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Abstract. A deductive system is said to be structurally complete if its admissible rules

are derivable. In addition, it is called hereditarily structurally complete if all its extensions

are structurally complete. Citkin (1978) proved that an intermediate logic is hereditarily

structurally complete if and only if the variety of Heyting algebras associated with it

omits five finite algebras. Despite its importance in the theory of admissible rules, a direct

proof of Citkin’s theorem is not widely accessible. In this paper we offer a self-contained

proof of Citkin’s theorem, based on Esakia duality and the method of subframe formulas.

As a corollary, we obtain a short proof of Citkin’s 2019 characterization of hereditarily

structurally complete positive logics.
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1. Introduction

A rule ρ is said to be admissible in a deductive system � if the set of tau-
tologies of � is closed under the applications of ρ. On the other hand, a
rule ρ is called derivable in � if ρ belongs to the consequence relation of
the system.1 Clearly, every derivable rule is admissible. While the converse
holds for classical propositional calculus CPC, it fails for many non-classical
systems, including intuitionistic propositional calculus IPC.

This motivated the study of criteria for admissibility in modal and inter-
mediate logics, undertaken by Rybakov and others [66]. As a consequence,
the problem of finding bases for admissible rules was solved for IPC by
Iemhoff [40–42], building on the work of Ghilardi [35,36] on unification, and
independently by Rozière [63]. Later on, similar results have been obtained
for modal and �Lukasiewicz logics by Jeřábek [44–46], see also [54].

1Formal definitions are detailed in Section 2.
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A classical problem in the theory of admissible rules is to determine
which deductive systems are structurally complete, i.e., share with CPC the
property that all admissible rules are derivable. Addressing this question,
Prucnal [58] showed that all finitary extensions of the 〈→〉-fragment of IPC
are structurally complete. Notably, his argument extends immediately to the
〈∧,→〉-fragment of IPC [59]. Subsequently, a similar result was obtained by
Dzik and Wrónski [28], who proved that all finitary extensions of Gödel-
Dummet logic are structurally complete.

These investigations suggested that, while a full characterization of struc-
turally complete intermediate logics could be out of reach, still it might be
possible to describe intermediate logics that are structurally complete in a
hereditary way, i.e., not only they are structurally complete, but so are all
their finitary extensions. This was confirmed by Citkin [19], who proved that
an intermediate logic � is hereditarily structurally complete if and only if
the variety of Heyting algebras associated with it, denoted by K�, omits
five finite algebras C1, . . . ,C5 (or, equivalently, no Ci is a model of �).
Since then, the relation between structural completeness and its hereditary
version in intermediate logics has been further investigated in [21].

Despite being one of the important milestones in the theory of admissible
rules, Citkin’s proof has never been published in English—the only detailed
proof is in Russian [20]. Yet another source for it is a generalization to
axiomatic extensions of the modal system K4 by Rybakov [65,66] which, in
turn, is not self-contained (e.g., it relies on Fine’s completeness theorem for
extensions of K4 of finite width [31]).2 Accordingly, the goal of this paper is
to provide a new proof of Citkin’s theorem based on Esakia duality [29,30]
in the hope to make it more widely available (Theorem 7.3). Apart from
its simplicity, our approach has the advantage of yielding a new short proof
(see Section 8) of Citkin’s recent characterization of hereditarily structurally
complete positive logics, i.e., 〈∧,∨,→〉-fragments of intermediate logics [22].

In order to compare our approach with the earlier ones, we note that all
these proofs (i.e., Citkin’s, Rybakov’s and ours) of Citkin’s theorem essen-
tially consist of three steps:

1. Showing that each Ci induces a structurally incomplete logic;

2. Proving that the intermediate logics � for which K� does not contain
any Ci are locally tabular;

3. Showing that for each of these logics �, the finite subdirectly irre-
ducible members of K� are weakly projective in K�.

2An error in the statement and proof of Rybakov’s theorem has been amended in [16].
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While the first step is an easy exercise, the second and the third require a
nontrivial argument. Our strategy for them differs substantially from the
previous ones and is based almost entirely on Esakia duality. Let � be an
intermediate logic such that K� does not contain any Ci. First, using sub-
frame formulas (see, e.g., [17, Ch. 9] and [7]), we prove that � extends the
Kuznetsov-Gerčiu logic [33,49] of linear sums of one-generated Heyting alge-
bras. When combined with the technique of universal models (see, e.g., [17,
Ch. 8] and [10, Sec. 3.2]), this easily implies that � is locally tabular. Fur-
thermore, the connection with the Kuznetsov-Gerčiu logic allows to obtain
a transparent description of the finite subdirectly irreducible members of K�
which, in turn, yields that they are weakly projective in K�. Citkin’s proof
of the second and third steps is purely algebraic, while Rybakov’s proof re-
quires more complex arguments on universal models and relies on modal
companions [26,51] and Fine’s completeness theorem.

The paper is organized as follows. In Section 2 we introduce the main def-
initions of the paper. We also discuss our main proof strategy: The problem
of characterizing hereditarily structurally complete intermediate logics is
equivalent to that of describing non-trivial primitive varieties of Heyting al-
gebras. In the rest of the paper we focus on the latter problem. In Section 3
we review the main tool of the paper, Esakia’s duality for Heyting algebras.
Building on Esakia duality, in Section 4 the description of finitely generated
free Heyting algebras by means of universal models is recalled. In Section
5 we introduce Citkin’s five finite algebras C1, . . . ,C5, and show that these
are omitted by any primitive variety of Heyting algebras (Lemma 5.1), thus
proving one direction of Citkin’s theorem. To prove the other direction, we
shift the focus to varieties of Heyting algebras omitting C1, . . . ,C5, which
are investigated in Section 6 by means of subframe formulas. In particular,
we show that these varieties are locally finite and we describe the structure
of their finite subdirectly irreducible members (Theorem 6.13). Section 7
completes the proof of Citkin’s theorem (Theorem 6.13 and Corollary 7.8).
The obtained results and techniques are employed, in Section 8, to derive a
new proof of Citkin’s description of hereditarily structurally complete pos-
itive logics (Corollary 8.3). We conclude the paper by Section 9 where we
review some important properties of hereditarily structurally complete in-
termediate and positive logics.
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2. Hereditary Structural Completeness

Let Fm be the set of formulas in countably many variables of some fixed, but
arbitrary, algebraic language. A deductive system is a consequence relation
�,3 defined over the set of formulas Fm, that is substitution-invariant in the
following sense: for every substitution σ and set of formulas Γ∪{ϕ} ⊆ Fm,

if Γ � ϕ, then σ[Γ] � σ(ϕ).

In addition, all the deductive systems � considered in this paper will be
assumed to be finitary, in the sense that for every set Γ ∪ {ϕ} ⊆ Fm,

if Γ � ϕ, then there exists a finite set Δ ⊆ Γ such that Δ � ϕ.

Let � be a deductive system. A deductive system �′ is said to be an
extension of � if for every set of formulas Γ ∪ {ϕ},

if Γ � ϕ, then Γ �′ ϕ.

A rule is an expression of the form Γ � ϕ where Γ ∪ {ϕ} is a finite subset
of Fm. Let � be a deductive system. A rule Γ � ϕ is said to be admissible
in � if for all substitutions σ:

if ∅ � σ(γ) for all γ ∈ Γ, then ∅ � σ(ϕ).

Similarly, a rule Γ � ϕ is said to be derivable in � if Γ � ϕ. Accordingly, we
say that

1. � is structurally complete if every rule that is admissible in � is also
derivable in �.

2. � is hereditarily structurally complete if every extension of � is struc-
turally complete.

For further variants of structural completeness, we refer the reader to [27,
53,55,69].

Under certain assumptions, hereditary structural completeness can be
formulated in purely algebraic terms [3,53,60]. To explain how this could
be done, it is convenient to recall some basic definitions from universal al-
gebra [4,15]. We denote by I, H, S, P, P

u
the class operators of closure under

3In the literature, intermediate logics are usually identified with sets of formulas, as
opposed to consequence relations [17]. However, we opted for this presentation since when
dealing with the distinction between admissible and derivable rules, it is convenient to
identify every intermediate logic with the consequence relation associated with it.
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isomorphism, homomorphic images, subalgebras, direct products, and ul-
traproducts, respectively. We assume direct products and ultraproducts of
empty families of algebras are trivial algebras. A variety is a class of alge-
bras axiomatized by equations or, equivalently, a class of algebras closed
under H, S, and P. A quasi-variety is a class of algebras axiomatized by
quasi-equations or, equivalently, a class of algebras closed under I, S, P, and
P
u
. As a consequence, every variety is a quasi-variety, while the converse

is not true in general. Given a class of algebras K, we denote by V(K) and
Q(K), respectively, the least variety and quasi-variety containing K. It is well
known that V(K) = HSP(K) and Q(K) = ISPP

u
(K). When K is a variety, we

say that a class M ⊆ K is a subvariety (resp. subquasi-variety) of K if M is
a variety (resp. a quasi-variety). Then a variety K is said to be primitive if
every subquasi-variety of K is a variety.

When a deductive system � is algebraized by a variety K in the sense of
[14], the lattice of axiomatic extensions of � is dually isomorphic to that of
subvarieties of K. In addition, an axiomatic extension �′ of � is hereditarily
structurally complete if and only if the subvariety of K corresponding to �′

is primitive [60, Thm. 6.12(2)], see also [3, Prop. 2.4]. Consequently, in this
case the task of characterizing hereditarily structurally complete axiomatic
extensions of � is equivalent to that of characterizing primitive subvarieties
of K.

A special instance of this phenomenon is given by intermediate logics,
i.e., axiomatic extensions of intuitionistic propositional logic IPC. This is
because IPC is algebraized by the variety of Heyting algebras, i.e., algebras
of the form A = 〈A; ∧,∨,→, 0, 1〉 where 〈A; ∧,∨, 0, 1〉 is a bounded lattice
with minimum 0 and maximum 1 such that for every a, b, c ∈ A,

a ∧ b ≤ c ⇐⇒ a ≤ b → c.

