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Abstract. Classical propositional logic plays a prominent role in industrial applications,
and yet the complexity of this logic is presumed to be non-feasible. Tractable systems
such as depth-bounded boolean logics approximate classical logic and can be seen as a
model for resource-bounded agents whose reasoning style is nonetheless classical. In this
paper we first study a hierarchy of tractable logics that is not defined by depth. Then we
extend it into a modal logic where modalities make explicit the assumptions discharged in
propositional proofs, thereby expressing blueprints for proofs. A natural deduction system
is provided that permits to reason about and manage such proof blueprints.

Keywords: Resource-bounded logic, Classical propositional logic, Modal logic, Bivalence
rule, Information semantics, Distributed theorem proving.

Introduction

Classical propositional logic plays a prominent role in many industrial ap-
plications [27,34]. Its satisfiability and validity problems, though, are NP-
complete resp. coNP-complete [8] and so under the widely accepted con-
jecture that P �= NP, classical reasoning would lie beyond what is con-
sidered computationally feasible. Resource-bounded logics for propositional
languages [10,11,13,15,18,19,39,40] address these concerns and offer more
realistic models of reasoning agents.1 These logics are obtained by setting
bounds on certain inference rules of the proof system �, thereby trading
deductive power (completeness of �) for a lower complexity. This is a useful
abstraction for modelling physical bounds on the memory and time available
to agents —and even perhaps accurate for human reasoners. More impor-
tantly, propositional resource-bounded logics such as DBBL are tractable [10].
In the present paper, we focus on the informational approach to classical

1 Classical and epistemic logics suffer from logical omniscience problems as models of
reasoning agents [46]. Epistemic logic [44] is thus said to model what an agent can know,
or does implicitly know, by purely deductive methods.
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logic [10,11] and study a modal extension for reasoning about blueprints
for propositional proofs. Our motivation lies in distributed reasoning ap-
plications, such as query-answering and consistency checks in a shared or
distributed data base. On this topic, a fundamental question is what exactly
is to be communicated by reasoning agents aimed at such tasks.

A list of desiderata for such a deductive exchange format are: (i) reusabil-
ity, (ii) fault-tolerance, (iii) optimality preservation, and (iv) succinctness.
Reusability is a bare minimum condition: being able to reach further sound
conclusions, which amounts to soundness preservation. Tolerance to faults
generated at proof search, storage or messaging is here understood as the ex-
istence of quick checks on correctness. Optimality preservation prevents the
introduction of new unnecessary steps or assumptions after any deductive ex-
change.2 Among message forms meeting conditions (i)–(iii), one should opt
for (iv) a succint form requiring less memory use and messaging time.

Given a proof Π, say witnessing that Δ � B, a deductive exchange format
can be anything between: the full proof Π or just the proof conclusion B.
These two extreme cases do not fulfil the above desiderata: messaging full
proofs [3,36] satisfies all conditions except for succintness, as many proof
steps can be omitted without a significant loss w.r.t. (ii)–(iii); conclusions,
in turn, are maximally succinct but fail on (ii) as correctness tests amount
to new proofs from scratch; messaging conclusions might also fail on (iii) as
merging optimal proofs (using cut) might lead to redundant subproofs or
assumptions. To better fulfil these desiderata, we introduce a notion of proof
blueprint.

Natural deduction for classical logic is presented in [10,11] as a system
� with a unique rule RB for discharging assumptions (in pairs) {A,¬A}
(Figure 1, left). The analysis of proof complexity in [10, p. 87] identifies the
search space of RB -assumptions as the key element for the complexity of
deciding whether Γ � B. For distributed proofs, these insights suggest a
deductive exchange format consisting of (i) the premises Δ ⊆ Γ used in some
proof of Δ � B and (ii) the formula pairs {A,¬A} discharged by RB as a sort
of blueprint for this proof —other proof steps being completely mechanical.3

Actually, we build this notion upon a hierarchy of tractable logics, called

2Hence, if a node sends an optimal proof (containing no redundancies or unnecessary
assumptions), the receiving node must be able to reconstruct essentially the same proof.
While it is trivial to check that all assumptions in a proof are actually used, checking that
these are minimal for the given conclusion is not.

3This mechanical character is apparent from depth-bounded boolean logics enjoying
the weak subformula property, so proofs of Γ � A exist with only weak subformulas of
Γ ∪ {A}. See [13] for proof transformations that delete detours and other redundancies.
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Figure 1. (Left) An application of the Bivalence Rule: if B can be in-
ferred under the assumption that A and also under the assumption that
¬A, then infer B. Both assumptions are discharged (denoted with braces)
by this application of RB . (Right) A rule for the introduction of impli-
cation used commonly in natural deduction for classical logic [37]

UBBL, that measures proof complexity by the number of RB -formulas, rather
than their depth as in [11]. This measure, moreover, enables a modal logic for
reasoning about proof blueprints. In this logic, a formula [±A1] . . . [±Ak]B
represents that a classical proof of B exists whose RB -instances involve at
most the pairs {A1,¬A1}, . . . {Ak,¬Ak}. This modal logic can equip agents
with tools for merging and optimizing blueprints.
Related work Different hierarchies of classically sound but incomplete sys-
tems, called resource-bounded logics, have been shown to approximate clas-
sical logic. Under a 2-valued semantics, Schaerf and Cadoli [39] present a
chain of logics |=S that validate modus ponens for increasing sets S of atoms;
its valuations can be paraconsistent for p /∈ S, i.e. V (p) = 1 = V (¬p).4 In
the same vein, Finger and Wassermann [19] describe a general system that
validates each rule ρ within a set of applicable formulas Sρ only; these sets
Sρ (and so the logic) can expand during proof search, thus imposing proof
heuristics based on rule precedence. In an algebraic setting, Dalal [15] builds
upon boolean constraint propagation to bound the size of the cut formula.
This is generalized in the lattice approach of Finger and Gabbay [18] built on
an infinite layer of truth-values between 0 and 1; the cut rule is not eliminable
and sequent calculi bound its use by the number of atoms or formulas. Using
a 3-valued non-deterministic semantics, D’Agostino et al. [10,11,13] define
the DBBL hierarchy by bounds on the nesting of RB , its only branching rule.
The same bounded logics are found in Stålmarck’s method [40], which further
extends them with rules for truth-value equivalences A ≡ B, among other
novel features (see [11,40] for a comparison). For resource-bounded logics in
first-order languages, an overview can be found in [23].

4A dual approximation to classical logic is in fact presented in [39], by simultaneously
defining a hierarchy (from above) of unsound and complete logics |=′

S for disproving validity
claims. Here, valuations can be paracomplete for p /∈ S, i.e. V ′(p) = 0 = V ′(¬p).
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Epistemic logics have also been designed to avoid the logical omniscience
problem [46]. These proposals distinguish explicit from implicit knowledge
either by weakening axiom K [45] or by modelling reasoning steps dynami-
cally or as the result of the passing of time or a number of derivation steps
[1,2,5,30,42]. Hawke et al. [28] discusses the plausibility of modal versions of
classical inferences for resource-bounded agents, in partial disagreement with
D’Agostino [10] or the present approach. A related approach is that of logics
of awareness, see [25,43] for recent work along this line. The above described
[39] also considers modalities �S for knowledge in the paraconsistent logics
|=S . In comparison, our dynamic modalities validate the axioms for knowl-
edge from Schaerf and Cadoli [39] plus some interaction axioms; their mod-
ular character also suits better applications in distributed reasoning. Along
this line, epistemic justification logics [3,36] describe modalities (proof terms)
that encode full proofs of the formulas under their scope, similarly to proof
blueprints. These modal logics mostly build upon classical propositional logic,
unlike the present work or Klassen [31], which describes a multi-agent belief
logic with separate update modalities [A], [¬A] and Kleene’s semantics (see
footnote 6).

Finally, modal logics of distributed knowledge address what agents do
know as a group [26,44]. Recent extensions of DBBL with multi-agent [7]
and dynamic epistemic [33] modalities also address logical omniscience. Dis-
tributed reasoning in formal argumentation has been considered with DBBL
in place of classical logic [14]. For first-order languages, a natural deduction
system for distributed reasoning is considered in [22].
Structure of the paper Section 1 starts by recalling depth-bounded boolean
logics DBBL. Section 2 studies a measure of proof complexity based on the
number of RB -formulas used. Section 3 presents the lattice of valuations. This
and Section 4 on models for 0-depth logic pave the way for degree-bounded
logics UBBL. Section 5 studies applications of RB as semantic updates. Sec-
tion 6 introduces the UBBL hierarchy and Section 7 presents a modal logic
with update modalities. Section 8 describes a complete deductive system for
this logic. Section 9 addresses the complexity of its validity problem and
discusses applications in distributed reasoning. The paper concludes with
directions for future research. Appendix A recalls fundamental facts from
lattice theory and Appendix B contains proofs of some results.
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Figure 2. The information order ≤ on truth-values ⊥ ≤ 1 and ⊥ ≤ 0

according to the information they carry: from less to more information

Figure 3. Truth-tables f∗ for ∗ ∈ {∧, ∨, ¬, →}. See [11] for other con-
nectives and for an intuitive explanation of the truth-tables in terms of
information modules

1. Preliminaries: DBBL Depth-Bounded Boolean Logics

Let us start with a reminder of 0-depth logic and the inductive definition of
k+1-depth logics that together define the DBBL logical hierarchy [10].

Definition 1.1. (Propositional language L) Given a set of atoms Var =
{p1, . . . , pi, . . .}, we define the language5 as follows:

L := pi ¬A A ∧ B A ∨ B A → B

We also use the logical constant � (falsum), denoting an absurd proposition.

An informational semantics is proposed in [10,12] with a set of truth-
values {1, 0,⊥} reading: 1 = known as true, 0 = known as false and ⊥ = un-
known. A partial order (or poset, Definition A.1) of information ({1, 0,⊥},≤)
is depicted in Figure 2. The truth-tables for boolean connectives in Figure 3
coincide with the classical truth-tables over {1, 0} and expand Kleene’s 3-
valued semantics [32] making it non-deterministic, e.g. ⊥ ∨ ⊥ ∈ {1,⊥} =
f∨(⊥,⊥). Under this reading, A and B can be unknown (A,B �→ ⊥) but
their disjunction known A ∨ B �→ 1 (or the conjunction known to be false).6

5Let us note that a valuation (Definition 1.2) might assign different truth-values to
classically equivalent formulas such as {A → B, ¬A ∨ B}. This is not the case if L is
defined from minimally functionally complete sets, e.g. {¬, ∨} defining A → B := ¬A ∨ B
and so on.

6 The truth-tables in Kleene’s 3-valued logic are as in Figure 3 except for: ⊥ ∨ ⊥ =
⊥ ∧ ⊥ = ⊥ → ⊥ = ⊥. Quine [38] motivates the informational reading of ∨ and ∧ with the
examples this is a mouse or a chipmunk and this is a mouse and a chipmunk.
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Definition 1.2. (Valuation) A valuation over L is a function V : L →
{1, 0,⊥} satisfying the truth-tables in Figure 3.

The constant function V⊥ : L → {⊥} satisfies the truth-tables, and so is
a (null information) valuation. The set of designated values is just {1}, from
which the 0-depth logic (L, |=0) is defined as usual.

Definition 1.3. (|=0 consequence) Given Γ∪{A} ⊆ L, we say that A is a 0-
depth consequence of Γ, denoted Γ |=0 A, if for any valuation V , V [Γ] = {1}
implies V (A) = 1. Γ is 0-depth consistent if there is a valuation V with
V [Γ] = 1. (Note we make use of the notation f [X] = {f(x) : x ∈ X}.)

The logic |=0 is a Tarskian consequence relation, as it satisfies reflexivity,
monotonicity and cut [11]. |=0 is also structural but has no tautologies. Clas-
sical inconsistencies are assigned ⊥ by V⊥, 0 by any two-valued valuation
V : L → {1, 0}, and even 1 if 0-depth consistent. Still, 0-depth inconsistent
sets are explosive: {p,¬p} |=0 �.

Example 1. (Comparison with classical logic) In 0-depth reasoning:

• the deduction theorem fails: {p} |=0 p but �|=0 p → p;

• the commutative rule for ∨ can fail {p ∨ q} �|=0 q ∨ p; and also de Morgan
{¬(p ∧ q)} �|=0 ¬p ∨ ¬q and full resolution {p ∨ q, ¬p ∨ q} �|=0 q;

• some classical inconsistencies can take the value 1, e.g. {p → ¬p,¬p → p}
or the CNF formula ¬((p ∧ q) ∨ (p ∧ ¬q) ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q)).

Definition 1.4. (�0-proof) A �0-proof of A from Γ, denoted Γ �0 A if it
exists, is a tree (N,R) of nodes labelled7 with formulas N ⊆ L and such
that: (i) A is the root node and leaf nodes are in Γ; (ii) if A0 ∈ N has as
R-successors A1, A2 (possibly with A1 = A2), then

A1 A2

A0
is an instance of an intelim rule (Fig. 4).

Proposition 1.5. (�0 soundness; completeness [10, Proposition 4.7]) The
calculus �0 is sound and complete w.r.t. logical consequence |=0.

The logic of k-depth |=k strengthens |=0 with at most k nested appli-
cations of bivalence. Under the informational semantics, each application of
bivalence expands the information possessed by the agent with the virtual
(or temporary) possession of some formula A, and in parallel of its negation
¬A, and extracts their shared consequences.8

7When no confusion exists, definitions and proofs omit the node/label distinction.
8Recall that in classical semantics all formulas are assumed bivalent from start.
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Figure 4. The natural deduction system �0 consists of rules I∗, E∗
(called intelim rules) for the introduction and elimination of connec-
tives and falsum ∗ ∈ {∧, ∨, →, ¬, �}. D’Agostino [10] presents these
rules in a language with signed formulas {TA, FA}, where they enjoy
the separation property [4] so any rule for ∗ only mentions this connective
∗

Figure 5. (Left) A schematic application of the RB rule. A is called the
RB-formula. Number labels are also used to track which assumptions
are discharged at each RB application. (Right) Given a proof Π1 of B

from A and a proof Π2 of B from ¬A, an application of RB results in a
proof of B from Γ ∪ Δ. It combines Π1, Π2 and a root node labelled B

Definition 1.6. (|=k consequence) Define |=0 as in Definition 1.3, and in-
ductively:

Γ |=k+1 B iff there is A ∈ L such that Γ∪{A} |=k B and Γ∪{¬A} |=k B.

Each consequence relation |=k is monotonic and satisfies a weaker version
of cut (see Proposition 6.6). For the corresponding system �k, one simply
needs to add the rule of bivalence RB (Figure 5) and limit its nesting in
proofs.

