is that it contains two primitive variants
of conjunction and implication, one additive and one multiplicative. Con-
sequently, contexts in BI are not lists, multisets, nor sets, they are instead
bunches, a data-structure constructed out of formulas using two context-
formers, one for each conjunction. Individually, the context-formers behave
as expected (i.e., they are commutative and associative), but they do not
commute with each other. The interaction between the additive and mul-
tiplicative parts of the logic renders much of the meta-theory of BI subtle
and complex.

In this paper, the a priori characterization of BI is provided by the logic’s
sequent calculus LBI [2,26]. The choice of the sequent calculus over the other
formalisms available for BI (e.g., Hilbert or natural deduction systems) is
because the space of derivations is simpler to characterize than in other
systems. Firstly, using a proof system over sequents means that all of the
data during any stage of a derivation is contained locally. Secondly, the
sequent calculus has the advantage over the sequent presentation of natural
deduction in that its reductions are simpler to characterize because of its
proof-theoretic features (e.g., the sub-formula property).

A sequent is a pair Γ�φ in which Γ is a bunch, called the context, and φ is
a formula, called the extract. The nomenclature is purposefully suggestive:
the context is regarded as available information, and the extract as inferred
information. Yet, sequents are unjudged structures. A sequent Γ � φ is a
consequence of BI when it has a proof in LBI.

This paper concerns the model theory of BI. One gives a model-theoretic
account of BI by means of a satisfaction relation of the form w � φ, in which
the possible worlds w are elements from a structure called a frame, and the
φ are formulas. A sequent Γ � φ is valid if, in any model M, at any world w
in that model, if w � Γ, then w � φ. We write Γ |= φ to denote that Γ � φ
is valid.

In this paper, we show the soundness and completeness of BI with respect
to the (putative) semantics—provability is sound with respect to validity
when Γ � φ implies Γ |= φ; provability is complete when Γ |= φ implies
Γ � φ. From this perspective, one expects the proof-theoretic and model-
theoretic views of logic to be reasonably close.

Various sound and complete semantics have been studied for BI in the
past, including categorical, relational, and topological variants (specially,
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Grothendieck topological semantics close the Hilbert calculi for BI—see
Pym [25]), but the most widely used models of BI in the literature employ
the monoidal semantics, for which completeness has been a subtle problem.
Currently, soundness and completeness results have been achieved only for
monoids with partial or non-deterministic products or with total determin-
istic products but with Beth’s clause for disjunction in the definition of
satisfaction. These previous results are discussed in Section 6. In this pa-
per, we prove completeness for a general class of relational models, which
subsumes the relational and monoidal semantics discussed above, while em-
ploying Kripke’s clause for disjunction. That this is possible while avoiding
the complications that arise in previously considered term-model construc-
tions demonstrates the strength of the approach.

The intuition behind the approach to soundness and completeness in this
paper is that the ways in which proof theory and model theory define the
connectives coincide; for example, in both paradigms, additive conjunction
is characterized by the behaviour that relative to some available informa-
tion Γ one has the conjunction φ ∧ ψ if and only if, relative to the same
information, one has each of φ and ψ, independently. Essentially, the ap-
proach in this paper proceeds by showing that whatever reasoning can be
done in the model theory can be simulated in the model proof theory, and
vice versa. We characterize reasoning through the perspective on logic called
reductive logic— dual to the more traditional paradigm of deductive logic—
as explorations of the space of reductions in a sequent calculus. A formal
definition of the space of reductions is contained within (see Section 3), but
it is only a formal treatment of the intuitive idea as the space of derivations
accessible by means of reductive reasoning (i.e., by using sequent calculus
rules backward) from a given sequent.

To characterize validity in terms of a space of reductions, one needs a
proof system for it, which is handled by encoding it with a meta-logic (first-
order classical logic) such that worlds and formulas become terms and sat-
isfaction becomes a relation symbol. This is similar to other uses of logic
to reason about mathematical objects and structures (e.g., the use of logic
in universal algebra and applied logic); see Section 4.1 for more discussion.
Therefore, the central part of the paper concerns giving a sequent calculus
for a restriction of the meta-logic expressive enough to reason about valid-
ity, while tractable enough to characterize its space of reduction. Since we
work with eigenvariables representing worlds, dubbed eigenworlds, we by-
pass truth-in-a-model. In particular, the reasoning being witnessed in the
meta-logic can be instantiated to any world in any model.
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The paper begins in Section 2 with a terse, but complete, proof-theoretic
and semantic formulation of BI; it continues in Section 3 with a brief sum-
mary of the space of reductions for a sequent in a sequent calculus. This
background is followed in Section 4 by an analysis of model-theoretic rea-
soning as captured by reduction in a meta-logic. The main result of the
paper is in Section 5, where we prove soundness and completeness using
behavioural equivalence of reductions in the sequent calculus and in the se-
mantics (i.e., in a sequent calculus for the meta-logic capturing validity). In
Section 6, we discuss the literature on the semantics of BI and contrast the
major result with the work of this paper; more specifically, in Section 7, we
review Beth’s clause for disjunction in this context. The paper concludes in
Section 8 with a summary of the main theorem and thesis, and a proposal
of future work.

2. The Logic of Bunched Implications

In this section, we give a syntactic and proof-theoretic account of BI that
provides the concept of BI-truth, as well as define the concept of a model for
which we prove soundness and completeness. Specifically, Section 2.1 recalls
the usual sequent calculus for BI, Section 2.2 provides the proof theory used
in this paper, and Section 2.3 introduces the (putative) model theory.

2.1. Syntax

The logic of Bunched Implications (BI) [24] can be regarded as the free
combination (i.e., the fibration—see Gabbay [12]) of (additive) intuition-
istic logic, with connectives ∧,∨,→,�,⊥, and multiplicative intuitionistic
logic, with connectives ∗,−−∗,�∗. A distinguishing feature of BI is that con-
texts are not one of the familiar structures of lists, multisets, or sets, since
the two context-formers � and , representing the two conjunctions ∧ and
∗, respectively, do not commute with each other, though individually they
behave as usual; contexts are instead bunches—a term that derives from the
relevance logic literature (see, for example, Read [28]).

Definition 2.1. (Formulas) Let P be a set of propositional letters. The set
of formulas F is defined by the following grammar:

φ::=p ∈ P | � | ⊥ | �∗ | φ ∧ ψ | φ ∨ ψ | φ → φ | φ ∗ φ | φ −−∗ φ

Definition 2.2. (Bunches) The set of bunches B is defined by the follow-
ing:

Γ::=φ ∈ F | ∅+ | ∅× | Γ � Γ | Γ , Γ
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The � is the additive context-former, and the ∅+ is the additive unit; the
, is the multiplicative context-former, and the ∅× is the multiplicative unit.

Definition 2.3. (BI-sequent) A BI-sequent is a pair Γ � φ in which Γ is a
bunch, called the context, and φ is a formula, called the extract. The empty
pair, denoted �, is also a sequent.

A sub-tree Δ of a bunch Γ is a sub-bunch. We may write Γ(Δ) to express
that Δ is a sub-bunch of Γ. The operation Γ[Δ 
→ Δ′] - abbreviated to
Γ(Δ′), where no confusion arises—is the result of replacing the occurrence
of Δ by Δ′.

Since contexts are more complex than in many of the more familiar logics
(e.g., classical logic, intuitionistic logic, etc), the following is an explicit
characterization of the analogous structural behaviour (i.e., equivalence up-
to permutation):

Definition 2.4. (Coherent equivalence) Two bunches Γ, Γ′ ∈ B are coher-
ently equivalent when Γ ≡ Γ′, where ≡ is the least relation satisfying:

– commutative monoid equations for � with unit ∅+

– commutative monoid equations for , with unit ∅×
– coherence; that is, if Δ ≡ Δ′ then Γ(Δ) ≡ Γ(Δ′).

Bunches are typically understood as the syntax trees provided by Defi-
nition 2.2 modulo coherent equivalence, in the same way that lists for the
contexts of classical logic sequents are understood modulo permutation.

The idea that the context-formers represent the conjunctions provides
the following transformation:

Definition 2.5. (Compacting) The compacting function �− : B → F is
fixed on formulas—that is, �φ:=φ—and acts on non-formulas as follows:

�Γ , Δ:=�Γ ∗ �Δ �∅×:=�∗ �∅+:=� �Γ � Δ:=�Γ ∧ �Δ

That a sequent Γ � φ is a consequence of BI is denoted Γ � φ. In this
paper, the a priori characterization of consequence is through provability,
which is the subject of the next section.

2.2. Proof Theory

In this paper, we use various structures that we call sequent (i.e., not just BI-
sequent). For each such structure, we will require the same general notions
of rule and proof. Therefore, for the sake of economy, the definitions below
apply to any fixed notion of sequent.
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Definition 2.6. (Rule) A rule r is a relation on sequents.

The situation r(S, S1, ..., Sn) may be denoted in the following format:

S1 ... Sn

S
r

Definition 2.7. (Sequent calculus) A sequent calculus is a set of rules.

Since much of subsequent work concerns reduction, we define proofs by
a correctness criterion rather than the familiar inductive construction (see,
for example, Troelstra and Schwichtenberg [32]), doubtless already familiar.

Definition 2.8. (Proof ) Let L be a sequent calculus and let S be a sequent.
A rooted finite tree D of sequents is a L-proof of S, if for any node ζ,

– if ζ is a leaf, then ζ = �;

– if ζ has children P0, ..., Pn in D, then there is a rule r ∈ L such that
r(ζ, P0, ..., Pn);

– if ζ is the root, then ζ is S.

A sequent Σ � Π is L-provable—denoted Σ �L Π—if and only if there is
an L-proof with root Σ � Π.

In this paper, we define consequence for BI (�) by provability in the
sequent calculus LBI.

Definition 2.9. (System LBI) System LBI comprises the rules in Figure 1.

We use � in the premiss of axioms to facilitate the transition between the
concept of a proof and the concept of a reduction in a space of reductions in
Section 3. Though unusual in much of proof theory, this notation is standard
when working with reductions—see, for example, Kowalski [18].

In the remainder of this section, we give some technical results to facilitate
subsequent discussion.

Lemma 2.10. For any Γ ∈ B the following holds: Γ �LBI �Γ.
Proof. This follows from induction on the size of Γ—see, for example,
Gheorghiu and Marin [16].

Lemma 2.11. The following rules are admissible for BI:

Γ � φ � φ
taut

Δ � φ Δ′ � ψ

Γ � (Δ , Δ′) � φ ∗ ψ
∗R

Δ � φ Γ(φ) � χ

Γ(Δ) � χ
cut

Proof. The first two rules are admissible by combining w with Lemma
2.10 and ∗R in Figure 1, respectively. The admissibility of cut was proved by
Brotherston [2] (see also Gheorghiu and Marin [16]).
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Figure 1. Sequent calculus LBI

Figure 2. The exchange rules

We have overloaded the names taut and ∗R to economize on notation.
Henceforth, the names refer to the rules in Lemma 2.11.

The underlying ideology in this paper is that the rules of the sequent
calculus define the connectives (and context-formers) of the logic. From
this perspective, the exchange rule e is not tractable since its definition
outsources the key behaviour of the syntax that it concerns. Therefore, we
desire a representation of it that is internal to the sequent calculus.

