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Actions

Abstract.  This paper, being a companion to the book [2] elaborates the deontology of
sequential and compound actions based on relational models and formal constructs bor-
rowed from formal linguistics. The semantic constructions presented in this paper emulate
to some extent the content of [3] but are more involved. Although the present work should
be regarded as a sequel of [3] it is self-contained and may be read independently. The
issue of permission and obligation of actions is presented in the form of a logical system
):. This system is semantically defined by providing its intended models in which the
role of actions of various types (atomic, sequential and compound ones) is accentuated.
Since the consequence relation l: is not finitary, other semantically defined variants of
): are defined. The focus is on the finitary system ): f in which only finite compound
actions are admissible. An adequate axiom system for ): f it is defined. The strong com-
pleteness theorem is the central result. The role of the canonical model in the proof of the
completeness theorem is emphasized.
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Obligation should be action guiding
Tamminga [16]

Introduction and Overview

The category of a situation is central in the ontology of action. Gener-
ally speaking, actions transform situations into new situations. From the
mathematical viewpoint, situations are modelled as complex set-theoretic
entities encompassing such factors as states of affairs, spatio-temporal coor-
dinates, agents, the way the agents cooperate etc. The undertaken actions
and their succession may also be components of situations. It is not necessary
to present here a detailed account of situation theory. In the simplified de-
scription we shall present, three categories of pertinent objects are isolated:
states of affairs (simply: states), atomic actions, and compound actions and,
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6 J. Czelakowski

to a modest extent, agents of actions. Situations are reducible here to states;
we therefore abstract from other components of situations.

Atomic actions resemble black boxes. Each atomic action from a state
being the input leads to a state being the output of the performed action.
Thus there are states that form the input of the atomic action and the states
that make up the output of the action. A given atomic action undertaken
in a given input yields, if performable, a state belonging in the input. Each
atomic action is therefore identified with a binary relation on the set of
states. This is in accordance with the paradigm adopted in dynamic logic;
see [6].

In turn, compound actions are defined as sets of finite sequences of atomic
actions. From the formal linguistic perspective, compound actions may be
regarded as formal languages over the alphabet formed by the set of atomic
actions. The actions encountered in the everyday situations are compound.
We mention a few: baking a bread, manufacturing a car, making every-
day morning routine etc. Each of these actions can be performed in various
ways depending on the choice of a sequence of atomic actions the given com-
pound action encompasses. To each compound action one assigns a binary
relation—the resultant relation of the compound action. The resultant re-
lation abstracts from the way a given compound action is performed—the
initial states and the final state matter here; the intermediary states and
atomic action that make up the compound action are disregarded from the
perspective of the resultant relation. Thus the input and output of the re-
sultant relation are relevant; the other factors are omitted. The resultant
relation of a compound action is also a binary relation on the set of states.
But this resultant relation need not belong to the preselected set of atomic
actions. For example, while making the morning routine, the compound ac-
tion which may last an hour, we may distinguish other subactions as shaving,
washing, dressing up etc. Each of these is also compound; they may be per-
formed in various combinations. As to the resultant relation we distinguish
here one initial state in which I am not washed, not shaved and not dressed.
There is also one final state in which the things are the other way round:
I am wasked, shaved and dressed, and ready to make breakfast. Each of
the mentioned complex subactions: washing, shaving, dressing etc. can be
performed in unlimited number of ways.

In this paper obligations, permissions and prohibitions concern actions;
thereby actions, and not state of affairs, are deontologically loaded. The idea
that actions are primary bearers of deontic values is not new. This issue, in
the context of propositional deontic logic, is discussed e.g. in [14] and [10];
see also Final remarks below.
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An obligation is a proposition that renders the course of action that an
agent is required to take. This notion is formally defined in this paper. As is
well known, obligations depend on various normative contexts, such as legal
or moral ones. There are also other obligations, such as obligations of eti-
quette, social obligations, religious and political obligations etc. Obligations
are expressed as propositional requirements which must be fulfilled.

The paper is concerned with a bunch of issues centred around the deon-
tological problem of obligation of compound actions. In the monograph [2]
a certain logically coherent conception of obligation of atomic actions is pre-
sented. In a more elaborated form this conception is expressed in the form
of two simple logical systems. The first system DL is based on two specific
deontological axioms: the closure principle for atomic actions, Pa <« —~Fa
(any atomic action « is permitted if and only if it is not forbidden), and
Oa — Pa (any atomic action o which is obligatory is permitted).! The un-
derlying logic is CPC. In the system DL the closure principle is annulled
and replaced by the weaker axiom Pa — —F« (any permitted atomic action
« is not forbidden) while Kant’s Principle is retained. The completeness the-
orems for these two systems are provided. The semantics for DL and DL*
is based on elementary action systems as proper semantic units. Obligation
of an atomic action A in a given state u means that A is performable in u
and all options of departing from w by means of performing actions other
than A are blocked (cf. Leo Apostel’s remark: “an act is obligatory, if it is
the only act such that there is no other act equally good or better”; [1],
p. 75).

The above monograph left the problem of the deontology of compound
actions for further scrutiny. Any compound action is viewed as set of finite
sequences of atomic actions. The basic difficulty consists in the apprehension
of obligation of a compound action in a given state u. In this work another
approach to this problem is presented. This approach expounds the idea of
obligation as a commitment to attainability of definite goals. This is the task-
oriented deontology: a compound action is compulsory in virtue of the fact
that it is designed as a set of sequences of atomic actions whose consecutive

! In discussions in ethical theory, the above law is called Kant’s Principle or Kant’s
law. It is usually formulated in the agential form:

Anything morally obligatory for an agent must be within the agent’s ability.
See [7], p. 62.
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implementations lead from initial states to some expected or planned final
states.?

The conceptual framework is semantically modeled on action systems de-
fined as in [2]. This approach is closer to finite automata, where, commencing
with some initial state, the automaton reaches a final state by means of per-
forming strings of atomic actions labelled by the symbols of the alphabet
3. inherent to the automaton. The set of words accepted by the automa-
ton (i.e., the regular language accepted by the automaton) is treated as the
compound action that is compulsory.

This approach is also close to propositional dynamic logic, because ac-
tion systems are in fact special multimodal Kripke frames. As is known,
dynamic logic stems from the theory of computer science, where it is used
to prove correctness properties of computer programs. A computer program
is a sequence of actions of a certain kind. The paper by Meyer [10] presents
a deontic logic of actions that is motivated by dynamic logic. The approach
presented in this paper differs substantially from that of Meyer both with
regard to syntax and semantics of the pertinent logical systems. The prob-
lem of finding tangent points between the algebraic structure of compound
actions presented here and the algebra of actions in the sense of Meyer needs
careful scrutiny.

This paper is a kind of a companion piece to the monograph [2]. It is
also a sequel to the paper [3]. Some deontological issues, especially those
concerning compound actions, that were merely outlined in the monograph,
are presented here in a more systematic way in the form of a coherent and
strict logical system |=. This system is semantically defined by providing
its intended models in which the role of actions of various types (atomic, se-
quential and compound ones) is accentuated. Since the consequence relation
= is not finitary, other semantically defined variants of = are defined. The
focus is on the finitary system |=; in which only finite compound actions
are admissible. An adequate axiom system for |=¢ is defined. The strong
completeness theorem is the central result. The role of the canonical model
is emphasized.

2 Cf. the following short propaganda passage from the newspaper Pereslavl Week
from the Stalinist times. The text reads: “The plan is the law, fulfilment is duty, over-
fulfillment is honor!”.
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1. Task-Oriented Obligations and Their Models

This section is motivated by the fact that usually actions undertaken by
people are purposeful and subordinated to reaching a definite goal.

The goal is often difficult to define. A good example is tax collection. The
tax system is subjected to numerous conditions: economic, political, social,
legal, etc. The tax system in a modern state is to make state institutions be
able to act; on the other hand, it is supposed to guarantee satisfaction of the
principles of the so-called social justice (whatever it means), secure covering
of old age pensions, health insurance, benefits for the unemployed, and the
like, at last—is to cause all or selected sectors of economy to develop in such
a way that they should put only a minimum burden on the state central
budget. These tasks are hard to reconcile. The tax system is usually very
nuanced and can be easily spoiled with hasty decisions, especially ones of
the populist character. Elaboration of it is typically a product of top class
specialists in this domain.

While elaborating the tax system, one can discern—in the background—
certain values which can be very different. In democratic countries, beside
the above-mentioned principles of social justice, which are usually articu-
lated in the fundamental legal acts and/or norms of social co-existence that
have been worked out through centuries, values resulting in equality in the
eyes of law, economic freedom, proper distribution of state’s incomes, etc.,
are truly significant ones. These are obvious and well-known questions and
there is no need to dwell on them here any longer.

A sequence of actions is a principal unit that is relevant from the view-
point of purposeful action. While the conception of action performability
presented in [3] abstracts from its teleological aspects, they are explicitly
articulated in this paper as inherent components of the notion of obligation.