Definition 1.7. (�k-proof) A �k-proof of A from Γ is a tree (N,R) as in
Definition 1.4 satisfying conditions (i)–(ii) with rules from Figures 4 and 5,
and also:
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(iii) each branch of the tree traverses ≤k applications of RB .

Example 2. (RB and depth) Since {p} �0 p ∨ ¬p and {¬p} �0 p ∨ ¬p, an
application of RB with the (discharged) pair {p,¬p} gives ∅ �1 p ∨ ¬p. Note
that the number of classical theorems provable in �k increases with k.

An important property of the DBBL hierarchy is that to decide whether
Γ � B, the RB -formulas can be searched among sets of bounded size such as
the sets of subformulas sub(Γ ∪ {B}) or atoms at(Γ ∪ {B}).

Definition 1.8. (Virtual space function; |=f
k, �f

k) A virtual space function
is a function f : Pfin(L) → P(L) satisfying: (i) at(Δ) ⊆ f(Δ), (ii) f(Δ) is
closed under subformulas, and (iii) the size of f(Δ) is polynomially bounded
w.r.t. Δ. Any such function f defines a consequence |=f

k and calculus �f
k as

follows. Let |=f
0 = |=0 resp. �f

0 = �0 and:

Γ |=f
k+1 B iff there is A ∈ f(Γ∪{B}) with Γ∪{A} |=f

k B and Γ∪{¬A} |=f
k

B;

Γ �f
k+1 B iff Γ �k+1 B holds with RB -formulas satisfying A ∈ f(Γ∪{B}).9

The length of a formula A, denoted |A|, is the number of symbol occurrences
in A. For a finite set Γ ⊆ L, we define |Γ| = ΣA∈Γ|A|.
Proposition 1.9. (Approximation; [10, Prop. 3.2]) For any virtual space
function f, it holds that |= =

⋃
k |=f

k.

Proposition 1.10. (DBBL tractability [11, Proposition 3.2]) Let n = |Γ ∪
{A}|
be the length of a finite set Γ ∪ {A}. For any virtual space function f, the
complexity of deciding whether Γ �f

k A is O(nk+2).

Proposition 1.11. (�f
k soundness; completeness; [10, Prop. 4.11]) For any

function f as in Definition 1.8 and k < ω, Γ |=f
k A iff Γ �f

k A.

2. Measures of Proof Complexity

A quick look at Definition 1.6 shows that k-depth proofs contain a branch
with k nested applications of RB while other branches may differ from this

9Proofs based on analytic cuts (that is, f = sub for RB) can be exponentially longer
than those based on unrestricted cut, as witnessed by pigeon-hole formulas [6]. Analytic
cuts, on the other hand, enjoy the weak subformula property [13] and reduce the search
space in implementations by controling the choice of RB-formulas. In Section 7, we return
to the general case and describe a modal logic based on unrestricted cuts.
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Table 1. (Top, bottom) Examples where degree h(Γ, B) matches mini-
mum depth k. (Mid) An example where they do not match: k < h(Γ, B).
In each case, a �f

k-proof of B obtains from applying RB to all pairs
{pi, ¬pi} occurrying in Γ, and the interim rules {E→, I∧}

Γ Γ |=k B h(Γ, B)

{
±p1 → q,

q ∧ ±p2 → B

}

2 ≤ k 2

{
±p1 → q1, ±p2 → q2,

q1 ∧ p3 → B, q2 ∧ ¬p3 → B

}

2 ≤ k 3

{
±p1 → q1, q1 ∧ ±p2 → q2,

q2 ∧ ±p3 → B

}

3 ≤ k 3

number. Another measure of proof complexity would then simply be:

h(Γ, B) = the minimum number of formula pairs {A,¬A} needed as
RB -assumptions to show that Γ |= B.

Remark 1. (Notation) (± over formulas.) From here on, ±A denotes a
choice between A and its negation, i.e. ±A ∈ {A,¬A}. {±A1, . . . ,±Ak}
denotes a set obtained from independent choices for ±A1, . . . , ±Ak.

(± inside formulas.) In examples, ± is used for succintness: e.g. a set
{±p → q, . . .} denotes the set with both formulas {p → q, ¬p → q, . . .}.

Definition 2.1. (Degree) The degree of (Γ, B), denoted h(Γ, B), is the mini-
mum n ∈ N such that there exist A1, . . . , An with Γ∪{±A1, . . . ,±An} |=0 B.

Example 3. (Depth vs. degree) See Table 1 for a comparison between degree
h(Γ, B) and minimum depth k. In Table 1 (mid), depth 2 corresponds to
degree 3: each branch from ±p3 chooses a different RB pair (±p1 resp. ±p2).

If k is minimal with Γ |=k B, one can only narrow down the degree h(Γ, B)
by: k ≤ h(Γ, B) ≤ 2k−1.

Proposition 2.2. (Depth and degree) The following implications hold:
h(Γ, B) ≤ k ⇒ Γ |=k B ⇒ h(Γ, B) ≤ 2k−1.

Proof. By induction on k. (Base Case k = 0) For an empty set of virtual
assumptions, we obtain 0 = 20−1. (Ind. Case k �→ k+1.) Assume as inductive
hypothesis (IH) that the claim holds for k. (⇒1) Suppose that h(Γ, B) ≤
k + 1. All cases where h(Γ, B) < k+1 follow from the IH plus monotonicity
|=i ⊆ |=i+1, so let h(Γ, B) = k+1. By definition, there are A1, . . . , Ak+1 such
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that Γ ∪ {±A1, . . . ,±Ak+1} |=0 B. Applying the IH gives Γ ∪ {Ak+1} |=k B
and Γ ∪ {¬Ak+1} |=k B, so Definition 1.6 gives Γ |=k+1 B.
(⇒2) Now assume Γ |=k+1 B, so Γ ∪ {A} |=k B and Γ ∪ {¬A} |=k B, for
some A. Applying twice the IH, we obtain two sets of formulas such that

(Γ ∪ {A}) ∪ {±A1, . . . ,±A2k+1−1} |=0 B and
(Γ ∪ {¬A}) ∪ {±A′

1, . . . ,±A′
2k+1−1} |=0 B.

Thus it also holds that Γ∪{±A1, . . . ,±A2k−1,±A′
1, . . . ,±A′

2k−1,±A} |=0 B.
Or, after renaming the formulas, Γ ∪ {±A1, . . . ,±A2·(2k−1)+1} |=0 B. Since
2 · (2k−1) + 1 = 2k+1 − 2 + 1 = 2k+1 − 1 we are done.

A hierarchy of degree-bounded logics 〈||=k〉k<ω satisfying Γ ||=k B iff
h(Γ, B) ≤ k, will be defined (Definition 6.1) using updates on valuations.

3. Preliminaries: a Complete Lattice of Valuations

The lattice structure of valuations obtains by lifting the order ≤ from truth-
values (Figure 2). A similar construction for partial valuations is found in
[9].

Definition 3.1. (Set of valuations over L) Let us denote by V the set of
valuations over L: V =

{
V : L → {1, 0,⊥} | V is a valuation

}
.

Proposition 3.2. (Characterization; Prop. [11, 2.26]) The set V of valua-
tions is exactly the set of functions V such that (i) for no pair A,¬A it holds
that V (A) = 1 = V (¬A) and (ii) V is closed under intelim rules.

Definition 3.3. (Information order [11]) Given two valuations V, V ′, we
say that V ′ refines V , denoted V � V ′, if for every A ∈ L, V (A) ≤ V ′(A).
In other words, V � V ′ iff V (A) = ⊥ or V ′(A) = V (A).

For a poset (X, ≤) and a set Y ⊆ X, the meet ⊔Y is the greatest lower
bound of Y (Definition A.2). The join

⊔
Y is the least upper bound of Y .

We also use the notation x � y = ⊔{x, y} and x � y =
⊔

{x, y}.

Example 4. (Meet and join) For the poset ({1, 0,⊥},≤), its meets are:

⊔{v}
= v and otherwise ⊔X = ⊥; joins are

⊔
{v} = v =

⊔
{v,⊥} while

⊔
{1, 0},⊔

{1, 0,⊥} do not exist. The poset (V,�) has no maximum (Figure 6) but is
closed under meets [11] and so it is a meet semilattice (Definition A.3).

Proposition 3.4. For any non-empty subset V
′ ⊆ V, the meet exists in V

as the pointwise meet ⊔V
′ = {〈A, ⊔V ∈V′V (A)〉 : A ∈ L}.
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Figure 6. The information order � on the set of 3-valued functions f :

L → {1, 0, ⊥}. Its maximal elements are the 2-valued functions f : L →
{1, 0}, including the constant function V� : L → {1} and the set C of
classical valuations. The �-minimum element is V⊥ : L → {⊥}. (V, �) is
a meet semilattice; any valuation either satisfies a classical inconsistency
(striped area) or it can be refined into a classical valuation (thick line)

Lemma 3.5. (Complete lattices [16, 2.30]) (X, ≤) is a complete lattice (Def-
inition A.3) iff (i) (X, ≤) contains a top element and (ii) it is closed under
meets of non-empty sets. In the latter case, the join is defined by

⊔
Y = ⊔Y

u.
(That is, the meet of the set Y u of upper bounds of Y , Definition A.2.)

The set V is closed under meets (Proposition 3.4) but lacks a top element
that acts as the join V � V ′ of incompatible valuations, i.e. V (A) = 1 and
V ′(A) = 0. In [9] a complete lattice results from adding an inconsistent
“valuation” as top. Our top element, V�, similarly makes all formulas true.

Definition 3.6. (Poset of valuations with top) Let V� denote the constant
function V� : L → {1}. We define an expansion of (V,�) into (V+,�+) by:
V

+ = V ∪ {V�} and V �+ V ′ ⇔ V � V ′ or V ′ = V�.

Proposition 3.7. The pair (V+,�+) is a complete lattice. The join of any
set V

′ ⊆ V ∪ {V�} is then
⊔

V
′ = ⊔(V

′)u.

Proof. We check the two conditions from Lemma 3.5. (i) The top element is
V� by definition of �+. (ii) The meet extends to all new cases V

′∪{V�} ⊆ V
+:

if V
′ = ∅, then ⊔{V�} = V�; and otherwise ⊔(V

′ ∪ {V�}) = ⊔V
′.10

To keep the terminology simple, we henceforth rename �+ as � and call
any element of V

+ a valuation. Note that although V� does not satisfy the
truth-tables and so V� /∈ V, its choice as a top element is not arbitrary.

Fact 3.8. V
+ is the set of functions V : L → {1, 0,⊥} closed under appli-

cations of intelim rules.

10Thus, the truth-value of B in ⊔(V
′ ∪ {V�}) is no longer its pointwise meet, but the

pointwise meet of ⊔V
′. For an illustration, the pointwise meet of {V�, V{¬p}} would give

V�(p) � V{¬p}(p) = 1 � 0 = ⊥ instead of (V� � V{¬p})(p) = V{¬p}(p) = 0.
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4. A bit of Model Theory for 0-depth Logic

One can first observe that valuations and 0-depth theories are closely con-
nected through the corresponding partial orders � and ⊆.

Definition 4.1. (Theory) The set of 0-depth consequences of Γ is Cn0(Γ) =
{A ∈ L : Γ �0 A}. A set Γ ⊆ L is a theory if Cn0(Γ) ⊆ Γ. Abusively, we
define the theory of a valuation V as the set Th(V ) = {A ∈ L : V (A) = 1}.

Fact 4.2. For any V ∈ V
+, Th(V ) is a theory: Cn0(Th(V )) ⊆ Th(V ).

Lemma 4.3. (Orders) For any V, V ′ ∈ V
+, Th(V ) ⊆ Th(V ′) iff V � V ′.

An interesting fact about 0-depth logic |=0 is that among all the valua-
tions satisfying a set of formulas Γ, one can construct their minimum. This
minimum captures what all these valuations agree upon.

Definition 4.4. (Set of valuations of Γ) For any set Γ ⊆ L, we define VΓ

as the set of valuations in V
+ satisfying Γ, i.e. V ∈ VΓ iff V [Γ] = {1}.

Whenever Γ is 0-depth consistent, VΓ will contain some valuation in V.
All 0-depth inconsistent sets Γ share the same set of valuations VΓ = {V�}.
In both cases, the infimum ⊔VΓ (Proposition 3.4) happens to be in VΓ and
so it is a minimum: VΓ = ⊔VΓ. A stepwise version of a construction used
in the completeness proof [10, Proposition 4.7] gives us a direct proof of this
fact.

Proposition 4.5. For each set Γ ⊆ L, a �-minimum valuation, called VΓ,
exists in VΓ. As a consequence VΓ = ⊔VΓ.

Definition 4.6. (Up-set) Given a poset (X, ≤), the up-set of an element
y ∈ X is ↑y = {x ∈ X : y ≤ x}.

From Propositions 3.4–4.5 it follows that model-checking VΓ suffices for
checking any |=0-consequence A of Γ, offering an insight into the low com-
plexity of its validity problem, namely O(n2) for n = |Γ∪{A}|. It also follows
that a 1-1 correspondence exists between theories and minimum valuations.

Fact 4.7. For any set Γ ⊆ L, (i) VΓ = ↑VΓ and (ii) ⊔↑VΓ = VΓ.

Corollary 4.8. For any set Γ ⊆ L, it holds that Γ |=0 A iff VΓ(A) = 1.

Proposition 4.9. (Correspondence) (i) For any theory Γ, it holds that Γ =
Th(VΓ). (ii) For any V ′ ∈ V, it holds that V ′ = VTh(V ′).

Proof. We use that Γ is a theory plus Proposition 1.5 and Corollary 4.8 to
obtain:
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(i) A ∈ Γ iff Γ �0 A iff Γ |=0 A iff VΓ(A) = 1 iff A ∈ Th(VΓ);

(ii) V ′(A) = 1 iff A ∈ Th(V ′) iff Th(V ′) |=0 A iff VTh(V ′)(A) = 1

which gives Th(V ′) = Th(VTh(V ′)). By Lemma 4.3, V ′ = VTh(V ′).
Corollary 4.10. For any Γ ⊆ L, (i) VΓ = VCn0(Γ) and (ii) Cn0(Γ) =
Th(VΓ).
Fact 4.11. Th(V1 � V2) = Th(V1) ∩ Th(V2). As a consequence, VΓ � VΔ =
VCn0(Γ)∩Cn0(Δ).

Proposition 4.12. (Join operator in V
+) The join

⊔
V

′ = ⊔(V
′)u obtained

from Proposition 3.7 is:
⊔

V
′ = V⋃

V ′∈V′ Th(V ′). Hence, VΓ � VΔ = VΓ∪Δ.
The connectives ∧,∨ need not be distributive over each other, as witnessed

by valuations V satisfying one of the following:

V (⊥ ∧ (1 ∨ 1)) = ⊥ < 1 = V ((⊥ ∧ 1) ∨ (⊥ ∧ 1)) ∈ {1,⊥}
{⊥, 0} � V (0 ∨ (⊥ ∧ ⊥)) = ⊥ < 0 = V ((0 ∨ ⊥) ∧ (0 ∨ ⊥)) ∈ {0,⊥}.