Lemma 2.12. The rules in Figure 2 are admissible for BI and they have the
same expressive power as e.
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Figure 3. Sequent calculus sLBI

Proof. Since Γ ≡ Γ′ if and only if there is a sequence of steps using the
commutative monoid axioms and all of these are encoded by the new rules
of Figure 2, these rules are admissible.

Taking all these technical results result provides a new sequent calculus
for BI suitable for the work in this paper.

Definition 2.13. (System sLBI) System sLBI is composed of the rules in
Figure 3 in which asso is invertible.

Lemma 2.14. Γ �LBI φ iff Γ �sLBI φ.
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2.3. Model Theory

In contrast to classical logic, in the model theory for non-classical logics, one
thinks of statements (i.e., formulas of the logic) not as being universally true,
but instead true with respect to a certain state of affairs, such as at a certain
time or with respect to some information. For intuitionistic propositional
logic (IPL), a formula is true when one can provide a method for witnessing
(or constructing) it; the states in the model-theoretic semantics for IPL are
sometimes understood as witnesses of these methods, and the clauses of the
satisfaction relation specify how the witnesses relate to each other—see, for
example, Dummett [11] for details. The model-theoretic semantics of BI is
an extension of the model-theoretic semantics for IPL that allows witnesses
to be decomposed. Decomposition is witnessed by a relation R such that
w decomposes to u and v iff R(w, u, v). A witness w satisfies an additive
conjunction φ∧ψ when it satisfies both φ and ψ, and a witness w satisfies a
multiplicative conjunction φ∗ψ when there are two states u and v such that
R(w, u, v), u satisfies φ, and v satisfies ψ. This handling of the semantics
is in the style of the style of Routley and Meyer [29] and Urquhart [33] for
relevant logics.

Definition 2.15. (BI-frame) A quintuple M:=〈V, e, π,�, R〉 is a BI-frame
when V is a set, e and π are distinguished element of the set, � is a preorder
on the set dominated by π—that is, for any w in the set, w � π—and R is
a ternary relation on the set satisfying the following conditions:

– (Unitality) R(w,w, e)

– (Commutativity) R(x, y, z) iff R(x, z, y)

– (Associativity) if R(x,w, y) and R(y, u, v), then there exists a z such that
R(x, z, v) and R(z, w, u)

The elements of V in a BI-frame are called worlds.

Definition 2.16. (Interpretation) Let F :=〈V, e, π,�, R〉 be a BI-frame. A
mapping [[−]] : V → ℘(P) is an interpretation,

Definition 2.17. (Satisfaction) Satisfaction for a pair 〈F , [[−]]〉 is a bi-
nary relation � between worlds and the formulas, defined by the clauses in
Figure 4.

We require the following (general) persistence condition on satisfaction,
to model BI:

for any φ ∈ Fand any w, u ∈ V, if w � u and w � φ, then u � φ
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Figure 4. Satisfaction for BI

Moreover, we require the special world π to be absurd:

for anyφ ∈ F, if there is a worldw such that w � φ, thenπ � φ

This concept of a model given in Definition 2.18 actually arises from the
approach to completeness that this paper demonstrates in that the clauses
are designed to reflect the proof-theoretic behaviour of the connectives.

Definition 2.18. (Model) A pair M:=〈F , [[−]]〉, in which F is a frame and
[[−]] is an interpretation, is a model when it is persistent and, for any φ ∈ F,
π � φ. The set of all models is C.

This definition of a frame for modelling BI based on a relation R is more
general than that studied by Galmiche et al. [14], whose relationship to the
present structure is discussed in Section 6. Similar models to the present
one have previously been studied by Docherty and Pym [5,8,10]. In that
work, certain variations of satisfaction are also considered that may also be
understood from the approach to completeness in this paper, but they are
more complex without being more informative for our purposes. In terms of
constructing models, the most difficult requirement to satisfy is persistence,
but the aforementioned authors have also given conditions under which this
condition can be met. A necessary condition is bifunctoriality:

ifu � u′, v � v′, R(w, u, v) andR(w′, u′, v′), then w � w′

These concerns are discussed further in Section 6.4

Definition 2.19. (Validity) A sequent Γ � φ is valid—denoted Γ |= φ—if,
for any model M ∈ C, at any world w, if w � Γ, then w � φ.

The intuition for why BI is complete for this class of frames (i.e., Γ |= φ
implies Γ � φ) is that it has precisely the structure required to simulate BI
in the context-extract reading. The strength of universal quantification on
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frames and on worlds for Γ |= φ is deceptive since one must show that if
w � Γ, then w � φ, which has more to do with the relationship between Γ
and φ (according to satisfaction) than it does with the frame or with the
world.

3. Reductive Logic

The traditional paradigm of logic proceeds by inferring a conclusion from
established premisses using an inference rule. This is the paradigm known
as deductive logic:

Established Premiss1 ... Established Premissn

Conclusion
⇓

In contrast, the experience of the use of logic is often dual to deductive
logic in the sense that it proceeds from a putative conclusion to a collection
of premisses that suffice for the conclusion. This is the paradigm known as
reductive logic:

Sufficient Premiss1 ... Sufficent Premissn

Putative Conclusion
⇑

Rules used backward in this way are called reduction operator. The objects
created using reduction operators are called reductions.

Historically, the deductive paradigm has dominated since it exactly cap-
tures the meaning of truth relative to some set of axioms and inference
rules, and therefore is the natural point of view when considering founda-
tions of mathematics. However, it is the reductive paradigm from which
much of computational logic derives, including various instances of auto-
mated reasoning—see, for example, Kowalski [19], Bundy [3], and Milner
[22]. In this paper, reductive logic is the paradigm we use to understand the
reasoning used to establish the validity of a BI-sequent.

There are many ways of studying reduction, and a number of models have
been considered, especially in the case of classical and intuitionistic logic
(see, for example, Pym and Ritter [27]). A generic approach to representing
and understanding the structure of the space of reductions is the use of co-
inductive derivations trees, which have their origin in Kowalski’s study of
logic programming [18]. A (co-)algebraic treatment has been considered by
the authors previously [15], generalizing earlier work by Komandantskaya et
al. [17].

Let S be a set of sequents and let L be a sequent calculus over these
sequents. For any rule r ∈ L, its reduction operator ρL : S → ℘℘(S) is the
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map that moves from putative conclusion to sets of sufficient premisses,

ρr : S 
→ {{S1, ..., Sn} | r(S, S1, ..., Sn)}
This captures as a function the reductive reading of r,

S1 ... Sn

S
⇑

The space of reduction over L is generated by a map that considers all such
reduction operators at once,

ρL : S 
→
⋃

r∈L

{{S1, ..., Sn} | r(S, S1, ..., Sn)}

Definition 3.1. (Space of reductions) Let L be a sequent calculus. The
space of reductions of a sequent S ∈ S is the tree corecursively generated as
follows:

– The root of the tree is S;

– each element of • ∈ ρL(S) is a child of S;

– each element Si ∈ • ∈ ρL(S) is a child of the •;

– each node Si ∈ • ∈ ρL(S) has reduction of Si as a child.

Example 3.2. Below is a section of the space of reductions for p �∅+ �(p →
q) � q. The tree is constructed in the direction of the arrows. The •-nodes
represents a set of sufficient premises for a particular instance of the rule(s)
labelled on the arrow and struct. is used as a shorthand for the various
structural rules that may apply (e.g., rules from c,w, c∅+ , c∅× , and comm+):

p � ∅+ � (p → q) � q
→L��

struct.

��•...• •
������

�����
�����

�������
�����

�����

p � p
struct.

�� id��

∅+ � q � q
struct.

��
c∅+��

• . . . • � •
��

• . . . •

q � q
id��

struct.

��
� • . . . •

The •-nodes are suggestively dubbed or -nodes, their children are dubbed
and -nodes. This nomenclature proposes the following inductive reading of
provability within a space of reductions: a sequent is provable if and only
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if it is either vacuous (i.e., it is �) or all the children of at least one of its
or-nodes are provable.

Definition 3.3. (Reduction) Let S be a sequent. A finite subtree R of a
space of reductions ρL(S) is an L-reduction of S iff the root of R is S and the
immediate sub-trees of R are reductions R1, ...,Rn are precisely reductions
of the sequents in {s1, ..., sn} ∈ ρL(S). A reduction is successful iff all the
leaves are �.

Example 3.4. The sub-tree that is explicit in Example 3.2 is a reduction
for p � ∅+ � (p → q) � q in that space. It is a successful reduction because the
terminal nodes are all �.

Lemma 3.5. A tree of sequents T is an L-proof of S if and only if T is a
successful L-reduction of S.

Proof. Immediate by induction on the height of proofs and the definition
of reduction tree—see, for example, previous work by the authors [15].

The idea of this paper is that reasoning about judgments (i.e., analyzing
and determining why one obtains for a given sequent) may be formal charac-
terized by exploring a space of reductions capturing the possible inferences
that lead to the conclusion. For example, we mean by proof-theoretic reason-
ing the systematic analysis of the rules from a proof system to establish the
conditions under which a sequent may be deemed provable in that system.
In particular, we reason backward from the sequent through the space of
reductions, concentrating on those reductions that are successful, if there
are any. Taking the stance that this captures a common form of reasoning
used in mathematics, we apply it to reasoning about validity.

The technology delivering this paper is that one can take the phrase
model theory literally. This is the subject of Section 4. Essentially, one may
study satisfaction in a frame as a theory of first-order classical logic by
formalizing the implicit ambient logic in which mathematics is conducted
as a meta-logic. Being classical, the meta-logic comes with its own well-
understood and well-behaved proof theory, and one uses the construction of
space of reductions with respect to the meta-calculus to characterize model-
theoretic reasoning.

Reasoning proof-theoretically about the clauses of the semantics for BI
(i.e., Figure 4) encoded within the meta-logic reveals that they actually
have the same behaviour as the rules of sLBI. Thus proving soundness and
completeness amounts to showing that the space of reductions for validity
for any given sequent is, essentially, the same as the space of reductions for
provability for the same sequent.
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4. Model Theory qua Classical Theory

In this section we capture BI-frames and satisfaction as a theory of a first-
order classical logic, called the meta-logic, in such a way that a validity
judgment obtain iff there is a formal proof of a corresponding meta-sequent.
The section is composed of three parts: in Section 4.1, we define the meta-
logic and the encoding of validity; in Section 4.2, we develop a sequent
calculus, called the meta-calculus, for the meta-logic suitable to our needs;
in Section 4.3, we demonstrate that reasoning about validity is captured by
reduction in the meta-calculus.

4.1. The Meta-logic

The mathematics used to study logic happens itself within a logic, which
may be called the ambient logic. In this section we formalize the ambient
logic into a symbolic (meta-)logic that allows us to study model theory
systematically. This move is quite natural as an early use of logic was to
understand symbolically the logic in which mathematical reasoning takes
places; for example, such uses of logics are used to study the natural numbers
(i.e., by theories of arithmetic such as PA), set theory (e.g., by theories such
as ZF(C)), etc. From this perspective, the present paper differs only in that
the application is to study another logic—that is, BI. This is closely related
to the relational calculi introduced by Negri [23] for modal logic.