Thus the task of characterizing hereditarily structurally complete interme-
diate logics can be rephrased in purely algebraic terms as that of describing
primitive varieties of Heyting algebras. This is what we do in the rest of the
paper.

To this end, we rely on some basic observation. Let K be a variety. An
algebra A ∈ K is said to be weakly projective in K if for every B ∈ K, if
A ∈ H(B), then A ∈ IS(B).4 Moreover, an algebra A is said to be finitely

4This concept should not be confused with the stronger classical notion of projectivity.
Also, observe that our terminology differs from that of [3], where weakly projective algebras
are called primitive, and primitive varieties are called deductive.
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subdirectly irreducible, FSI for short, when the identity relation is meet-
irreducible in the congruence lattice of A. The following result is essentially
[38, Cor. 2.1.17]:

Lemma 2.1. Let K be a primitive variety of finite type. The finite nontrivial
FSI members of K are weakly projective in K.

Proof. Consider a finite nontrivial FSI algebra A ∈ K. Then let B ∈ K
be such that A ∈ H(B). Since K is primitive, all its subquasi-varieties are
varieties, whence A ∈ H(B) ⊆ V(B) = Q(B). Now, it is well known that all
FSI members of Q(B) belong to ISP

u
(B) [23, Lem. 1.5]. Thus A ∈ ISP

u
(B).

Since A is finite and nontrivial, and the type of K is finite, this yields A ∈
IS(B). We conclude that A is weakly projective in K. �

A variety is said to be locally finite when its finitely generated members
are finite. We also rely on the following observation [38, Prop. 5.1.24], see
also [37].

Theorem 2.2. A locally finite variety K of finite type is primitive if and
only if its finite nontrivial FSI members are weakly projective in K.

3. Esakia Duality

The study of Heyting algebras is simplified by their topological representa-
tion, known as Esakia duality [29,30], which we will briefly recall here. Given
a poset 〈X; ≤〉 and a set U ⊆ X, the smallest upset and downset containing
U are denoted respectively by ↑U and ↓U . In case U = {x}, we will write
↑x and ↓x instead of ↑{x} and ↓{x}, respectively. Then an Esakia space
X = 〈X; τ,≤〉 comprises a zero-dimensional compact Hausdorff space〈X; τ〉
and a poset 〈X; ≤〉 such that

(i) ↑x is closed for all x ∈ X, and

(ii) ↓U is clopen, for every clopen U ⊆ X.

Observe that the topology of finite Esakia spaces is necessarily discrete (be-
cause they are Hausdorff), and that finite posets endowed with the discrete
topology are Esakia spaces. We will make a systematic use of this observa-
tion, since most Esakia spaces considered in this paper will be finite.

For Esakia spaces X and Y , an Esakia morphism f : X → Y is a con-
tinuous order-preserving map f : X → Y such that for all x ∈ X and y ∈ Y ,

if f(x) ≤ y, then there is z ∈ X such that x ≤ z and f(z) = y. (1)
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Esakia duality states that the category ESP of Esakia spaces endowed with
Esakia morphisms is dually equivalent to the category HA of Heyting alge-
bras and Heyting algebra homomorphisms [30, Thm. 3.4.4].

The dual equivalence functors are defined as follows. Given a Heyting
algebra A, we denote the set of its (non-empty proper) prime filters of A
by PrA, and set

γA (a):={F ∈ PrA : a ∈ F} (2)
for every a ∈ A. It turns out that the structure A∗:=〈PrA; τ,⊆〉 is an
Esakia space, where τ is the topology on PrA with subbasis {γA (a) : a ∈
A} ∪ {γA (a)c : a ∈ A}. Moreover, for every Heyting algebra homomorphism
f : A → B, let f∗ : B∗ → A∗ be the Esakia morphism defined by the rule
F �→ f−1[F ].

Conversely, let X be an Esakia space. We denote by CupX the set of
clopen upsets of X. Then the structure X∗:=〈CupX; ∩,∪,→, ∅, X〉, where
U → V :=X � ↓(U � V ), is a Heyting algebra. Moreover, for every Esakia
morphism f : X → Y , let f∗ : Y ∗ → X∗ be the homomorphism of Heyting
algebras given by the rule U �→ f−1[U ].

Esakia duality is witnessed by the pair of contravariant functors

(−)∗ : HA ←→ ESP : (−)∗.

Observe that the dual equivalence functors preserve finiteness.
Let X be an Esakia space. An Esakia subspace (E-subspace for short)

of X is a closed upset of X, equipped with the subspace topology and the
restriction of the order. For every x ∈ X, the upset ↑x endowed with the
subspace topology is easily seen to be an E-subspace of X.

A bisimulation equivalence on X is an equivalence relation R on X such
that for every x, y, z ∈ X,

(i) if 〈x, y〉 ∈ R and x ≤ z, then there is w ∈ ↑y such that 〈z, w〉 ∈ R,
and

(ii) if 〈x, y〉 /∈ R, then there is a clopen U such that x ∈ U and y /∈ U ,
which in addition is a union of equivalence classes of R.

In this case, we denote by X/R the Esakia space consisting of the quotient
space of X with respect to R, equipped with the partial order ≤X /R defined
as follows for every x, y ∈ X:

x/R ≤X /R y/R ⇐⇒ there are x′, y′ ∈ X such that

〈x, x′〉, 〈y, y′〉 ∈ R and x′ ≤X y′.
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The map x �→ x/R for every x ∈ X is an Esakia morphism from X to X/R,
and the kernel of f is a bisimulation equivalence on X for every Esakia
morphism f : X → Y . If, moreover, f is surjective, then X/ ker f ∼= Y .

Remark 3.1. Observe that condition (i) in the definition of a bisimulation
equivalence is equivalent to the requirement that for every x, y, z ∈ X with
〈x, y〉 ∈ R, 〈x, z〉 /∈ R, x �= y, and x ≤ z, there is y ≤ w ∈ X such that
〈z, w〉 ∈ R. We rely on this observation without further notice. �

The disjoint union X1 � · · · � Xn of finitely many
Esakia spaces X1, . . . ,Xn is their order-disjoint and topologically disjoint
union, which is also an Esakia space.

Lemma 3.2. Let A be a Heyting algebra.

(i) A is non-trivial and FSI if and only if its top element is prime (i.e., if
x ∨ y = 1 then x = 1 or y = 1), or, equivalently, the poset underlying
A∗ is rooted (i.e., it has a least element).

(ii) There is a dual lattice isomorphism σ from the congruence lattice of
A to that of E-subspaces of A∗, such that (A/θ)∗ ∼= σ(θ) for any
congruence θ of A, and for any E-subspace Y of A∗, we have that
Y ∗ ∼= A/σ−1(Y ).

(iii) There is a dual lattice isomorphism ρ from the lattice of subalgebras of A
to that of bisimulation equivalences on A∗, such that if B is a subalgebra
of A then B∗ ∼= A∗/ρ(B), and if R is a bisimulation equivalence on
A∗ then (A∗/R)∗ ∼= ρ−1(R).

(iv) The disjoint union of finitely many Esakia spaces X1, . . . ,Xn is isomor-
phic to the dual of the direct product of the Heyting algebras X∗

1 , . . . ,X∗
n.

The statement of (i) is well known (see for instance [5, Thm. 2.9]). Con-
dition (ii) is [30, Thm. 3.4.16], while, condition (iii) was established in [29]
(alternatively, see [9, Lem. 3.4]). The proof of (iv) is as for Boolean algebras,
cf. [15, Lem. IV.4.8].

Remark 3.3. Proofs in this paper would often require the reader to check
whether there exists a surjective Esakia morphism between two given finite
Esakia spaces. To simplify this task, we will recall a general criterion. Let
X be a finite Esakia space and x, y ∈ X.

1. Suppose that y is the only immediate successor of x. Then let R be the
least equivalence relation on X such that 〈x, y〉 ∈ R. Observe that R is a
bisimulation equivalence on X. The natural map f : X → X/R is called
an α-reduction.
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2. Suppose that the set of immediate successors of x and y coincide. Then
the least equivalence relation R on X such that 〈x, y〉 ∈ R is a a bisimula-
tion equivalence on X, and the natural map f : X → X/R is called a β-
reduction. �
Now, let X and Y be finite Esakia spaces. In [10, Lem. 3.1.7] it is shown

that there exists a surjective Esakia morphism f : X → Y if and only if there
exists a finite sequence f1, . . . , fn of α or β-reductions fi : Zi → Zi+1 such
that Z1 = X and Zn+1

∼= Y . In other words, in order to determine whether
there exists a surjective Esakia morphism from X to Y , it suffices to check
whether X can be “transformed” into Y by means of α and β-reductions.

4. Universal Models

Even if finitely generated free Heyting algebras are not fully understood,
major insights in their dual structure were provided by [2,39,64,67], see
also [11,24,32,34]. Our presentation is reminiscent of [10] and [17]. Given
1 ≤ n ∈ ω and a poset 〈X; ≤〉, an element x ∈ X is said to have depth n if
the upset ↑x contains at least one chain of length n, and no chain of length
n + 1. Moreover, a finite sequence of zeros and ones is said to be a colour.
Given two colours of the same length a = 〈a1, . . . , an〉 and c = 〈c1, . . . , cn〉,
we set

a ≤ c ⇐⇒ ai ≤ ci for every i = 1, . . . , n, and

a < c ⇐⇒ a ≤ c and ai < ci for some i = 1, . . . , n.

Accordingly, when we write a ≤ c or a < c, it should be understood that
the colours a and c have the same length.