In a similar vein, the lattice of valuations (V+,�) is semi-distributive (see
Lemma A.8) but not distributive as shown in Example 5 below.
Corollary 4.13. (Join operator, cont’d)

⊔
V

′ is either V� or the pointwise
join {〈A,

⊔
V ∈V′ V (A)〉 : A ∈ L}.

Proof. Suppose first that V� ∈ V
′ or that V (A) = 1 and V ′(A) = 0

for some V, V ′ ∈ V
′ (recall that 1 � 0 is undefined). In either case there

are V, V ′ ∈ V with V (A) = 1 = V (¬A) and so
⋃

V ∈V′ Th(V ) = L. Then,
Lemma 4.12 gives

⊔
V

′ = V�.
Suppose now the opposite: V� /∈ V

′ and {V (A)}V ∈V′ /∈ {{1, 0}, {1, 0,⊥}}
for each A. Hence each such set {V (A)}V ∈V′ has a join. Moreover,

(
⊔

V
′)(A) = 1 iff A ∈

⋃

V ∈V′
Th(V ) iff (

⊔

V ∈V′
V (A)) = 1.

Equivalently put, Th(
⊔

V
′) = Th({〈A,

⊔
V ∈V′ V (A)〉 : A ∈ L}). One can

then apply Lemma 4.3 to conclude
⊔

V
′ = {〈A,

⊔
V ∈V′ V (A)〉 : A ∈ L}.

5. Updates and the RB -Rule

Intuitively, updating a valuation V with a formula A should result in a val-
uation that refines V , satisfies A and is minimal with these properties.
Definition 5.1. (A-refinement [12], A-update) Given V ∈ V

+ and A ∈ L,
we say that V ′ ∈ V

+ is a A-refinement of V if: (i) V � V ′ and (ii) V ′(A) = 1.
The A-update of V is the �-minimum A-refinement of V , denoted V A.
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Proposition 5.2. (A-update) The A-update of V is V A = V � V{A}.

Proof. Conditions (i) and (ii) in Definition 5.1 give that the set of
A-refinements of V is ↑V ∩ V{A}. By Fact 4.7, this set is ↑V ∩ ↑V{A} and by
Lemma A.4, it is ↑(V � V{A}). Hence the join V � V{A} is the least upper
bound of the A-refinements of V . Since V, V{A} � V � V{A}, V � V{A} is also
in the set of such refinements, and so it is the �-minimum A-refinement of
V .

Corollary 5.3. (Trivial updates) (i) If V (A) = 1, then V A = V ; (ii) if
V (A) = 0, then V A = V�.

Lemma 5.4. (Update as expansion) For any Γ∪{A} ⊆ L, (i) V A
Γ = VΓ∪{A}

and (ii) (VΓ)A = VΓ∪{A}, where (VΓ)A = {V A : V ∈ VΓ}.

Proof. (i) From V A
Γ = VΓ � V{A} (Proposition 5.2), the claim is immediate

from Proposition 4.12. (ii) If V ′ ∈ VΓ∪{A}, then V ′ ∈ VΓ and V ′(A) = 1 so by
Corollary 5.3 V ′ = V ′A and then V ′ ∈ (VΓ)A. Hence, VΓ∪{A} ⊆ (VΓ)A. Let
now V ′A ∈ (VΓ)A so that V ′ ∈ VΓ. If V ′(A) = 1, then V ′A = V ′ ∈ VΓ∪{A};
if V ′(A) = 0, then V ′A = V� ∈ VΓ∪{A}; and if V ′(A) = ⊥, then V ′A =
V ′ � V{A} is in VΓ (since V ′A � V ′) and also in V{A} (since V ′A � V{A}).
Definition 4.4 gives VΓ ∩ V{A} = VΓ∪{A}, and so V ′A ∈ VΓ∪{A}. This shows
(VΓ)A ⊆ VΓ∪{A}.

Definition 5.5. (±-update) Given a formula A ∈ L, the [±]A-update of a
valuation V is defined as: V [±]A = V A � V ¬A.

Example 5. (±-updates simulate RB) The following �-chain below holds
for any set Γ. The � inequalities can all be proper, as in Γ = {±p → q}.
For this Γ, each formula in the the lower line becomes true exactly at the
valuation above it.

VΓ � V p∨¬p
Γ � V

[±]p
Γ � V p

Γ , V ¬p
Γ

Γ p ∨ ¬p q p ¬p.

Each � inequality can also become an identity if the update is made trivial
(Corollary 5.3 or Fact 5.6 below); e.g. for the first and third inequalities, the
sets Γ1 = {±p → q, p ∨ ¬p} and resp. Γ3 = {±p → q, p} give:

VΓ1 = V p∨¬p
Γ1

and V
[±]p
Γ3

= V p
Γ3

(= VΓ3).

Example 6. ((V+,�) is not distributive) The inequality V p∨¬p
Γ � V

[±]p
Γ

seen above for Γ = {±p → q} shows that the lattice of valuations is not
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distributive. These two valuations are respectively:

V p∨¬p
Γ = VΓ � V{p∨¬p} = VΓ � (VCn0({p})∩Cn0({¬p})) = VΓ � (V{p} � V{¬p})11

V
[±]p
Γ = V p

Γ � V ¬p
Γ = (VΓ � V{p}) � (VΓ � V{¬p})

Given that 〈q, ⊥〉 ∈ V p∨¬p
Γ and 〈q, 1〉 ∈ V

[±]p
Γ distributivity fails since:

VΓ � (V{p} � V{¬p}) �/ (VΓ � V{p}) � (VΓ � V{¬p}).

Fact 5.6. (Trivial ±-updates) If V (A) �= ⊥, then V [±]A = V .

Any such valuation V [±]A enforces all (and only) the consequences of
applying RB with the formula A. Since depth-bounded logics |=k admit
different RB -formulas in each branch after an RB rule (for k > 1), depth
and number of updates need not match beyond the k = 1 case shown below.

Proposition 5.7. For any virtual space function f (Definition 1.8), Γ |=f
1 B

iff V
[±]A
Γ (B) = 1 for some A ∈ f(Γ ∪ {B}).

Example 7. (Degree and ±-updates) Recall the set from Table 1 (mid)

Γ = {±p1 → q1, ±p2 → q2, q1 ∧ p3 → B, q2 ∧ ¬p3 → B}
satisfying h(Γ, B) = 3 and Γ |=f

2 B, and let (j) denote the j-th premise from
Γ. Three ±-updates (in any order, see Corollary 5.9 below) suffice for B:

(V [±]p1
Γ )p3 : q1 ∧ p3 �→ 1 by (1) and so B �→ 1 by (3)

(V [±]p2
Γ )¬p3 : q2 ∧ ¬p3 �→ 1 by (2) and so B �→ 1 by (4).

Finally, V
[±]p1[±]p2[±]p3
Γ (B) = (V [±]p1[±]p2

Γ )p3(B) � (V [±]p1[±]p2
Γ )¬p3(B) = 1.

Lemma 5.8. (Sequential A-updates) For any valuation V , it holds that (V A)B

= (V B)A and also that (V A)B = V A∧B.

Proof. For the first claim, use commutativity and associativity (Lemma A.7)
and Proposition 5.2 and reason as follows:

(V A)B = (V � V{A}) � V{B} = (V � V{B}) � V{A} = (V B)A.

For the second claim, we use Corollary 4.10(i) and expand (V A)B as follows:

(V � V{A}) � V{B} = V � (V{A} � V{B}) = V � V{A,B}
= V � VCn0({A,B}) = V � VCn0({A∧B}) = V � V{A∧B} = V A∧B.

11Note that V{p∨¬p} = VCn0({p}) � VCn0({¬p}) does not generalize into V{A∨B} =
VCn0({A}) � VCn0({B}), e.g. for A = p = B. The general property only holds if 0-depth
logic is expanded with idempotence A ∨ A �′

0 A, an option discussed in [12].
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Corollary 5.9. (Permutation of ±-updates) For any valuation V ∈ V
+

and formulas A,B ∈ L, V [±]A [±]B = V [±]B [±]A.

Proof. We split the identity and prove both directions � and �. For (�),

(V [±]A)[±]B

= (V [±]A)B � (V [±]A)¬B

= (V [±]A � V{B}) � (V [±]A � V{¬B})

=
(
(V A � V ¬A) � V{B}

)
�

(
(V A � V ¬A) � V{¬B}

)

� (V A � V{B}) � (V ¬A � V{B}) � (V A � V{¬B}) � (V ¬A � V{¬B})
= (V A)B � (V ¬A)B � (V A)¬B � (V ¬A)¬B

= (V A)B � (V A)¬B � (V ¬A)B � (V ¬A)¬B

= (V B)A � (V ¬B)A � (V B)¬A � (V ¬B)¬A

= (V [±B])A � (V [±]B)¬A = (V [±B])[±]A

where each step follows from applications of: Definition 5.5; Proposition 5.2;
Definition 5.5; (�) Lemma A.8; Proposition 5.2; Lemma A.7 (commutativ-
ity); Lemma 5.8; and Definition 5.5 (twice). For (�), switching A and B
everywhere in the above reasoning gives (V [±B])[±]A � (V [±A])[±]B, and so
we are done.

6. UBBLUBBLUBBL: A Hierarchy of Logics of Bounded Degree

Let us finally define logics of bounded degree ||=k via updates (Lemma 5.4)
rather than expansions (Definition 2.1). Note that 0-degree logic is just ||=0

= |=0.

Definition 6.1. (k-degree consequence) For any virtual space function f and
set Γ ∪ {B} ⊆ L, define:

Γ ||=f
k B iff there are A1, . . . , Ak ∈ f(Γ∪{B}) such that V [±]A1···[±]Ak(B) =

1 for all V ∈ VΓ.

Definition 6.2. (�f
k-proof) Given a virtual space function f, a �f

k-proof of
B from Γ is a tree (N,R) satisfying (i)–(ii) from Definition 1.7 plus:

(iii’) the tree contains ≤k RB -formulas Ai with A1, . . . , Ak ∈ f(Γ ∪ {B}).

Lemma 6.3. (Soundness, completeness UBBL) For any k, any function f and
set Γ ∪ {B} ⊆ L, it holds that Γ �f

k B iff Γ ||=f
k B.
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Proof. (Base case 0) From definitions and Proposition 1.5, �f
0 = �0 = |=0 =

||=f
0. (Ind. case k+1.) Assume the claim holds for k and let Γ �f

k+1 B. Given a
�f

k+1-proof of B from Γ, one can split all RB -instances with, say, {A1,¬A1}
and obtain two proofs witnessing Γ∪{A1} �k B resp. Γ∪{¬A1} �k B whose
RB -instances are all within a set {±A2, . . . ,±Ak+1} ⊆ f(Γ, B). And vice
versa, any such pair of proofs can be merged so that all occurrences of A1,¬A1

are discharged by new RB -instances. This justifies the first equivalence below.
We omit everywhere for some A1, A2, . . . Ak+1 ∈ f(Γ ∪ {B}):

Γ �f
k+1 B

iff Γ ∪ {Ak+1} �f
k B and Γ ∪ {¬Ak+1} �f

k B

iff V [±]A1...[±]Ak(B) = 1 for all V ∈ VΓ∪{Ak+1} ∪ VΓ∪{¬Ak+1}
iff V [±]A1...[±]Ak(B) = 1 for all V ∈ (VΓ)Ak+1 ∪ (VΓ)¬Ak+1

iff (V [±]A1...[±]Ak)Ak+1(B) = 1 for all V ∈ VΓ and
(V [±]A1...[±]Ak)¬Ak+1(B) = 1 for all V ∈ VΓ

iff (V [±]A1...[±]Ak)[±]Ak+1(B) = 1 for all V ∈ VΓ

iff Γ ||=f
k+1 B

where each step follows from: the reasoning above; the inductive hypothesis;
Lemma 5.4; def. of (VΓ)A; Definition 5.5 and meets; and resp. Definition 6.1.

Fact 6.4. It holds that ||=1 = |=1 and ||=k � |=k for any k > 1.

Proposition 6.5. (Approximation) |= =
⋃

k ||=f
k, for any f as in Defini-

tion 1.8.

Proposition 6.6. (Bounded transitivity) For any Γ ∪ {A,B} ⊆ L with
A ∈ f(Γ ∪ {B}), if Γ ||=f

i A and Γ ∪ {A} ||=f
j B then Γ ||=f

i+j B.12

Proposition 6.7. (UBBL tractability) For a finite set Γ ∪ {A} ⊆ L with
n = |Γ ∪ {A}| and any virtual space function f, an upper bound for the
complexity of the validity problem Γ �f

k A is O(nk+2).

Proof. Γ �f
k A implies Γ ||=f

k A (Lemma 6.3); which implies Γ |=f
k A

(Fact 6.4); and finally Γ �f
k A (Lemma 1.11). By Proposition 1.10, O(nk+2)

is an upper bound for any instance of Γ �f
k A.

Definition 6.8. (Classical valuations) Define C ⊆ V as the set of classical
valuations V : L → {1, 0}, induced by atomic assignments V : Var → {1, 0}.

12Note that the corresponding claim in [10] is missing the assumption A ∈ f(Γ ∪ {B}).
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Figure 7. The set of 3-valued functions f : LU → {1, 0, ⊥}. (Top) �-
maximal elements are 2-valued, including the classical-like valuations in
C. (Bottom) the �-minimum constant function f⊥ : LU → {⊥} is not a
valuation over LU . The set S of all valuations (thick line and the striped
area) is a U -model, whose �-minimum V∅ is more informative than f⊥.
Functions in the striped area cannot be refined into C

Lemma 6.9. For any V ∈ V, the following are equivalent:

(i) V �� V , for any V ∈ C;

(ii) V [±]A1···[±]Ak = V�, for some A1, . . . , Ak ∈ L;

(iii) V (A) = 1 for some classical inconsistency A, i.e. � ¬A.

Hence, for a set V
′ its join is the top element

⊔
V

′ = V� if V
′ contains

either: V�, or a pair V, V ′ with {V (A), V ′(A)} = {1, 0} for some A ∈ L,
or finally V, V1, . . . , Vk with V satisfying condition (ii) from Lemma 6.9 and
V1(A1) �= ⊥, . . . , Vk(Ak) �= ⊥.