The meta-logic introduced in this section is designed for the model theory
of BI. The guiding principle is to encode the definitions of the previous
section symbolically as directly as possible.
Definition 4.1. (Syntax of the meta-logic) The syntax is a two-sorted first-
order alphabet, the sorts are world and formulas.

Let Vw be the set world-variables, and let Vf be the set of formula-
variables, and fix world-constants e and π. The set of world-terms Tw is
comprised of Vw, e and π, and the set of formula-terms Tf is generated by
using the connectives of BI as function symbols,

φ::=p ∈ P | xf ∈ Vf | � | ⊥ | �∗ | φ ∧ ψ | φ ∨ ψ | φ → φ | φ ∗ φ | φ −−∗ φ

The set of meta-atoms A is comprised of (x � φ), R(x, y, z), (x � y),
(x = y) for x, y, z ∈ Vw ∪ {e, π} and φ ∈ Tf .

The set of meta-formulas M is defined by the following grammar:

Φ::=A ∈ A | Φ � Φ | Φ � Φ | Φ ⇒ Φ | ∀φΦ | ∀wΦ | ∃wΦ | ∃φΦ | �
We are overloading a lot of notation, but in every case the symbol in the

meta-logic is intended to denote the mathematical object for which we have



Semantical Analysis of the Logic of Bunched Implications 539

the same notation; for example, the symbol � is overloaded as both a relation
symbol in the meta-logic and the satisfaction relation of BI. Henceforth, in
the context of the meta-logic, we may write φ to denote a formula-term.
We write (w � Γ) to abbreviate the meta atom (w � �Γ). The notation
Φ ⇐⇒ Ψ abbreviates (Φ ⇒ Ψ) � (Ψ ⇒ Φ). For the sake of economy, we
identify meta-formulas of the form Φ ⇒ Ψ with Φ ⇐ Ψ. Throughout, the
symbols Σ and Π are reserved for lists of meta-formulas; Σ ∼ Σ′ denotes
that Σ and Σ′ are permutations of each other. We call meta-atoms of the
form (w � φ) assertions.

Definition 4.2. (Meta-sequent) A meta-sequent is a pair Σ � Π in which
Σ and Π are lists of meta-formulas. The empty pair, denoted �, is also a
sequent.

A meta-sequent is an unjudged structure; for example p � ⊥ is a meta-
sequent. The consequence judgment for the meta-logic is first-order classical
consequence.

Definition 4.3. (Meta-consequence) A meta-sequent Σ � Π is a
meta—consequence—denoted Σ � Π - iff Σ � Π is a consequence of first-
order classical logic.

We aim to develop a list of meta-formulas Ω such that Ω, (w � Γ) � (w �
Δ) iff Γ |= Δ. This is the task of the remainder of this section.

The definitions of the previous section can be encoded in the meta-logic;
that is, one may regard the model theory of BI qua a theory in the meta-
logic. There are two parts to capture: the sentences governing BI-frames ΩM

(Definition 2.18) and sentences governing satisfaction Ω� (Definition 2.17).
The sentences in ΩM are the universal closure of the following, in which

u, v, w, x, y, z are world-variables and φ is a formula variable:

R(x, x, e)︸ ︷︷ ︸
unitality

(
R(x, y, z) ⇔ R(x, z, y)

)
︸ ︷︷ ︸

commutativity

(
w � u ⇒ (w � φ ⇒ u � φ)

)
︸ ︷︷ ︸

persistence(
R(x,w, y) �R(y, u, v) ⇒ ∃z(R(x, z, v) �R(z, w, u))

)
︸ ︷︷ ︸

associativity

w = π ⇒ w � φ︸ ︷︷ ︸
absurdity

The sentences in Ω� are given by the universal closure of the meta-
formulas in Figure 5, which merits comparison with Figure 4, in which
quantifiers are taken to be over each implicit conjunct separately in the
bi-implications. There are two significant differences between Figs. 4 and 5:
first, there is no clause for (w � p), where p ∈ P; second, there is no clause
for (w � �∗). This is an effort to simplify computations about satisfaction
in subsequent parts of the paper.
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Figure 5. Satisfaction for BI (symbolic)

The elimination of a clause for atomic satisfaction follows from working
with validity directly (i.e., without passing though truth-in-a-model) as in-
terpretations are no longer required; that is, atomic satisfaction is captured
by an atomic tautology, Ω, (w � p) � (w � p). We justify the omission of an
encoding for the �∗-clause at end of this section.

The concatenation of Ω� and ΩM is the desired theory Ω. Indeed,

Ω, (w � Γ) � (w � φ) iff Γ |= φ

The significance of this is that all the familiar tools of classical logic become
available, including sequent calculi for reasoning about when the above im-
plication holds. The details of the proof-theoretic tools used for the meta-
logic in this paper is reserved for Section 4.2.

Definition 4.4. (Basic validity sequent) A basic validity sequent (BVS) is
a meta-sequent Ω, (w � Γ) � (w � φ).

Definition 4.5. (Complex validity sequent) A complex validity sequent
(CVS) is a meta-sequent Ω, Σ̄ � Π̄ in which Σ̄ and Π̄ are sets of assertions.

To conclude this section, we explain why the �∗-clause of satisfaction
may be omitted in Ω. Let Φ�∗ :=∀x

(
(x � I) ⇐⇒ (e � x)

)
, we claim

Ω, (w � Γ) � (w � �∗) iff Ω, Φ∗
�, (w � Γ) � (w � �∗). This follows

from the fact that Ω, Φ�∗ , (w � Γ) � (w � �∗) iff Γ � �∗, which is what we
would expect for a model of BI, but then we already have Ω, (w � Γ) � (w �
�∗). In short, the �∗-clause can be removed from BI-frames without loss
of generality when encoding in the meta-logic because the sequent calculus
rule governing �∗ requires that �∗ is already part of the context—indeed,
this is the same reason satisfaction of atoms could be eliminated. The other
atomic rules, such as � and ⊥ do not satisfy this condition, therefore their
clauses are required.
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Figure 6. System DLJ

4.2. Proof Theory for the Meta-logic

Having encoded the (putative) semantics of BI as a theory of the meta-logic,
all of the tools of first-order classical logic become available. In particular,
that a meta-sequent is a consequence of the meta-logic may be established
by witnessing a proof for it in a proof system for first-order classical logic.
In this section, we develop a sequent calculus for the meta-logic that is
tractable for analyzing the semantics.

The logic of BI is constructive. Consequently, one expects satisfaction to
be constructive in the sense that, if Ω, (w � Γ) � (w � φ) obtains, then
there should be a constructive proof of it. Therefore, we may restrict to an
intuitionistic sequent calculus for the meta-logic. This sequent calculus need
only be sound and complete for BVSs that are valid in classical logic, we do
not require it to be sound and complete for the whole logic.

The following is based on Dummett’s [11] multiple-conclusioned system
for first-order IL:

Definition 4.6. (System DLJ) System DLJ is composed of the rules in Fig-
ure 6 in which θX denotes a substitution for X and θ̂X denotes a substitution
for X by an eigenvariable.

We elide rules for negation from Figure 6 as Ω is negation-free, so they
will not be required at any point. We may use double-lines to suppress the
use of multiple inference; for example, we may write

Φ, Φ′, Φ′′ � Π
� R

(Φ �Φ′) �Φ′′ � Π
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to denote compactly the repeated use of � L—that is, to express the follow-
ing:

Φ, Φ′, Φ′′ � Π
� RΦ � Φ′, Φ′′ � Π

� R(Φ �Φ′) �Φ′′ � Π

The encoding of Section 4.1 is in a classical meta-logic and thus, despite
the above intuition, we have no guarantee that DLJ is adequate for proving
BVSs. To this end, it suffices to show that the following rules are admissible
for DLJ-proofs of BVSs as including them recovers a meta-sequent calculus
for classical logic:

Σ � Π, Φ
Σ � Π,∀xΦ ∀K

R

Φ, Σ � Π, Ψ
Σ � Π, Φ ⇒ Ψ ⇒K

R

Σ � Π, Φ, Φ
Σ � Π, Φ

cR
Φ, Φ, Σ � Π
Φ, Σ � Π, Φ

cL

Two rules are immediate:

Lemma 4.7. The cR-rule and cL-rule are admissible in DLJ.

Proof. Follows from the idempotency of intuitionistic disjunction and in-
tuitionistic conjunction. That is, since Φ ⇐⇒ Φ � Φ is valid in intu-
itionistic logic, Σ �DLJ Π, Φ obtains iff Σ �DLJ Π, Φ � Φ obtains; similarly,
since Φ ⇐⇒ Φ � Φ is valid in intuitionistic logic, Φ, Σ �DLJ Π obtains iff
Φ � Φ, Σ �DLJ Π obtains. The result follows from application of the applica-
tion of � R and � L.

The remaining two rules (i.e.,∀K
R and ⇒K

R) are generalized versions of ∀R

and ⇒R, respectively. Define DLJK := DLJ∪{∀K
R,⇒K

R, cR, cL}. The relation-
ship between DLJ and DLJK is the same as the relationship between Dum-
mett’s [11] (multiple-conclusioned) sequent calculus for IPL and Gentzen’s
[31] LK—that is, that certain rules in the former system are guarded by a
single-conlusioned condition that, if relaxed (or, generalized—see previous
work by the authors [15]) to be multiple-conclusioned, recovers the latter
system. Why can this guard be removed for proofs of BVSs without effect-
ing completeness of the calculus? A sufficient guard is already captured. We
shall return to this idea once a certain definitions and technical results have
been given that will facilitate the discussion.

Rather than consider proofs (or reductions) for the meta-logic in gen-
eral, we restrict attention to CVSs and, eventually, BVSs. In particular,
we consider reductions that use a meta-formula in Ω. Such steps are called
resolutions.
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Definition 4.8. (Resolution) A resolution is a derivation that instantiates
a clause from Ω by applying the ∀L-rule, then applies the ⇒L-rule on the
resulting sub-formula, and then removes the sub-formula,

Ω, Σ � Π, Φ
wLΩ, Φ ⇒ Ψ, Σ � Π, Φ

Ω, Ψ, Σ � Π
wLΩ, Φ ⇒ Ψ, Ψ, Σ � Π ⇒L

Ω, Φ ⇒ Ψ, Σ � Π
∀LΩ, Σ � Π

A resolution is closed if the head of the clause matches with an assertion
already present in the meta-sequent, and one removes (by using wL or wR)
the head in the non-axiom premiss,

�
Ω, Φ, Σ � Π, Φ

Ω, Ψ, Σ � Π
wLΩ, Ψ, Φ, Σ � Π

Ω, Φ, Σ � Π
Ω, Σ, �Π, Φ

wRΩ, Σ, �Π, Ψ, Φ
�

Ω, Ψ, Σ � Π, Ψ
Ω, Σ � Π, Ψ

It is without loss of generality that we reduce with ⇒L immediately after
reducing with ∀L as the quantifier rule is invertible. Intuitively, a closed
resolution is a resolution in which the consequent of the implication replaces
the formula that matches the antecedent. A resolution is open iff it is not
closed.