For every n ∈ ω, we will define a poset U(n) = 〈U(n);≤〉 as the union
of a chain of posets {Dm : 1 ≤ m ∈ ω}. To this end, observe that there are
exactly 2n distinct colours of length n. Then let D1 be a set of 2n elements
painted with distinct colours of length n, and D1 = 〈D1; ≤1〉 the poset
obtained equipping D1 with the discrete partial order. Moreover, if Dm has
already been defined, then let Dm+1 be the poset obtained extending Dm in
accordance to the following rules:

(i) For every point x of Dm of depth m and of colour a, and every colour
c < a, we add to Dm a unique point y labeled by c such that

↑Dm+1y = {y} ∪ ↑Dmx;
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(ii) For every antichain Z in Dm such that |Z| ≥ 2 containing at least one
point of depth m, and every colour c such that c ≤ a for every colour
a of some element in Z, we add to Dm a unique point y labeled by c
such that

↑Dm+1y = {y} ∪ ↑DmZ.

It is clear that Dm is a subposet of Dm+1 for every 1 ≤ m ∈ ω, whence
it makes sense to define U(n) as the union of the chain {Dm : 1 ≤ m ∈ ω}.
The importance of the poset U(n) is captured by the following observation:

Theorem 4.1. Let n ∈ ω, and let F (n) be the free n-generated Heyting
algebra.

(i) U(n) is isomorphic to the topology-free reduct of the subposet of F (n)∗
consisting of the elements of finite depth.

(ii) If x ∈ F (n)∗, then either x has finite depth or for every 1 ≤ n ∈ ω
there is an element y ∈ F (n)∗ of depth n such that x ≤ y.

(iii) For all m ∈ ω, the poset U(n) has only finitely many points of depth
≤ m.

The statements of (i) and (ii) are [10, Thms. 3.2.9 and 3.1.10(4)], which
in turn follow from Kuznetsov’s theorem [48] (see also [18], [8, Lem. 2.2(3)],
and [10, Claim 3.1.11]). Item (iii) follows immediately from the definition of
U(n).

Corollary 4.2. Let n ∈ ω, and let F (n) be the free n-generated Heyting
algebra. If X is an infinite E-subspace of F (n)∗, then X contains an element
of depth m for every 1 ≤ m ∈ ω.

Proof. Consider an infinite E-subspace X of F (n)∗ and suppose, with a
view to contradiction, that X does not contain any element of depth m for
some 1 ≤ m ∈ ω. We have two cases: either X contains an element of infinite
depth or not. If X contains an element of infinite depth, then we obtain a
contradiction because of condition (ii) of Theorem 4.1. Then all elements
of X must have finite depth and, therefore, depth < m. As X is infinite,
this means that X has infinitely many elements of depth < m. Moreover,
since X is an E-subspace of F (n)∗, the same holds for F (n)∗. But this
contradicts conditions (i) and (iii) of Theorem 4.1. Thus we have arrived at a
contradiction. �

In the rest of the paper we will rely on the following observation, which
follows from [20, Lem. 18] or, alternatively, can be deduced from Kuznetsov’s
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theorem [48]. The proof supplied below differs from that of [20], however, as
it uses duality and universal models.
Theorem 4.3. Let K be a variety of Heyting algebras. Then K is locally
finite if and only if K has, up to isomorphism, only finitely many finite
n-generated FSI members, for every n ∈ ω.
Proof. The “only if” part is straightforward. To prove the “if” part, we
reason by contrapostion: suppose that K is not locally finite. Then there
is some n ∈ ω and an n-generated infinite algebra A ∈ K. Clearly A is a
homomorphic image of the free n-generated Heyting algebra F (n), whence
A∗ can be identified with an E-subspace of F (n)∗ in the light of condition
(ii) of Lemma 3.2. Moreover, the fact that A is infinite guarantees that so is
A∗. As a consequence, we can apply Corollary 4.2, obtaining that for every
1 ≤ m ∈ ω there is an element xm ∈ A∗ of depth m.

Now, the E-subspace ↑A∗xm of A∗ is isomorphic to an FSI homomorphic
image Am:=(↑A∗xm)∗ of A by conditions (i) and (ii) of Lemma 3.2, whence
Am ∈ H(A) ⊆ K. Moreover, by conditions (i) and (iii) of Theorem 4.1 the
upset ↑A∗xm is finite and, therefore, so is Am. Thus {Am : 1 ≤ m ∈ ω} is a
sequence of finite n-generated FSI members of K.

Moreover, observe that the size of the spaces {↑A∗xm : 1 ≤ m ∈ ω} is not
bounded by any natural number, as each xm has depth m. As a consequence,
also the cardinality of the algebras {Am : 1 ≤ m ∈ ω} cannot be bounded by
any natural number. Since the algebras Am are finite, we conclude that there
must an infinite subset C ⊆ {Am : 1 ≤ m ∈ ω} of pairwise nonisomorphic al-
gebras. Thus C is an infinite set of pairwise nonisomorphic finite n-generated
FSI members of K. �

5. Citkin’s Five Algebras

Consider the following FSI Heyting algebras:
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Their dual Esakia spaces are the following rooted posets endowed with the
discrete topology:

•
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The following result relates primitive varieties of Heyting algebras with
the algebras C1, . . . ,C5.

Lemma 5.1. Primitive varieties of Heyting algebras omit C1, . . . ,C5.

Proof. Suppose, with a view to contradiction, that K is a primitive variety
of Heyting algebras containing some algebra in {C1, . . . ,C5}. Consider the
following Esakia spaces X1, . . . ,X5 endowed with the discrete topology:
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First observe that each Ci∗ is an E-subspace of Xi, whence by Lemma
3.2(ii)

Ci ∈ H(X∗
i ) for every i = 1, . . . , 5. (3)

Moreover, by inspection one sees that for each Ci∗ there is a bisimulation
equivalence Ri on the disjoint union Ci∗ � Ci∗ such that Xi is isomorphic
to (Ci∗ � Ci∗)/Ri. By Lemma 3.2(iii, iv) this implies

X∗
i ∈ IS(Ci × Ci) for every i = 1, . . . , 5. (4)

On the other hand, it is not hard to check that there is no surjective Esakia
morphism from Xi to Ci∗. By Lemma 3.2(iii) this implies

Ci /∈ IS(X∗
i ) for every i = 1, . . . , 5. (5)

Now, by assumption there is some i = 1, . . . , 5 such that Ci ∈ K. By
(4) also X∗

i ∈ K. Moreover, by (3) and (5) we have Ci ∈ H(X∗
i ) and Ci /∈

IS(X∗
i ). As a consequence, we conclude that Ci is not weakly projective in
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K. Since Ci is a finite nontrivial FSI member of K and K is primitive, this
contradicts Lemma 2.1. Hence we reached a contradiction. �

6. A Structure Theorem

In this section we give a description of the structure of varieties of Heyting
algebras omitting C1, . . . ,C5 (Theorem 6.13). To this end, recall that the
Rieger-Nishimura lattice RN (depicted below) is the free one-generated
Heyting algebra [57,61,62]. As a consequence, H(RN) is the class of all
one-generated Heyting algebras.
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The Rieger-Nishimura lattice RN .

Let A and B be Heyting algebras. The sum A+B is the Heyting algebra
obtained by pasting B below A and gluing the top element of B to the
bottom element of A. As + is clearly associative, there is no ambiguity in
writing A1 + · · · + An for the descending chain of finitely many Heyting
algebras A1, . . . ,An, each glued to the previous one.

Then the Kuznetsov-Gerčiu variety is defined as follows:

KG:=V({A1 + · · · + An : A1, . . . ,An ∈ H(RN) and 0 < n ∈ ω}). (6)

The variety KG was introduced in the study of finite axiomatizability, and
of the finite model property in varieties of Heyting algebras [33,49] (see also
[6,10,56]). We will see that varieties of Heyting algebras omitting C1, . . . ,C5

are subvarieties of KG (Theorem 6.13).
To this end, it is convenient to recall some basic concept. In [70], ev-

ery finite rooted Esakia space Z is associated with a formula β(Z) in the
language of Heyting algebras, called the subframe formula of Z (see also
[7,12,17]). For the present purpose, the way in which subframe formulas are
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concretely defined is immaterial and, to explain their importance, it is suf-
ficient to recall the following definition. An Esakia space Y = 〈Y ; τY ,≤Y 〉
is called a subspace of an Esakia space X = 〈X; τX ,≤X 〉, if 〈Y ; τY 〉 is a
subspace of 〈X; τX 〉, the order ≤Y is the restriction of ≤X to Y 2, and for
every clopen U of Y , the downset generated by U with respect to ≤X is
clopen in X. The following result clarifies the role of subframe formulas [12,
Thm. 3.13]:

Theorem 6.1. Let X and Z be Esakia spaces such that Z is finite and
rooted. Then X∗ |= β(Z) ≈ 1 if and only if Z is not the image of an Esakia
morphism, whose domain is a subspace of X.

Remark 6.2. Recall that finite Esakia spaces coincide with finite posets
endowed with the discrete topology. Thus if X is a finite Esakia space, then
the above theorem specializes as follows: X∗ |= β(Z) ≈ 1 if and only if
Z is not the image of an Esakia morphism, whose domain is a subposet of
X. �

For the present purpose, the interest in subframe formulas is that they
provide a convenient axiomatization of KG. To explain how this is obtained,
consider the discrete rooted Esakia spaces P1,P2, and P3 whose underlying
posets are depicted below:
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The proof of the following result can be found in [10, Thm. 4.3.4] (see also
[6,47]):

Theorem 6.3. KG is the variety of Heyting algebras axiomatized by the
equations

β(P1) ≈ 1 β(P2) ≈ 1 β(P3) ≈ 1.

Given a positive integer n, a poset 〈X; ≤〉 has width ≤ n if there is no
x ∈ X such that ↑x contains an antichain of n + 1 elements. Accordingly,
a Heyting algebra A is said to have width ≤ n when so does the poset
underlying A∗.

Lemma 6.4. Let K be a variety of Heyting algebras omitting C1, . . . ,C5.
Then every finite member of K has width ≤ 2 and satisfies β(P1) ≈ 1.
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Proof. Suppose, with a view to contradiction, that there is a finite A ∈ K
of width > 2. Then A∗ contains a subposet isomorphic to P1. We label its
elements as follows:

x•
��

��
�� y• •z

��
��
��

⊥ •
As H(K) ⊆ K and A∗ is finite, by Lemma 3.2(ii) we may assume without
loss of generality that the following holds:

Fact 6.5.