Inevitably, assuming performability of a sequence of actions, one must
guarantee performability of each of its links. However, performability of
each link is subjected to a certain purposeful intention. The basis of the
conception presented in this paper is that purposeful actions derive from a
state of things called the initial state and lead to certain intended states
of things called final states. Agents have at their disposal an established
repertoire of available simple (or atomic) actions. Combining them in the
right manner in finite strings of atomic actions and performing them consec-
utively, they attain, if possible, a final state. The final states can be attained
in many ways through executing different sequences of simple actions. All
such sequences, when collected together, form a compound action. Following



10 J. Czelakowski

automata theory, we shall call them accepted words. The compound action
consisting of all accepted words of atomic actions is therefore an obligatory
action. This compound action, say A, has to be performed so that starting
from the initial state, one reaches a final state. But not all sequential actions
belonging to A are compulsory. To achieve the goal one selects a string of
atomic actions belonging to A which he/she adheres to and then performs
them. This selected sequence is obligatory. For example, studying at a uni-
versity is not compulsory. It is merely a permitted action if some conditions
are met as e.g. having the high-school exit exam. But in the initial state in
which one is enrolled in a university, studying becomes an obligatory, com-
pound action. Some strings of simpler actions such as enrolling in various
courses, passing the final exams, paying a tuition etc. are then obligatory
until earning the diploma, which is the final state.

Each task is defined by specifying two sets of states: the set of initial
states, and the set of final states. Actions subordinated to a definite task
are defined as sets of finite sequences of atomic actions whose consecutive
performances lead from initial states to final states. Reaching a finite state
terminates a sequence of atomic actions and marks implementing the task.

The semantic apparatus we introduce here is similar, though more com-
plicated, to the one defined in [3].

Let (X*, e, ¢e) be the free semigroup freely generated by a nonempty set
of generators Y. Thus, formally, the elements of ¥* are finite sequences of
members of X. e is the operation of concatenation of sequences. e stands for
the empty sequence.

The elements of ¥ are called symbols of atomic actions while the elements
of ¥* are referred to as sequences of symbols of atomic actions or simply
symbols of sequential actions. We shall simply refer to the elements of 3* as
to words. Each symbol a € ¥ is treated as a word of length 1. Therefore we
may assume that ¥ C ¥*.

From the linguistic viewpoint, the set ¥ is an alphabet and the members
of ¥* are (finite) words over . (Here the set X is allowed to be infinite.)
©(X*) is the power set of ¥*. Thus, the elements of p(X*) are subsets of X*.
From the linguistic perspective, the elements of p(3*) are formal languages
over the alphabet 3. But here we adhere to the terminology of action theory
and call the elements of p(X*) symbols of compound actions over X. Accord-
ingly, the symbols of compound actions are the same objects as languages
over ..

Some notation. The elements of ¥ will be marked as a, b, ¢, d with indices
if necessary. Sequential actions (words) will be denoted by z,y, z,w with
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indices if necessary. In turn, compound actions will be marked by capital
letters A, B, C etc.

Models

DEFINITION 1.1. A model is defined as a triple
(W, V, VR),

where

e W is a non-empty set, called the set of states,

e V is a mapping assigning to each symbol a € ¥ a binary relation V(a)
defined on the set W.

e Vy is a mapping assigning to each symbol a € ¥ a binary relation Vi (a)
such that Vg(a) C V(a). |

V(a) is called the atomic action of a on the states of W and any pair
(u,w) € V(a) is called a possible performance of V (a).

Although for each a, Vi(a) is also a relation on W, it is not qualified as
an atomic action; its role is different. Speaking metaphorically, the mapping
VR defines the limits of freedom in the model M this remark can be made
precise—see [2]. Vi imposes limitations of a definite type on the possibility
of direct transitions from some states to others. A great variety of possible
interpretations of Vg is obtained, choosing—in a proper way—interesting
classes of action systems. To mention only the most important of these in-
terpretations: the mapping Vi can be interpreted as a physical possibility of
a transition from some states into others, or as psychological admissibility
for a given man, or as compatibility with a social role, or as compatibility
with labour regulations of a given institution. Apart from physical limi-
tations, it is often necessary in some action systems to take into account
restrictions that are imposed by law and its regulations. These are deontic
action systems—some actions in such systems are legally forbidden, e.g., on
the strength of traffic regulations, though they may be physically feasible
(actions in fraudem legis). Vi may also reflect religious commitmens. Each of
the mentioned interpretations is bound with a selection of certain mapping
Vg defined on an appropriate set of states .

In the context of deontology, the elements of Vi(a) are called permitted
performances of the action V' (a). Thus, if (u,w) € Vgz(a), this pair is called
a permitted performance of V(a) (in the sense of Vg). The binary relation
Vr(a) is also called the resultant relation of the action V' (a) in the model.
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A model (W, V, Vg) is deterministic if for every a € ¥, the relation V(a)
is a unary total function, i.e., it is a function whose domain is W. In any
deterministic model, every relation Vi(a) is a partial function being the
restriction of V' (a) to a non-empty subset of W.

Deterministic models play a significant role in the presented approach,
because their logical power is the same as the class of all relational models.
More specifically, the logical system = we shall introduce is semantically
defined by means of all relational models. But in view of Adequacy Theo-
rem (Theorem 3.12), = is characterized by a single model M., the canonical
model of |=. The model M, is deterministic. Consequently, |= is also com-
plete with respect to the class of determininistic models.

V' is inductively extended on the set X* of words by means of the com-
position of binary relations. It is assumed that for the empty word e, V (e)
is the diagonal of W,

V(e) = OW
Then, for any word z € >* and any a € 3,
V(za):=V(zx)oV(a),

where o is the composition operations of relations. Thus, if x = ay ... am,
then

V(z) =V(a)o---oV(am),

that is, u V(z)w if and only if there exists a sequence of states uj ... un,
with u,, = w such that uV(ay)uy ... um—1V(am) tm.

V(x) is called the action of the sequence = on the states of .

According to the above definition, two symbols a and b of atomic actions,
when combined into the word ab, determine the binary relation V(a)o V' (b),
the composition of the relations V(a) and V(b).

V' is extended onto any arbitrary subsets A C ¥*:

V(A) = U{V(ﬂ:) cx € A}

V(A) is also a binary relation on W.

If the set A is empty, then V(() is the empty relation on W. If A = ¥*,
then V(X*), the set-theoretic union of the relations V(z), z € ¥£*, may be
a proper binary relation on W.

We also define:

Vr(e) is a subrelation of the diagonal V'(e),
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and for any non-empty word x € ¥* and any a € X,
Vr(za) == Vg(x) o Vr(a).

Thus if x = aj ... a;, then u Vg(x) w holds if and only if there is a sequence
of states uj ... u, with u,, = w such that u Vg(ai)uy ... umn—1 Vr(am) um.

The mapping Vg is extended onto arbitrary subsets of ¥*. For any set
A C ¥* we define:

Vr(A) = U{VR(:E) cx € A}

Vr(z) is called the resultant relation of the sequence x and Vg(A) is the
resultant relation of the compound action A. [ |

DEFINITION 1.2. A task-oriented model is any quintuple of the form M =
(W,V, Vg, I, F), where (W, V,Vg) is a model and I, F are subsets of W.

I is the set of initial states and F is the set of final states. The pair (I, F)
is called a task assigned to the model (W, V, Vg). |

NOTES. 1. The definition of a task is borrowed from automata theory. In the
description of an automaton one distinguishes the initial state and the set
of final states. Here it is assumed that there may be more than one initial
state.

If one considers such a compound action as baking a bread, then I spec-
ifies initial conditions and ingredients that are relevant to this action such
as all purpose flour, seasonings and various components as well as the type
of oven in the bakery and its adjustment etc. The set F' specifies types of
bread to be baked like rye bread, brown bread, baguettes etc. Other factors
are irrelevant here.

2. Real-life situations are more involved than the ones abstractly mod-
elled by means of the above set theoretic constructs. In multi-agent systems
usually one specifies a finite family of sets of initial states, each set se-
lected for each agent who initializes actions. The agents perform sequences
of concerted actions, which collectively form a complicated graph of mu-
tual dependencies among the agents and their actions. In simple cases these
graphs are finite trees, where each leaf is labelled with an initial set, and the
root of the tree is labelled by the set of final sets, cf. the notes on agency in
Final remarks. ]

Deontology

The list of the definitions of deontic operators we shall give is parallel to the
way formal languages are introduced in linguistics: one first defines words
over an alphabet, and then languages as sets of words. Accordingly, we first
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define the deontic operators on sequential actions and then on compound
actions, the latter viewed as sets of sequential actions. This distinction is
motivated by the different notions of obligation and permission when applied
to sequential and compound actions.

Throughout this section M = (W, V, Vg, I, F) is a task-oriented model.
The notion of a permitted sequential action V' (z) is defined as follows.

DEFINITION 1.3. Let x be in ¥*. The sequential action V' (x) is permitted in
a state uw € W if and only if there exists a state w such that u Vg(x)w.