When a resolution is closed, we may denote the reduction by the premiss
that is not a tautology, labeling it by the name of the justifying meta-
formula. That is, let f be name of some formula in Ω that instantiates to
Φ ⇒ Ψ, then closed resolutions using f are as follows:

Ω, Ψ, Σ � Π
fLΩ, Φ, Σ � Π

Ω, Σ � Π, Φ
fRΩ, Σ � Π, Ψ

When no confusion arises, we may suppress the left or right subscript on
these inference. Denoted in this way, resolutions may be thought of as rules
(or, more precisely, as reduction operators). This allows us to emphazise the
steps that make use of the theory Ω while de-emphasizing the meta-logical
ones.
Example 4.9. Reasoning that Γ |= φ ∧ ψ arrives from Γ |= φ and Γ |= ψ
is represented in the meta-logic by a closed resolution using the ∧-clause,

Ω, (w � Γ) � (w � φ) Ω, (w � Γ) � (w � ψ)
Ω, (w � Γ) � (w � φ) � (w � ψ)

wR
Ω, (w � Γ) � (w � φ) � (w � ψ), (w � φ ∧ ψ) �

id

Ω, (w � Γ) � (w � φ ∧ ψ)
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We suppress the conclusion of the id-rule for readability, it has the meta-
formula (w � φ∧ψ) in both the context and the extract. Using the compact
notation for closed-resolutions, the same derivation may be denoted as fol-
lows:

Ω, (w � Γ) � (w � φ) Ω, (w � Γ) � (w � ψ)
� RΩ, (w � Γ) � (w � φ) � (w � ψ)

∧-clauseΩ, (w � Γ) � (w � φ ∧ ψ)

Since the theory Ω is conserved in DLJ-reductions, henceforth we may
suppress it without further comment.

It is reasoning by resolution that captures what it means to use a clause
of satisfaction, hence the sequent calculus for the meta-logic ought to have
resolutions as the primary operational step during reduction. The fact that
resolution is how semantic reasoning is conducted is not surprising; after all,
that a theory composed of clauses may be used to define a predicate is the
idea underpinning Logic Programming (LP)—see Kowalski [18,19].

Resolutions can be used not only to perform computation about the sat-
isfaction relation, but to break up the structure of bunches such that they
may be read in the form of a classical context. We may think of this as
unpacking the bunch. Of course, it is essential that no information is lost in
this process.

Definition 4.10. (Unpacking, packing) An unpacking of a meta-atom (w �
Γ) in a meta-sequent Ω, Σ, (w � Γ) � Π is a sequence of closed resolutions
using ∧- and ∗-clauses in the context with ∃L and � L applied eagerly. A
packing is the reverse of an unpacking.

Example 4.11. The following computation constitutes an unpacking of the
meta-formula (w � Γ , (Δ �Δ′)) in the meta-sequent (w � Γ , (Δ �Δ′)), (u �
Γ′) � (w � φ), (u � ψ):

R(w, x, y), (x � Γ), (y � Δ) � (y � Δ′ � Δ′), (u � Γ′) � (w � φ), (u � ψ)
∧-clause

R(w, x, y), (x � Γ), (y � Δ � Δ′), (u � Γ′) � (w � φ), (u � ψ)
� L

R(w, x, y) � (x � Γ) � (y � Δ � Δ′), (u � Γ′) � (w � φ), (u � ψ) ∃L∃x, y(R(w, x, y) �x � Γ � y � Δ � Δ′), (u � Γ′) � (w � φ), (u � ψ)
∗-clause(w � Γ , (Δ � Δ′)), (u � Γ′) � (w � φ), (u � ψ)

The notation Σw,Γ denotes a theory that arises from an unpacking of
(w � Γ). Unpackings do not have to be total—that is, one can have w � Γ(φ)
unpack to a theory Σw,Γ(φ) containing a meta-formula x � φ. In this case,
the theory may be denoted Σw,Γ(φ),x�φ. It is partial in the sense that the
unpacking does not continue on the assertion w � φ,
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Lemma 4.12. (Packing) Both packing and unpackings are invertible.

Proof. The result follows from the invertibility of � L and ∃L, as witnessed
by the following computations in which we use dashed lines to represent the
inverse of a rule:

Σ, (w � φ ∧ ψ) � Π
∧-clauseΣ, (w � φ) � (w � ψ) � Π
�

−1
RΣ, (w � φ), (w � ψ) � Π

� RΣ, (w � φ) � (w � ψ) � Π
∧-clauseΣ, (w � φ ∧ ψ) � Π

Σ, (w � φ ∗ ψ) � Π
∗-clause

Σ,∃u, v
(
R(w, u, v) � (u � φ) � (v � ψ)

)
� Π

∃−1
LΣ, R(w, u, v) � (u � φ) � (v � ψ) � Π

�
−1
RΣ, R(w, u, v), (u � φ), (v � ψ) � Π

� R
Σ, R(w, u, v) � (u � φ) � (v � ψ) � Π ∃L

Σ,∃u, v
(
R(w, u, v) � (u � φ) � (v � ψ)

)
� Π

∗-clauseΣ, (w � φ ∗ ψ) � Π

We may now return to the question of the adequacy of DLJ for BVSs
despite being intuitionistic. Heuristically, one expects DLJ to be adequate
because the guard distinguishing ⇒R and ∀R from ⇒K

R and ∀K
R is captured

by the change of world when encountering an implication formula in the
extract of a CVS. This idea is witnessed in the following example:

Example 4.13. To see how the change of world acts as a sufficient guard
for BI-validity to be constructive, we may see how DLJK avoids the law of
the excluded middle (i.e., why (w � ∅×) � (w � φ ∨ (φ → ⊥)) from holding
in BI:

(w � ∅×), (u � ∅× � φ) � (w � φ), (u � ⊥)
∧-clause(w � ∅×), (u � ∅×), (u � φ) � (w � φ), (u � ⊥)
pers.

(w � ∅×), u � w, (u � φ) � (w � φ), (u � ⊥)
⇒K

R(w � ∅×) � (w � φ), (w � u ⇒ (u � φ ⇒ u � ⊥))
∀K

R(w � ∅×) � (w � φ),∀u(w � u ⇒ (u � φ ⇒ u � ⊥))
→-clause(w � ∅×) � (w � φ), (w � (φ → ⊥))

� R(w � ∅×) � (w � φ) � (w � (φ → ⊥))
∨-clause(w � ∅×) � (w � φ ∨ (φ → ⊥))
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Moving to u and using persistence means that one has all the contextual
information about w available (i.e., that w � Γ is in the context enables u �
Γ to be assumed); but since u � φ in the context and w � φ in the extract
are different atoms since u and w are distinct, one has not reached an axiom.
In short despite working in a classical system (i.e., DLKK), suppressing an
additional computational step, the above calculation witnesses that ∅× |=
φ∨φ → ⊥ if ∅× |= φ or φ |= ⊥, which is what one would expect of entailment
for a constructive logic such as BI.

The way the change-of-world guard works is that the CVS to which one
reduces when resolving an implications assertion contains two independent
claims about validity, as witnessed in Example 4.13, which may be separated
out.

Definition 4.14. (World-independent) Sets of meta-formulas Σ and Σ′ are
world-independent if no free world-variable appearing in one appears in the
other.

Lemma 4.15. Let Σ, Σ′, Π, Π′ be sets of propositional meta-formulas such
that Σ, Π and Σ′, Π′ are world-independent:

Ω, Σ, Σ′ � Π, Π′ iff Ω, Σ � Π or Ω, Σ′ � Π′

Recall that Ω, Σ, Σ′ � Π, Π′ obtains iff there there is a DLJK-proof of
Ω, Σ, Σ′�Π, Π′. We proceed by by induction on DLJK-proofs. Note, the proof
is sensitive to she shape of formulas in Ω; for example, the induction step
would fail if we had the linearity axiom ∀x, y(x � y � y � x).

Proof. The if direction follows immediately by wL and wR. For the only
if direction, assume Ω, Σ, Σ′ � Π, Π′ and let D be a DLJK-proof of it. We
proceed by induction the number of resolutions in D.

Base Case. If D contains no resolutions, then Ω, Σ, Σ′ � Π, Π′ is proved
by id together with the rules for the meta-connectives. But then there are
proofs for Ω, Σ � Π or Ω, Σ′ � Π′ since the rules for the connectives cannot
affect what world- or formula-variables.

Induction Step. Recall, without loss of generality, in DLJK, the ∀L-rule
is always followed by =⇒ K

L . If a resolution of Ω, Σ, Σ′ �Π, Π′ yields a meta-
sequent of the form Ω, Σ � Π or Ω, Σ′ � Π′, then the result follows from the
induction hypothesis. We show that this is the case.

The only non-obvious case is in the case of a closed resolution using the
→-clause or −−∗-clause in the extract because they have universal quantifiers
that would allow one to produce a meta-atom in the extract that contains
both a world from Σ, Π and Σ′, Π′ simultaneously, thereby breaking world-
independence. We show the →-case, the other being similar.
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Let Σ = Σ′′, w � φ → ψ and suppose u is a world variable appearing in
Σ′, Π′, then we have the following computation:

Ω, Σ′′, Σ′ � Π, Π′, w � u Ω, Σ′′, Σ′ � Π, Π′, (u � φ) Ω, Σ′′, Σ′, (u � ψ) � Π, Π′
⇒K

L
Ω, Σ′′, (w � u ⇒ (u � φ ⇒ u � ψ)), Σ′ � Π, Π′

∀L
Ω, Σ′′, ∀x(w � x ⇒ (x � φ ⇒ x � ψ)), Σ′ � Π, Π′

→-clause
Ω, Σ′′, (w � φ → ψ), Σ′ � Π, Π′

The meta-atom (w � u) may be removed from the leftmost premiss
because the only way for the meta-atom to be used in the remainder of
the proof is if w � u appears in the context, but this is impossible. Hence,
without loss of generality, D applies wR to the branch, yielding Σ′′, Σ′�Π, Π′,
as required.

To prove that DLJ is adequate for proofs of CVSs it only remains to argue
that the change-of-world guard is implemented whenever it is required, and
that it indeed results in a world-independent situation.

Lemma 4.16. The ∀K
R and ⇒K

R rules are admissible for DLJ-proofs of
CVSs:

Proof. By case analysis on Ω, the only place on may require ∀K
R or ⇒K

R

over ∀R or ⇒R is when resolving an implicational assertion (i.e., using the
→-clause or the −−∗-clause). This is because they are the only clauses whose
bodies contain implications; notably, the clause for ∗ does not contain a
meta-implication, and this is so that it behaves like a conjunction, which
delivers the packing and unpacking above, as well as completeness.

In the case of →-clause, without loss of generality, the resolution may be
taken to be required for the proof such that persistence is applied eventu-
ally to the meta-atom (w � u) producing by the resolution. By permuting
resolutions, we may assume that it is used immediately. By Lemma 4.12,
these reductions are followed by a packing:

Σ̄, (w � Γ), (u � Γ � φ) � Π̄, (u � ψ)
∧-clause

Σ̄, (w � Γ), (u � Γ), (u � φ) � Π̄, (u � ψ)
pers.