(i) ⊥ is the minimum of A∗ and the unique common lower bound of x, y, z.

(ii) {x, y, z} in A∗ is the unique three-element antichain in ↓{x, y, z}.

Then consider the following relation on A∗:

R:={〈u, v〉 ∈ A∗ × A∗ : either u = v or u, v ∈ A∗ � ↓{x, y, z}}.

Bearing in mind that A∗ is finite and, therefore, endowed with the discrete
topology, it is easy to see that R is a bisimulation equivalence on A∗. Accord-
ingly, we consider the Esakia space A∗/R. In the light of Lemma 3.2(iii), we
obtain (A∗/R)∗ ∈ IS(A) ⊆ K. Therefore, we may assume without loss of gen-
erality that R is the identity relation (otherwise, we replace A by (A∗/R)∗

in the proof). Observe that R identifies everything in A∗ � ↓{x, y, z}. Thus
the assumption that R is the identity on A∗ means that A∗ contains at most
one element � not in ↓{x, y, z}. Denoting by Y the subposet ↓{x, y, z} of
A∗, we obtain the following:

Fact 6.6. There is an Esakia space X such that X∗ ∈ K and one of the
following holds:

(i) The poset underlying X is Y ;

(ii) Y is a subposet of X and X = {�}∪Y , where � strictly above exactly
two elements between x, y, z; or

(iii) Y is a subposet of X and X = {�} ∪ Y , where � is the maximum of
X.

Proof. Suppose that conditions (i) and (ii) fail. Then, in particular, A∗ �=
↓{x, y, z}, otherwise A∗ would satisfy condition (i). Consequently, A∗ =
{�} ∪ Y where � /∈ Y .

We will see that � is comparable with some element among x, y, and
z. Suppose the contrary, with a view to contradiction. Then the least
equivalence relation S on A∗ that identifies � with x is easily seen to be
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a bisimulation equivalence on A∗. Moreover, the poset underlying A∗/S
is isomorphic to Y . As by Lemma 3.2(iii), (A∗/S)∗ ∈ IS(A) ⊆ K, taking
X:=A∗/S we would obtain that condition (i) holds, which is false. Thus
we conclude that � is comparable with some element among x, y, z, as de-
sired. We may assume without loss of generality that this element is x. Since
� /∈ Y , this implies x < �.

An argument analogous to the one described above shows that the as-
sumption that y � � and z � � leads to a contradiction. Then we can
assume without loss of generality that y ≤ � and, therefore, y < � (as
� /∈ Y ). Finally, if z � �, then condition (ii) holds, contradicting the as-
sumption. Then we conclude that z ≤ �, whence � is the maximum of A∗.
Thus taking X:=A∗, we obtain that condition (iii) holds, as desired. �

Fact 6.7. The following relation is a bisimulation equivalence on X:

S:={〈u, v〉 ∈ X × X : {x, y, z} ∩ ↑u = {x, y, z} ∩ ↑v}.

Proof. First observe that S is an equivalence relation. Then it only re-
mains to show that S satisfies conditions (i) and (ii) in the definition of a
bisimulation equivalence. Since X is finite, its topology is discrete, whence
condition (ii) is obviously satisfied. To prove condition (i), consider three
elements t, u, v ∈ X such that 〈t, u〉 ∈ S, 〈t, v〉 /∈ S, t �= u, and t ≤ v. We
need to find some u ≤ w ∈ X such that 〈v, w〉 ∈ S. Clearly

{x, y, z} ∩ ↑v ∈ {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}. (7)

First consider the case in which {x, y, z}∩↑v = ∅. From Fact 6.6 it follows
that v = � and X = {�} ∪ Y where � /∈ Y . If condition (iii) of Fact 6.6
holds, then, by taking w:=�, we are done. Now suppose that condition (iii)
of Fact 6.6 fails. Together with the fact that X = {�} ∪ Y and � /∈ Y , this
implies that condition (ii) of Fact 6.6 holds. Thus we may assume without
loss of generality that x, y < � and z � �. Since t �= v = �, clearly t ∈ Y .
Now, if t ∈ ↓{x, y}, then also u ∈ ↓{x, y} (as 〈t, u〉 ∈ S). Consequently,
u ≤ � = v and, by taking w:=v, we are done. Next we consider the case
where t /∈ ↓{x, y}. We will see that this case leads to a contradiction. To this
end, observe that in this case t ≤ z, as t ∈ Y = ↓{x, y, z} and t /∈ ↓{x, y}.
Moreover, since t ≤ v = � and z � �, we obtain t < z. But the fact that
t � x, y and t < z implies that {x, y, t} is a three-element antichain in Y
different from {x, y, z}, contradicting Fact 6.5(ii).

If {x, y, z} ∩ ↑v = {x}, then 〈v, x〉 ∈ S. Moreover, from t ≤ v ≤ x
and 〈t, u〉 ∈ S it follows that u ≤ x. Thus, by setting w:=x, we are done.
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A similar argument works if v ∩ ↑{x, y, z} is {y} or {z} (take respectively
w:=y or w:=z).

By (7) it only remains to consider the case where

{x, y, z} ∩ ↑v ∈ {{x, y}, {x, z}, {y, z}, {x, y, z}}. (8)

We will show that this case leads to a contradiction. To this end, observe
that

{x, y, z} ∩ ↑v � {x, y, z} ∩ ↑t,

since 〈t, v〉 /∈ S and t ≤ v. Together with (8), this guarantees that t ≤ x, y, z,
whence also u ≤ x, y, z as 〈u, t〉 ∈ S. By Fact 6.5(i), we have that ⊥ is the
unique common lower bound of x, y, z, whence t = ⊥ = u, contradicting the
fact that t �= u. Thus we conclude that S is a bisimulation equivalence on
X. �

Recall that X∗ ∈ K and that S is a bisimulation equivalence on X
by Facts 6.6 and 6.7. Thus by Lemma 3.2(iii), we have that (X/S)∗ ∈
IS(X∗) ⊆ K. Accordingly, we may assume without loss of generality that S
is the identity relation on X.

Bearing this in mind, if case (i) of Fact 6.6 holds, then the poset under-
lying X is one of the rooted posets depicted below (in which the elements
other than ⊥, x, y, and z are marked with squares):
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Z1 Z2 Z3 Z4

Observe that Z1
∼= C3∗ and Z3

∼= C5∗. Moreover, there are bisimulation
equivalences T and T ′, respectively on Z2 and Z4, such that Z2/T ∼=
C1∗ and Z4/T ′ ∼= C4∗. By Lemma 3.2(iii), this implies that IS(X∗) ∩
{C1,C3,C4,C5} �= ∅. But, since X∗ ∈ K, we would get K∩{C1,C3,C4,C5}
�= ∅, contradicting the assumption that K omits C1,C3,C4,C5. Thus we
conclude that case (i) of Fact 6.6 cannot hold.

Now, suppose that case (ii) of Fact 6.6 holds. Since S is the identity, the
poset underlying X is one of the rooted posets depicted below (in which the
elements other than ⊥, x, y, z, and � are marked with squares):
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For every i = 1, . . . , 6 there is a bisimulation equivalence Ti on Zi such that

Z1/T1
∼= Z2/T2

∼= Z5/T5
∼= Z6/T6

∼= C1∗
and Z3/T3

∼= C2∗ and Z4/T4
∼= C4∗.

By Lemma 3.2(iii), this implies that IS(X∗) ∩ {C1,C2,C4} �= ∅. But, since
X∗ ∈ K, we would get K ∩ {C1,C2,C4} �= ∅, contradicting the assumption
that K omits C1,C2,C4. Thus we conclude that also case (ii) of Fact 6.6
cannot hold.

Thus condition (iii) of Fact 6.6 holds necessarily. Since S is the identity,
the poset underlying X is one of the rooted posets depicted below (in which
the elements other than ⊥, x, y, z, and � are marked with squares):
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Observe that Z1
∼= C4∗. Moreover, for every i = 2, 3, 4 there is a bisimulation

equivalence Ti on Zi such that Z2/T2
∼= Z3/T3

∼= C2∗ and Z4/T4
∼= C4∗.

As in the previous cases, this implies K ∩ {C2,C4} �= ∅, contradicting the
assumption that K omits C2 and C4. Thus we reached the desired contra-
diction. As a consequence, A has width ≤ 2. This immediately implies that
finite members of K validate β(P1) ≈ 1. �

Lemma 6.8. Let K be a variety of Heyting algebras omitting C1, . . . ,C5.
Then every finite member of K satisfies the equation β(P2) ≈ 1.

Proof. Suppose, with a view to contradiction, that there is a finite algebra
A ∈ K in which the equation β(P2) ≈ 1 fails. By Theorem 6.1 there is a
subframe X of A∗ and a surjective Esakia morphism from X to the space
obtained endowing P2 with the discrete topology. Because of the definition of
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an Esakia morphism, this implies that there is a subposet of A∗ isomorphic
to P2. We label the elements of this a copy of P2 inside A∗ as follows:

x • •y

x′•
��

��
� •y′

��
��
�

⊥ •
Moreover, by Lemma 3.2(ii) and H(K) ⊆ K, we may assume without loss

of generality that ⊥ is the minimum of A∗ and the unique common lower
bound of x′ and y′. In addition, as in the proof of Lemma 6.4, we may assume
without loss of generality that A∗ contains at most one element � not in
↓{x, y}. By Lemma 6.4 we know that A∗ has depth ≤ 2, whence, provided
that � exists, it must be comparable either with x or y. As � � x, y, this
implies that either � does not exist or x < � or y < �. Consequently, we
deduce:

Fact 6.9. One of the following conditions holds:

(i) A∗ = ↓{x, y};

(ii) A∗ has a maximum � and A∗ = {�} ∪ ↓{x, y}; or

(iii) A∗ has a maximal element � strictly above exactly one between x and
y, and A∗ = {�} ∪ ↓{x, y}.