In particular, V' (e) is permitted in u if and only if u Vg(e) u.

Thus, in the developed form, if x = a; ... ay,, then V() is permitted in u
if and only if there exists a finite path of transitions u Vg(a1) us Vg(asz). ..
Um VR(@m) Um+1 between states such that u = w;. Since Vgi(a;) C V(a;),
each transition u; Vr(a;) u; 41 is accomplished by means of the atomic action
V(a;) for i =1,...,m. (The task (I, F) does not intervene in the definition
of permission.) Accordingly, the empty word e is permitted in u if and only
if uVg(e)u. |

DEFINITION 1.4. A compound action V(A), where A C ¥*, is permitted in
a state w if and only if for some sequence x € A, the action V (x) is permitted
in u. [

The above definition represents “minimalistic” attitude towards the per-
mission of compound actions—a compound action is permitted in a state
in virtue of the fact that merely some string of atomic actions belonging
to V(A) is permitted in this state. A stronger standpoint is possible, viz,
one may require that all sequences of atomic actions belonging to V(A) is
permitted at this state. This option, though legitimate, is not discussed in
this work.

DEFINITION 1.5. A sequential action V' (z) is obligatory in a state u if u € T
and there exists a state w € F' such that u Vg(x) w.

Thus if + = ay...a,,, this means that there exists a finite path of
transitions uq Vg (a1) uz Vi(az) ... um Vr(am) um+1 between states such that
u=wu; €[ and w = up41 € F. (The transition w; Vg(a;) u;+1 is thus ac-
complished by consecutively performing the atomic actions V(a;) for i =
1,...,m.)

It follows that the empty word e is obligatory in u if and only if u € INF
and u Vg(e) u. |
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The above definition involves the task (I,F") associated with the model M.
Thus sequential actions are obligatory only at initial states and, when per-
formed, they lead to a final state. There may be several sequential actions
x that are obligatory at some state u € I and that lead to states in F'.

Since the notion of an agent as well as spatio-temporal situational com-
ponents of actions are not incorporated into the above formalism, it does
not make sense to say here that an agent is obliged to perform several oblig-
atory sequential actions simultaneously. This issue of agency of compound
actions is not analysed in this paper at length, see Final Remarks below.

As each atomic action a € ¥ qualifies as a sequential action of length 1,
it follows that V' (a) is obligatory at w if and only if u € I and for some final
state w € F' it is the case that u Vz(a)w. n

NOTE. There is an analogy between the above notion of obligation of V'(z)
for finite words and the notion of acceptance of a word by a finite automaton.
Definition 1.5 does not imply that if V(x) is obligatory in some state u, then
for any non-empty prefix y of x, the action V(y) is obligatory in u as well.
Thus obligation is not inherited by non-empty prefixes of an obligatory word.
The same phenomenon occurs in finite automata—if a word is accepted, then
not all prefixes of this word are accepted.

One may also consider a stronger notion of obligation that takes into
account the above inheritance of obligation. This would result in introducing
a hierarchy of (sub)tasks of the task (I, F) for the obligatory action V' (z).
Thus if y is a prefix of x and = = yz, then the final set of subtask for V(y)
would be included in the initial set for the subtask for V(z). The semantics
for such hierarchical obligations could be defined by means of a suitable
modification of the models discussed in this paper. This option, though
interesting, is not discussed here. [

DEFINITION 1.6. A compound action A over X is obligatory in a state u if
and only if some sequential action x € A is obligatory in u. [

Note that every sequential or compound action which is obligatory in u
is permitted in u. Therefore the above semantics of deontology of actions
validates Kant’s Principle. According to Definition 1.6, V(A) is obligatory
in a state u if and only if for some word z € A, the sequential action
V(x) is obligatory in u. The following example illustrates this definition.
Suppose we are given a compound action A as e.g. Learning calculus 166 to
pass the erxam. If this action is obligatory in some state prior to the exam
date, each agent of this action (a student) has, according to the syllabus,
a variety of logically legitimate paths to follow which would lead him from
the current state of his mathematical knowledge to the state in which he gets



16 J. Czelakowski

a positive grade in the exam. A thus consists of many sequential actions. He
selects one of many alternative plans of learning calculus—he may first learn
volumes done in washers and shells, arc length and areas of surfaces, work
and centres of mass, integration by parts, then learn limits of sequence and
functions, infinite series, indefinite integrals etc. There are various options
available here. It is up to him which path he chooses in accordance with his
preferences. Each such a path represents a word from the language forming
the above compound action. Thus, though this action is obligatory to him,
only one path (word) is obligatory, viz. the one he selects. It would be an
absurdity to claim that all conceivable paths (words) are obligatory for him
in a given state.

If B is a compound action being a singleton, B = {z} for some word =z,
that is obligatory, then the agent of B cannot of course choose a sequence
in B, but proceeds according to the string of actions . We shall later return
to the issues the above definitions evoke.

The issues of agency and obligation are correlated but these links are
not expressible in the present formalism. (Agents of an action belong to
the situational envelope on action systems; but in this work the latter is
reducible to the set of states of the system. States do not involve agents.)

Suppose that I have a strict tutor who selects exactly one path = € A
I should follow to learn calculus 166. The decision of the tutor is the source
of my obligation to the sequential action z—this action is obligatory and
I am the agent of . Does it imply that I am also the agent of A? Intuitively
yes, because I also perform A. On the other hand, suppose I have a less
demanding tutor who advises me to select only one path y in A at my
discretion to learn calculus 166 (because any sequence in A leads from the
set of initial states to the set of final states.) In this case I am the agent of A.
I am also the agent of the sequential action y € A chosen by me. This action
is also obligatory. There is however a certain semantic difference between
the first and the second situation. We thus see that mutual relationships
holding between agency and obligations are not straightforward; they are
open to further scrutiny.

For each initial state u € I there exists the largest compound obligatory
action, viz., the action V' (A, ), where A, consists of all words x such that
V(x) is obligatory in w:

Ay ={r X : (FJwe F)uVg(u)w}.

It is not difficult to show that if W and X are finite sets, A, is a regular
language in the sense of formal linguistics. (To define languages from other
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levels of the Chomsky hierarchy, one must incorporate situational compo-
nents into the above picture of action and work not with elementary action
systems of the form (W,V,Vg) but with more involved situational action
systems in the sense of [2].)

One may argue that the above picture of obligation could be modified by
introducing a preference relation on the set A r of all sequential actions x
starting in an initial state and ending in the set of final states:

AI,F = U Au
uel

The preference relation need not be a linear order. The most preferred se-
quential actions, i.e., maximal elements of A, would become obligatory.
It would be then plausible to say that a compound action A is obligatory in
a state u if u € I and A contains a best preferred sequential action x € A,,.
Such a solution is justified by the fact that when working with various
performable strings of actions involved in action plans, one usually prefers
sequences which are are less laborious and more economical. This pragmat-
ical standpoint would require a suitable modification of Definition 1.6. The
above option is not analysed in this paper.

DEFINITION 1.7. A sequential action V' (x) is forbidden in w if and only if it
is not permitted in wu.

A compound action V(A), A C ¥*, is forbidden in w if and only if all
sequential actions V' (z), x € A, are forbidden in u. [

We assign to each sequential action V(z), where z € ¥*, the proposition
PV (z) consisting of all states u € I such that V(z) is permitted in u.
Analogously, for each compound action V(A) with A C ¥*, we define the
proposition PV (A) consisting of states u € I in which V(A) is permitted.

DEFINITION 1.8.
(pl) we PV(x) <y V(x)is permitted in u
(& there exists a state w such that u Vg(x) w).
(p2) we PV(A) <4 V(A) is permitted in u
(& there exists a word « € A such that v € PV (x)).

It follows that
(1) PV(A)=U{PV(z):z € A}.
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According to (1), to permit the compound action V(A) it suffices to permit
only one of its instances V(x), where z € A.

If A =0, then PV(0) := (. If A = {e}, then PV(e) := {u € W :
uVg(e)u}.

For each symbol a € X, the proposition PV (a) coincides with the domain
of the relation Vz(a), and PV (x) is equal to the domain of Vg(x).

Analogously, we also assign to each sequential action V' (z), where x € ¥*,
the proposition OV (z) consisting of all states u € I such that V(z) is
obligatory in u. Moreover, for each compound action V(A) with A C ¥*,
we define the proposition OV (A) consisting of states u € I in which V(A)
is obligatory.

DEFINITION 1.9.
(0l) we OV(x) g V(x)is obligatory in u

(& w € I and there exists a state w € F' such that u Vz(z)w),
(02) we OV(A) <4 V(A) is obligatory in u

(& there exists a word x € A such that u € OV (x).

|
It follows that
(2) OV(A) =U{OV(x):x € A}.
As to prohibited actions, we define:
DEFINITION 1.10.
(f1)  we FV(x) <4 V(x) is forbidden in u
(& V(z) is not permitted in u).
(f2)  we FV(A) 4 V(A) is forbidden in u
(& for every word x € A the action V (z) is forbidden in u).
|

Thus
(3) FV(z) = W\PV (z), for all z € £,
and
(4) FV(A) ={FV(z):xz € A}.
It follows that
FV(A) = [{W\PV(z) :x € A} =W\ J{PV(2) : 2 € A} = W\PV(A).
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Thus the closure principle in the semantic form
(5) FV(A) = W\PV(4),
holds for all A C ¥*.