Σ̄, (w � Γ), w � u, (u � φ) � Π̄, (u � ψ)
⇒K

R
Σ̄, (w � Γ) � Π̄, (w � u ⇒ (u � φ ⇒ u � ψ)

∀K
RΣ̄, (w � Γ) � Π̄,∀u(w � u ⇒ (u � φ ⇒ u � ψ))

Arguing similarly, in the case of the −−∗-clause, one has the following deriva-
tion:
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Σ̄, (w � Γ), (w′ � Γ , ψ) � Π̄, (w′ � ψ)
∗-clause

Σ̄, (w � Γ), R(w′, w, u), u � φ � Π̄, (w′ � ψ)
⇒K

R
Σ̄, (w � Γ) � Π̄, (R(w′, w, u) ⇒ (u � φ ⇒ w′ � ψ))

∀K
RΣ̄, (w � Γ) � Π̄,∀w′, u(R(w′, w, u) ⇒ (u � φ ⇒ w′ � ψ))

In either case, by the eigenvariable condition on universal instantiations,
the premiss is a meta-sequent of the form Ω, Σ, Σ′ � Π, Π′ in which Σ, Π and
Σ′, Π′ are world-independent. Hence, by Lemma 4.15, one yields premisses
that one may have reached using the single-conclusioned variants of the
rules; whence, the multiple-conclusioned variants are admissible.

The adequacy of DLJ follows as a corollary from the preceeding work.

Lemma 4.17. A CVS holds iff it admits a DLJ-proof.

Proof. Immediate by Lemmas 4.16 and 4.7.

In the remainder of this section, we eliminate a particular behaviours
from DLJ in order to simplify the analysis of the space of reductions for a
given CVS: the possibility of introducing world-variables that are irrelevant.

When reducing a CVS, it is possible to instantiate a meta-formula in
Ω with a world not present in the meta-sequent, but such a world-variable
represents an arbitrary world alien to information about models available
in the sequent and therefore, intuitively, it cannot be a required part of the
reasoning used to establish or refute the CVS.

Example 4.18. The following derivation is a reduction of a BVS that be-
gins with a resolution introducing a world alien to the original meta-sequent:

Ω, (w � p ∧ q) � (u � �) Ω, (w � p ∧ q) � (w � p ∨ q) ⇒L
Ω, (u � �) ⇒ �, (w � p ∧ q) � (w � p ∨ q) ∀LΩ, (w � p ∧ q) � (w � p ∨ q)

We eliminate computation such as in Example 4.18 so that after reso-
lutions way may always interpret meta-sequents as BI-sequents (see Sec-
tion 4.3, below).

Definition 4.19. (World-conservative) A DLJ-proof of a CVS is said to
be world-conservative if in any instance of ∀L or ∃R, every world-variable
occurring in the premiss occurs in the conclusion.

Lemma 4.20. A CVS holds iff it admits a world-conservative DLJ-proof.

Proof. Since ∀L has no pre-conditions, the result follows from Lemma 4.17
by renaming variables. That is, suppose a DLJ-proof contains the following
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inference that is not world-conservative (i.e., θu : u 
→ x and x does not
appear in Σ or Π):

Ω, Σ, Ψθu � Π
Ω, Σ,∀uΨ � Π

The proof can be made world-conservative by replacing all hereditary oc-
currences of x in the proof by a world-variable y that does appear in either
Σ or Π—for example, the above inference becomes the following, where
θ′

u : u 
→ y:

Ω, Σ, Ψθ′
u � Π

Ω, Σ,∀uΨ � Π
This substitution is then propagated up through the reduction.

Kreisel [20] has shown that there is no constructive proof of completeness
for IPL with respect to its frame semantics. In this paper, the actual proof of
completeness (i.e., Corollary 5.3) is certainly not constructive just because
DLJ is constructive.

Since the theory Ω is conserved in DLJ-reductions of BVSs, henceforth
we may suppress it without further comment.

4.3. Reasoning About BI-Validity

In this section, we give a meta-sequent calculus VBI, which is a restriction
of DLJ that we use to characterize reasoning about validity. In particular,
it is one in which closed resolutions are enforced precisely where we desire
them.

In the meta-logic, we address validity, bypassing truth-at-a-world, be-
cause the world-variables in meta-sequents do not stand for particular worlds,
but rather are generic representatives of worlds. As such, we may call them
eigenworlds.

Example 4.21. Consider a meta-sequent (w � r) � (w � p ∗ q), in which
p, q, and r ∈ P, to which we wish to apply the ∗-clause,

∀φ∀ψ∀x
(
∃y∃z(R(x, y, z) �x � φ � y � ψ � z � ψ) ⇒ x � φ ∗ ψ

)

Resolving with this clause produces the following meta-sequent:

(w � r) � ∃y, z
(
R(w, y, z) � (y � p) � (z � q)

)

In the absence of any specific worlds, one introduces eigenworlds u and v
to eliminate the existential quantifiers for y and z, respectively, yielding the
following:

(w � r) �
(
R(w, u, v) � (u � p) � (v � q)

)
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This reasoning can take place at any world in any model; that is, suppose
one were given an actual model M, then the above shows that if it holds
for actual worlds a, b, c in M that R(c, a, b), a � p, and b � q obtain, then
necessarily c � p ∗ q also obtains.

Our aim is to restrict to a meta-seqeunt calculus in which the possible
ways in which one may reason about a BVS can be analyzed. To this end,
we introduce a calculus for validity:

Definition 4.22. (System VBI) System VBI is composed of the rules in
Figure 7 in which the theory Ω has been suppressed in the context and
cl(asso) is invertible.

Theorem 4.23. A BVS is valid iff it admits a VBI-proof.

Proof. The soundness of VBI is immediate by observing that each rule
follows as the application of a meta-formula in Ω; for example, the admissi-
bility of cl(∧)R is witnessed in this way in Example 4.9. It remains to argue
for the completeness of VBI.

By Lemma 4.20, a BVS is a consequence of the meta-logic iff it admits a
world-conservative DLJ-proof. But since DLJ is an intuitionistic calculus, we
have the same result for the single-conlusioned variant GLJ (i.e., the rules
of DLJ with only one meta-formula in the extract and � L forcing one to
choose one disjunct). We proceed by case analysis on the possible reductions
for the BVS in GLJ and show that they correspond to reductions in VBI.

We may express that there is a reduction taking C to P1, ..., Pn as follows:
P1 ... Pn

C
⇑

In particular, if the reduction continues by taking Pi Q1, ..., Qm the effect
may be expressed as follows:

P1 ... Pi−1 Q1 ... Qn Pi ... Pn

C
⇑

Without loss of generality, each reduction begins with an unpacking of
the BVS. We may write Πw,Γ(Δ),x, x � Δ to denote a theory Σw,Γ(Δ),x�Δ.
Moreover, without loss of generality, in the case of closed resolution, we
assume that the resulting sub-formulas are immediately decomposed (i.e.,
are principal in the next reduction), as otherwise the resolution could have
been postponed until this is the case.

By Lemma 4.12, we apply packing eagerly; that is, we apply it whenever
it results in a sequent different from the original. Of course, there are more
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Figure 7. System VBI

than one possible ways to pack a meta-sequent, but this is no concern as
the possible choices simply correspond to e2 ∈ VBI. An example is offered
by the following:

(w � Γ((Δ1 � Δ2) � Δ3) � (w � χ)
Πw,Γ(Δ1�(Δ2�Δ2)),x, (x � Δ1), (x � Δ2), (x � Δ3) � (w � χ)

⇑

(w � Γ(Δ1 � (Δ2 � Δ3))) � (w � χ)
⇑

The reductions of BVSs GLJ begin with one of the following: an axiom,
an open resolutions, a clause on an assertion in the extract, a clause on an



552 A. V. Gheorghiu, D. J. Pym

assertion in the context, a frame law, or a structural rule. We structure the
case-analysis into these groups for readability.

1. Axiom. System GLJ contains two axioms: id and �. Only one of them is
applicable to the unpacking of a BVS—namely, id. If the reduction used id,
then the unpacking of the BVS was of the form Σw,Γ, (w � φ)�(w � φ). This
is only possible if the original BVS was of the form w � (Γ � φ) � (w � φ).
These reductions are captured by VBI as an instance of its version of id.

2. Open Resolutions. Recall, an open resolution is a resolution that is
not closed—that is, one in which neither the antecedent nor the consequent
of an instantiation of a meta-formula in Ω matches with any meta-formula in
the meta-sequent. We consider the generic meta-sequent w � Γ(Δ) � w � φ,
which is unpacked to Σw,Γ(Δ),x�Δ � (w � φ). A generic open resolution is as
follows:

Σw,Γ(Δ),x�Δ � Φ Σw,Γ(Δ),x�Δ, Ψ � (w � φ)
Σw,Γ(Δ),x�Δ � (w � φ)

⇑

By world-conservativity and by case-analysis on Ω, it must be that, for some
χ, either Φ = (x � χ) or Ψ = (x � χ). By the invertibility of the resolutions,
we may continue with a closed-resolution to yield the following:

Σw,Γ(Δ),(x�Δ) � (x � χ) Σw,Γ(Δ),(x�Δ), (x � χ) � (w � φ)
Σw,Γ(Δ),(x�Δ) � (w � φ)

⇑

By Lemma 4.15 and by Lemma 4.12, each branch is then weakened and
packed. In total, the reduction from the original BVS is as follows:

(x � Δ) � (x � χ) (w � Γ(Δ � χ)) � (w � φ)
(w � Γ(Δ)) � (w � φ)

⇑

Such reductions are captured by VBI as an instance of c followed by cut.

3. Extract-closed Resolutions. An extract-closed resolution is a closed
resolution on a meta-formula in the extract. Without loss of generality, the
unpacking at the beginning of each reduction is trivial when it is not required
for the reduction to take place.

∧− Reductions beginning with the ∧-clause are as follows:

(w � Γ) � (w � φ) (w � Γ) � (w � ψ)
(w � Γ) � (w � φ) � (w � ψ)

� R

(w � Γ) � (w � φ ∧ ψ)
⇑
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These reductions are captured by VBI as cl(∧)R.

∨− Reduction beginning with the ∨-clause are as follows:

(w � Γ) � (w � φi)
(w � Γ) � (w � φ1) � (w � φ2)

� R

(w � Γ) � (w � φ ∨ ψ)
⇑

These reductions are captured by VBI as cl(∨)R.

→ − Reductions beginning with the →-clause are as follows:

(w � Γ) � (w � u) ⇒
(
(u � φ) ⇒ (u � ψ))

(w � Γ) � (w � φ → ψ)
⇑

By the invertibility of ⇒R, this is continued to yield the following:

(w � Γ), (w � u), (u � φ) � (u � ψ)
(w � Γ) � (w � φ → ψ)

⇑

Without loss of generality, this reduction is continued by persistence.
This follows by Lemma 4.15 as, if not, then (w � Γ) and (w � u) may
be removed without loss of completeness, but this removal can still
happen after persistence. Moreover, by Lemma 4.12, the reduction is
thence continued by a packing. In total, the reduction is as follows:

(w � Γ � φ) � (u � ψ)
(w � Γ) � (w � φ → ψ)

⇑

These reductions are captured by VBI as cl(→)R.