Observe that in case (iii) if x < � (resp. y < �), then y � � (resp. x � �),
and x and y are incomparable.

Our aim is to show that conditions (i), (ii), and (iii) lead to a contradic-
tion. First suppose that condition (i) holds. We will see that for all z ∈ A∗,

{x, x′, y, y′} ∩ ↑z ∈ {{x}, {y}, {x, x′}, {y, y′}, {x, x′, y}, {y, y′, x}, {x, x′, y, y′}}. (9)

To prove this, consider z ∈ A∗. Clearly {x, x′, y, y′} ∩ ↑z is an upset of the
copy of P2 in A∗ given by {⊥, x, x′, y, y′}. Moreover, this upset must be
non-empty by assumption (i), since z ∈ ↓{x, y}. Thus, in order to establish
the above display, it suffices to show that {x, x′, y, y′}∩↑z �= {x, y}. Suppose
the contrary with a view to contradiction. Then observe that ⊥ ≤ z, x′, y′

and recall that x′ and y′ are incomparable. Since A∗ has width ≤ 2 by
Lemma 6.4, this implies that z is comparable either with x′ or with y′. We
may assume without loss of generality that z is comparable with x′. Since
{x, x′, y, y′} ∩ ↑z = {x, y}, this implies x′ < z and, therefore, x′ ≤ z ≤ y′.
But this contradicts the fact that x′

� y, whence establishing (9).
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Then we will see that the following relation is a bisimulation equivalence
on A∗:

S:={〈u, v〉 ∈ A∗ × A∗ : {x, x′, y, y′} ∩ ↑u = {x, x′, y, y′} ∩ ↑v}.

As before, it suffices to show that condition (i) in the definition of a bisimula-
tion equivalence holds. To this end, consider t, u, v ∈ A∗ such that 〈t, u〉 ∈ S,
t �= u, t < v, and 〈t, v〉 /∈ S. We need to find an element w ≥ u such that
〈v, w〉 ∈ S. By (9)

{x, x′, y, y′}∩↑v∈{{x}, {y}, {x, x′}, {y, y′}, {x, x′, y},{y, y′, x},{x, x′, y, y′}}.

If {x, x′, y, y′} ∩ ↑v = {x}, then 〈v, x〉 ∈ S. Moreover, from t ≤ v ≤ x and
〈t, u〉 ∈ S it follows that u ≤ x. Thus, by setting w:=x, we are done. A
similar argument works if {x, x′, y, y′} ∩ ↑v is {y} or {x, x′} or {y, y′} (take
respectively w:=y, w:=x′, or w:=y′). Then it only remains to consider the
case where

{x, x′, y, y′} ∩ ↑v ∈ {{x, x′, y}, {y, y′, x}, {x, x′, y, y′}}.

But an argument analogous to the one detailed in the last paragraph of the
proof of Fact 6.7 shows that this case leads to a contradiction. Hence we
conclude the S is a bisimulation equivalence on A∗.

In particular, by Lemma 3.2(iii) this implies (A∗/S)∗ ∈ K. Consequently,
we may assume without loss of generality that S is the identity relation on
A∗. Together with (9) and the fact that {⊥, x, x′, y, y′} forms a subposet
of A∗ isomorphic to P2, this implies that A∗ is isomorphic to one of the
following rooted posets (in which the elements other than ⊥, x, x′, y, y′ are
marked with squares):
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Observe that C1∗ is isomorphic to an E-subspace of Z2 and Z3. Moreover,
there is a bisimulation equivalence T on Z1 such that Z1/T ∼= C1∗. By
Lemma 3.2(ii, iii) this implies C1 ∈ H(A) ∪ IS(A) ⊆ K, contradicting the
assumption that C1 /∈ K. Thus condition (i) cannot hold.

Next we consider the case where condition (ii) holds. An argument anal-
ogous to the one detailed for case (i) shows that for every z ∈ A∗,
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{x, x′, y, y′,�} ∩ ↑z ∈ {{�}, {x,�}, {y, �}, {x, x′,�}, {y, y′,�},

{x, x′, y,�}, {y, y′, x,�}, {x, x′, y, y′,�}}.
(10)

We will see that the following relation is a bisimulation equivalence on A∗:

S:={〈u, v〉 ∈ A∗ × A∗ : {x, x′, y, y′,�} ∩ ↑u = {x, x′, y, y′,�} ∩ ↑v}.

To this end, consider t, u, v ∈ A∗ such that 〈t, u〉 ∈ S, t �= u, t < v, and
〈t, v〉 /∈ S. We need to find an element w ≥ u such that 〈v, w〉 ∈ S. First we
consider the case where v �= �. In this case, v ∈ ↓{x, y} by assumption (ii).
As t ≤ v, we also get t ∈ ↓{x, y}. In turn, this guarantees that u ∈ ↓{x, y},
since 〈t, u〉 ∈ S. Consequently, t, u, v ∈ ↓{x, y}. This allows us to repeat the
argument detailed in the case of condition (i), obtaining the desired element
w. Then it only remains to consider the case where v = �. But assumption
(ii) guarantees that u ≤ � = v. Thus, by setting w:=�, we are done. This
establishes that S is a bisimulation equivalence on A∗.

Consequently, we may assume without loss of generality that S is the iden-
tity relation on A∗. Together with (10) and the fact that {⊥, x, x′, y, y′,�}
forms a subposet of A∗ isomorphic to P2 plus a new top element, this im-
plies that A∗ is isomorphic to one of the following rooted posets (in which
the elements other than ⊥, x, x′, y, y′,� are marked with squares):

•
��

��
��

��
��
�� •

��
��

��

��
��
��

•
��

��
��

��
��
�� • •

��
��
��
��
� •

��
��

��
��

� •

��
��
��
��
�

• • • • •
•

��
��

�� •
��
��
�� •

��
��

•
��
��
�� •

��
��

•
��
��• • •

Z1 Z2 Z3

Observe that C2∗ is isomorphic to an E-subspace of Z2 and Z3. Moreover,
there is a bisimulation equivalence T on Z1 such that Z1/T ∼= C2∗. By
Lemma 3.2(ii, iii) this implies C2 ∈ H(A) ∪ IS(A) ⊆ K, contradicting the
assumption that C2 /∈ K. Thus also condition (ii) cannot hold.

Consequently, by Fact 6.9 condition (iii) holds. We may assume without
loss of generality that � > x and � � y. Observe that for every z ∈ A∗,

{x, x′, y′} ∩ ↑z ∈ {∅, {x}, {y′}, {x, x′}, {x, y′}, {x, x′, y′}}. (11)

This is an immediate consequence of the fact that {x, x′, y′} ∩ ↑z must be
an upset of the subposet of A∗ with universe {x, x′, y′}.
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We will see that the following relation is a bisimulation equivalence on
A∗:

S:={〈u, v〉 ∈ A∗ × A∗ : {x, x′, y′} ∩ ↑u = {x, x′, y′} ∩ ↑v}.

To prove this, consider t, u, v ∈ A∗ such that 〈t, u〉 ∈ S, t �= u, t < v,
and 〈t, v〉 /∈ S. As usual, we need to find an element w ≥ u such that
〈v, w〉 ∈ S. First we consider the case where {x, x′, y′} ∩ ↑v = ∅. Observe
that {x, x′, y′} ∩ ↑t �= ∅, since 〈t, v〉 /∈ S. Thus either t ≤ x or t ≤ y′. As
〈t, u〉 ∈ S, this implies that either u ≤ x or u ≤ y′. Consequently, either
u ≤ � or u ≤ y. Observe that {x, x′, y′} ∩ ↑� = {x, x′, y′} ∩ ↑y = ∅, whence
〈�, v〉, 〈y, v〉 ∈ S. Thus there exists some w ≥ u (namely either � or y) such
that 〈w, v〉 ∈ S, as desired.

Now we consider the case where {x, x′, y′}∩↑v �= ∅. If {x, x′, y′}∩↑v = {x},
then 〈v, x〉 ∈ S. Moreover, as 〈t, u〉 ∈ S and t ≤ v ≤ x, we have u ≤ x. Thus,
by setting w:=x, we are done. A similar argument works if {x, x′, y′}∩ ↑v is
{x, x′} or {y′} (take respectively w:=x′ or w:=y′). By (11) it only remains
to consider the case where

{x, x′, y′} ∩ ↑v ∈ {{x, y}, {x, x′, y′}}.

But an argument analogous to the one detailed in the last paragraph of the
proof of Fact 6.7 shows that this case leads to a contradiction. Hence we
conclude the S is a bisimulation equivalence on A∗.

Consequently, we may assume without loss of generality that S is the
identity relation on A∗. Observe that the subposet of A∗ with universe
{⊥, x, x′, y′,�} is isomorphic to one of the following rooted posets:

•

��
��

��
��

��
� •
• •
•

��
��

�� •
��
��
�� •

��
��

�� •
��
��
��

• •
Together with (11) and the fact that S is the identity relation, this implies
that A∗ is isomorphic to one of the following rooted posets (in which the
elements other than ⊥, x, x′, y′,� are marked with squares):
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For every i = 1, . . . , 4 there is a bisimulation equivalence Ti on Zi such that
Z1/T1

∼= Z2/T2
∼= C2∗ and Z3/T3

∼= Z4/T4
∼= C1∗. By Lemma 3.2(iii) this

implies {C1,C2} ∩ IS(A) �= ∅, whence either C1 or C2 belongs to K. But
this contradicts the fact that K omits C1 and C2. Hence we reached the
desired contradiction. �

Lemma 6.10. Let K be a variety of Heyting algebras omitting C1, . . . ,C5.
Then every finite member of K satisfies the equation β(P3) ≈ 1.