NoOTE. We shall refer to the obligation of compound actions in the sense
of Definition 1.6 to as J-obligation due to the occurrence of the existential
quantifier 3 in the definiens. Analogously the notion of permission in the
sense of Definition 1.4 is referred to as 3-permission, and the prohibition in
the sense of Definitions 1.7 is marked as V-prohibition.

The above remarks point out other options according to which one may
define deontic operators on compound actions. E.g., a compound action
V(A), A C ¥*, is obligatory in a state u if all sequential actions V(z),
x € A, are obligatory in u. This form of obligation is referred to as the V-
obligation due to the occurrence of the universal quantifier V in the definiens.
If obligation is considered as the V-obligation, formula (2) turns into

OyV(A) =[OV (x):z € A}.

By way of analogy, we may also define permission as the V-permission:
a compound action V(A), A C ¥*, is V-permitted in a state u if all sequential
actions V(z), ¢ € A, are permitted at u. Then formula (1) is replaced by

PyV(A) = {PV(z): z € A}.
In turn, the formula
FsV(A) = J{FV(2): 2 € A}

also represents a form of prohibition: V(A) is prohibited on account of the
fact that FV (z) is prohibited merely for some word x € A.

It is clear that OyV(A) C OV (A), PyV(A) C PV(A), and FV(A) C
F3V(A), for all A C ¥*.

If obligations, permissions and prohibitions are understood as above, the
closure principle also holds for compound actions. Indeed, in virtue of the
above definitions we have that

P,V (A) = W\F3V(A),
because W\F3V (A) = W\ {FV(z) :x € A} =({W\FV(z) :x € A} =
({PV(z):z € A} = PyV(A).
But we also may have mixed options: some deontological operators are
strong and some are weak.
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We have therefore an abundance of options. Which triple of deontological
operators to choose for compound actions? There are altogether 8 options
available here. We mention some:

1. J-obligation, 3-permission, V-prohibition
2. V-obligation, V-permission, 3-prohibition
3. F-obligation, V-permission, V-prohibition
4. F-obligation, V-permission, 3-prohibition etc.

Option 1 is adopted in this paper. Option 4 is a good alternative. As
mentioned above, each of the options 1 and 2 entails both the closure prin-
ciple for compound actions and Kant’s Principle. In the other options, the
closure principle for compound actions may be invalidated. In some options
even Kant’s Principle is rejected, e.g., for V-obligation and 3-permission. m

Here is yet another example shedding some light on the problem of choos-
ing right options in some situations. We consider the compound action
termed The morning routine of an adult man. It consists of finite sequences
of simpler actions. (The actions involved into the definition of a routine are
treated as types.) This compound action is performed in the initial propo-
sition which is conventionally named “in the morning, after getting up”
(A definite morning hour is not specified here.) The routine encompasses
finite sequences of simpler actions such as: shaving, taking shower, putting
on cosmetics etc. Yet another sequence encompasses other actions which
are rather seldom performed as e.g. cutting nails, or trimming hair. Some
simple actions may be performed in different orders, e.g. first shaving and
then taking shower, or conversely, but they are not altogether permutable,
due to physical limitations. In other words, not all sequences of atomic ac-
tions are meaningful as e.g. taking shower first and then using the lavatory.
The task is clear—from the initial proposition one wants to achieve the final
proposition in which the morning routine is finished. Generally, both the
initial and final propositions are not single states. The action The morning
routine of an adult man is obligatory in the initial proposition (unless the
agent is a slovenly person). But this obligation is of the weak form here: the
man is obliged to perform only one deliberately chosen by him sequence of
simple actions that leads from the initial to the final proposition. It would
be an absurdity to claim that he is committed to perform in the morning all
possible sequences of simple actions of the morning routine. On the other
hand, not all sequences of simple actions included into the morning routine
are permitted but only those that are are physically feasible or meaningful.
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Summing up, we may say that in this example the obligation, permission
and prohibition of the morning routine (treated as a compound action) are
all taken in the sense of Definitions 1.4, 1.6, and 1.7. Eg.—the morning rou-
tine is forbidden if none of the sequences belonging to it can be performed.
This example favors the first of the listed options. Consequently, the closure
principle in this case is preserved.

2. The Language of Action Deontology and Its Semantics

We first define the language L of action deontology. It is assumed that X is
a countable set of symbols. It follows that >* is countably infinite.
Atomic formulas are expressions of the form

(i) O(x), P(x), F(x),
where x € 37,
(i) O(A), P(A), F(A),

for any set A C X*.

Note that there are uncountably many atomic formulas of the form (ii),
because the set %* is countably infinite.

As each letter a € ¥ is qualified as a word of length 1, the group (i)
encompasses all atomic formulas O(a), P(a), F(a), a € ¥, and the follow-
ing three formulas O(e), P(e), F'(e), where e is the empty word. In turn,
(ii) encompasses formulas in which A is the empty set.

Compound formulas are built from the above atomic formulas by means
of applying the Boolean connectives — and —. The connectives such as V, A
and < are defined in the standard way as appropriate abbreviations.

L is the set of all formulas.

There are no extra propositional variables. Thus the above language L de-
fines Boolean interrelations holding merely between deontologically
“loaded” formulas only. (But one may expand the vocabulary of L by en-
riching the set of atomic formulas by a countably infinite list of propositional
variables pg, p1, ... and then form compound formulas by applying the con-
nectives — and — as above.)

The grammatical resources of L are very limited; the grammar of L is
too poor to recursively express the definition of P(z) for x € ¥* in terms
of the constituents P(a), where a occurs in z, in the form of a plausible
logical axiom. E.g. it is not possible to define P(za) in terms of P(x) and
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P(a) without resorting to a linguistic counterpart of the operation of com-
position of relations. Such a connective is absent in the vocabulary of L.
A similar remark applies to the definition of O(x) for x € ¥*. As a result,
the words of ¥* are taken as smallest grammatical units in L formulas, and
not the symbols of 3. Accordingly, the formulas of shape (i) are defined as
atomic.

Interpretations and Truth
We define the notion of truth of formulas of L in models. The notation
MukEo

means that o is true in a task-oriented model M = (W, V, Vg, I, F) in a
state u € W.

DEFINITION 2.1.
(1). Let = be a word in 3*.

M,u = P(z) g u € PV(x), ie, the action V(z) is permitted in u in M.
M,u = O(x) 4 u e OV(z), ie, the action V(z) is obligatory in w in M.
M,u E F(z) <4 v e FV(x), ie, the action V(z) is forbidden in u in M.

(2). Suppose A C ¥*.

M,u = P(A) &4 ue PV(A), ie, the action V(A) is permitted in w in M.
M,u = O(A) 4 ue OV(A), ie, the action V(A) is obligatory in u in M.
M,uE F(A) <4 u e FV(A), ie, the action V(A) is forbidden in w in M.

The definition of M, u = is extended onto compound formulas as in clas-
sical logic. Thus

M,u 'k ¢ — 1) &g it is not the case that M, u = ¢ or M, u = ;
and
M, u E —¢ <4 if it is not the case that M, u = ¢.
A formula o is true in the model M = (W, V, Vg, I, F), in symbols:
MEOo

if and only if M, u |= o for all w € W; we then also say that ¢ is valid in the
model M.
o is logically valid if it is valid in every task-oriented model. [ |
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The Logical Consequence =

The logic is semantically defined as a consequence relation = operating on
the set of all formulas of L in the following way. Let X be a set of formulas
of L and o a formula. We say that o logically follows from X, in symbols:

XEo

if for every task-oriented model M = (W, V, Vg, I, F') and every state u € W,
it M,u = ¢ for all ¢ € X, then M,u = o. (The “big” symbol | should
not be confused with the “small” symbol k, because they bear different
meanings.)

= satisfies the standard conditions imposed on consequence relations
(see e.g. [17]). Moreover |= validates the tautologies of classical logic ex-
pressed in L.

= satisfies the Deduction Theorem (DT): for any set X of formulas and
any formulas ¢, ¥:

(DT) XE¢— ¢ if and only if X U {¢} =1.

A set X of formulas of L is inconsistent in the sense of = if and only
if X |= ¢ for all formulas ¢, equivalently, X = ¢ A —¢ for some (equivalently,
for all) ¢; otherwise X is called consistent. A formula o is inconsistent (resp.
consistent) if the set {o} is inconsistent (consistent).

It is easy to see that o is |=-inconsistent if and only if M, u = o for no
model M and no state u of M.