�− Reductions beginning with the �-clause are as follows:

(w � Γ) � �
(w � Γ) � (w � �)

⇑

Without loss of generality, the reduction ends by application of the �R-
axiom. These reductions are captured in VBI as instances of cl(�)R.

⊥− Reductions beginning with the ⊥-clause are as follows:

(w � Γ) � (w = ⊥)
(w � Γ) � (w � ⊥)

⇑

Without loss of generality, this is continued by the same reduction in
reverse, but this is equivalent to doing no reduction at all. Hence, we
do not require a rule in VBI corresponding to this case.



554 A. V. Gheorghiu, D. J. Pym

∗− Reductions beginning with the ∗-clause are as follows:

Σw,Γ � R(w, u, v) Σw,Γ � (u � φ) Σw,Γ � (v � ψ)
Σw,Γ � R(w, u, v) � (u � φ) � (v � ψ)

⇑

Σw,Γ � (w � φ ∗ ψ)
⇑

This can only lead to a proof if there were R(w, u, v), (u � φ), (v �
ψ) ∈ Σw,Γ, in which case Γ = Γ′ � (Δ , Δ′). But then, without loss of
generality, id is applied to one branch and Lemma 4.15 to the others,
so that the reduction yields the following:

Σu�Δ1 � (u � φ1) Σv�Δ2 � (v � φ2)
Σw,Γ′�(Δ1,Δ2) � (w � φ1 ∗ φ2)

⇑

Without loss of generality, by Lemma 4.12, the reduction is continued
by packing. These reductions are captured in VBI as instances of cl(∗)R.

−−∗ − Reductions beginning with the −−∗-clause are as follows:

(w � Γ) � R(w′, w, u) � (u � φ) ⇒ (w′ � ψ)
(w � Γ) � (w � φ −−∗ ψ)

⇑

By invertibility of ⇒R and � L, this is continued to yield the following:

(w � Γ), R(w′, w, u), (u � φ) � (w′ � ψ)
(w � Γ) � (w � φ −−∗ ψ)

⇑

Without loss of generality, by Lemma 4.12, this is continued with a
packing. These reductions are captured in VBI as instances of cl(−−∗)R.

4. Context-closed Resolutions. A context-closed resolution is a
closed resolution on a meta-formula in the context. Each case begins with an
unpacking that produces some assertion x � χ on which the clause defining
the case is applied.

∧− Reductions beginning with the ∧-clause are as follows:

Πw,Γ(φ∧ψ), (x � φ), (x � ψ) � (w � χ)
Πw,Γ(φ∧ψ), (x � φ ∧ ψ) � (w � χ)

⇑

Without loss of generality, by Lemma 4.12, it is continued by a pack-
ing. These reductions are captured in VBI as instances of cl(∧)L.

∨− Reductions beginning with the ∨-clause are as follows:

ΠΓ(φ∨ψ),x, (x � φ) � (w � χ) ΠΓ(φ∨ψ),x, (x � φ) � (w � χ)
ΠΓ(φ∨ψ),x, (x � φ) � (x � ψ) � (w � χ)

� L

ΠΓ(φ∨ψ),x, (x � φ ∨ ψ) � w � χ
⇑
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Without loss of generality, by Lemma 4.12, each branch is continued
by a packing. These reductions are captured in VBI as instances of
cl(∨)L.

→ − Reductions beginning with the →-clause are as follows:

Πw,Γ(Δ�φ→ψ),x, (x � Δ),∀y
(
(x � y) ⇒

(
(y � φ) ⇒ (y � ψ)

))
� w � χ

Πw,Γ(Δ�φ→ψ),x, (x � Δ), (x � φ → ψ) � w � χ
⇑

The only choice of instantiation that can terminate in a proof is to
instantiate the quantified world-variable as x. At this point the re-
sulting sub-formula can be decomposed or else the resolution could be
permuted with the next resolution. Hence, the reduction is continued
as follows:

Πw,Γ(Δ�φ→ψ),x, (x � Δ) � (x � φ) Πw,Γ(Δ�φ→ψ),x, (x � Δ), (x � ψ) � (w � χ)

Πw,Γ(Δ�φ→ψ),x, (x � Δ),
(
(x � x) ⇒ (

(x � φ) ⇒ (x � ψ)
))

� (w � χ)
⇒L

Πw,Γ(Δ�φ→ψ),x, (x � Δ), (x � φ → ψ) � (w � χ)
⇑

Without loss of generality, by Lemma 4.12, each branch is continued
by a packing. These reductions are captured in VBI as instances of
cl(→)L.

�− There are two possible reduction patterns beginning with the �-
clause. First, one may have the following:

Πw,Γ(Δ�∅+),x, (x � Δ) � (w � χ)
Πw,Γ(Δ�∅+),x, (x � Δ), (x � ∅+) � (w � χ)

⇑

Without loss of generality, by Lemma 4.12, each branch is continued
by a packing. These reductions are captured in VBI as instances of w.

Second, one may have the following:

Πw,Γ(Δ),x, (x � Δ), (x � ∅+) � (w � χ)
Πw,Γ(Δ),x, (x � Δ) � (w � χ)

⇑

Without loss of generality, by Lemma 4.12, each branch is continued
by a packing. These reductions are captured in VBI as instances of
cl(�)L.

⊥− Reductions beginning with the ⊥-clause are as follows:

Πw,Γ(⊥),x, (x = π) � (w � χ)
Πw,Γ(⊥),x, (x � ⊥) � (w � χ)

⇑
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If another resolution is made then the the two resolution could have
been permuted, unless the resolution was with the absurdity law, in
which case the reduction continued to yield the following:

Πw,Γ(⊥),x, (x � φ) � (w � χ)
Πw,Γ(⊥),x, (x � ⊥) � (w � χ)

⇑

Without loss of generality, by Lemma 4.12, each branch is continued
by a packing. These reductions are captured in VBI as instances of
cl(⊥)L.

∗− There are two possible reduction patterns beginning with the ∗-clause.
First, one may have the following:

Πw,Γ(φ∗ψ),x, R(x, u, v), (u � φ), (v � ψ) � (w � χ)
Πw,Γ(φ∗ψ),x, (x � φ ∗ ψ) � (w � χ)

⇑

Without loss of generality, by Lemma 4.12, each branch is continued
by a packing. These reductions are captured in VBI as instances of
cl(∗)1L.

Second, one may have the following:

Πw,Γ(Δ,�∗),x, R(x, x, e), (x � Δ), (e � �∗) � (w � χ)
Πw,Γ(Δ,�∗),x, (x � Δ ∗ �∗) � (w � χ)

⇑

Without loss of generality, by Lemmas 4.15 and 4.12, this is continued
to yield the following:

(w � Γ(Δ)) � (w � χ)
Πw,Γ(Δ,�∗),x, (x � Δ ∗ �∗)), (x � Δ , �∗) � (w � χ)

⇑

These reductions are captured in VBI as instances of cl(∗)2L.

−−∗ − Reductions beginning with the −−∗-clause are as follows, in which
Σ:={R(x, y, z), R(z, u, v)} and Ψ:=∀a, b

(
R(b, v, a) ⇒ (a � φ ⇒ b �

ψ)
)
:

Πw,Γ(Δ,Δ′,φ−−∗ψ),x, (y � Δ), (u � Δ′), Σ � (w � χ)
Πw,Γ(Δ,Δ′,φ−−∗ψ),x, Σ, Ψ, (y � Δ), (u � Δ′), (v � φ −−∗ ψ) � (w � χ)

⇑

There is only one choice of instantiation for a and b that can terminate
in a proof, which yields the the following reduction pattern, in which
Ψ′:=R(x, y, z), R(z, u, v), R(z, v, u) ⇒ (u � φ ⇒ z � ψ) :

Πw,Γ(Δ,Δ′,φ−−∗ψ),x, Σ, (y � Δ), (u � Δ′), Ψ′ � (w � χ)
Πw,Γ(Δ,Δ′,φ−−∗ψ),x, Σ, (y � Δ), (u � Δ′), (v � φ −−∗ ψ) � w � χ

⇑
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The sub-formula is immediately decomposed or else this resolution
and the next could have been permuted. Hence, the reduction contin-
ues to yield sub-goals

Πw,Γ(Δ,Δ′,φ−−∗ψ),x, R(x, y, z), R(z, u, v), (y � Δ), (u � Δ′) � (u � φ)

and

Πw,Γ(Δ,Δ′,φ−−∗ψ),x, R(x, y, z), R(z, u, v), (y � Δ), (u � Δ′) � (w � χ)

Without loss of generality, by Lemma 4.12, each branch is continued
by a packing. These reductions are captured in VBI as instances of
cl(−−∗)L.

5. Case Analysis on the Frame Laws. The frame laws are unitality
of e, commutative of R, associativity of R, persistence of �, dominance of �
and the absurdity of π. Except for the first three frame laws, the clauses can
only be used after a particular resolution has occurred that introduces the
appropriate atom, and these cases have been considered above; for example,
persistence requires (w � u) to appear in the context, which can only happen
if (w � φ → ψ) was resolved in the extract. We consider here the remaining
cases.

Unit.− Reductions beginning with unitality are as follows:

ΣΓ(Δ),x, (x � Δ), R(x, x, e) � (w � χ)
ΣΓ(Δ),x, (x � Δ) � (w � χ)

⇑

Without loss of generality, by Lemma 4.12, the reduction is con-
tinued with a packing. But, this simply yields the original sequent.
Otherwise, it may be that a weakening on x � Δ and R(x, x, e)
is performed and then the packing occurs. These reductions are
captured in VBI as instances of cl(�∗)L.

Comm.− Reductions beginning with commutativity of R are as follows:

ΠΓ(Δ,Δ′),x, R(x, v, u), (u � Δ), (v � Δ′) � (w � χ)
ΠΓ(Δ,Δ′),x, R(x, u, v), (u � Δ), (v � Δ′) � (w � χ)

⇑

Without loss of generality, by Lemma 4.12, this is continued by
a packing. These reductions are captured in VBI as instances of
cl(comm)L.

Asso. - Reductions beginning with associativity of R are as follows:

ΠΓ(Δ,(Δ′,Δ′′)), R(x, a, v), (y � Δ), R(a, z, u), (u � Δ′), (v � Δ′′) � (w � χ)
ΠΓ(Δ,(Δ′,Δ′′)), R(x, y, z), (y � Δ), R(z, u, v), (u � Δ′), (v � Δ′′) � (w � χ)

⇑
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Without loss of generality, by Lemma 4.12, this is continued by
a packing. These reductions are captured in VBI as instances of
cl(asso)L.

6. Case Analysis of the Structural Rules. There are instances of
the structural rules that do not result in a change of sequent after packing;
for example, permuting meta-atoms that are not assertions is without effect.
In the following we restrict attention to the cases where the use of the
structural rule affects the packing of the sequent.

e− Reductions beginning with an exchange are as follows:

ΠΓ(Δ�Δ′),x, (x � Δ′), (x � Δ′) � (w � χ)
ΠΓ(Δ�Δ′),x, (x � Δ), (x � Δ′) � (w � χ)

⇑

Without loss of generality, by Lemma 4.12, this is continued by a
packing. These reductions are captured in VBI as instances of e1.

c− Reductions beginning with contractions are as follows:

ΠΓ(Δ),x, (x � Δ), (x � Δ) � (w � χ)
ΠΓ(Δ),x, (x � Δ) � (w � χ)

⇑

Without loss of generality, by Lemma 4.12, this is continued by a
packing. These reductions are captured in VBI as instances of c.

w− Reductions beginning with weakening are as follows:

ΠΓ(Δ),x, (x � Δ) � (w � χ)
ΠΓ(Δ�Δ′),x, (x � Δ), (x � Δ′) � (w � χ)

⇑

Without loss of generality, by Lemma 4.12, this is continued by a
packing. These reductions are captured in VBI as instances of c.