Proof. Suppose, with a view to contradiction, that there is a finite algebra
A ∈ K in which the equation β(P3) ≈ 1 fails. By Theorem 6.1 there is a
subframe X of A∗ and a surjective Esakia morphism from X to the space
obtained endowing P3 with the discrete topology. Because of the definition of
an Esakia morphism, this implies that there is a subposet of A∗ isomorphic
to P3. We label the elements of this copy of P3 inside A∗ as follows:

x1•
x2•
x3•

��
��

� • y

��
��
�

⊥ •
Moreover, by Lemma 3.2(ii) and H(K) ⊆ K, we may assume without loss
of generality that ⊥ is the minimum of A∗ and the unique common lower
bound of x3 and y.

First observe that for every z ∈ A∗,

{x2, x3, y}∩ ↑z ∈ {∅, {x2}, {x2, x3}, {y}, {x2, y}, {x2, x3, y}}. (12)

This is an immediate consequence of the fact that {x2, x3, y}∩ ↑z is an upset
of the subposet of A∗ with universe {x2, x3, y}.

Now, we will see that the following relation is a bisimulation equivalence
on A∗:

S:={〈u, v〉 ∈ A∗ × A∗ : {x2, x3, y} ∩ ↑u = {x2, x3, y} ∩ ↑v}.
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To this end, consider t, u, v ∈ A∗ such that 〈t, u〉 ∈ S, t �= u, t < v, and
〈t, v〉 /∈ S. As usual, we need to find an element w ≥ u such that 〈v, w〉 ∈ S.

First we consider the case where {x2, x3, y} ∩ ↑v = ∅. If t ≤ x2, then also
u ≤ x2 ≤ x1 (as 〈t, u〉 ∈ S). Consequently, by setting w:=x1, we are done.
Then suppose that t � x2. Since 〈t, v〉 /∈ S and {x2, x3, y} ∩ ↑v = ∅, we get
{x2, x3, y} ∩ ↑t �= ∅. This implies that either t ≤ x2 or t ≤ y. As t � x2, we
conclude t ≤ y. First consider the case where t = y. Then y = t < v. As
〈t, u〉, we have u ≤ y ≤ v. Thus, by taking w:=v, we are done. We will see
that the case where t < y never happens. To this end, suppose the contrary,
with a view to contradiction. We will see that

⊥ < t < y and t is incomparable with x2, x3. (13)

As t � x2, clearly t �= ⊥, whence ⊥ < t. Consequently, ⊥ < t < y. Now, as
t � x2, we have t � x2, x3. Moreover, since t ≤ y and x2, x3 � y, clearly
x2, x3 � t. Thus t is incomparable with x2 and x3. This establishes (13).
Then {⊥, x2, x3, t, y} is the universe of a subposet of A∗ isomorphic to P2.
Thus A does not satisfy β(P2). But this contradicts Lemma 6.8. Hence we
reached a contradiction, as desired. This concludes the analysis of the case
where {x2, x3, y} ∩ ↑v = ∅.

If {x2, x3, y} ∩ ↑v is equal to {x2}, {x2, x3}, or {y}, then, by taking
respectively w:=x2, w:=x3 or w:=y, we are done. In the light of (12), the
only case that remains to be considered is the one where

{x2, x3, y} ∩ ↑v ∈ {{x2, y}, {x2, x3, y}}.

But an argument analogous to the one detailed in the last paragraph of the
proof of Fact 6.7 shows that this case leads to a contradiction. Hence we
conclude the S is a bisimulation equivalence on A∗.

Consequently, we may assume without loss of generality that S is the
identity relation on A∗. Now, either y is a maximal element of A∗ or it is not.
If y is a maximal element of A∗, then the fact that S is the identity relation
and condition (12) imply that A∗ is isomorphic to one of the following rooted
posets:

x1• x1•
x2• x2•

���
���

��� •y

x3•
��

��
� •y

��
��
� x3•

��
��

� •
��
��
��

⊥• ⊥•
In both cases, C1 ∈ IS(A) ⊆ K by Lemma 3.2(iii). But this contradicts the
assumption that K omits C1.
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We conclude that y is not a maximal element of A∗. Together with the
fact that S is the identity relation and condition (12), this implies that A∗
is isomorphic to one of the following rooted posets:

x1•

��
��

��
��

��
� x1•

���
���

���

x2• x2•
���

���
��� •y

x3•
��

��
� •y

��
��
� x3•

��
��

� •
��
��
��

⊥• ⊥•
In both cases, C2 ∈ IS(A) ⊆ K by Lemma 3.2(iii). But this contradicts the
assumption that K omits C2. Hence we reached a contradiction. �
Corollary 6.11. Let K be a variety of Heyting algebras omitting C1, . . . ,C5.
Then the finite members of K belong to KG.

Proof. Apply Theorem 6.3 to Lemmas 6.4, 6.8, and 6.10.

We rely on the following observation, which specializes5 [10, Cor. 4.3.10]:

Lemma 6.12. If A ∈ KG is a nontrivial finite FSI algebra, then A = B1 +
· · · + Bn for some Heyting algebras B1, . . . ,Bn ∈ H(RN) such that B1 is
the two-element Boolean algebra.

Let 2 and 4 be, respectively, the two and four-element Boolean algebras.
Moreover, let D be the Heyting algebra depicted below:
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The next result describes the structure of varieties of Heyting algebras omit-
ting C1, . . . ,C5:

Theorem 6.13. Let K be a variety of Heyting algebras omitting C1, . . . ,C5.
Then

(i) K is a locally finite subvariety of KG.

(ii) Every nontrivial finite FSI member of K has the form B1 + · · · + Bn

for some Heyting algebras Bi such that B1
∼= 2, and if n > 1, then

Bn ∈ I{2,4,D} and Bj ∈ I{2,4} for all 1 < j < n.

5We point out that the proof in [10] is via Esakia duality.
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Moreover, the above conditions hold for every primitive variety K of Heyting
algebras.

Proof. (ii): Let A be a finite nontrivial FSI member of K. By Corollary 6.11
and Lemma 6.12 we obtain that A = B1+ · · ·+Bn for some finite nontrivial
B1, . . . ,Bn ∈ H(RN) such that B1 = 2. We may assume without loss of
generality that no Bi can be written as a sum with at least two nontrivial
components.

Suppose with a view to contradiction that n > 1 and Bn /∈ I{2,4,D}.
Then observe

2 + Bn ∈ S(2 + B2 + · · · + Bn) = S(B1 + · · · + Bn) = S(A) ⊆ K.

Now, recall that Bn is a finite nontrivial member of H(RN). To visualize
Bn, it is convenient to observe that the order-type of finite homomorphic
images of RN is that of principal nontotal downsets of RN . Since Bn

cannot be written as a sum with at least two nontrivial components, this
implies that the order type of Bn is that of ↓RN a for some a ∈ RN � {0}
which is not prime (i.e., it is not the join of two strictly smaller elements).

If ↓RN a has at least 8 elements, the assumption that a is not prime
guarantees that C1 ∈ H(Bn), whence C1 ∈ H(Bn) ⊆ H(2 + Bn) ⊆ K,
a contradiction. Then we consider the case where ↓RN a has less than 8
elements. Since a is not prime and Bn is nontrivial, this implies that Bn ∈
I{2,4,D}, which is also a contradiction. Hence, we conclude that if n > 1,
then Bn ∈ I{2,4,D}.

Next consider 1 < j < n and suppose, with a view to contradiction, that
Bj /∈ I{2,4}. As 1 < j < n, this yields

2 + Bj + 2 ∈ S(2 + B2 + · · · + Bn) = S(B1 + · · · + Bn) = S(A) ⊆ K.

As above, the order type of Bj is that of ↓RN a for some a ∈ RN � {0}
which is not prime. Together with the fact that Bj is nonisomorphic to
2,4 and inspecting the structure of RN , this yields C2 ∈ S(2 + Bj + 2),
whence C2 ∈ K which is false. Hence we conclude that if 1 < j < n, then
Bj ∈ I{2,4}.

(i): Using the layer-structure given by condition (ii) and the fact that an
n-generated Heyting algebra cannot be a sum of more than 2n+1 nontrivial
algebras, it is not hard to see that for every n ∈ ω there are, up to isomor-
phism, only finitely many n-generated finite FSI algebras in K. By Theorem
4.3 we conclude that K is locally finite.
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Now, Corollary 6.11 guarantees that the finite members of K belong to
KG. As K is locally finite and, therefore, generated by its finite members,
this implies that K ⊆ KG.

Finally, the fact that conditions (i) and (ii) hold for all primitive varieties
of Heyting algebras is a consequence of Lemma 5.1. �
Remark 6.14. Theorem 6.13(i) is also a consequence of Corollary 6.11 and
a general criteria of local finiteness in subarieties of KG [10, Thm. 4.6.5] stat-
ing that a subvariety of KG is locally finite if and only if it omits RN + 2.
We chose to provide a full proof of this result, in order to keep the paper self
contained. �

7. Primitive Varieties of Heyting Algebras

For the present purpose, it is convenient to describe Esakia spaces dual to
sums of Heyting algebras. Let X = 〈X; ≤X〉 and Y = 〈Y ; ≤Y〉 be two posets
(with disjoint universes). Their sum X + Y is the poset with universe X ∪ Y
and whose order relation ≤ is defined as follows for every x, y ∈ X ∪ Y :

x ≤ y ⇐⇒ either (x, y ∈ X and x ≤X y) or (x, y ∈ Y and x ≤Y y)

or (x ∈ X and y ∈ Y ).

So, X + Y is the poset obtained by placing Y above X.
Now, let X and Y be two Esakia spaces (with disjoint universes). The

sum X + Y is the Esakia space, whose underlying poset is 〈X; ≤X 〉 + 〈Y ;
≤Y 〉, endowed with the topology consisting of the sets U ⊆ X ∪Y such that
U ∩ X and U ∩ Y are open respectively in X and Y . The following result is
[10, Thm. 4.1.16] and [56, Lem. 5.1].