A set of formulas X is closed in the sense of =, shortly: X is|=-closed,
if X =0 implies 0 € X, for every formula o. =-closed sets are also called
theories of |=. They collectively form a closure system on L, denoted by

Th(}).

Some Tautologies of =
If x and y are words in X*, then the notation
Ty

means that x is a prefix of y, i.e., there exists a word z such that zz = y.
It is easy to see that if e # x < y, i.e., z is a non-empty prefix of y, then

P(y) — P(x)

is a tautology of . In particular, for every non-empty word x € ¥* and
any symbol a € ¥, the formula

P(xza) — P(z)
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is a tautology. But O(y) — O(z) is not a tautology whenever e # = < y.
For any subset A C ¥* and for any word = € A the formulas

P(z) — P(A) and O(z) — O(A)
are validated by =, i.e., they are tautologies of |=. Kant’s Principle
O(A) — P(A),
is also a tautology. In particular, for any word x € X,
O(x) — P(x),

is a tautology. The formula —=P(0) is also a tautology.?
If A is a non-empty finite set of words, A = {z1,...,2,}, then the for-
mulas

P(A) < P(x1) V-V P(zy),
O(A) < O(x1) V-V O(xy),

are validated by the semantic consequence . Moreover for any (possibly
infinite) subsets A, B of ¥*, = validates the formulas

P(AUB) < P(A)V P(B),0(AU B) « O(A) vV O(B).

In the framework of some deontic action logics, where one says about
parallel executions of actions by an agent, the last formula is sometimes
referred to as a version of Ross Paradox. Here it is not a paradox, because
the notion of an agent is not involved in the adopted semantics and the
formula, according to its meaning, does not refer to parallel performances
of the actions A and B.

3. Ultrasets and the Canonical Model

Ultrasets

A Lindenbaum set of |= is a maximal consistent set A in the sense of |=.
Every Lindenbaum set A contains all instances of logical axioms of CPC
as well as specific action tautologies.
By maximality, o V7 € A if and only if 0 € A or 7 € A, for all formulas
o, T; equivalently, mo € A if and only if o € A, for any formula o. Moreover,
also by maximality, each Lindenbaum set A is =-closed.

3 The formula P(e) is not a tautology. It is valid in all models in which the relation
Vr(e) is the diagonal.
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It follows from maximality of A that for every word = € X*, either
P(z) € A or =P(z) € A. We also have that for every word x € ¥*, either
O(z) € A or =O(x) € A. In particular, O(e) € A or =O(e) € A and each
option is possible here.

DEFINITION 3.1. A set A of formulas of L is called an wiltraset of = if and
only if A is a Lindenbaum set of = with two additional properties holding
for all sets A C X*:

(1) O(A) € A & O(x) € A for some word x € A,

(2) P(A) e A& P(z) € A for some word z € A. u

Since the implications O(x) — O(A) and P(z) — P(A) are |=-valid, for
all non-empty sets A C ¥* and all z € A, we see that in (1) and (2) only
the implication (=) matters.

Every ultraset, being maximal consistent, is |=-closed.

Although in the above formulas the variable A ranges over subsets of ¥*
and therefore it may be regarded as a second order variable, it is not subject
to quantification on the level of the language L—there are no second order
quantifiers in L bounding subsets of ¥*. In fact, in the notation “a € ¥” the
role of the symbol a is twofold: a may be treated as a definite element of X:;
but it can also be treated as a variable ranging over the elements of . An
analogous remark applies to the notation “A C ¥*”. This notational duality
is characteristic to formal linguistics (see e.g. [8]).

The following fact immediately follows from the above definition:

COROLLARY 3.2. A subset A C L is an ultraset of = if and only if it is
consistent and satisfies the following conditions:

(1) For any o,7 € L,

oNTESoeAand T e A,
(2) For any o € L,
c e As o A,
(3) For any non-empty set A C 3%,
O(A) € A = O(x) € A for some word x € A,

(4) For any non-empty set A C X,
P(A) € A= P(x) € A for some word x € A.
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Ultrasets exist. We have:

PROPOSITION 3.3. Let (W,V,Vg,I,F) be a task-oriented model and u a
state in W. Define

Ay ={oceL:Muko}.
Then A, 1s an ultraset.
PrOOF. Straightforward. [

In fact, every Lindenbaum set of |= is an ultraset. This fact follows from
the following observation:

THEOREM 3.4. For every set of formulas A, the following conditions are
equivalent:

(i) A is a Lindenbaum set of =;
(il) A is an ultraset set of = ;

(iii)  There is a model (W, V, Vg, I, F) and a state u in W such that
A=A,.

PRrROOF. The implications (iii) = (ii) and (ii) = (i) are obvious.

(i) = (iii). We need some facts from the theory of deductive systems.

By a base for Th( =) we shall understand any family B C Th( =) such
that every theory of = is the intersection of some subfamily of B. It follows
from the definition of |= that the sets A, defined as in Proposition 3.3 (with
u ranging over all states of arbitrary models M) form a base for Th( |=).

Now let A be a Lindenbaum set of . Since A is |=-consistent and
closed, it is the intersection of a non-empty family of sets of the form A,.
But inasmuch as A is maximal, A is equal to exactly one set of the form A,,.
This shows that (iii) holds. |

It follows from the above theorem that the family of ultrasets forms a
basis for the closure system Th(|=) of all closed theories of |=, i.e., for
every theory X € Th( |) there exists a family {A; : i € I'} of ultrasets such
that X = ();c; Ai. Another corollary is that ultrasets are the only maximal
consistent sets of the consequence relation |=.

Every ultraset is fully determined by the set of atomic formulas that are
contained in it. This follows from the following fact:

PROPOSITION 3.5. For any ultrasets A and A, the following conditions are
equivalent:

1) A=A
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(2) (Vz e ¥*)(P(z) e A< P(x) € A') and
(Vz € ¥*)(O(z) € A & O(x) € A).

PrOOF. The implication (1) = (2) is immediate. To prove the reverse im-
plication, assume (2) and then prove by induction on complexity of formulas
that for any formula o € L, 0 € A & o € A’. (This proof requires Corol-
lary 3.2.) |

A function f : ¥* — {0,1} is said to be antitone on ¥* if f(y) = 1
implies f(z) = 1 whenever x < y. In other words, f is antitone if f(x) =0
implies that f(y) = 0 for all words y prefixed by x.

Let f and g be antitone functions defined on the set ¥* with values in
{0,1} such that ¢ < f. (g < f means that g(z) < f(z) for every word z.)

For each word x the formulas f(x)P(xz) and g(x)O(z) are defined as
follows:

Let H be the set of all pairs (f, g) of such functions. (Thus g < f for all
(f,g) € H.) For each pair (f,g) € H, we define:

O(f,9) :={f(x)P(z) :x € ¥} U{g(x)O(z) : x € ¥*}.

According to the above definition, for every atomic formula of the form
P(xz), either P(x) € ®(f,g) or =P(x) € ®(f,g). Similarly, for every atomic
formula of the form O(x), either O(x) € ®(f,g) or ~O(x) € ®(f,g). In
virtue of the fact that ¢ < f we also have that if O(z) € ®(f,g), then
P(z) € ®(f,g) and ~P(x) € ®(f,g) implies ~O(z) € ®(f,g), for all words
x. ®(f,g) is called a complete set of atomic or negated atomic formulas.

THEOREM 3.6. Each set ®(f,g) and therefore each pair (f,g) € H, deter-
mines a unique ultraset that contains ®(f,g).

PRrROOF. The uniqueness of the ultraset generated by ®(f,¢g) follows from
the above proposition. This ultraset is denoted by A(f,g).

The critical property is the consistency of each set ®(f,g) with respect
to the logic |=. This fact implies the existence of A(f,g).

To handle this problem one may suitably modify the construction of the
model presented in the subsection Consistency of complete sets of Section 4
in [3]. We shall omit the details. We shall directly pass to the construction



28 J. Czelakowski

of the canonical model for |=. This construction gives an insight into the
problem of consistency of complete sets. [

For every ultraset A, there is a unique pair (f,g) € H such that A =
A(f,g). As the set ¥* is countably infinite, it follows that H is of cardinality
of the continuum. Consequently, there exists a continuum of ultrasets.

Let Ultrasets be the family of all ultrasets of =.

For each word x € ¥*, we define the unary function A(z) on the set
Ultrasets as follows. For every ultraset A,

A(z)(A) := the unique ultraset A’ that includes the complete set
{P(z):z€ X" and P(zz) € A} U{O(z): z € £* and O(zz) € A}.

(cf. [3], Section 4).
In particular, for any a € X,

A(a)(A) := the unique ultraset A’ that includes the complete set
{P(2) : z€ X" and P(az) € A}U{O(z) : z € ¥* and O(az) € A}.

It follows from the above definition and Proposition 3.5 that for the empty
word e:

(3) A(e) is the identity mapping in Ultrasets.

PROPOSITION 3.7. For any words x,y € ¥*, the function A(xy) coincides
with the composition of A(x) and A(y), i.e.,

A(zy) = A(z) o A(y).