Example 8. (Inconsistency) The disjunction (p1∧¬p1)∨. . .∨(pk+2∧¬pk+2)
is k-depth consistent and k+1-depth refutable. If a valuation V satisfies it,
k+1 updates with e.g. {±p1, . . . ,±pk+1} suffice to render the 0-depth incon-
sistent formula pk+2 ∧ ¬pk+2 true, thus making V [±]p1...[±]pk+1 = V�.

7. A Modal Logic for RB -Updates

The characterization of the RB rule via updates not only defines degree-
bounded propositional logics: it also provides a semantics for modalities that
capture applications of RB and make the virtual assumptions explicit.

Definition 7.1. (Language LU ) We expand the language L with an update
operator [±C] for every propositional formula C ∈ L:

LU := pi | ¬A |A ∧ B |A ∨ B |A → B | [±C]A
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The information order � extends to functions f over LU . Valuations now
depend on updates (Definition 7.2), making them relative to a model (Defi-
nition 7.3). See Figure 7 for an illustration and Definition 7.6 for an explicit
construction.

Definition 7.2. (Valuation over LU ) A LU -valuation is any function V :
LU → {1, 0,⊥} respecting the truth-tables (Figure 3) and the update condi-
tion:

V ([±A]B) = V [±]A(B)

where V [±]A = V A �V ¬A and V A is the �-minimum valuation V ′ satisfying
V ′ � V and V ′(A) = 1. We also call the function V� : LU → {1} a valuation.

Definition 7.3. (U -model) A set U of valuations is a U -model iff it is closed
under A-updates: V ∈ U implies V A ∈ U. For any set Γ∪{A} ⊆ LU , define:

Γ |=U A iff V [Γ] = {1} implies V (A) = 1 for any V ∈ U

Γ |=U A iff Γ |=U A for any U -model U.

Example 9. (Valuations) All LU -valuations V satisfy V ([±p]p ∨ ¬p) =
V [±]p(p∨¬p) = 1. Thus, their minimum V∅ (see Corollary 8.9) is not the null
function f⊥ : LU → {⊥} (Figure 7), although V∅ does contain V⊥ : L → {⊥}.

Since U -models are closed under A-updates, they contain V�. We extend
� as before to V � V� for any valuation V , so that V � V� = V = V� � V .

Remark 2. The meet of a set of LU valuations ⊔S
′ corresponds to the

restricted pointwise meet, just as in the propositional case: ⊔{V�}(A) = 1
and ( ⊔S

′)(A) = ⊔V ∈S′\{V�}V (A). We observe that V{A}(¬A) = 1 implies
V{A} = V� and that V [±]A = V� iff V A = V� = V ¬A. In fact, a valuation
V �= V� can make a formula [±A]B true through an update leading to
V [±]A = V�. For an example, if B = {(p∧¬p)∨(q∧¬q)} then V

[±]p
{B} = V� and

so V{B}([±p]B) = 1, while clearly V{B} �= V�. (Compare with Lemma 6.9.)

Fact 7.4. (Trivial and generated U -models) The set U� = {V�} is a U -
model with |=U�= P(LU ) × LU . If U is a U -model, then so is the submodel
UΓ = {V ∈ U : V [Γ] = 1} generated by any set of formulas Γ ⊆ LU .

In order to show that non-trivial U -models exist, we build one with all
valuations through fragments LUk of the language LU =

⋃
k<ω LUk.

Definition 7.5. (LUk,LU≤k fragments) Let LU0 = L and define:

LUk+1 := [±A]Bi ¬B B ∧ C B ∨ C B → C.

where A ∈ L and Bi ∈ LU≤k :=
⋃

i≤k LUi.
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Definition 7.6. (Standard model S) Define S0 = V and Sn+1 as the set of
functions Vn+1 of the form:

Vn+1 = Vn ∪ {〈[±B]C, (V B
n � V ¬B

n )(C)〉 : B ∈ L, C ∈ LUn}
∪ {〈B ∗ C, v〉 : v ∈ f∗(Vn(B), Vn(C)), B ∗ C ∈ LUn+1 \ LU≤n}
∪ {〈¬B, f¬(Vn(B))〉 : B ∈ LUn+1 \ LU≤n}

where V B
n is the �-minimum element V ′

n ∈ Sn with V ′
n � Vn and V ′

n(B) = 1.
The standard model is S = {

⋃ �V : �V ∈×n<ω Sn is a ⊆ −chain} ∪ {V�}.

Fact 7.7. The standard model S is closed under updates and meets, and so
is a U -model. Moreover, S is the set of all valuations. Hence, |=U = |=S.

Proof. Observe first that Sn is a set of functions Vn : LU≤n → {1, 0,⊥}.
Next we show by induction on n that each Vn satisfies the truth-tables and
the update condition Vn([±A]B) = V

[±]A
n (B) over LU≤n, together with the

auxiliary claim that Sn is closed under meets and updates.
(Base case n = 0.) Since S0 = V and LU0 = L, S0 is a set of LU0-

valuations, and it is closed under updates (Proposition 5.2) and meets (Propo-
sition 3.7).

Assume as inductive hypothesis that the claims hold for Sn.
(Ind. case n+1) (Sn+1 is closed under meets.) Let S

′
n+1 ⊆ Sn+1. We show

that ⊔S
′
n+1 can be built as in Definition 7.6 and so ⊔S

′
n+1 ∈ Sn+1. To see

this, let in Definition 7.6 Vn = ⊔S
′
n = ⊔{Vn+1 ∩(LU≤n ×{1, 0,⊥}) : Vn+1 ∈

S
′
n+1}. By the inductive hypothesis, Vn and all updates V B

n , V ¬B
n are in Sn.

Then,

⊔S
′
n+1([±B]C) = ⊔Vn+1∈S′

n+1
Vn+1([±B]C) = ⊔V ∈S′

n
(V B � V ¬B)(C)

=
(

⊔V ∈S′
n
V B � ⊔V ∈S′

n
V ¬B

)
(C) = (V B

n � V ¬B
n )(C).

For boolean LUn+1-formulas, ⊔S
′
n+1(B ∗ C) ∈ f∗( ⊔S

′
n+1(B), ⊔S

′
n+1(C)) is

proved analogously to the propositional case (Proposition 3.4), and similarly
for ¬B formulas. The function obtained this way is exactly ⊔S

′
n+1 and so

⊔S
′
n+1 ∈ Sn+1. (Sn+1 is closed under updates.) For Vn+1 ∈ Sn+1 and A ∈ L,

let V A
n+1 = ⊔{V ′ ∈ Sn+1 : V ′ � Vn+1 and V ′(A) = 1}. By the claim shown

above, V A
n+1 is in Sn+1 and by definition it is clearly the �-minimum A-

refinement of Vn+1 in Sn+1. (Vn+1 ∈ Sn+1 satisfies the truth-tables.) Since
Vn+1 extends some Vn ∈ Sn, it respects the truth-tables over all LU≤n-
formulas (by the inductive hypothesis) and also over LUn+1-formulas (by
Definition 7.6). This concludes the inductive proof.

Let now V =
⋃ �V for some ⊆-chain �V = 〈Vn〉n∈ω with Vn ∈ Sn. Since

each finite fragment Vn satisfies the truth-tables for LU≤n-formulas, so does
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Figure 8. An ND system for |=U : consists of the intelim rules (Figure 4)
over LU plus: an introduction rule I[±] (replacing RB); elimination rules
E[±]; and reduction rules for negation {Red¬,Red ′¬}. The latter reflect
that [±A] modalities are functional (Fact 7.9)

V for LU -formulas. The function V also satisfies the update condition: say
C ∈ LUn; then V ([±B]C) = Vn+1([±B]C) = (V B

n � V ¬B
n )(C). This shows

that S is a set of valuations. (S is the set of all valuations.) Vice versa, for
any valuation V �= V�, V satisfies the truth-tables and the update condition
over LU and so over every finite language LUn; hence each finite fragment
Vn = V ∩ (LU≤n × {1, 0,⊥}) can be built as in Definition 7.6, and so V is of
the form V =

⋃
n Vn for a sequence 〈Vn〉n<ω with Vn ∈ Sn.

Corollary 7.8. (Complete lattice) (S,�+) is a complete lattice, where �+

= � ∪ (S×{V�}). Hence, for any S
′ ⊆ S its join is

⊔
S

′ = ⊔(S
′)u.

Fact 7.9. (Functionality) For any formula [±A]B ∈ LU and valuation V ,
V ([±A]B) = V (〈±A〉B) for the dual modality 〈±A〉 = ¬[±A]¬.

Proof. The case V = V� is trivial. For any other valuation: V (¬[±A]¬B) =
1 ⇔ V ([±A]¬B) = 0 ⇔ (V A � V ¬A)(¬B) = 0 ⇔ V A(¬B) = 0 = V ¬A(¬B)
⇔ V A(B) = 1 = V ¬A(B) ⇔ (V A � V ¬A)(B) = 1 ⇔ V [±]A(B) = 1 ⇔
V ([±A]B) = 1. Switching 0s and 1s in this reasoning gives V (¬[±A]¬B)
= 0 iff V ([±A]B) = 0. These two cases jointly imply V (¬[±A]¬B) = ⊥ iff
V ([±A]B) = ⊥. In either case, V (¬[±A]¬B) = V ([±A]B).

Definition 7.10. (�U system) A natural deduction system for |=U consists
of the rules from Figure 8 and the intelim rules (Figure 4) over the language
LU .

Lemma 7.11. (Soundness of �U ) The ND system �U is sound with respect
to |=U consequence.

Proof. For an arbitrary U -model U, the soundness of the intelim rules over
LU -formulas follows from its satisfaction of the truth-tables, just as in L.

(I[±].) Assume that Γ ∪ {A} |=U B and Γ ∪ {¬A} |=U B, and let V ∈ UΓ

be arbitrary. By Definition 7.2, V A ∈ U is the �-minimum element with
(i) V A � V and (ii) V A(A) = 1. From (i), V A[Γ] = {1}, and so with (ii)
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Figure 9. A list of rules derivable in �U . O±(A), C±(A) open and close
a subproof; any formula above the subproof can be imported into it.
D ,Alt ,Triv are named after modal axioms. Perm. is a permutation
rule. [±]I∗ and [±]E∗ are modal versions of intelim rules I∗ or E∗
{B, C} ∴ A with modal premises: [±D]B or [±D]C or both. Contraction
and Collapse show that any two non-empty sequences of modalities
[±A], 〈±A〉, indistinctly written ([±A]∗〈±A〉∗)∗, are equivalent. (RE)

is a rule for the replacement of modalities that are 0-depth equivalent
A ≡0 B, or equivalent to their negations A ≡0 ¬B

we obtain V A[Γ ∪ {A}] = {1}. This implies that V A ∈ UΓ∪{A} and using
the initial assumption V A(B) = 1. With a similar reasoning for V ¬A, we
conclude V A(B) � V ¬A(B) = 1 and so V ([±A]B) = 1.

(E[±].) Let V ∈ U be such that V ([±A]B) = 1 and V (A) = 1. As in
the propositional case (Fact 5.6) the definition of update gives V A = V and
V ¬A = V� and so V [±]A = V . From this, we obtain 1 = V ([±A]B) =
V [±]A(B) = V (B). The proof for the ¬A case is analogous.

(Red¬,Red ′¬.) We use Fact 7.9: V ([±A]¬B) = 1 iff V (¬[±A]¬B) = 0 iff
V ([±A]B) = 0 iff V (¬[±A]B) = 1.

See Figure 9 for a list of additional rules, also written {B, C} ∴ A in
text. Permutation for L-valuations (Corollary 5.9) extends to LU , showing
that Perm. is sound, and the soundness of D and Alt follows from Fact 7.9.
In fact, all the rules in Figure 9 are derivable in �U . The RE rule replaces
update modalities [±A] and [±B] if A is 0-depth equivalent to B (written
A ≡0 B) or to its negation ¬B, where A ≡0 B iff A �0 B and B �0 A.

Example 10. (Modal intelim rules) Let us compare the intelim rule E∨ over
LU with its modal counterpart, the rule [±]E∨:

([±D]A ∨ B) ¬B

¬[±D]A
E∨ [±D](A ∨ B) ¬B

[±D]¬A
[±]E∨
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E∨ treats the modal formula [±D]A as a block, while [±]E∨ ignores the
prefix [±D], applies E∨, and then puts [±D] back into the conclusion.
Proposition 7.12. (Derived rules) The rules in Figure 9 are derivable in
�U .
Proof. O±(A), C±(A). Let Π be a proof of C from {B}∪Δ. Prefix Π with
an application of E[±] with A to obtain a proof Π1 of C from {A, [±A]B}∪Δ.
A similar reasoning with ¬A gives also a proof Π2 of C from {¬A, [±A]B}∪Δ.
Combine Π1, Π2 and an instance of I[±] over {A,¬A} for a proof of [±A]C
from {[±A]B} ∪ Δ. Note that Δ is imported into the subproof.
(D). From [±A]B, an application of O±(A), C±(A) over B �U ¬¬B gives a
proof of [±A]¬¬B. Now, applying Red ′¬ we obtain ¬[±A]¬B, i.e. 〈±A〉B.
(Alt). From ¬[±A]¬B, an application of Red¬ gives [±A]¬¬B, and an ap-
plication of O±(A), C±(A) over ¬¬B �U B gives us a proof of [±A]B.
(Perm.). From [±A][±B]C, apply E[±] with A and then again with B, to
obtain a proof ΠA,B of C from {[±A][±B]C}∪{A,B}. Similar proofs ΠA¬B,
Π¬A,B and Π¬A,¬B of C are obtained from the corresponding assumptions.
Applying I[±] to ΠA,B, Π¬A,B and in parallel to ΠA,¬B, Π¬A,¬B gives two
proofs of [±A]C from {[±A][±B]C} ∪ {B} resp. {[±A][±B]C} ∪ {¬B} dis-
charging {A,¬A}; a final application of I[±] to the latter proofs gives us a
proof of [±B][±A]C from {[±A][±B]C} discharging {B,¬B}.
(Triv). A proof of B from Γ is also a proof of B from Γ ∪ {A} and from
Γ∪{¬A}. An application of I[±] to the latter proofs that vacuously discharges
{A,¬A} gives a proof of [±A]B from Γ.
([±]I∗) or ([±]E∗). The derivability of each modal intelim rule can be rou-
tinely checked. We only illustrate the case [±]E∨ above. From {[±D](A ∨
B),¬B}, open a subproof with A∨B, import ¬B and apply E∨ to conclude
A. Closing this subproof gives us [±D]A. (If both premises are in the scope
of [±D], we obtain [±D][±D]A and apply Contr ., see below, to get [±D]A.)
(Contr .). Applying E[±] twice with A to the premise gives a proof of B from
{A, [±A][±A]B}. Similarly, we get a proof of B from {¬A, [±A][±A]B}. An
application of I[±] now gives a proof of [±A]B from {[±A][±A]B}.
(Coll .). Any pair of formulas of the form ([±A]∗〈±A〉∗)∗B can be trans-
formed into each other by repeated applications of the following rules (in the
worst case leading to [±A]B as an intermediate step):

[±A]

〈±A〉

[±A][±A]

〈±A〉〈±A〉[±A]〈±A〉

〈±A〉[±A]

DAlt Contr

Triv D
Alt

D
Alt

Triv

(�)
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where (�) turns [±A]〈±A〉B into two proofs of 〈±A〉B from Γ ∪ {A}, resp.
Γ∪{¬A} (using E[±]), followed by Alt in each proof, thus concluding [±A]B;
a final application of I[±] gives us a proof of [±A][±A]B from Γ.
(RE ). First note that A ≡0 B implies B �0 A and ¬B �0 ¬A. To see this,
recall that �0 has no theorems so a (non-redundant) proof ΠAB of A �0 B
exists consisting solely of single premise rules. Since all these rules C ∴ D in
Figure 4 admit contraposition ¬D ∴ ¬C, reversing this proof gives a proof
Π¬B¬A of ¬B �0 ¬A. Let then Π be a proof of [±A]C. Combined with ΠBA,
an application of E[±] gives a proof Π1 of C from B. Another combination
with Π¬B¬A gives a proof Π2 of C from ¬B. Finally, combine Π1, Π2 and an
application of I[±] for a proof of [±B]C discharging {B,¬B}.