Lemma 7.1. If A and B are Heyting algebras, then the Esakia spaces (A+
B)∗ and A∗ + B∗ are isomorphic.

Moreover, we will recall a basic concept from universal algebra. Let K
be a variety. A nontrivial algebra A ∈ K is said to be a splitting algebra in
K [52,68] if there exists the largest subvariety V of K omitting A. In this
case, V is always axiomatized relative to K by a single equation, sometimes
called the splitting equation. In the realm of Heyting algebras, this phenom-
enon was first discovered by Jankov [43]6, who associated a special formula
χ(A)—nowadays known as the Jankov formula—with every finite nontrivial

6Jankov’s approach was subsequently generalized to arbitrary varieties with EDPC in
[13, Cor. 3.2] (see also [25, Cor. 3.8] for a similar result).
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FSI (equiv. finite subdirectly irreducible) Heyting algebra A, validating the
following result:

Theorem 7.2. Let A and B be Heyting algebras such that A is finite, non-
trivial, and FSI.

B � χ(A) ≈ 1 ⇐⇒ A /∈ SH(B).

Moreover, χ(A) ≈ 1 axiomatizes the largest variety of Heyting algebras omit-
ting A.

Bearing this in mind, let Citk be the largest variety of Heyting algebras
omitting C1, . . . ,C5, i.e., the variety of Heyting algebras axiomatized by the
equations

χ(Ci) ≈ 1, for all i = 1, . . . , 5.

Citikin’s Theorem [19] can be phrased in purely algebraic terms as follows:

Theorem 7.3. The following conditions are equivalent for a variety K of
Heyting algebras:

(i) K is primitive;

(ii) K is a subvariety of Citk;

(iii) K omits the algebras C1, . . . ,C5;

(iv) Every nontrivial finite FSI member of K has the form B1 + · · · + Bn

for some Heyting algebras Bi such that B1
∼= 2, and Bj ∈ I{2,4} for

all 1 < j < n, and, if n > 1, then Bn ∈ I{2,4,D}.
Consequently, Citk is the largest primitive variety of Heyting algebras.

Proof. Parts (i)⇒(ii) and (iii)⇒(iv) follow, respectively, from Lemma 5.1
and Theorem 6.13. Moreover, conditions (ii) and (iii) are equivalent by def-
inition of Citk.

(iv)⇒(i): Observe that the Esakia spaces dual to the algebras 2,4, and
D are respectively the following posets endowed with the discrete topology:

2∗ 4∗ D∗•
��

��
�� •

• • • • •
We will rely on the following observations.

Claim 7.4. Let X be a finite Esakia space such that X∗ ∈ K. Then for
every x ∈ X there are a positive integer n and Esakia spaces X1, . . . ,Xn

such that ↑x is isomorphic to X1 + · · ·+Xn, where X1 = 2∗, Xj ∈ {2∗,4∗}
for all 1 < j < n, and, if n > 1, then Xn ∈ {2∗,4∗,D∗}.
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Proof of the Claim. In view of Lemma 3.2(i, ii), the Heyting algebra
dual to ↑x is an FSI member of K. Together with the assumption (i.e.,
condition (iv) of Theorem 7.3) and Lemma 7.1, this yields the desired
conclusion. �

Claim 7.5. Let X be a finite Esakia space such that X∗ ∈ K and x ∈ X.
If X � ↑x �= ∅, then there exists a surjective noninjective Esakia morphism
f : X → Y that restricts to an order isomorphism from ↑x to an upset U of
Y .

Proof of the Claim. In view of Claim 7.4, there are a positive integer n
and Esakia spaces X1, . . . ,Xn such that ↑x is isomorphic to X1 + · · ·+Xn,
where X1 = 2∗, Xj ∈ {2∗,4∗} for all 1 < j < n, and, if n > 1, then
Xn ∈ {2∗,4∗,D∗}. Let us label the elements of ↑x (equiv. of X1+ · · ·+Xn).
Consider one of the Xi’s. If Xi = 2∗ (resp. Xi = 4∗), then we denote the
unique element (resp. the two elements) of Xi by ai (resp. ai and bi). Then
suppose that Xi = D∗. In this case, we have necessarily i = n and we denote
the elements of Xi as follows:

c d

an bn

Since, by assumption, X � ↑x is finite and nonempty, it has a maximal
element y. Let then m(y) be the set of minimal elements in ↑x ∩ ↑y. The
maximality of y in X � ↑x guarantees that m(y) is the set of immediate
successors of y.

If m(y) = ∅, then y is a maximal element of X. Then consider a maximal
element z ∈ ↑x. Since y /∈ ↑x, we have that y and z are two distinct maximal
elements of X. Consequently, we can identify them through a β-reduction,
thus producing the desired Esakia morphism. On the other hand, if m(y)
is a singleton, say {z}, then z is the unique immediate successor of y. Con-
sequently, we can identity y and z with an α-reduction, thus producing the
desired Esakia morphism.

Therefore, it only remains to consider the case where m(y) has at least
two elements. We will prove that

m(y) is either {c, d} or {ai, bi} for some i ≤ n. (14)

By assumption, m(y) has at least two distinct elements z and v. Suppose,
with a view to contradiction, that m(y) �= {z, v}. Then there is an element
w ∈ m(y) � {z, v}. As z, v, and w are minimal in ↑x ∩ ↑y, they must be
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incomparable in ↑x. But this contradicts the fact that ↑x is a rooted poset
of width ≤ 2. Hence we conclude that m(y) = {z, v}. Bearing in mind that
↑x = X1 + · · · + Xn and that z and v are incomparable, this easily implies
that m(y) is one of the sets {c, d}, {bn, c}, and {ai, bi} for some i ≤ n.
Therefore, to conclude the proof of condition (14), it only remains to show
that m(y) cannot be {bn, c}.

Suppose the contrary, with a view to contradiction. Therefore, Xn = D∗
and ↑y contains an, bn, and c. By applying Claim 7.4 to ↑y, we obtain that
↑y ∼= Y1 + · · · + Ym, where Y1 = 2∗, Yj ∈ {2∗,4∗} for all 1 < j < m,
and, if m > 1, then Ym ∈ {2∗,4∗,D∗}. Together with the fact that ↑y
contains two distinct comparable elements, namely, c and an, both of which
are incomparable with an element bn ≥ y, this implies that Ym = D∗.
Furthermore, as an and bn are maximal, they must be the maximal elements
of Ym. Bearing in mind that Ym = D∗, this guarantees the existence of an
element z ∈ Ym such that z ≤ an, bn and z � c. Since y ≤ z and y is maximal
in X � ↑x, we obtain that either y = z or z ∈ ↑x. Now, from c ∈ m(y) it
follows that y ≤ c. Together with z � c, this implies that y �= z and,
therefore, that z ∈ ↑x. As m(y) = {bn, c} is the set of minimal elements
of ↑x ∩ ↑y, this guarantees that bn ≤ z or c ≤ z. But, since z ≤ an, bn,
this would yield that either bn ≤ an or c ≤ bn, a contradiction. Hence, we
conclude that condition (14) holds.

In view of condition (14), we have two cases: either m(y) = {c, d} or
m(y) = {ai, bi} for some i ≤ n. Then consider the following element of ↑x:

z:=

⎧
⎨

⎩

an−1 if m(y) = {c, d}
ai−1 if m(y) = {ai, bi} and either i < n or Xn �= D∗
d if m(y) = {an, bn} and Xn = D∗.

It is easy to see that the set of immediate successors of z is precisely m(y).
Since m(y) is also the set of immediate successors of y, we can identify y
and z with a β-reduction, thus obtaining the desired Esakia morphism. �

With a series of applications of Claim 7.5, we obtain the following:

Claim 7.6. Let X be a finite Esakia space such that X∗ ∈ K and x ∈
X. Then there exists a surjective Esakia morphism f : X → ↑x, whose
restriction to ↑x is the identity function.

Now, we turn to the proof of the main statement. The proof of Theorem
6.13(ii) shows that K is locally finite. Hence to establish that K is primitive
it suffices, by Theorem 2.2, to show that the finite nontrivial FSI members
of K are weakly projective in K.
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Consider a finite nontrivial FSI algebra A ∈ K. Let also E ∈ K be such
that A ∈ H(E). Clearly, there is a surjective homomorphism f : E → A.
Since A is finite, there is a finitely generated subalgebra B ≤ E such that
A ∈ H(B). Therefore, to conclude that A is weakly projective in K, it will
be enough to show that A ∈ IS(B) and, therefore, A ∈ IS(E). Instead
of proving directly that A ∈ IS(B), we will establish the existence of a
surjective Esakia morphism g : B∗ → A∗ (see Lemma 3.2(iii)).

To this end, observe that B is finite, since K is locally finite and B is
finitely generated. Thus the Esakia space B∗ is also finite and such that
(B∗)∗ ∈ K. Furthermore, in view of Lemma 3.2(ii) and A ∈ H(B), we can
identify A∗ with a principal upset of B∗. Therefore, we can apply Claim
7.6 obtaining that there is a surjective Esakia morphism g : B∗ → A∗, as
desired. �
Remark 7.7. The proof of the implication (iv)⇒(i) in Theorem 7.3 shows
that A is projective in K in the classical sense. This is because Claim
7.6 guarantees that the restriction of g to A∗ is the identity map. As a
consequence, the embedding g∗ : A → B can be viewed as an embedding
g∗ : A → E such that f ◦ g∗ is the identity map on A and, therefore, A is a
retract of E. It follows that the nontrivial finite FSI members of a primitive
variety K of Heyting algebras are projective in K. �

Letting Citk be the intermediate logic axiomatized by the formulas
χ(C1), . . . , χ(C5), we obtain the classical formulation of Citkin’s Theorem:

Corollary 7.8. An intermediate logic is hereditarily structurally complete
if and only if it extends Citk. Consequently, Citk is the least hereditarily
structurally complete intermediate logic.