This completes the proof.

It is useful to make precise how to read BI content from a BVS.

Definition 4.24. (State) The state of a meta-sequent Ω, (w � Γ)� (w � φ)
(a BVS) is the BI-sequent Γ � φ.

Each rule in VBI can be directly read in terms of its effect on states.
In this way, it is then a calculus of validity; for example, the cl(∧)R-rule
captures the following action on states:

Γ � φ Γ � ψ

Γ � φ ∧ ψ
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This we recognize as the ∧R-rule in sLBI. In this way, we may compare the
behaviour of validity and the behaviour of provability, thereby establishing
behavioural equivalence, for which extensional equivalence (i.e., soundness
and completeness) is a corollary.

5. Soundness and Completeness

In Section 2, we provided the sequent calculus sLBI, for BI-provability; and,
in Section 4, we provided the sequent calculus VBI for BI-validity. In Sec-
tion 3, we discussed the reductive reading of sequent calculi from which a
notion of computation is inherited—that is, reduction. This notion of compu-
tation may be regarded as a transition system on sequents. In this section
we study the equivalence of the transition system for provability and the
transition system for validity.

There are many notions of equivalence between transition system. Here
we are concerned with the subset that pertain to behavioural equivalence;
that is, how transitions in one system may be understood as transitions in
the other. The finest notion of behavioural equivalence is bisimulation.

Definition 5.1. (Bisimulation of transition systems) Let T1:=〈S1,�1〉 and
Tn:=〈S2,�2〉 be transition systems. A relation ∼ ⊆ S1×S2 is a bisimulation
between T1 and T2 iff, for any σ1 ∈ S1 and σ2 ∈ S2 such that σ1 ∼ σ2:

– if there is σ′
1 ∈ S1 such that σ1 �1 σ′

1, then there is σ2 ∈ S2 such that
σ2 �2 σ′

2 and σ′
1 ∼ σ′

2;

– if there is σ′
2 ∈ S2 such that σ2 �2 σ′

2, then there is σ1 ∈ S1 such that
σ1 �1 σ′

1 and σ′
1 ∼ σ′

2.

The transition systems are bisimilar iff there is a bisimulation between them.

A proof system canonically determines a transition system by reduction—
see Section 3.

Theorem 5.2. Reduction in sLBI is bisimilar to reduction in VBI.

Proof. Let ∼ be the least relation between BVSs and states,

{Ω, (w � Γ) � (w � φ)} ∼ {Γ � φ}
By observing the symmetry of the rules in Figs. 3 and 7, we see that ∼ is a
bisimulation.

By unpacking the soundness proof of Theorem 4.23 within the proof
of Theorem 5.2, one recovers the usual inductive proof of soundness. The
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contribution of this paper is to demonstrate an analogous technique for
proving completeness. In this case, unpacking the completeness proof of
Theorem 4.23 within the proof of Theorem 5.2 one recovers a co-inductive
proof of completeness. This highlights the duality between soundness and
completeness.

Corollary 5.3. Provability is extensionally equivalent to validity,

Γ � φ iff Γ |= φ

Proof. Follows immediately from Lemma 2.12 and Theorem 5.2.

We say extensionally equivalent in Corollary 5.3 to emphasize the work
in this paper in delivering behavioural equivalence.

Of course, other completeness results follows too. Particularily interesting
are those pertaining to the additive and multiplicative fragments of BI—
that is, sound and completeness for IPL and MILL+ (i.e., MILL without
negation), respectively.

Corollary 5.4. Γ �IPL φ iff Γ �IPL φ

Corollary 5.5. Γ �MILL+ φ iff Γ �MILL+ φ

We analyze the semantics of IPL further in Section 7.

6. Relationship to Other Semantics

The model theory of BI has been a subject of study for a while, and in
this section we survey some earlier results such as the monoidal semantics
dicussed by O’Hearn and Pym [24], the Grothendieck topological semantics
by Pym et al. [26], and the uniform approach of Docherty and Pym [5,7,9],
the relational semantics of Galmiche et al. [14].

Throughout we use the notation of the meta-logic as bona fide notation
of the ambient logic; for example, we will use ⇒ for ‘implies’, � for ‘and’,
and � for ‘or’, without further reference.

6.1. Preordered Commutative Monoids

The relation R in BI-frames can seem a little bit obscure, but a particularly
simple way of defining it is through a monoidal product that takes the notion
of decomposition of a state literally.

Definition 6.1. (Preordered commutative monoid) A preordered commu-
tative monoid (PCM) is a tuple M = 〈V,�, ◦, e〉, in which � is a preorder,
and ◦ is a commutative monoidal product on V with unit e.
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Using PCMs as the semantics for BI is entirely coherent with Gabbay’s
theory of fibration, which determines the bifunctoriality condition:

m � m′&n � n′ ⇒ m ◦ n � m′ ◦ n′

Ordered monoids are a particular case of BI-frames that arise by inher-
iting the preorder—that is, defining R(w, u, v) ⇐⇒ w = u ◦ v.

Definition 6.2. (Monoid model) A monoid model is a pair 〈M, [[−]]〉 in
which M:=〈M,�, ◦, e〉 is a PCM and [[−]] : M → P is an interpretation that
is bifunctorial and atomically persistent. The class of monoid models is M.

This restricted class of BI-models induces its own validity judgment,

Γ |=[M] φ ⇐⇒ ∀R ∈ M∀u ∈ V (w � Γ ⇒ w � φ)

The soundness of monoid semantics (i.e., Γ � φ ⇒ Γ |=[M] φ) has been
known for a while (see, for example, Pym [25]) and is easy to prove using
familiar methods, but completeness has remained open. Under the provided
encoding, the monoidal semantics is contained in the semantics of this paper.

6.2. The Consistency Semantics

Traditionally, only consistent formulas are taken to have meaning; that is,
one usually considers a variant of satisfaction that proscribes the satisfaction
of absurdity (⊥). Such semantics have been considered for BI.

Let �� be the relation determined by the clauses in Figure 4 replacing
the ⊥-clause with the following:

w �� ⊥ iff w �∈ V

This satisfaction relation yields its own validity judgment,

Γ |=� φ ⇐⇒ ∀R ∈ M∀u ∈ V (w �� Γ ⇒ w �� φ)

Though BI is sound with respect to this semantics, it is not complete.

Lemma 6.3. (Pym et al. [26]) Let φ and ψ be valid and be such that φ ∗ ψ
are valid, then define the following:

Γ:=(φ −−∗ ⊥) → ⊥ � (ψ −−∗ ⊥) → ⊥ χ:=((φ ∗ ψ) −−∗ ⊥) → ⊥
For any instance it is the case that Γ |=� χ, but not the case that Γ � χ.

Proof. One can check by proof-theoretic reasoning that Γ � χ is not true,
so it only remains to witness Γ |=� χ. It is routine to verify that x �� (θ −−∗
⊥) → ⊥ if and only if there is y such that y �� θ. Since φ and ψ and φ ∗ ψ
are valid, any world suffices to witness that for an arbitrary w it is the case
that w � Γ �w � χ, which is stronger than w � Γ ⇒ w � χ.
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The form of Lemma 6.3 is pathological in that it expresses the incompat-
ibility of the consistency condition with the totality of the monoids: if there
are u and v such that u �� p and v �� p −−∗ ⊥, then u ◦ v �� p , p −−∗ ⊥,
but then u ◦ v � ⊥, which is absurd.

There is a positive result regard the completeness of a substantial frag-
ment of BI.

Theorem 6.4. (Pym et al. [26]) If Γ |=� φ without ⊥, then Γ � φ without
⊥.

The proof proceeds by the traditional method of a term-model construc-
tion.

6.3. The Inconsistency Semantics

Since completeness fails for the consistency semantics, one can make a slight
concession to the absurd: including a distinguished element π dominating
the PCMs—∀w(w ∈ M ⇒ w � π)—that satisfies absurdity—π � ⊥. This
choice delivers the satisfaction relation given in Figure 4, but over a different
class of frames since not all BI-frames are PCMs. One may also substitute
the equality for the preorder in the ⊥-clause to form a candidate semantics.
In either case, completeness fails:

Lemma 6.5. (Pym [25]) Let φ = ((ψ −−∗ ⊥) −−∗ ⊥) ∨ (ψ −−∗ ⊥), then e �⊥ φ
but φ is not valid in BI.

Proof. We show that φ is invalid by consider the its space of reductions.
By the definition of satisfaction, e �⊥ φ if and only if e �⊥ ψ −−∗ ⊥ or
e �⊥ (ψ −−∗ ⊥) −−∗ ⊥, we proceed by case analysis. First, if e � ψ −−∗ ⊥, then
the claim is trivially satisfied since it assumes one of the disjuncts. Second,
if e �� ψ −−∗ ⊥, then the claim e � (ψ −−∗ ⊥) −−∗ ⊥ is equivalent to the
following statement: for all u, if u �⊥ ψ −−∗ ⊥, then u = π. This is, in turn,
equivalent to the claim that all u there is a v such that v �⊥ ψ with v �= π
or u = π. This is equivalent to the hypothesis as it may be unpacked to say:
there is u ∈ M such that u �⊥ ψ and u �= ⊥.

Consequently, one must modify the clause for disjunction too, effectively
using Beth’s clause instead of Kripke’s. A term model construction exists
with respect to the Grothendieck sheaf-theoretic models studied by Pym
et al. [26]. The position of Beth’s clause with respect to the approach to
completeness in this paper is discussed in Section 7.



Semantical Analysis of the Logic of Bunched Implications 563

6.4. Partial and Non-deterministic Monoids

To recover completeness, Docherty and Pym [5,8,10] have considered vari-
ants of the monoidal semantics in which the monoidal product is partial.
They simultaneously considered the option of having non-deterministic
monoidal products, a consideration that arises naturally from the setting up
of a uniform metatheory for bunched logics by extending the metatheory for
intuitionistic layered graph logic [6,9]. These partial and non-deterministic
models are essentially the same as the models in this paper, but expressed
as monoids rather than with a relation. Curiously, the motivation for the
definition differs: in this paper, the model are designed to deliver complete-
ness by the reductive method herein, rather than from intuition about what
a model of BI should look like. A stylistic consequence is that Definition
2.18 requires persistence on formulas, whereas traditionally one would state
atomic persistence along side other sufficient conditions that collectively
deliver persistence.