The case where A ≡0 ¬B is similar: combine Π with each proof Π¬BA

and Π¬¬B¬A and finally I[±] to obtain [±¬B]C.13

It can also be pointed out that �U enjoys a modal deduction theorem
Γ �U [±A]B iff Γ∪{±A} �U B. Basic modal axioms are not valid, though14:

Axiom K fails: �|=U [±p](p → p) → ([±p]p → [±p]p)14

Distribution fails: �|=U 〈±p〉(p ∨ ¬p) → (〈±p〉p ∨ 〈±〉¬p).

8. Completeness and Conservativeness of the �U�U�U Logic

We define next the closure of a set Γ under all �U -rules except for I[±]. This
rule is added at the construction of minimum functions VΓ in Definition 8.2.

Definition 8.1. (Weak closure; ⊥-completion) Define the weak closure of a
set Γ ⊆ LU , denoted CnU0(Γ), as the ⊆-minimal set such that: Γ ⊆ CnU0(Γ)
and CnU0(Γ) is closed under any instance of {I∗, E∗, E[±],Red¬,Red ′¬}.

Define the ⊥-completion of a partial function f : LU → {1, 0,⊥} as
⊥(f) = f ∪ {〈A,⊥〉 : A /∈ dom(f)}.

Definition 8.2. (�U -closed function) Define simultaneously for all sets Δ ⊆
LU each level V n

Δ of the �U -closed function of Δ by:

V 0
Δ = (CnU0(Δ)×{1}) ∪ {〈B, 0〉 : ¬B ∈ CnU0(Δ)}

V n+1
Δ = (CnU0(I[±](Δ, n))×{1}) ∪ ({B : ¬B ∈ CnU0(I[±](Δ, n))} × {0})

13In the present setting, the RE rule is covered by these two cases A ≡0 B and
A ≡0 ¬B. More instances of RE hold if e.g. idempotence rules A ∨ A ∴ A are added
to �0.

14A version of axiom K as a rule {[±A](B → C), [±A]B} ∴ [±A]C is valid, though, as
a modal intelim rule [±]E→.
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where I[±](Δ, n) = Th(V n
Δ) ∪

⋃
A∈L{[±A]B : 〈B, 1〉 ∈ V n

Δ∪{A} ∩ V n
Δ∪{¬A}}.

Finally, define: V ω
Δ =

⋃
n V n

Δ and VΔ = ⊥(V ω
Δ ).

Definition 8.3. (Canonical model M) The canonical model is the set of
all �U -closed functions M = {VΓ : Γ ⊆ LU} built using Definition 8.2. Its
�-minimum element is V∅. Its �-maximum element is V{p∧¬p}, abusively
denoted V�.

Lemma 8.4. (Truth lemma) For any Γ ∪ {A} ⊆ LU , Γ �U A iff VΓ(A) = 1.

Proof. (⇒). Let Π be a proof of A from Γ, and let Π1, . . . ,Πm be all the
subtrees of Π with an instance of I[±] at the root node, say for a conclusion
[±Bi]Ci in Πi. Clearly, for each 1 ≤ i, j ≤ m either Πi � Πj or Πi � Πj or
both, so assume an ordering Π1, . . . ,Πm satisfying: all subtrees of Πi+1 also
applying I[±] are among {Π1, . . . ,Πi}. Let also 〈A1, . . . , An〉 be a sequence
with all formula labels (possibly repeated) in Π that respects the inverse tree
order: if {B,C} ∴ A occurs in Π, then B and C are listed before A in the
sequence. Let us rephrase this sequence 〈A1, . . . , An〉 to mark each conclusion
[Bi]Ci of I[±] as a node Ai

0:

〈A0
1, . . . , A

0
n1

, A1
0 = [B1]C1, A

1
1, . . . , A

1
n1

, . . . , Am
0 = [Bm]Cm, Am

1 , . . . , Am
nm

〉
From the original proof Π for Γ �U A, one easily obtains a proof of A from any
set of the form Γ ∪ {±B1, . . . ,±Bm}. We show by induction that for each
Ai

j in the above sequence, V i
Γ∪{±Bi+1,...,±Bm}(A

i
j) = 1 (where V i is as in

Definition 8.2). The proof will conclude with the goal V m
Γ∪∅(A) = V m

Γ (A) = 1
since A = Am

nm
. For convienience let Γ(i) denote any extension of Γ with

choices among {±Bi, . . . ,±Bm}; that is, Γ(i) = Γ ∪ {±Bi, . . . ,±Bm}.
(Base case A1.) In case A1 = A0

1 ∈ Γ(1) we simply have: V 0
Γ(1)(A1) = 1.

Otherwise, A1 = A1
0 = [±B1]C1 obtains by I[±] in which case Γ(2) ∪

{B1} �U C1 and Γ(2) ∪ {¬B1} �U C1. Since Π1 contains no other instance
of I[±], there are �U -proofs Π′

1, Π
′′
1 of these two claims without I[±]. Thus,

V 0
Γ(2)∪{B1}(C1) = 1 = V 0

Γ(2)∪{¬B1}(C1) and therefore V 1
Γ(2)([±B1]C1) = 1.

(Ind. case Ak+1.) Assume as inductive hypothesis that for each Ak′ = Ai
j

with k′ ≤ k it holds that V i
Γ(i+1)(A

i
j) = 1. Let now Ak = Ai

j . In case
Ak+1 = Ai

j+1, then Ak+1 follows in Π from an intelim rule, E[±], Red¬
or Red ′¬ rule from {A1, . . . , Ak}, in which case V i

Γ(i)(Ak+1) = 1. Other-
wise, Ak+1 = Ai+1

0 = [±Bi+1]Ci+1 and this formula is derived in Π us-
ing I[±] from any set of the form Γ(i + 2) = Γ ∪ {±Bi+2, . . . ,±Bm}.
Thus there are proofs of Ci+1 from Γ(i + 2) ∪ {Bi+1} and from Γ(i + 2) ∪
{¬Bi+1}. By the construction of the sequence, any such instance Ci+1 oc-
curs before [±Bi+1]Ci+1 = Ai+1

0 , and so in the worst case it is of the form
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Ci+1 = Ai
j . By the inductive hypothesis V i

Γ(i+1)(Ci+1) = 1. In particular,
V i

Γ(i+2)∪{Bi+1}(Ci+1) = 1 and V i
Γ(i+2)∪{¬Bi+1}(Ci+1) = 1. Thus, 〈Ci+1, 1〉 ∈

V i
Γ(i+2)∪{Bi+1} ∩ V i

Γ(i+2)∪{¬Bi+1} and so by definition [±Bi+1]Ci+1 ∈ I[±]
(Γ(i + 2), i) and finally V i+1

Γ(i+2)([±Bi+1]Ci+1) = 1.
(⇐). This is immediate, since VΓ is built by assigning 1 to every formula in Γ
and closing the set of 1-values under �U -rules, following Definitions 8.1–8.2.

Lemma 8.5. (Truth-tables and �U -closure) For any function VΓ ∈ M with
VΓ �= V�, VΓ satisfies the truth-tables over LU .

Proof. (¬). First, VΓ(¬A) = 1 implies VΓ(A) = 0 by Definition 8.2; sec-
ondly, an assignment VΓ(¬A) = 0 occurs only if VΓ(¬¬A) = 1, in which case
VΓ(A) = 1 by closure under E¬; finally, the case 〈A,⊥〉 ∈ VΓ implies that
〈A, 1〉, 〈A, 0〉 /∈ V ω

Γ and by the above reasoning 〈¬A, 0〉, 〈¬A, 1〉 /∈ V ω
Γ . Hence

〈¬A,⊥〉 ∈ ⊥(V ω
Γ ) = VΓ. In either case, VΓ(¬A) ∈ f¬(VΓ(A)).

(∗ ∈ {∧,∨,→}). By induction on the complexity of formulas B, C ∈ LU .
(Base case B,C ∈ L.) Let B,C ∈ L = LU0. Since VΓ is closed under

intelim rules, V L
Γ = VΓ ∩ (L × {1, 0,⊥}) is a function over L closed under

intelim rules over L. It is also �0-consistent, since VΓ is �U -consistent and
�0 ⊆ �U . By Proposition 3.8, V L

Γ is a valuation over L and so satisfies the
truth-tables over L. Since V L

Γ ⊆ VΓ, VΓ also satisfies the truth-tables over L.
(Ind. case B,C ∈ LU≤k+1.) Suppose as inductive hypothesis that VΓ

satisfies the truth-tables over LU≤k-formulas. Following Definition 7.5, let
B = [±A1]B′ and C = [±A2]C ′ be basic LUk+1-formulas (if B or C is in
LU≤k the proof is analogous). We only show the case ∗ = ∨, the other cases
can be proved with similar arguments.
(Case B �→ 1 or C �→ 1.) VΓ is closed under I∨, so VΓ(B ∨ C) = 1.
(Case B �→ 0 or C �→ 0.) We only show the former and prove VΓ(B ∨ C) =
VΓ(C), so let VΓ(B) = VΓ([±A1]B′) = 0. By the previous proof on negation,
VΓ(¬B) = VΓ(¬[±A1]B′) = 1. Consider the value of B ∨ C:

(Subcase B ∨ C �→ 1.) By Triv , VΓ([±A2]B ∨ C) = 1, so we can apply:

¬[±A1]B′ [±A2]([±A1]B′ ∨ [±A2]′C ′)
[±A2][±A2]C ′ [±]E∨

A further application of Collapse gives VΓ([±A2]C ′) = VΓ(C) = 1.

(Subcase B ∨ C �→ 0.) Thus, VΓ(¬(B ∨ C)) = 1 and by the intelim rule E∨
we obtain VΓ(¬C) = 1, so VΓ(C) = 0.

(Subcase B ∨ C �→ ⊥.) One can see that VΓ(C) �= 1 as otherwise VΓ(B ∨
C) = 1. Moreover, VΓ(C) �= 0, as otherwise VΓ(¬C) = 1 and with the case
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assumption VΓ(¬B) = 1 and I∨ would give VΓ(¬(B ∨C)) = 1, contradicting
the subcase assumption. Thus, it must be that VΓ(C) = ⊥.

In all subcases, VΓ(B ∨ C) = VΓ(C), and so VΓ satisfies the truth-table
f∨(0, v) = v for the case B �→ 0.
(Case B �→ ⊥ and C �→ ⊥.) We only need to show that VΓ(B ∨ C) �= 0, but
this is immediate since otherwise VΓ(¬(B ∨C)) = 1, and then we would have
VΓ(¬B) = 1 and finally VΓ(B) = 0, contradicting the case assumption.

That VΓ(B∨C) ∈ f∨(B,C) holds for non-basic formulas B∨C ∈ LU≤k+1

is proved as in Proposition [11, 2.26] but with intelim rules over LU . This
inductive proof shows that VΓ respects the truth-tables for any LU -formula.

Lemma 8.6. (Canonicity) The canonical model M is a U -model. The A-
update of a valuation VΓ is the valuation V A

Γ = VΓ∪{A}.

Proof. Any VΓ �= V� satisfies the truth-tables as shown in Lemma 8.5. To
see that M is also closed under updates, let V A

Γ = VΓ∪{A}. This satisfies (i)
V A

Γ � VΓ and (ii) V A
Γ (A) = 1. For any other VΔ satisfying the corresponding

(i)–(ii), it must be that VΔ[Γ∪{A}] = 1 and so by �U -closure, VΓ∪{A} � VΔ.
Thus, V A

Γ is minimal with (i)–(ii). Since VΓ∪{A} ∈ M, we are done.

Theorem 8.7. (Completeness) For Γ∪{A} ⊆ LU , Γ |=U A implies Γ �U A.

Proof. Let us prove the contrapositive. Assume Γ �U A. By Lemma 8.4,
VΓ(A) �= 1 and so there is V ∈ M with V [Γ] = {1} and V (A) �= 1. By
Definition 7.3 and Lemma 8.6, we obtain Γ �|=M A and finally Γ �|=U A.

Lemma 8.8. (Lower bound) For any set Γ ⊆ LU and valuation V it holds
that: VΓ � V iff V ∈ SΓ.

Proof. (⇒). Assume VΓ � V . Since VΓ[Γ] = {1}, it also holds that V [Γ] =
{1}. This and V ∈ S (Fact 7.7) imply V ∈ SΓ. (⇐). Ignoring the trivial case
V = V�, we show VΓ(B) ≤ V (B) for any B ∈ LU . For VΓ(B) = 1, Lemma 8.4
gives Γ �U B and by soundness, Γ |=U B; in particular Γ |=S B. Hence, the
assumption V ∈ SΓ implies V (B) = 1. The case VΓ(B) = 0 reduces to the
former case with the formula ¬B. The case VΓ(B) = ⊥ is immediate.

Some of the previous results for the propositional case extend from L to
LU with minimal changes on proofs. This is the case of:

• (from Lemma 4.3) for any V, V ′ ∈ S, Th(V ) ⊆ Th(V ′) iff V � V ′;

• (from Corollary 4.10) VΓ = VCnU (Γ), where CnU (Γ) = {A ∈ LU : Γ �U A}.