PROOF. (=). Assume A’ = A(zy)(A). We claim that A’=(A(z)oA(y))A).
We have:
(1) (Vu € %) (P(zyu) € A & P(u) € A’) and
(Vu € ¥*)(O(zyu) € A = O(u) € A').
We claim that there exists an ultraset I" such that I' = A(z)(A) and A’ =
A(y)(T'). We put:
®:={P(z): P(zz) € AYU{=P(2): =P(zz) € A}U
{O(2) : O(zz) € A} U{=0(z) : =O(zz) € A}.
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® is a complete set. We then define I' to be the unique ultraset that in-
cludes ®. It follows from the definition of I' that
(2) (Vz e X*)(P(zz) € A= P(z2) €I') and
(Vz € ¥*)(O(zz) € A = O(2) €T).
SoT' = A(z)(A).
On the other hand, we also have that A" = A(y)(I"). Indeed, suppose
u € ¥* and P(yu) € I'. Hence, by the definition of I, P(zyu) € A. Then

(1) gives that P(u) € A’. Conversely, assume P(u) € A’. Then by (1),
P(zyu) € A. As AA(z)T, it follows by (2) that P(yu) € T'. Consequently,

(3) (Vu € ¥*)(P(yu) €T < P(u) € A).
Analogously one shows that

(4) (Vu € £)(O(yu) €T < O(u) € A').
So A" = A(y)(T).

It follows that A" = (A(z) o A(y))(A).

(«<). We assume that A" = (A(x) o A(y))(A). We claim that A’ =
A(zy)(A). There exists an ultraset I' such that T' = A(z)(A) and A" =
A(y)(T"). We show that A" = A(zy)(A).

As T'= A(x)(A) we have that:

(a) (Vz € ¥*)(P(xz) € A< P(z) €T") and
(V2 e X*)(O(zz) e A= 0(2) €T
As A" = A(y)(T"), we also have that:

(b) (Vu € %) (P(yu) € T & P(u) € A’) and
(Vu € ) (O(yu) €T < O(u) € A')
It follows from (a) and (b) that
(c) (Vw € ¥*)(P(zyw) € A & P(w) € A') and
(Y € ) (O(zyw) € A  O(w) € A),

showing that A’ = A(zy)(A).
It follows from the above proposition that for any word © = ay ... a,, it is
the case that

(4) Alay...am) =A(a) o0 Alay,).
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The Canonical Model

We set about constructing of a task-oriented deterministic model M, =
(W,V, Vg, I, F) for L, which we shall call the canonical model of |=.

The set of states W of M, is equal to Ultrasets.

The interpretation V' (a) of the symbols a of ¥ is defined as expected,
viz.,

for all a € X.

The relations V(z), € ¥*, are recursively defined in terms of the rela-
tions V' (a) as in Section 1. It follows from the above equality and Propo-
sition 3.7 that V(z) = A(z), for all z € ¥*. Consequently, each sequential
action V(x) is a total function defined on Ultrasets. In particular, V'(e) is
the identity map on Ultrasets.

The compound actions V(A4), A C ¥*, are also defined as in Section 1.
Thus, for any ultrasets A and A’ we have that AV(A)A’ if and only if
AV (z)A’ for some word x € ¥*. V(A) is a binary relation on Ultrasets; it
need not be a partial function. V() is the empty set.

In the next step we define the mappings Vz(a), a € X. It is assumed that
each Vi(a) is the partial function being the restriction of V(a) (= A(a)) to
the set {A € W : P(a) € A}. The last set is the domain of Vi(a).

Vr(x) is then recursively defined for all words x in the standard way. For
the empty word e, the function Vi(e) is the restriction of the diagonal V' (e)
to the set {A € W: P(e) € A}. Thus

A =Vg(e)(A) &4 A=A NP(e) € A.
For any non-empty word z € ¥* and any a € %,
Vr(za) := Vr(z) o Vr(a).
We define the sets I and F' of initial and final states:

I :={A € Ultrasets : (3r € ¥*) O(x) € A},
F :={A’ € Ultrasets : (3A € Ultrasets)(Jz € ¥*) AVg(z) A’}

PROPOSITION 3.8. For any ultraset A and any word x € ¥* the following
conditions are equivalent:

(i) P(z) € A.

(ii) The mapping Vg(x) is defined at A, i.e., there is an ultraset A" such
that A" = Vg(x)(A).
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PRrROOF. Fix an ultraset A. We shall prove the equivalence of (i) and (ii) by
induction on the length of the words x of »*.

Induction base. In view of the definitions of Vg(e) and Vg(a), the con-
ditions (i) and (ii) are equivalent for the empty word e as well as for the
symbols a of X.

Induction step. We assume that (i) and (ii) are equivalent for a word
x € %*. We claim that this equivalence continues to hold for the word xa,
for all a € X.

We shall apply the graph-style notation for functions.

We first assume (ii) holds for xa. Hence that there exist ultrasets ', A’
such that

(a) AVg(x)T Vgy(a) A’

We want to show that P(za) € A.

I'Vg(a) A" in (a) means that
(b) I'V(a) A" and P(a) €T.

AVg(z)T in (a) implies that AV (z)T'. Hence

(Vz e ¥*)(P(zz) e A= P(z) €l).

Putting z = a and applying the second conjunct of (b), we obtain that
P(za) € A. So (i) holds.

Conversely, assume (i) holds, that is, P(za) € A. We claim that there
exists an ultraset A’ such that A Vgz(za)A’. If x = e we are done, by the
definition of Vg(a).

As x is non-empty, the assumption P(za) € A implies that P(z) € A.
As P(z) € A, we have that there exists an ultraset I' such that A Vg(x)T.
We claim that there exists an ultraset A" such that I' Vg (a) A’. We define:

¢ :={P(2): Plaz) €T} U{=P(2): =P(az) €T}U
{0(2) : O(az) e T} U{=0(2) : =O(az) € T'}.

@’ is a complete set. Let A’ be the unique ultraset that includes ®’. It follows
from the definition of A’ that

(Vz € ¥%)(P(az) €T & P(z) € A)
and
(V2 € ¥%)(O(az) e T & O(z) € A).

(
So I'V(a) A’ holds, i.e., A’ is the value of V(a) at I'. But we must also prove
that I' Vg (a) A’, that is, we must show that P(a) € I.
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The proof that P(a) € I' runs as follows. Since A Vg(z)I', we also have
that AV (x)T. AsT'V(a) A’, we therefore obtain that AV (za) A’. The def-
inition of V(za) implies that that

(Vz € ) (P(zaz) € A & P(z) € A').
In particular, for z = e,
P(za) € A & Ple) € A, (c)
But, by the assumption, P(za) € A. It folows from (c) that P(e) € A"
As T'V(a) A’ holds, we have that
(Vz € ¥*)(P(az) e T & P(z) € A').
In particular, for z = e, we get that
P(a) eT & P(e) € A,

Since P(e) € A/, the above equivalence gives that P(a) € I

This concludes the proof that I' Vi (a) A’ holds, showing at the same time
that A Vg(za) A'.
The proof of the proposition is completed. [

PROPOSITION 3.9. In the canonical model M. = (W,V, Vg, I, F), for every
ultraset A and any word x € ¥* the following conditions are equivalent:

G)  OWweA,

(ii) A € I and there is an ultraset A" € F' such that A" = Vi (z)(A).

PROOF. Let x and A be arbitrary but fixed.

(i) = (ii). Assume O(x) € A. Then P(z) € A. In view of Proposition 3.8,
the partial function Vg(z) is defined in A, i.e., there exists an ultraset A’
such that A" = Vi(x)(A). As A € 1, it follows that A’ € F, by the definition
of F. So (ii) holds.

(ii) = (i). Assume (ii). As A € I, we obtain that O(x) € A, by the
definition of I. Hence (i) holds. |
LeEMMA 3.10. (The Truth Lemma). Let A be an arbitrary ultraset in the
canonical model M. of |=. Then for any formula ¢,

(1) M., A E ¢ if and only if ¢ € A.

THE PROOF is by induction on complexity of formulas.
We first prove:

CLAIM 1. For every word x € 3%,
M., A P(z) & P(x) € A.
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PROOF OF THE CLAIM. Let x be an arbitrary word. We have:
M., A = P(z) < (by the definition of k)
A € PV(x) in M. < (by Definition 1.7.(p1))
There exists an ultraset A’ such that A" = Vz(z)(A) &
P(z) € A.

The last equivalence follows from Proposition 3.8.

Cramm 2. For every word x € 3%,
M., A= O(z) < O(z) € A.

PROOF OF THE CLAIM. Let x be an arbitrary word. We have:
M., A = O(x) < (by the definition of =)
A € OV(z) in M. < (by Definition 1.9.(ol))
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A € I and there exists an ultraset A’ € F such that A’ = Vz(2)(A) <

O(z) € A.

The last equivalence follows from Proposition 3.9.

Cramm 3. For every non-empty set A C ¥*,
M., Ak P(A) < P(A) € A.