The structures involved in the semantics of Docherty and Pym [5,8,10]
are similar to the ordered monoids above except rather than have a unit e,
they have a set of elements E at least one of which is a unit, which further
satisfies the following:

e ∈ E � e′ � e ⇒ e′ ∈ E︸ ︷︷ ︸
Closure

e ∈ E � x ∈ y ◦ e ⇒ y � x︸ ︷︷ ︸
Coherence

t′ � t ∈ x ◦ y � w ∈ t′ ◦ z ⇒ ∃s, s′, w′(s′ � s ∈ y ◦ z � w � w′ ∈ x ◦ s′)︸ ︷︷ ︸
Strong Associativity

Accordingly, one takes the following variations of the clauses for satisfac-
tion:
x � �∗ iff x ∈ E
x � φ ∗ ψ iff there exists x′, y, z st. x � x′ ∈ y ◦ z, y � φ and z � ψ
x � φ −−∗ ψ iff for any x′, y, z, if x � x′, z ∈ x′ ◦ y and y � φ, then z � ψ

As above, given an interpretation, such structures have been shown to be
sound and complete for BI when persistent. Moreover, one has soundness and
completeness for related logics upon suitable augmentation (e.g., replacing
the preorder with equality one produces models for Boolean BI [25]).

These variations can indeed be treated with the approach to completeness
in this paper. The clauses used here are considered a simplification that
arises when one expects models to act directly on the world being considered,
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yielding the following non-deterministic clauses for ∗ and −−∗:

x � φ ∗ ψ iff there exists y, z st. x ∈ y ◦ z, y � φ and z � ψ
x � φ −−∗ ψ iff for any y, z, if z ∈ x ◦ y and y � φ, then z � ψ

Soundness and completeness requires persistent models, but checking
that a model satisfies this criterion or constructing one that does can be
challenging. Fortunately, there are results in the literature that address this
issue.

In the deterministic case the problem can be resolved by assuming bi-
functoriality, but generalizing the property to non-deterministic case is a
delicate matter. Cao et al. [4] have considered the following conditions:

z ∈ x ◦ y � z � z′ ⇒ ∃x′, y′(z′ ∈ x′ ◦ y′ � x � x′ � y � y′)
z ∈ x ◦ y � x′ � x � y′ � y ⇒ ∃z′(z′ � z � z′ ∈ x′ ◦ y′)

Assuming these properties, called Upward Closed and Downward Closed,
respectively, one recovers soundness with both the direct and indirect clauses
for ∗ and −−∗, respectively. Moreover, Cao et al. [4] showed that any struc-
ture satisfying either condition together with Simple Associativity - t ∈
x ◦ y � w ∈ t ◦ z ⇒ ∃s(s ∈ y ◦ z � w ∈ x ◦ s) - can be conservatively trans-
formed into sound models of BI satisfying all three. Docherty and Pym [5,10]
has further shown that strong associativity for the non-deterministic models
suffices for the same result without assuming the model to be either upward
or downward closed.

6.5. The Relational Semantics

Galmiche et al. [14] attempted to put the partial semantics within a more
general framework, delivering a relational semantics. The structures are sim-
ilar to those of this paper, but necessarily include a distinguished element
π satisfying absurdity, satisfying the following:

R(π, x, y)︸ ︷︷ ︸
π-max

R(y, x, π) ⇒ π � y︸ ︷︷ ︸
π-abs

Moreover, the preorder is defined in terms of the relation (i.e., x � y ⇐⇒
R(y, x, e)) , and there are some additional conditions beyond commutativity
and associativity:

R(z, x, y) �x � x′ ⇒ R(z, x′, y)︸ ︷︷ ︸
Compatibility

R(z, x, y) � z � z′ ⇒ R(z′, x, y)︸ ︷︷ ︸
Transitivity

The relational structures form models under an interpretation [[−]] of the
atoms when they are atomically persistent and, for any world w and atom
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A, if π � w, then w ∈ [[A]]. The resulting semantics was shown sound and
complete via a term-model construction, and the models are subsumed by
the class of BI-frames.

It is not know whether or not BI is complete for the version corresponding
to the total monoid semantics. Galmiche et al. [13] have given a tableaux
system for this semantics.

The relational semantics is a sub-class of the semantics of this paper. For
example, it is consistent with Definition 2.18 that there be a distinguished
element π satisfying π-max and π-abs. In the presence of bifunctoriality one
can derive the slightly weaker condition than compatibility:

R(z, x, y) �x � x′ ⇒ ∀z′(R(z′, x′, y) ⇒ z � z′)

And with associativity one can derive a weaker condition than transitiv-
ity:

R(z, x, y) � z � z′ ⇒ ∃x′(x � x′
�R(z′, x′, y))

From these observations it is clear that the distinguishing feature of rela-
tional semantics over the semantics in this paper is to assert certain equali-
ties that are not required of BI, though they are often natural and useful.

7. Beth’s Disjunction

Before Kripke’s landmark paper on the semantics of intuitionistic proposi-
tional logic (IPL) [21], there was Beth’s [1]. The problem with Beth’s seman-
tics was that it included a complicated clause for disjunction, but it happens
that the semantics is, in a sense, an unfolding of Kripke’s semantics. To ex-
plain briefly whence Beth’s treatment of disjunction comes, how it relates
to Kripke’s, and what they both have to do with the reductive methodology
of this paper, attention is now restricted to the additive fragment of BI (i.e.,
to IL.) which has provability relation �IL.

Kripke’s semantics can immediately be stated given the study of BI so
far conducted. Let �[K] be the additive fragment of �, then Kripke models
are defined as follows:

Definition 7.1. (Kripke frame) A Kripke frame is a structure 〈V,�〉 in
which � is a preorder.

Definition 7.2. (Kripke model) A Kripke model is a pair M:=〈F , [[−]]〉, in
which K is a Kripke frame, and [[−]] is an interpretation, that is persistent—
w � u ⇒ (w �[K] φ ⇒ u �[K] φ). The class of Kripke models is is K.
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As before, this induces a semantics:

Γ |=[K] φ ⇐⇒ ∀M ∈ K (w �[K] Γ ⇒ w � [K]φ)

Theorem 7.3. (Kripke [21]) Γ �IL φ ⇐⇒ Γ |=[K] φ

Stating Beth’s semantics requires more work, but the notion of a Beth
structure can already be given:

Definition 7.4. (Directed tree) A directed tree is a directed graph whose
underlying graph is connected and acyclic.

Definition 7.5. (Beth structure) A structure 〈V,≤〉 is a Beth structure if
there is a directed tree 〈V,�〉 such that ≤ is the transitive closure of �.

The relationship between Kripke structures (i.e., preorders) and Beth
structures is simply that when the former is a directed tree, its transitive
closure is the latter.

The definition of Beth frame is cumbersome only in that it requires an
specific condition on paths, called barring. This notion is in fact quite natural
when considering the constructivist account of intuitionistic logic.

Definition 7.6. (Path) Let 〈V,�〉 be directed tree. A path is a sequence
(xi)I ∈ V such that for every i ∈ I it is the case that xi � xi+1. A path (xi)i

is through a point y when there is i ∈ I such that xi = y.

Definition 7.7. (Bar) Let B be some set of points in a Beth structure and
let x be a point. The set B bars the point x, denoted B | x, when every
path through x intersects B.

The Beth satisfaction relation �[B] is as �[K] but with the following clause
for disjunction:

w � φ ∨ ψ ⇐⇒ ∃U ⊆ V st. U | w � ∀u ∈ U(u � φ �u � ψ)

Definition 7.8. (Beth model) A Beth model is a pair M:=〈F , [[−]]〉, in
which F is a Beth structure and [[−]] is an interpretation, that is both persis-
tent and persistent—w ≤ u ⇒ (w �[B] φ ⇒ u �[B] φ)—through barring—for
any w, u ∈ V and U ⊆ V,

(U |w �∀u ∈ U u �[B] φ) ⇒ w �[B] φ

The set of all Beth models is B.

A semantics is once more induced from the class of frames and satisfac-
tion:

Γ |=[B] φ ⇐⇒ ∀M ∈ B (w �[B] Γ ⇒ w �[B] φ)
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Theorem 7.9. (Beth [1]) Γ �IL φ ⇐⇒ Γ |=[B] φ

For both Beth and Kripke the intuition is that worlds represent states
of information about constructions. In the case of Beth, one thinks of rea-
soning as being done in time, which is taken to be divided into successive
intervals, say days; thus, for example, the set {w | w ≤ u} represents all the
possible states to which one can eventually advance, and to one of which one
shall advance. In this reading, barring says one can only have encountered a
disjunction φ ∨ ψ if at some preceding day one knew φ or one knew ψ. This
is precisely the constructive reading of the connective.

How does this relate to the method for soundness and completeness in
this paper? Kripke’s clause for disjunction is such that validity of Γ � φ ∨ ψ
behaves as the ∨R-rule of LBI. However, this proof-theoretic definition for
disjunction is not necessarily the most natural one. Intuitively, ≤ represents
�IL (by persistence). We may understand Γ �IL φ1 ∨ φ2 to mean that, if at
some day one know Γ, then at a latter day one knows φ1 ∨ φ2. Therefore,
one may understand that there is a sequence of days in which one constructs
from the information in Γ either φ1 or φ2. In this reading, the following rules
are a natural way to understand disjunction:

Γ � Δ Δ � φi

Γ � φ1 ∨ φ2

The semantic clause corresponding to these rules is Beth’s clause: w � φ1∨φ2

if and only if, for some collection of Δ defining a set of worlds U, it is either
the case that that, for an arbitrary element u from the set, either u � φ1 or
u � ψ2.

8. Conclusion

This paper is a case-study of a novel technique for proving the soundness
and completeness of a model-theoretic semantics for the logic of Bunched
Implications. Future work includes conducting other case-studies to consoli-
date the present methodology—in particular, it would be promising to study
modal and intermediate logics, and studying this method in generality.

Rather than working from the traditional perspective of deductive logic,
in this paper we work in reductive logic. We prove completeness by demon-
strating that the reasoning conducted for validity, as characterized by reduc-
tion in a particular sequent calculus, is behaviourally equivalent to reasoning
conducted for provability, as characterized by reduction in a different sequent
calculus. In deductive logic, one requires a global view of validity in order
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to prove completeness; that is, one must construct models fully, be it via
a tableaux counter-model construction or a term model construction, both
of which commit one to the completeness of a particular model, and then
show at once that the sequent calculus could not allow any further construc-
tion. In contrast, in reductive logic, one may proceed from the logcal view,
thereby allowing one to take full advantage of the local correctness property
of sequent calculi (i.e., handle generic instances of rules). The semantics of
BI used in this paper is designed precisely so that the methodology may be
applied. Future work includes providing a rigorous general methodology for
generating semantics for logics from proof-theoretic specifications.

Aside from the technical advantage of using reductive logic to prove com-
pleteness, there is a moral argument: it is the way in which logic is more typ-
ically used in practical reasoning. For example, one regards φ∧ψ as meaning
that both φ and ψ hold, but simply phrasing it as such constitutes a re-
duction. This suggests strong links between the approach to model-theoretic
semantics in this paper and the program of proof-theoretic semantics (see
Schroeder-Heister [30]). Hence, though the main result of the paper is the
soundness and completeness theorem for BI, the thesis is that reductive logic
is both a natural and powerful perspective on logic that may yield further
insight into meta-theory where traditional deductive approaches are either
incapable or intractable.
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