Corollary 8.9. (Correspondence) (i) For any valuation V ′ = VTh(V ′); (ii)
for any Γ ⊆ LU , VΓ = ⊔SΓ.
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Proof. For (i), VTh(V ′)(A) = 1 iff Th(V ′) �U A (by Lemma 8.4) iff V ′(A) =
1 where in the latter equivalence, (⇒) follows from V ′ being closed under
�U -rules and (⇐) is immediate from def. of Th(V ′).

For (ii). (�) From VΓ � V iff V ∈ SΓ (Lemma 8.8), it is immediate
that: VΓ � ⊔SΓ. (�). Assume ( ⊔SΓ)(A) = 1. Since S contains all valua-
tions (Fact 7.7), for any U -model U, UΓ ⊆ SΓ and thus 1 = ( ⊔SΓ)(A) ≤
( ⊔UΓ)(A). Hence, Γ |=U A for any U -model U and so, by definition, Γ |=U

A; then, by completeness Γ �U A, which finally gives VΓ(A) = 1. Since
Lemma 4.3 also holds for LU -valuations, we obtain VΓ � ⊔SΓ.

Corollary 8.10. (Canonical is standard) The canonical model is the stan-
dard model: M = S. The �-minimum valuation is ⊔S = V∅.

Proof. The inclusion M ⊆ S follows from M being a U -model (Lemma 8.6)
and all valuations being elements of the standard model S. Corollary 8.9
implies the inclusion S ⊆ M since for every valuation V ′, V ′ = VTh(V ′) and
thus V ′ ∈ M. ⊔S = ⊔S∅ = V∅ is immediate from Corollary 8.9 as well.

Corollary 8.11. (Trivial [±)-updates) If V (A) �= ⊥ then V [±]A = V .

Proof. Let V ′ ∈ S. Consider first the case V ′(A) = 1. Then,

V ′A = V A
Th(V ′) = VTh(V ′)∪{A} = VCnU (Th(V ′)∪{A}) =

= VCnU (Th(V ′)) = VTh(V ′) = V ′.

where each identities follows resp. from: Corollary 8.9; Lemma 8.6; Corol-
lary 4.10 for LU ; the assumption A ∈ Th(V ′) implying Th(V ′) = Th(V ′) ∪
{A}; and again Corollary 4.10 and Corollary 8.9. Moreover, Th(V ′)∪{¬A} �U

A,¬A and so V ¬A
Th(V ′) = VTh(V ′)∪{¬A} = V�. In summary, V ′[±]A = V ′A �

V ′¬A = V ′ � V� = V ′. For the case V ′(A) = 0, we similarly have: V ′[±]A =
V� � V ′ = V ′.

Definition 8.12. (Translation) We define a translation function t : LU → L
that deletes all modalities as follows:

t(p) = p t(¬A) = ¬t(A)
t(A ∗ B) = t(A) ∗ t(B) t([±A]B) = t(B)

where ∗ ∈ {∧,∨,→}. Below we also use tΓ and tB instead of t[Γ] and t(B).

Definition 8.13. (Two-valued valuations) Define C ⊆ S as the set of valu-
ations V : LU → {1, 0}. For Γ ⊆ LU , define also CΓ = {V ∈ C : V [Γ] = 1}.

Lemma 8.14. (Classical coincidence) For any formula A ∈ LU and valuation
V : LU → {1, 0}, V (A) = V (tA). As a consequence, CΓ = CtΓ.
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Proof. By induction on A. Given that V is a two-valued valuation, the
truth-tables reduce to the classical case, and so the claim holds for boolean
operators A∗B and ¬A. The modal case [±A]B follows from Corollary 8.11.

Corollary 8.15. For any Γ ∪ {B} ⊆ LU , Γ |=U B implies tΓ |= tB.

Proof. S-valuations build from propositional ones in V (Definition 7.6),
so one can rephrase classical consequence as: Δ |= A iff V (A) = 1 for all
V ∈ CΔ. Then, we reason as follows:

Γ |=U B ⇒ V (B) = 1 for all V ∈ SΓ (Fact 7.7)
⇒ V (B) = 1 for all V ∈ CΓ ⊆ SΓ

⇒ V (tB) = 1 for all V ∈ CtΓ (Lemma 8.14)
⇒ tΓ |= tB (tΓ ∪ {tB} ⊆ L).

Lemma 8.16. (Conservativeness) For Γ∪{A} ⊆ L, Γ |=U A implies Γ |=0 A.

Proof. Towards a contradiction, assume Γ |=U A but Γ �|=0 A. Since tΓ = Γ
and tA = A, by Corollary 8.15 we know that Γ |= A, i.e. Γ � A, so let Π
be a proof of this. Without loss of generality, assume Π contains exactly one
instance of RB . (Otherwise, isolate a subproof in Π with one instance of RB ,
say for Δ �1 A′ and reason similarly.) From Γ |=U A and Γ �|=0 A, there
is some V ∈ VΓ with V (A) �= 1. As in the proof of Fact 7.7, extend the
countermodel V ∈ V = S0 into a valuation V ′ in S. Obviously, V ′[Γ] = 1 and
V ′(A) �= 1, so Γ �|=S A, and therefore Γ �|=U A (contradiction).

When modal formulas are considered, though, |=U validates a proof blue-
print [±A1] . . . [±Ak]B for every theorem B of classical logic.
Proposition 8.17. (Degrees and updates) For any Γ ∪ {B} ⊆ L,

Γ ||=f
k B iff Γ |=U [±A1] . . . [±Ak]B for some A1, . . . , Ak ∈ f(Γ ∪ {B}).

Proof. By induction on k. (Base Case 0.) The ⇒ direction is immediate and
⇐ follows from Lemma 8.16. (Ind. case k+1.) Assume as inductive hypothesis
that the claim holds for k. We omit everywhere that A1, . . . , Ak ∈ f(Γ∪{B})
and that V ranges over SΓ unless specified otherwise:

Γ |=U [±A1] . . . [±Ak+1]B ⇔ V ([±A1] . . . [±Ak+1]B) = 1
⇔ V [±]A1([±A2] . . . [±Ak+1]B) = 1 ⇔ V ±A1([±A2] . . . [±Ak+1]B) = 1
⇔ V ([±A2] . . . [±Ak+1]B) = 1 for all V ∈ (SΓ)A1 ∪ (SΓ)¬A1

⇔ V ([±A2] . . . [±Ak+1]B) = 1 for all V ∈ SΓ∪{A1} ∪ SΓ∪{¬A1}
⇔ Γ ∪ {±A1} |=U [±A2] . . . [±Ak+1]B ⇔ Γ ∪ {±A1} ||=f

k B

⇔ Γ ||=f
k+1 B.
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where (SΓ)A1 = SΓ∪{A1} follows from V ′A1 = V A1
Th(V ′) = VTh(V ′)∪{A1} and so

V ′ is in one set iff it is in the other. (Similarly for (SΓ)¬A1 = SΓ∪{¬A1}.)

9. Complexity of the Modal Logic �U�U�U and Applications

Let us address next the computational complexity of the decision problems
ValU and MC∅

U of validity and resp. model checking for formulas in the
minimum valuation V∅. See [35,41] for further details.

Definition 9.1. (Decision problems) The set ValU ⊆ LU is defined by: A ∈
ValU iff for all V ∈ S, V (A) = 1. The set MCU ⊆ Pfin(LU )×LU ×{1, 0,⊥}
is defined by: (Γ, A, v) ∈ MCU iff VΓ(A) = v. The particular case for Γ = ∅
is the set denoted MC∅

U .

Lemma 9.2. ValU is coNP-hard.

Proof. We show that the coNP -complete problem of classical validity Val
polynomially reduces to ValU . Let A ∈ L. For at(A) = {p1, . . . , pn}, define:
f(A) = [±p1] . . . [±pn]A. Since this function f : L → LU is linear in |A|, it
only remains to show that A ∈ Val iff f(A) ∈ ValU .
Suppose A ∈ Val. For A ∈ ValU , it suffices to show that V∅(f(A)) = 1. Fix
a choice of literals σ = {p′

1, . . . , p
′
n} with p′

i ∈ {pi,¬pi}. Define a classical
assignment by pi �→ 1 if p′

i = pi and pi �→ 0 if p′
i = ¬pi, and extend it into a

classical interpretation Iσ : L → {1, 0}.
An induction on the complexity of the subformulas B ∈ sub(A) shows

that V σ
∅ (B) = Iσ(B). Indeed, this is trivial for all atoms pi in A. Then, the

classical semantics (contained in f∗) determines a unique value in {1, 0} all
the way up to A, which is the same for Iσ and V σ

∅ . Combine this with the
assumption Iσ(A) = 1 to conclude that V σ

∅ (A) = 1, for any choice σ.

Applying Definition 7.2 gives V
p′
1···p′

n−1

∅ ([±pn]A) = 1 for any choice of
{p′

1, . . . , p′
n−1} and successive applications render V∅([±p1][±p2] . . . [±pn−1]

[±pn]A) = 1. Thus, we proved that f(A) ∈ ValU .
Suppose now that A /∈ Val. That is, �|= A. Then since t(f(A)) = A, Corol-
lary 8.15 gives (for Γ = ∅) that �|=U f(A). Hence, f(A) /∈ ValU .

Definition 9.3. (Boolean subformulas; modal path) For A ∈ LU , define the
set of boolean subformulas of A inductively as follows:

bsub(p) = {p} bsub(¬A) = {¬A} ∪ bsub(A) bsub([±A]B) = {[±A]B}
bsub(A ∗ B) = {A ∗ B} ∪ bsub(A) ∪ bsub(B).
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Figure 10. The post-order depth first search algorithm for model check-
ing a root (∅, A) of a tree T for A ∈ LU . The algorithm takes as input
any node of the form (σ, B)

A modal path in A is a sequence σ = 〈[±A1]B1, . . . , [±Am]Bm〉 satisfying
[±A1]B1 ∈ bsub(A) and [±Ai+1]Bi+1 ∈ bsub([±Ai]Bi) for 1 ≤ i < m.
We abusively call a modal path any choice sequence σ = 〈A′

1, . . . , A
′
m〉 ∈

〈±A1, . . . ,±Am〉. Finally, we refer to the set {A′
1, . . . , A

′
m} also by σ.

Theorem 9.4. MC∅
U is in PSpace. Hence, ValU is also in PSpace.

Proof. Consider a tree T = (N,R) of nodes (σ, B) consisting of a modal
path σ = 〈A′

1, . . . , A
′
m〉 in A and a formula B ∈ bsub([±Am]Bm). The edges

R = R0 ∪ R1 are split between left nodes (R0) and right nodes (R1):

(σ, ¬B)R0(σ,B) (σ,B0 ∗ B1)Ri(σ, Bi)
(σ, [±Aj ]B)R0(σ.Aj , B) (σ, [±Aj ]B)R1(σ.¬Aj , B)

where i ∈ {0, 1}, ∗ ∈ {∧,∨,→}. Note the root is (∅, A) and leaf nodes are of
the form (σ, p). Our algorithm in Figure 10 traverses (part of) the binary tree
T using post-order traversal and evaluates nodes (σ, B) �→ (σ, B, v(σ, B)) as
either v(σ,B) = V σ

∅ (B), or v(σ,B) = � in case V σ
∅ is 0-depth inconsistent.

The algorithm in Figure 10 contains the basic operations:

path.consistency(σ,B) adapts the algorithm from D’Agostino [11] testing
whether σ �0 �, and in this case it returns an eval-
uated node (σ,B,�).

0consq(σ,B) in line (2) is also based on [11] and returns (σ, B, v)
according to: v = 1 if σ �0 B; v = 0 if σ �0 ¬B
and v = ⊥ if σ �0 B and σ �0 ¬B.

evaluate(σ, ¬B) in line (2.1) returns (σ, ¬B, f¬(v)) if the preceding
(child) node is (σ,B, v)



P. Pardo

evaluate(σ,B0 ∗ B1) in line (2.1) returns (σ, B0 ∗ B1, k∗(v0, v1)) if pre-
ceded by (σ,B0, v0) and (σ, B1, v1)15 where k∗ is
the Kleene truth-table for ∗.

evaluate(σ, [±Am]Bm) in line (2.1) computes the restricted pointwise meet
(Remark 2) of the values in (σ.Am, v0), (σ.¬Am, v1):

meet(v0, v1) =

⎧
⎪⎨

⎪⎩

v0 � v1 if v0, v1 ∈ {1, 0,⊥}
1 if v0 = � = v1

vi if vi �= � and v1−i = �.

(Correctness and termination.) Note that the algorithm takes any initial node
of the form (σ,A). We show by induction on A that V σ

∅ (A) = v iff on input
node (σ,A) the algorithm terminates and returns (σ, A, v).

(Base case A = p.) A quick inspection of 0consq(σ, p) (line 2) shows that:
V σ

∅ (p) = v iff Vσ(p) = v iff (σ, p, v) is returned.
(Ind. case B0, B1 �→ B0 ∗ B1.) First observe that, by the �-minimality of

V∅, the only case where V σ
∅ (B0 ∗ B1) does not follow the Kleene truth-table

k∧(⊥,⊥) = ⊥ = k∨(⊥,⊥) is precisely when σ �0 (¬)B0 ∗ B1 (line 2). Thus,
for all other cases, f∗ will coincide with k∗, and so v = V σ

∅ (B0 ∗ B1) will
match the node (σ,B0 ∗ B1, v) (line 2.1). Let trace(σ, A) denote the trace
of the algorithm for an input node (σ,A) and let us represent the two stacks
in a state by 〈α〉 | 〈β〉 (or by different columns below):

〈(σ,B0 ∗ B1)〉 — initial state
〈(σ,B0), (σ,B1)〉 〈(σ,B0 ∗ B1)〉 line 3
〈α, (σ,B1)〉 〈β, (σ,B0 ∗ B1)〉 for all 〈α〉 | 〈β〉 ∈ trace(σ, B0)

...
...

〈(σ,B1)〉 〈(σ,B0, v0), (σ,B0 ∗ B1)〉 (ind. hyp. on B0)
〈γ〉 〈δ, (σ,B0, v0), (σ,B0 ∗ B1)〉 for all 〈γ〉 | 〈δ〉 ∈ trace(σ, B1)

...
...

— 〈(σ,B1, v1), (σ,B0, v0),
(σ,B0 ∗ B1)〉 (ind. hyp. on B1)

— 〈(σ,B0 ∗ B1, v0 ∗ v1)〉 returns (σ, B0 ∗ B1, v0 ∗ v1).

15In fact, the two child nodes will occur in the reverse order: the second stack will
consist of 〈(σ, B1, v1), (σ, B0, v0), (σ, B0 ∗ B1), . . .〉.



A Modal View on Resource-Bounded Propositional Logics

Thus, the property that the first unevaluated node in the second stack is
preceded by its evaluated child nodes is preserved from B0 and B1 into B0∗B1.
The case for (σ, ¬B0) is even simpler, as it only generates a left child node.