PROOF OF THE CLAIM. Suppose A is a non-empty subset of ¥*. Then:

M., A E P(A) < (by the definition of )
AePV(A) <

A € PV (z) for some word = € A &

M., A = P(z) for some word z € A < (by Claim 1)
P(z) € A for some word z € A &

P(A) € A.

The last equivalence is due to the fact that A is an ultraset.

CrLAM 4. For every non-empty set A C ¥*,
M., A O(A) < O(A) € A.
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PROOF OF THE CLAIM. Suppose A is a non-empty subset of ¥*. Then:

M.,A = O(A) & (by the definition of satisfaction)
AecOV(A) &
A € OV (z) for some word z € A &
M., A = O(z) for some word z € A < (by Claim 2)
O(z) € A for some word z € A &
O(A) € A.
The last equivalence is due to the fact that A is an ultraset. [ |
It follows from the above claims and Corollary 3.2 that the the equivalence

(1) continues to hold for arbitrary Boolean combinations of atomic formulas.
This concludes the proof of the lemma. [

COROLLARY 3.11. For every word x € ¥*,

M., A E F(z) < F(x) € A.
For every set A C X",

M., A= F(A) < F(A) € A.

Some Other Properties of the Consequence =

The consequence relation determined by the canonical model M, = (W, V,
Vr,I,F) on L agrees with |=. More specifically, we define the consequence
relation =, on L as follows. For any set X C L and any formula o € L we
put:

X'ZCO' S df (VA S W)(MC,A EX=MAE O‘).

(The symbol “M., A = X” means that M., A = ¢ holds for all ¢ € X.)
. is the consequence relation defined by M..

THEOREM 3.12. (The Adequacy Theorem). = = |=..

PROOF. The inequality = < |, is immediate, because |= is semantically
defined by the class of all models that includes the canonical model.

To prove the opposite inequality, suppose that for some set X C L and a
formula ¢ € L it is not the case that X |=0. We show that X |=.0 does
not hold. According to the definition of =, there exists a model N =
(W,V, Vg, I, F) and a state v € W such that N,u = X and N,u ¥~ 0. (N
need not be the canonical model.) We then define: A, :={¢p € L: N,u = ¢}.
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A, is an ultraset of =, X C A, and o € A,,. Passing to the canonical model
M. we obtain, by the Truth Lemma, that M., A, £ X and M., A, ¥ o.
Consequently, X .o does not hold. [

Theorem 3.12 implies that the above semantics of deontologically-loaded
actions can be based on models in which actions are total unary functions
defined on the set of states. This resembles the situation in the theory of fi-
nite automata—from the linguistic perspective finite deterministic automata
suffice to establish the reach of this theory.

We shall establish some other facts concerning .

Since L contains formulas of infinite length as e.g. P(A) and O(A), where
A C ¥* is an infinite set, one cannot expect that the system = is finitary.
Indeed, we have:

THEOREM 3.13. If ¥ has at least two elements, then the consequence =

s not finitary.

PROOF. We shall argue as in the proof of Theorem 5.13 in [3], suitably ac-
commodating the proof of Proposition 5.12. Let a and b be different symbols
in 3. We define:

A:={ab"a:n>1}.

Note that A is a regular set. (A is the set-theoretic difference of the regular
set {ab"a : n > 0} and {aa}.)
Let N be the set of positive integers.

CLAIM.
(1) {=P(ab™a) :n € N} =-P(A);
(2) For every finite subset Ny C N, it is not the case that

{=P(ab"a) :n € Ny} =—-P(A).

PROOF OF THE CLAIM. As to the first statement, suppose M =(W,V, Vg,
I,F)is a model for L in which V' = Vg, and u € W is a state such that
M,uw = —P(ab™a) for all n € N. This means that v ¢ PV (ab"a) for all
n € N in M. As PV(A) = U, cy PV (ab"a), it follows that v ¢ PV (A).
Hence M,u = —P(A).

To prove the other statement, it suffices to show that for every positive
integer m it is not the case that {=P(ab™a) : n < m}E—-P(A). To this
end we fix m and take a relational model M = (W, V, Vg) in which V = Vg,
a state u € W and a unique sequence of different states ug, w1, ..., Um, Umr1
and w,,+1 such that
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uVi(a)ug V(b)ur V(b) ug ... upm V(b) Umi1 V(a) w1

and for each n, 0 < n < m, there is no state w such that u,, V(a) w.

Such a model M can be easily defined. It follows that the action V' (a) is
not permitted in each state u,, 0 < n < m, but it is permitted in u,,11. Con-
sequently, by the uniqueness of the above sequence of states, we have that
M, u = —P(ab™a) for all n < m. On the other hand, M, u = P(A), because
M,u = P(ab™"ta). Thus it is not the case that {=P(ab"a):n<m}=-P(A).

This proves the claim and concludes the proof of the theorem. [

Speaking figuratively, unbounded “pumping” the symbol b in each word
of the set A accounts for the fact that = is not finitary. The logic |= allows
for such unbounded iterations of permitted actions.

CONJECTURE. If 3 has one element only, then the consequence |= is not
finitary. [

Note however that if ¥ is a singleton, then for every non-empty set A C ¥*
there is a word « € A such that = P(A) < P(z). We claim that this
equivalence is not true for the connective O.

Yet another interesting problem is a charaterization of | in terms of
(possibly infinitary) rules of inference. {=P(ab"a) : n € N}/=P(A) is an
example of such an infinite rule.

4. Deontology of Finite Actions

The fact that the semantically defined consequence [ is infinitary, nullifies
the possibility of presenting it in the form of an axiom system based on fini-
tary axioms and rules. Our plan is to replace = by a finitary consequence
relation defined on a fragment of the language L. We restrict here the seman-
tic discourse on deontology of compound actions to the special case when
all compound formal actions in question are finite. They form a countably
infinite subfamily of the power set of X*. The advantage of such limitation
consists in the fact that the resulting semantic consequence relation, being
an analogue of |=, is finitary.

We define the sublanguage Ly of L as follows. Atomic formulas of Ly are
expressions of the form:

(i) O(z), P(x), F(x),
where z € X%,

(i) O(A), P(4), F(A),
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for any finite set A C X*.

Since the set ¥* is countably infinite, the above set of atomic formulas is
countably infinite as well.

As each letter a € X is qualified as word of length 1, the group (i)
encompasses all atomic formulas of the form O(a), P(a), F'(a), a € X. (i) also
encompasses the following three formulas O(e), P(e), F'(e), where e is the
empty word. In turn, (ii) encompasses formulas in which A is the empty set.

Compound formulas are built from the above atomic formulas by means
of applying the Boolean connectives — and —.

L ¢ marks the set of all so defined formulas. Since classical logic is assumed
in Ly, the other Boolean connectives such as V, A and < are defined in the
standard way as appropriate abbreviations.

Models for Ly are the same as for the language L. Satisfaction in models
is also defined as for L with the only exception that the extended valuations
V(A) are defined only for finite sets A C ¥*.

= is the semantic consequence relation in Ly defined in an analogous
way as |= in L. It follows that |=; is the restriction of |= to Ly.

The Logic +

We shall syntactically characterize the above semantically defined conse-
quence relation = in terms of a system of logical axioms and rules of
inference. (In fact, only one primitive rule of inference is needed here—the
rule of detachment.) To this end we first define an inferential consequence
relation in L¢, denoted by . The consequence I is an extension of classical
propositional logic (CPC).

Every formula of Ly which is an instance of a tautology of CPC is logically
valid. But there are also logically valid formulas specific to the deontology
of actions.

As an axiom system of classical logic we adopt the following laws:

(a1) ¢— (P —9)

(a2) ¢—= (W —=x)—(¢—v)—(¢— X))
(a3) ¢ — (¢ — 1)

(a4) (—¢p — @) — ¢,

where ¢, 1, x are arbitrary formulas.
We adopt the following specific deontological axioms:

(d1) P(za) — P(x),

where x is any non-empty word and a € X..
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(d2)  Ofx) — P(z),
(ds)  F(z) < —P(x),

where x € ¥* and a € ¥;

(da) =P(0).

Moreover, for every non-empty finite set A = {x1,...,z,} C ¥* we adopt
the axioms:

() P(A) = Ple) V-V Pla),

(ds) O(4) < O(z1) V-V O(z),

(d7) F(A) < F(z1) A+ N F(zn).

(dy)—(ds) and (ds)—(dy) are schemes of axioms. Each word z € ¥* and
each finite set A C ¥* define a separate formula of the above form.

The formula P(e) is not assumed as an axiom.

The detachment rule given by the scheme ¢, ¢ — /1) is the only primi-
tive rule of inference.

We define
|_

to be the consequence relation in L determined by the above specific deon-
tological axioms, the above axiom system for CPC and the detachment rule.
Thus X o means that there is proof of ¢ from X carried out by means of
the above logical axioms and the detachment rule. F is called the inferential
consequence in L.