Proof. As explained in Section 2, an intermediate logic is hereditarily struc-
turally complete if and only if the variety of Heyting algebras naturally
associated with it is primitive. Thus the result follows from Theorem 7.3.�

8. Primitive Varieties of Brouwerian Algebras

It is well known that the 〈∧,∨,→〉-fragment of IPC, here denoted by IPC+,
is algebraized by the variety of Brouwerian algebras, i.e., 〈∧,∨,→〉-subreducts
of Heyting algebras. As a consequence of the algebraization phenomenon, the
lattice of varieties of Brouwerian algebras is dually isomorphic to that of pos-
itive logics, i.e., axiomatic extensions of IPC+. Moreover, a positive logic is
hereditarily structurally complete if and only if the variety of Brouwerian
algebras associated with it is primitive.
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As structural completeness and its variants are very sensitive to (even
small) changes of signature, it was natural to wonder whether Citkin’s de-
scription of hereditarily structurally complete intermediate logics could be
extended to positive logics. Recently, a positive solution to this question was
supplied by Citkin himself in [22]. However, as we will show below, the re-
sults and techniques of the previous sections of this paper yield a very short
alternative proof of this result.

Given a Brouwerian algebra A, we denote by A⊥ the unique Heyting
algebra obtained by adding a new bottom element ⊥ to A. As the character-
ization of FSI algebras given in Lemma 3.2(i) holds for Brouwerian algebras
as well, A is FSI if and only if so is A⊥. Given a class of Brouwerian algebras
K, define

K⊥:={A⊥ : A ∈ K}.

Observe that for every class K of Brouwerian algebras,

H(K⊥) = H(K)⊥ and S(K⊥) = S(K)⊥ (15)

where the class operators H and S are computed in the language of Heyting
algebras for H(K⊥) and S(K⊥), and in the language of Brouwerian algebras
for H(K) and S(K). Finally, given a Heyting algebra A, we denote by A+ its
〈∧,∨,→〉-reduct.

Lemma 8.1. Let K be a variety of Brouwerian algebras. If K omits C+
1 and

C+
3 , then V(K⊥) omits C1, . . . ,C5.

Proof. Suppose the contrary, with a view to contradiction. Then there is
i = 1, . . . , 5 such that Ci ∈ V(K⊥). By Theorem 7.2 the variety V(K⊥) does
not validate χ(Ci) ≈ 1. Thus there is A ∈ K such that A⊥ refutes χ(Ci) ≈ 1.
By Theorem 7.2 and (15) this implies

Ci ∈ SH(A⊥) = (SH(A))⊥.

As a consequence, Ci has the form B⊥ for some Brouwerian algebra B such
that

B ∈ SH(A). (16)
As Ci = B⊥, the bottom element of Ci is meet-irreducible. By inspecting
C1, . . . ,C5, this guarantees that Ci ∈ {C2,C4}. Together with B⊥ = Ci,
this implies B ∈ {C+

1 ,C+
3 }. By (16) we conclude that

either C+
1 ∈ SH(A) ⊆ K or C+

3 ∈ SH(A) ⊆ K.

But this contradicts the fact that K omits C+
1 and C+

3 . �
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As shown by Jankov [43], Theorem 7.2 generalizes to the case of Brouwe-
rian algebras. More precisely, every finite nontrivial FSI (equiv. finite subdi-
rectly irreducible) Brouwerian algebra A can be associated with a formula
χ(A)+ such that the largest variety of Brouwerian algebras omitting A ex-
ists and is axiomatized by χ(A)+ ≈ 1. Bearing this in mind, let Citk+ be
the largest variety of Brouwerian algebras omitting C+

1 and C+
3 , i.e., the

variety of Brouwerian algebras axiomatized by the equations

χ(C+
1 )+ ≈ 1 and χ(C+

3 )+ ≈ 1.

Citkin’s description of hereditarily structurally complete positive logics can
be phrased algebraically as follows:

Theorem 8.2. The following conditions are equivalent for a variety K of
Brouwerian algebras:

(i) K is primitive;

(ii) K is a subvariety of Citk+;

(iii) K omits the algebras C+
1 and C+

3 ;

(iv) Every nontrivial finite FSI member of K has the form B1+ · · ·+Bn for
some Brouwerian algebras Bi such that B1

∼= 2+, and Bj ∈ I{2+,4+}
for all j > 1.

Consequently, Citk+ is the largest primitive variety of Brouwerian algebras.

Proof. Observe that conditions (ii) and (iii) are equivalent by definition of
Citk+. Moreover, the proof of (i)⇒(ii) is analogous to that of Lemma 5.1.

(ii)⇒(iv): Let A be a nontrivial finite FSI member of K. Then A⊥ is
a finite nontrivial FSI member of V(K⊥). From Lemma 8.1 and Theorem
7.3 it follows that A⊥ = B1 + · · · + Bn for some Heyting algebras Bi

such that B1
∼= 2, and Bj ∈ I{2,4} for all 1 < j < n, and, if n > 1,

then Bn ∈ I{2,4,D}. By construction of A⊥, its bottom element is meet-
irreducible. Consequently, necessarily Bn

∼= 2. Also, as A is nontrivial, A⊥
has at least three elements, whence n > 1. Thus

A⊥ ∼= 2 + B2 + · · · + Bn−1 + 2.

As a consequence,

A⊥ ∼= 2+ + B+
2 + · · · + B+

n−1

where each B+
i is isomorphic either to 2+ or to 4+.

(iv)⇒(i): First observe that K omits C+
1 and C+

3 . Therefore, Lemma
8.1 and Theorem 6.13(i) imply that V(K⊥) is locally finite. This, in turn,
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guarantees that K is also locally finite. By Theorem 2.2 we conclude that, in
order to prove that K is primitive, it suffices to show that its finite nontrivial
FSI members are weakly projective in K.

Consider a finite nontrivial FSI member A of K. Then let B ∈ K and
f : B → A be a surjective homomorphism. Observe that the unique map
f⊥ : B⊥ → A⊥ which extends f by f⊥(⊥):=⊥ is a homomorphism of Heyt-
ing algebras. By assumption, A is a finite linear sum of copies of 2 and
4, whence the same holds for A⊥. By [1, Thm. 4.10] this implies that A is
projective in the standard sense. Therefore, as f⊥ is surjective, there is an em-
bedding g : A⊥ → B⊥. Observe that g restricts to an embedding g : A → B
of Brouwerian algebras. Consequently, A ∈ IS(B). Hence we conclude that
A is weakly projective in K. �

Letting Citk+ be the positive logic axiomatized by χ(C+
1 ) and χ(C+

3 ),
we obtain:

Corollary 8.3. A positive logic is hereditarily structurally complete if and
only if it extends Citk+. Consequently, Citk+ is the least hereditarily struc-
turally complete positive logic.

9. Properties of Primitive Varieties

Primitive varieties of Heyting and Brouwerian algebras have a number of
interesting properties. Recall that a variety is said to be finitely based if it
can be axiomatized by finitely many equations.

Theorem 9.1. The following conditions hold:

(i) Primitive varieties of Heyting (resp. Brouwerian) algebras are locally
finite.

(ii) Primitive varieties of Heyting (resp. Brouwerian) algebras are finitely
based.

(iii) There are only countably many primitive varieties of Heyting (resp.
Brouwerian) algebras.

We conclude the paper by sketching a proof of the above result.7

7The reason why in this case we opted for providing a proof sketch only is that, for the
case of Brouwerian algebras, a detailed proof of Theorem 9.1 is given in [22] and there is
no reason for repeating it here. Moreover, the version of Theorem 9.1 for Heyting algebras
is proved by a simple modification of the Brouwerian case.
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Proof sketch. We consider the case of Heyting algebras only, as that
of Brouwerian algebras is analogous. First observe that primitive varieties
of Heyting algebras are locally finite by Theorem 7.3 and the last part of
Theorem 6.13. This establishes condition (i). Moreover, condition (iii) is an
immediate consequence of (ii). Thus, to conclude the proof, it suffices to
establish (ii).

We will provide a proof sketch only. To this end, recall from Theorem 7.3
that Citk is the largest primitive variety of Heyting algebras. Therefore, to
conclude the proof, it only remains to show that all subvarieties of Citk are
finitely based. Observe that Citk is finitely based by definition. Moreover,
it is locally finite by condition (i). Thus, by general arguments related to
Jankov formulas, e.g., [10, Thm. 3.4.14] and [17, Ch. 9], one can reduce the
problem of proving that all subvarieties of Citk are finitely based to that of
showing that the poset Ord(Citk) of finite nontrivial FSI members of Citk
ordered under the relation

A � B ⇐⇒ A ∈ HS(B)

has no infinite antichain. Recall from Theorem 2.2 that all nontrivial FSI
members of Citk are weakly projective in Citk. As a consequence for every
A,B ∈ Ord(Citk),

A � B ⇐⇒ A ∈ HS(B) ⇐⇒ A ∈ IS(B). (17)

Thus, to conclude the proof, it suffices to show that there is no infinite
antichain in the poset of finite nontrivial FSI members of Citk ordered under
the relation

A � B ⇐⇒ A ∈ S(B).

This can be shown by a combinatorial argument similar to the one detailed in
[22, Sec. 7] for the case of Brouwerian algebras, using the description of finite
nontrivial FSI members of Citk given in Theorem 7.3. �

Thus we arrive at the following corollary.

Corollary 9.2. Hereditarily structurally complete intermediate logics (resp.
positive logics) are locally tabular and finitely axiomatizable. Moreover, there
are only countably many such logics.
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[46] Jeřábek, E., Bases of admissible rules of �Lukasiewicz logic, Journal of Logic and

Computation 20(6):1149–1163, 2010.

[47] Kracht, M., Prefinitely axiomatizable modal and intermediate logics, Mathematical

Logic Quaterly 39:301–322, 1993.

[48] Kuznetsov, A. V., On finitely generated pseudo-Boolean algebras and finitely approx-

imable varieties, in Proceedings of the 12th USSR Algebraic Colloquium, in Russian,

Sverdlovsk, 1973, p. 281.
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