(Ind. case, [±C]B.) Assume the claim for any modal path σ′ and a for-
mula B. Let 〈α〉 | 〈β〉 and 〈γ〉 | 〈δ〉 denote states in trace(σ.C, B) resp.
trace(σ.¬C,B)

〈(σ, [±C]B)〉 — initial state
〈(σ.C,B), (σ.¬C,B)〉 〈(σ, [±C]B)〉 line 3
〈α, (σ.¬C,B)〉 〈β, (σ, [±C]B)〉 for all 〈α〉 | 〈β〉

...
...

〈(σ.¬C,B)〉 〈(σ.C,B, v0), (σ, [±C]B)〉 (ind. hyp. on B0)
〈γ〉 〈δ, (σ.C,B, v0), (σ, [±C]B)〉 for all 〈γ〉 | 〈δ〉

...
...

— 〈(σ.¬C,B, v1), (σ.C,B, v0),
(σ, [±C]B)〉 (ind. hyp. on B1)

— 〈(σ, [±C]B,meet(v0, v1))〉 returns this node.

In view of Remark 2, an inspection of meet shows that if V σ.C
∅ (B) = v0 and

V σ.¬C
∅ (B) = v1 (the ind. hyp.), then V σ

∅ ([±C]B) = meet(v0, v1).
Thus, in all cases the algorithm terminates and returns a sound input

(σ,B, V σ
∅ (B)). In particular, for inputs (∅, A) corresponding to the root of

the tree T for A, we obtain that V∅(A) = v iff the algorithm returns (∅, A, v).
(Space complexity) The space complexity of post-order traversal is the depth
of the tree, or the depth d(A) of the formula A in our case, which is linear
in |A|. Our algorithm keeps the same bound by discarding evaluated nodes
as soon as they can be used to evaluate a more complex formula (line 2.1).16

Hence, at any time the two stacks have size polynomial in the length of A,
namely d(A) · |A|, as for any modal path and its formula |(σ, B)| ≤ |A|.
(Time complexity) Observe first that each path.consistency(σ, B), each
test on B ∈ L and each 0consq(σ,B) operation (lines 1, 2) takes polyno-
mial time O(|σ ∪ {B}|2) in |A| (by Proposition 1.10); for any other formula,
evaluate(σ,B) takes constant time (line 2.1). On the other hand, a number
of operations exponential in the length of A is required in the worst case
(nested modalities): each modal subformula [±Ai]Bi doubles the number of
required operations upon sub(Bi), namely for the two branches V Ai

∅ and

16Moreover, the algorithm might not explore the full tree T : at the first sign of 0-
depth inconsistency or �0 consequence at a node (σ.Am, B), the subtree below this node
is pruned.
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V ¬Ai

∅ . Thus, the number of nodes in the tree is exponential in the length of
A. This gives an exponential time upper bound.

In summary, MC∅
U is in PSpace. We prove that ValU is also in PSpace by

providing a polynomial reduction from ValU to MC∅
U . This is simply given

by the function A �→ (∅, A, 1). This is indeed a reduction since A ∈ ValU

is equivalent to the truth of A in V∅, as the latter is �-minimal among all
valuations in S \ {V�}.

In comparison with the general case, the validity problem for proof
blueprints under some virtual space function f remains in coNP .

Definition 9.5. For a given function f as in Definition 1.8, we define the
set:

bpValfU = {[±A1] . . . [±Ak]B ∈ ValU : B ∈ L and A1, . . . , Am ∈ f({B})}.

Theorem 9.6. bpValfU is coNP-complete.

Proof. (bpValfU is coNP -hard.) This can be shown as in the proof that
ValU is coNP -hard (Lemma 9.2): the same reduction f(A) gives atomic
blueprints and any virtual space function f(·) contains at(·) (Definition 1.8).
(bpValfU is in coNP .) Let Valfk denote the set of formulas valid in the degree-
bounded logic �f

k. Recall that for any virtual space function f, Valfk is in P
(Lemma 6.7). We prove that the linear function t : [±A1] . . . [±Ak]B �→ B is
a (polynomial) reduction of bpValfU into Val.

A ∈ bpValfU iff A = [±A1] . . . [±Ak]B for some k and B ∈ L and
{A1, . . . , Ak} ⊆ f({B}) and ∅ |=U [±A1] . . . [±Ak]B

iff for some k, ∅ �f
k B (Lemma 8.17)

iff for some k, B ∈ Valfk (by definition)
iff B ∈ Val =

⋃
k Val

f
k (Lemma 6.5).

The same argument shows that deciding whether a proof blueprint is a
logical consequence of some propositional database Γ is also coNP -complete.
For any given particular instance, moreover, deciding whether a blueprint
A = [±A1] . . . [±Ak]B is valid or a consequence from Γ has polynomial
complexity, namely in O(|B|k+1) and resp. O(|Γ ∪ {B}|k+1). In practice,
the actual coefficients will be lower as no choice of RB formulas is involved
(compare with [11, Alg. 3.1]).

Remark 3. Other decision problems are satisfiability and ⊥-satisfiability,
denoted SatU resp. ⊥SatU . Each is defined as the set of formulas A for which
there is some V �= V� with V (A) = 1 and resp. V (A) = ⊥. While SatU can
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be shown to be NP -hard using the same function f as in Lemma 9.2, ⊥SatU

is in PSpace (by Theorem 9.4 and that A ∈ ⊥SatU iff V∅(A) = ⊥.)

Applications in Distributed Reasoning As argued in the Introduction, the
form of deductive exchanges (messages) among a network of reasoning agents
should satisfy certain desiderata, including: quick correctness tests, optimal-
ity preservation and succintness. For proof blueprints, generated directly from
�U or encoding some �f

k-proof, these properties are granted by: the discus-
sion following Theorem 9.6 above, the proof normalization procedures for
resource-bounded logics [13] and the fact that any proof blueprint for B ∈ L
is linear in the length of B. Two further advantages of proof blueprints are
described next.

Example 11. (Distributed reasoning) Assume a set of resource-bounded
agents share a propositional database Γ, and are tasked with answering
queries. Say an agent, executing the algorithm for some degree-bounded logic
�f

k, receives a message containing a formula B, that it might use as a lemma
towards the query. This agent cannot know if it can verify that Γ � B as a
negative answer Γ �

f
k B does not rule out that Γ �f

n B for some n > k.
If, on the contrary, the message is a proof blueprint [±A1], . . . , [±Am]B,

then it can easily check whether m ≤ k and {A1, . . . , Am} ⊆ f({B}) in which
case it instantly knows that it can verify such a claim.

A second advantage of proof blueprints [±A1], . . . , [±Am]B lies in the
existence of syntactic transformations upon them that preserve soundness
(or classical provability of their propositional matrix B), such as:

(merge) a pair of blueprints [±A] . . . [±A′]B and [±C] . . . [±C ′]D can be
merged into [±A] . . . [±A′][±C] . . . [±C ′]B ∧ D as a generaliza-
tion of the modal intelim rule I[±]∧ (derived using Triv and
Perm); and analogously for generalizations of any modal intelim
rule I[±]∗ or E[±]∗;

(optimize) an agent can optimize a blueprint [±A] . . . [±A′]B by removing
any repeated modalities (using permutation and contraction) or
modalities with an RE-equivalent update in the prefix (using
RE );

(cut) suppose the agent proves [±C1] . . . [±Ck]A′
i where A′

i ∈ {Ai,¬Ai}
is a RB assumption of a blueprint [±A1] . . . [±Ak]B. Then it can
replace [±Ai] by [±C1] . . . [±Ck] in the latter blueprint (using
E[±]).
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These operations facilitate the management of large collections of proof
blueprints towards query solving from a propositional data base, or consis-
tency checks upon it. In summary, an exchange format consisting of blueprints
(and the actual premises used in a proof) fulfils the above desiderata and can
speed up distributed proof and refutation methods.

Conclusions

The informational 3-valued semantics and natural deduction system studied
in [10,11,13] was adopted to define a new hierarchy of tractable logics UBBL
that approximate classical logic. These logics bound the number of formulas
discharged in proofs by the rule of bivalence (RB): if B follows from A
and from ¬A, then B. In a lattice of valuations, we showed that RB can
be simulated by updates V �→ V [±]A resulting in valuations that behave
classically w.r.t. A and thus validate A ∨ ¬A. We also proved that updates
satisfy permutation and reduce to theory expansions.

A modal logic |=U was then presented where formulas [±A] . . . [±A′]B
make explicit RB -instances that would suffice in a classical proof of B.
The logic thus contains all classical validities prefixed with updates, such
as [±p](p ∨ ¬p), and is a conservative extension of the RB -free fragment of
classical logic. A natural deduction system �U with introduction and elim-
ination rules for [±A] and reduction rules for negation was proved to be
sound and complete for |=U . We also identified derivable rules which per-
mit a comparison with modal axioms and natural deduction systems for
modal logics [21,29]. The computational complexity of its validity problem
was also studied, setting a PSpace upper bound. Towards applications in
distributed reasoning, we established the complexity class for validity over
proof blueprints as coNP -complete, thus improving on the complexity of the
(general) validity problem. Proof blueprints are thus a robust, computation-
ally feasible message form for deductive exchanges in distributed reasoning. A
number of syntactic operations on proof blueprints enable quick management
techniques for merging and optimizing such proof blueprints.

As for future work, an interesting question is whether the natural de-
duction system �U enjoys some form of the subformula property and proof
normalization; for DBBL this has been shown to be the case for the weak
subformula property [13]. Also left as an open question is a sharp character-
ization of the complexity of validity for �U .

In relation to DBBL, one might also ask what modal logic of updates can
capture the DBBL hierarchy, as |=U does for UBBL. To this end, instead of
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representing RB applications in a proof as a sequence [±A] . . . [±A′], the
depth-bounded case might use conditional progams π built from: updates
±C, tests ?C, composition π; π′ and choice π ∪ π′. We conjecture that a
PDL-style language [20] with formulas [π]A built from these programs, the
formula [±A; (?A; π) ∪ (?¬A; π′)]B would express that B is a (k+1)-depth
consequence if π and π′ are k-depth conditional programs.

Towards distributed reasoning applications, a further step would be to
extend the modal logic |=U with modalities for public announcements of
proof blueprints, with formulas 〈![±A1] . . . [±Ak]B〉C expressing: C is known
after [±A1] . . . [±Ak]B is truthfully announced.

Finally, a general open question is how arbitrary modal logics build upon
resource-bounded logics, rather than classical logic. Of particular interest
would be epistemic logics addressing the logical omniscience problem, but
the question is equally pertinent to all modal logics starting from K, as
studied in [17] for a tableaux system.
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A. Appendix: Lattice theory

Basic concepts and results for lattices are listed next, taken from Davey and
Priestley [16] or Grätzer [24].

Definition A.1. (Poset) A partially ordered set, or poset, is a pair (X, ≤)
where the relation ≤ ⊆ X × X satisfies: (reflexivity) x ≤ x, (antisymmetry)
x ≤ y ≤ x implies x = y, and (transitivity) x ≤ y ≤ z implies x ≤ z.

Definition A.2. (Lower, upper bound; meet, join; minimum) Given a poset
(X, ≤), a subset Y ⊆ X, we say that α ∈ X is

• a lower bound of Y if α ≤ y for all y ∈ Y ; the set of lower bounds of Y is
denoted Y �;

• the meet of Y , denoted ⊔Y , if α is the greatest lower bound: β ∈ Y �

implies β ≤ α. If moreover ⊔Y ∈ Y , it is called the minimum of Y .

Reversing the order into ≥ gives the dual notions of: upper bound ; the set
Y u of upper bounds of Y ; and the join

⊔
Y or least upper bound of Y . In

particular, ⊔∅ is the ≤-maximum and
⊔

∅ the ≤-minimum element.

Definition A.3. (Semi- and complete lattice) A meet semi-lattice (X, �)
is a poset closed under meets for non-empty subsets: ⊔Y ∈ X whenever
∅ �= Y ⊆ X. A complete lattice is a poset (X, ≤) closed under arbitrary
meets and joins: Y ⊆ X implies ⊔Y,

⊔
Y ∈ X.

Lemma A.4. ([16, p.57], Definition 4.6) In any lattice (X, ≤), ↑(x � y) =
↑x ∩ ↑y.

Lemma A.5. (Order-preserving [16, p.35]) In any lattice (X, ≤),

x � y ≤ x, y ≤ x � y x ≤ y iff ↑y ⊆ ↑x

Both � and � are order-preserving: x ≤ y and x′ ≤ y′ implies x�x′ ≤ y�y′;
in particular, x, x′ ≤ y implies x � x′ ≤ y. And the same holds for �.

Lemma A.6. (Connecting lemma [16, p.390]) For any lattice (X, ≤),

x � y = x iff x ≤ y iff x � y = y.

Theorem A.7. (Join and meet [16, p. 39]) For any lattice (X, ≤), its join �
is associative, commutative , idempotent and satisfies the absorption law:

x � (y � z) = (x � y) � z (assoc.) x � y = y � x (comm.)
x � x = x (idemp.) x � (y � x) = x (absorption)

and dual laws hold for meet � (i.e. by switching � and � above).



A Modal View on Resource-Bounded Propositional Logics

Lemma A.8. (Semi-distributivity [16, Lemma 4.1], [24, p. 14]) For any lat-
tice (X, ≤) and arbitrary elements x, y, z ∈ X, it holds that:

x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z).

B. Appendix: Proofs

Proposition 3.4. For any non-empty subset V
′ ⊆ V, the meet exists in V

as the pointwise meet ⊔V
′ = {〈A, ⊔V ∈V′V (A)〉 : A ∈ L}.

Proof. The pointwise meet of a set of 3-valued functions is clearly its great-
est lower bound. Let us show then ⊔V

′ ∈ V, i.e. that ⊔V
′ respects the

truth-tables. For negation ¬, we omit for all V ∈ V
′ and reason as follows:

( ⊔V
′)(¬A) =

⎧
⎪⎨

⎪⎩

1 if V (¬A) = 1 ⇔ if V (A) = 0 ⇔ ( ⊔V
′)(A) = 0

0 if V (¬A) = 0 ⇔ if V (A) = 1 ⇔ ( ⊔V
′)(A) = 1

⊥ other cases ⇔ other cases ⇔ ( ⊔V
′)(A) = ⊥

where other cases X ⊆ {1, 0,⊥} in the last ⇔ step amount to {0} �= X �= {1}
and so ⊥ = ⊔X. For the remaining connectives, we only prove the conjunc-
tion case by considering all possible values 〈v, v′〉 = 〈( ⊔V

′)(A), ( ⊔V
′)(B)〉:

〈0, v′〉; 〈v, 0〉. We only check v = ( ⊔V
′)(A) = 0. Then clearly V (A) = 0

for all V ∈ V
′ and so V (A∧B) = 0 for all V ∈ V

′. Hence ( ⊔V
′)(A∧B) = 0.

〈1, 1〉. In this case, V (A∧B) = 1 for all V ∈ V
′ and so ( ⊔V

′)(A∧B) = 1.
〈1,⊥〉; 〈⊥, 1〉. Say ( ⊔V

′)(B) = ⊥. Then the set of B-values X = {V (B) :
V ∈ V} satisfies: {1} �= X �= {0} and so ⊔X = ⊥. Since f∧(1, v′) = v′, we
also have X = {V (A ∧ B) : V ∈ V

′} which gives ( ⊔V
′)(A ∧ B) = ⊔X = ⊥.

〈⊥,⊥〉. We check that ( ⊔V
′)(A ∧ B) ∈ {0,⊥}. Let X,Y be the sets of

values of A resp. B among V
′. Again each set is different from {1} and {0},

so if ( ⊔V
′)(A ∧ B) = 1 the sets would be X = {1} = Y (contradiction).

Fact 3.8. V
+ is the set of functions V : L → {1, 0,⊥} closed under applica-

tions of intelim rules.

Proof. Given Proposition 3.2, the (⊆) direction reduces to checking that
V� is closed under intelim rules, and indeed all rule conclusions are true in V�.
For (⊇), let f ′ be in the set {f : L → {1, 0,⊥} | f is closed under intelim rules}.
In case f ′ respects the truth-tables, by Definitions 1.2, 3.1 we obtain that
f ′ ∈ V and we are done. In case f ′ does not respect some truth-table, a rou-
tine examination of all cases shows that either a contradiction occurs of the
form f ′(A) = 1 and f ′(¬A) = 1, or that (A, v), (A, v′) ∈ f ′ with v �= v′. In
the first case, we must have f ′ = V� since closure under I� and E� implies
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V (B) = 1 for any B; in the second case, we arrive at a contradiction with
the assumption that f ′ is a function. Hence, f ′ ∈ V�.

Fact 4.2. For any V ∈ V
+, Th(V ) is a theory: Cn0(Th(V )) ⊆ Th(V ).

Proof. From A ∈ Cn0(Th(V )), we get Th(V ) �0 A, so by soundness (Propo-
sition 1.11) Th(V ) |=0 A. In particular, if V [Th(V )] = {1} then V (A) = 1.
But the antecendent is immediate, so V (A) = 1 and thus A ∈ Th(V ).

Lemma 4.3. For any V, V ′ ∈ V
+, Th(V ) ⊆ Th(V ′) iff V � V ′.

Proof. (⇐.) The assumption gives V (A) ≤ V ′(A), so if V (A) = 1, we also
have V ′(A) = 1. Hence Th(V ) ⊆ Th(V ′). (⇒.) Assume Th(V ) ⊆ Th(V ′)
and let A ∈ L. We show V (A) ≤ V ′(A). (Case V (A) = 1.) This is simply
A ∈ Th(V ) and so the assumption gives A ∈ Th(V ′) and finally V ′(A) = 1.
(Case V (A) = 0.) Then V (¬A) = 1 and reasoning as in the previous case we
obtain V ′(¬A) = 1 so V ′(A) = 0. Again V (A) ≤ V ′(A). (Case V (A) = ⊥.)
Clearly, ⊥ ≤ V ′(A). These cases show V (A) ≤ V ′(A) and so V � V ′.

Proposition 4.5. For each set Γ ⊆ L, a �-minimum valuation VΓ exists in
VΓ. As a consequence VΓ = ⊔VΓ.

Proof. In case Γ is �0-inconsistent, VΓ = {V�}, so ⊔VΓ = V� ∈ VΓ is
the �-minimum. For an �0-consistent set Γ, we inductively define VΓ via
partial maps. Let V 0(A) = 1 for each A ∈ Γ and V 0(A) = und . (undedfined)
otherwise. Let V n+1 be defined by: V n ⊆ V n+1 and for A ∈ L \ dom(V n),

V n+1(A) =

⎧
⎪⎨

⎪⎩

1 for an intelim rule B, C ∴ A, V n(B) = 1 = V n(C)
0 if V n(¬A) = 1
und. otherwise

Let V ω =
⋃

n<ω V n and finally define VΓ = V ω∪{〈A,⊥〉 : A ∈ L\dom(V ω)}.
Since Γ is 0-depth consistent, an easy induction shows that no V n contains

an inconsistent pair 〈A, 1〉, 〈A, 0〉 and so each V n is a function V n : L →
{1, 0}. Hence the same holds for V ω. This and the fact that VΓ is closed
under intelim rules imply that VΓ satisfies the truth-tables (Fact 3.2) and so
VΓ ∈ V. Vice versa, for any V ∈ VΓ, VΓ(A) = 1 implies V (A) = 1, again
by Fact 3.2 and V [Γ] = {1}. That is, Th(VΓ) ⊆ Th(V ) so by Lemma 4.3,
VΓ � V and moreover VΓ � ⊔VΓ. With VΓ ∈ VΓ, we conclude VΓ = ⊔VΓ.

Fact 4.7. For any set Γ ⊆ L, (i) VΓ = ↑VΓ and (ii) ⊔↑VΓ = VΓ.
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Proof. For (i) let V ′ ∈ VΓ be arbitrary. Then,

(i) V ′ ∈ VΓ iff V ′[Γ] = {1} (ii) VΓ = ⊔VΓ (Prop. 4.5)
iff VΓ � V ′ ∈ V

+ = ⊔↑VΓ (by (i)).
iff V ′ ∈ ↑VΓ

Corollary 4.10. For any Γ ⊆ L, (i) VΓ = VCn0(Γ) and (ii) Cn0(Γ) = Th(VΓ).

Proof. For claim (i). (�) VΓ � VCn0(Γ) follows from Γ ⊆ Cn0(Γ) by reason-
ing similarly to the proof of Lemma 4.3(⇒). (�) Let A ∈ L be arbitrary with
VCn0(Γ)(A) = 1. That is, Cn0(Γ) |=0 A, and so by completeness Cn0(Γ) �0 A.
Since Cn0(Γ) a theory, A ∈ Cn0(Γ) and hence Γ �0 A. Now by soundness
Γ |=0 A and finally we obtain VΓ(A) = 1 using Corollary 4.8. This gives
Th(VCn0(Γ)) ⊆ Th(VΓ) so Lemma 4.3 gives VCn0(Γ) � VΓ. For claim (ii),

Cn0(Γ) = Th(VCn0(Γ)) by Prop. 4.9(i)

= Th(VΓ) by (i) with VCn0(Γ) = VΓ.

Fact 4.11. Th(V1 � V2) = Th(V1) ∩ Th(V2). As a consequence, VΓ � VΔ =
VCn0(Γ)∩Cn0(Δ).

Proof. We reason as follows:
Th(V1 � V2) = {A ∈ L :

(
V1 � V2

)
(A) = 1}

= {A ∈ L : V1(A) = 1} ∩ {A ∈ L : V2(A) = 1}
= Th(V1) ∩ Th(V2).

Th(VΓ � VΔ) = Th(VΓ) ∩ Th(VΔ) (by the above claim)
= Cn0(Γ) ∩ Cn0(Δ) (by Fact 4.7(i)).

This and Proposition 4.9(i) imply that VΓ�VΔ = VTh(VΓ�VΔ) = VCn0(Γ)∩Cn0(Δ).

Proposition 4.12. The join
⊔

V
′ = ⊔(V

′)u obtained from Proposition 3.7
is:

⊔
V

′ = V⋃
V ′∈V′ Th(V ′). Hence, VΓ � VΔ = VΓ∪Δ.

Proof. The following identities result from applying Lemma 4.3 twice:

(V′)u = {V � : V � � V ′, for all V ′ ∈ V
′}

= {V � : Th(V �) ⊇ Th(V ′), for all V ′ ∈ V
′}

= {V � : Th(V �) ⊇
⋃

V ′∈V′ Th(V ′)}
= {V � : V � � V⋃

V ′∈V′ Th(V ′)} = ↑V⋃
V ′∈V′ Th(V ′).

Hence ⊔(V
′)u(A) = 1 iff ⊔↑V⋃

V ′∈V′ Th(V ′)(A) = 1 iff V⋃
V ′∈V′ Th(V ′)(A) =

1. That is, Th( ⊔(V
′)u) = Th(V⋃

V ′∈V
Th(V ′)) and so another application of
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Lemma 4.3 gives ⊔(V
′)u = V⋃

V ′∈V
Th(V ′). For the claim, VΓ � VΔ = VΓ∪Δ,

VΓ � VΔ =
⊔

{VΓ, VΔ} = VTh(VΓ)∪Th(VΔ) (by the above claim)
= VCn0(Γ)∪Cn0(Δ) (by Coro. 4.10(ii))
= VCn0(Cn0(Γ)∪Cn0(Δ)) (by Coro. 4.10(i)
= VCn0(Γ∪Δ) (since �0 is tarskian)
= VΓ∪Δ (by Coro. 4.10(i)).

Corollary 5.3. (i) If V (A) = 1, then V A = V ; (ii) if V (A) = 0, then
V A = V�.

Proof. For (i), if either V ∈ V or V = V�, V (A) = 1 implies V{A} � V . By
Lemma A.6, V �V{A} = V , so V A = V . For (ii), V (A) = 0 and V{A}(A) = 1
imply ↑V A = ↑V ∩ ↑V{A} = {V�} and then V A = ⊔↑V A = ⊔{V�} = V�.

Fact 5.6. If V (A) �= ⊥, then V [±]A = V .

Proof. By Corollary 5.3, if V (A) = 1 resp. V (A) = 0, then V [±]A = V �V�
resp. V [±]A = V� � V . By Lemma A.6 and V � V� we get V � V� = V =
V� � V , so in any case we obtain V [±]A = V .

Proposition 5.7. For any virtual space function f (Definition 1.8), Γ |=f
1 B

iff V
[±]A
Γ (B) = 1 for some A ∈ f(Γ ∪ {B}).

Proof. We use Lemma 5.4 and Corollary 4.8. Let A ∈ f(Γ ∪ {B}). Then,

V
[±]A
Γ (B) = 1 ⇔ (V A

Γ ∧ V ¬A
Γ )(B) = 1 ⇔ V A

Γ (B) = 1 = V ¬A
Γ (B)

⇔ VΓ∪{A}(B) = 1 = VΓ∪{¬A}(B) ⇔ Γ ∪ {±A} |=0 B ⇔ Γ |=f
1 B.

Fact 6.4. It holds that ||=1 = |=1 and ||=k � |=k for any k > 1.

Proof. The claim ||=1 = |=1 follows from Proposition 5.7. The inclusion ||=k

⊆|=k is a consequence of Proposition 2.2. This inclusion is proper ||=k � |=k,
as shown by a generalization of the example Table 1(mid) from k = 2 to any
k.

Proposition 6.5. |= =
⋃

k ||=f
k, for any f as in Definition 1.8.

Proof. Assume Γ |= B. By compactness there is a finite Δ ⊆ Γ with
Δ |= B. Applying [10, Prop. 3.2] gives us that Δ |=f

k B for some k, so
by Proposition 2.2 we obtain Δ ||=f

2k−1 B and so Γ ||=f
2k−1 B.

Proposition 6.6. For any Γ ∪ {A,B} ⊆ L with A ∈ f(Γ ∪ {B}), if Γ ||=f
i A

and Γ ∪ {A} ||=f
j B then Γ ||=f

i+j B.
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Proof. From the assumptions, there are C1, . . . , Ci ∈ f(Γ ∪ {A}) and Ci+1,
. . . , Ci+j ∈ f(Γ ∪ {A,B}) with

Γ ∪ {±C1, . . . ,±Ci} |=0 A and Γ ∪ {A} ∪ {±Ci+1, . . . ,±Ci+j} |=0 B.

Hence, Γ ∪ {±C1, . . . ,±Ci,±Ci+1, . . . ,±Ci+j} |=0 A since the first i choices
in this set already imply A. All these C-formulas are also in f(Γ ∪ {A,B})
and so the assumption A ∈ f(Γ ∪ {B}) gives the first inclusion:

f(Γ ∪ {A,B}) ⊆ f(Γ ∪ f(Γ ∪ {B}) ∪ {B}) ⊆ f(Γ ∪ {B})

while the second inclusion follows from Definition 1.8(ii). Thus, all the C-
formulas are in f(Γ ∪ {B}), and so we are done: Γ ||=f

i+j B.

Lemma 6.9. For any V ∈ V, the following are equivalent:

(i) V �� V , for any V ∈ C;

(ii) V [±]A1···[±]Ak = V�, for some A1, . . . , Ak ∈ L;

(iii) V(A) = 1 for some classical inconsistency A, e.g. � ¬ A.

Proof. (ii) ⇒ (i). Suppose V [±]A1···[±]Ak = V� and, towards a contradic-
tion, that V � V for some V ∈ C. Since V (A1) �= ⊥, using Fact 5.6 we get
V

[±]A1 = V and, similarly, V
[±]A1...[±]Ak = V . With this and the assump-

tions, we obtain V� = V [±]A1···[±]Ak � V
[±]A1···[±]Ak = V (contradiction).

(iii) ⇒ (ii). Assume V (A) = 1 with � ¬A and let at(¬A) = {p, . . . , p′}.

|= ¬A ⇒ ||=at
k ¬A for some k ≤ |{p, . . . , p′}| (Prop. 6.5)

⇒ V ′[±]p1...[±]pk(¬A) = 1 for any V ′ ∈ V (Def. 7.2)

In particular, V [±]p1...[±]pk(¬A) = 1 and since V � V [±]p1...[±]pk , the as-
sumption V (A) = 1 implies V [±]p1...[±]pk(A) = 1. Using Fact 3.8, we obtain
V [±]p1...[±]pk(B) = 1 for any B ∈ L. That is, V [±]p1...[±]pk = V�.
(i) ⇒ (iii). We prove the contrapositive. Assume that for each classical in-
consistency A ∈ L, V (A) ∈ {⊥, 0}. For an enumeration 〈An〉n∈N of L, we
extend V into a two-valued V ∈ C function. Define V 0 = V and

V n+1 =

{
V n if V (An+1) �= ⊥ or � ¬An+1

VTh(V n)∪{An+1} otherwise

The inductive step V n �→ V n+1 clearly preserves classical consistency and
membership in V. As a consequence, also V ω =

⊔
n V n is classically consis-

tent (V ω(A) �= 1 whenever � ¬A) and a valuation in V. The latter, together
with V (pi) ∈ {1, 0} for any pi ∈ Var, implies that V � V ω ∈ C.
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