F is finitary. Since F is based on classical logic and the detachment as
the only primitive rule, - obeys the Deduction Theorem which means that
for any set X of formulas and any formulas ¢, v:

XF¢—1 ifandonlyif X U{¢p}F.
It is easy to see that for any finite set A C ¥* the formulas
O(A) — P(A) and F(A)« —=P(A)
are theses of . Moreover, for any two finite sets A, B C X*:
O(AUB) < O(A) v O(B),
P(AUB) < P(A)V P(B)
are theses of F as well. For any words z,y with x # e, the formula

P(zy) — P(x)
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is a thesis too. This can be shown by applying axioms (d;).
We also see that for each finite A, the formulas

P(x) - P(A) and O(z) — O(A)

are theses of -, for all z € A.

The axioms (ds)—(d7) de facto eliminate atomic formulas of the form
P(A),0(A) and F'(A) from Ly, because each such formula for A={z,...,z,}
can be replaced by the deductively equivalent formula P(xz1) V ---V P(x,),
O(z1) V-V O(xy,) and F(z1) A --- A F(x,), respectively.

A set X is inconsistent if all formulas are F-consequences of X, equiva-
lently, if a formula of the form ¢ A —¢ is derivable from X by means of the
above logical axioms and Modus Ponens; otherwise X is consistent. A for-
mula o is inconsistent if the set {o} is inconsistent. Analogously one defines
consistency of a formula.

Since the above axioms are validated in all models, we see that |=¢ is
stronger than .

- is a variant of CPC. Therefore the (algebraic) closure system Th(+ )
has a base consisting of Lindenbaum sets of I, i.e., maximal consistent
subsets of Ly.

Due to the axiom (ds) and (dg), each Lindenbaum set A is an ultraset
in the sense that for any non-empty finite set A C ¥*, P(A) € A implies
that P(z) € A for some z € A and, analogously, O(A) € A implies that
O(z) € A for some z € A. Moreover, for any words x and y, P(zy) € A
implies P(z) € A.

Lindenbaum sets of F are therefore characterized in the same way as in
Corollary 3.2 (with A restricted to finite sets).

The F-counterparts of Proposition 3.3 and Theorem 3.4 also hold (but
restricted to the language Ly).

The canonical model model M, = (W, V, Vg, I, F)}F is defined in a fully
analogous way as for =. (The only difference is that the system F is syn-
tactically defined by means of logical axioms and the detachment rule, and
not through models. But the axioms of - enable us to define all components
of M. in the same manner as in the case of the system [=.)

The set of states W is equal to the family of Lindenbaum sets of -, and
hence ultrasets in the above sense.



40 J. Czelakowski

The unary functions V(a) = A(a), a € X, are defined on the set W
similarly as in Section 3, i.e.,

A = A(a)(A) &4 (V2 € X¥)(P(az) € A= P(z) € A') and
(V2 € ¥%)(O(az) € A & O(z) € A).

In other words, the value of A(a) at A is the unique ultraset A’ that includes
the set {P(z) : z € ¥* and P(az) € A}U{O(z) : z € ¥* and O(az) € A}.

The partial functions Vg(a) are also defined as in Section 3, viz., each
Vr(a) is the partial function being the restriction of V' (a) (= A(a)) to the
set {A € W: P(a) € A}. The last set is the domain of Vi(a).

Proposition 3.5, Theorem 3.6, Propositions 3.7-3.9 from Section 3 con-
tinue to hold for the system .

Lemma 3.10 also holds for the above canonical model of I:

LeEMMA 4.1. (Truth Lemma). Let A be an arbitrary Lindenbaum set in the
above canonical model M.. Then for any formula ¢ of Ly:

M., A E ¢ if and only if ¢ € A.

The Extended Completeness Theorem

The following fact is the main result of this part of the paper:
THEOREM 4.2. (The Extended Completeness Theorem). - = |=;.

Proor. The inclusion + C |=; is immediate, because the axioms of - are
logically valid and Modus Ponens is a rule of =;.

To prove the reverse inclusion, let us assume that X is a set of formulas
of Ly and o is a formula such that it is not the case that X -o. We shall
show that o does not follows from X in the sense of the other consequence
relation. There is a Lindenbaum set Ag of F such that X C Ag and o € A,.

Let M. = (W, V, Vg, I, F) be the canonical model of + defined as above.
Hence Ag € W.

As X C Ag and 0 € Ay we obtain, by Lemma 4.1, that every formula
of X is true in M, at Ag. Since o &€ Ag, we have that o is not true in M,
at Ag. Consequently, it is not the case that X |=¢ 0.

This shows the inclusion =; C . |

NoTES 1. The above approach retains the closure principle for arbitrary
actions. A more refined and nuanced framework that rejects this principle
is available. It is based on two transition relations between states in models.
It extends the semantics of the system DLT presented in [2].
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Regular Actions

Yet another option consists in restricting the semantic discourse on deontol-
ogy of compound actions to reqular actions. We recall that if A and B are
compound actions, then AB := {zy : € A and y € B} is the concatenation
(or the composition) of A and B. We also define: A? := {e}, A"*!:= A"A
for any natural number n € w, and A* := J, . A". The action A* is the
Kleene closure of A.

The countably infinite family of REG(X) of regular sets over X is the least
family of subsets of ¥* that includes the sets (), {e} and {a} for all « € X, and
is closed with respect to the operations of set-theoretic union, concatenation
and the Kleene closure: if A and B are regular sets, then AU B, AB and
A* are regular sets as well. Equivalently, REG(X) is recursively defined
by applying regular expressions. It follows that every finite set of words is
regular, see eg. [4].

We define the sublanguage Ly, of L as follows. Atomic formulas of L,.4
are expressions of the form:

(i) O(A), P(A), F(A),

new

for any regular set A C X*.
(i) encompasses the formulas

(i) O(x), P(x), F(),

where z € ¥*. (O(z) is identified here with O({z}). Similarly for the other
formulas.)

Since the set ¥* is countably infinite and the family of regular set over
> is also countably infinite, the above set of atomic formulas is countably
infinite as well.

Compound formulas are built from the above atomic formulas by means
of applying the Boolean connectives — and —.

L,., marks the countably infinite set of all so defined formulas. Since
classical logic is assumed in L,.q4, the other Boolean connectives such as
V, A and « are defined in the standard way as appropriate abbreviations.

The set Ly, is larger than the language Ly of finite actions. Thus Ly C
L.,CL.

Models for L,.4 are the same as for the language L. Satisfaction in models
is also defined as for L with the only exception that the extended valuations
V(A) are defined only for regular sets A C X*.

[=reg is the semantic consequence relation in L,.4 defined in an analogous
way as |= in L. It follows that =, is the restriction of = to Ly.,.
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THEOREM 4.3. =, is not finitary.

Proor. This follows from the proof of Theorem 3.13, because the action A
defined there is regular. ]

Final Remarks

Agency. The approach presented in this work abstracts from situational
aspects of action other than states of the system. A more sophisticated
framework of action that takes into accout the situational envelope of ac-
tion systems as well as an ordering of the set of states is developed in [2].
The notion of a situational action system plays the central role in this frame-
work. The crucial issue concerns agency. Agents as well as states are part of
situations. The problem consists in elaborating a consistent and adequate
theory of agency for compound agents. Such an approach would be proba-
bly conceptually different from the well-known stit framework of action and
agency—see [9].

The issue is how one can meaningfully and consistently speak of deon-
tology of actions performed by agents. In other words, the focus is on the
meanings attached to statements of the form “a definite agent is permitted
(is obliged) to perform an atomic action V' (a) in a given situation”. These
statements are paraphrased in an equivalent form as “An action V'(a) is
permitted (is obligatory) in a state w for a definite agent S”. Agents of
actions are treated as specialized constituents of situational envelopes of
elementary action systems and deontological commitments are agential—
these constituents do not directly refer to actions but to the agents of these
actions. Some remarks on the relationship between actions and their agents
can be given from the perspective of context-free grammars in Greibach
normal form (GNF), because the situational interpretation of context-free
grammars may offer a coherent, although simplified, picture of the deontol-
ogy of concerted actions performed by a set of agents. We shall present here
a couple of remarks devoted to this issue without entering into a detailed
discussion of the subject.

We recall that every combinatorial grammar (over ) contains apart from
the alphabet X, a finite set I of auxiliary symbols, a finite set of productions
and the start symbol o which is always an element of I'. More formally,
a combinatorial grammar is a quadruple

G = (271—" P7a)7

where ¥ is the given alphabet, also called the terminal alphabet, I' is an
auziliary alphabet (the members of T' are called nonterminals or variables
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or syntactic categories), P is a finite subset of (X UT')* x (X UT')* called
the list of productions of the grammar; the fact that (x,y) € P is written as
x — y. x is the predecessor and y is the successor of the production z — .
« is a distinguished element of I' called the start symbol.

L(G) C ¥* is the language generated by G. Thus, a string x is in L(QG)
if  consists solely of terminals and the string can be derived from «. The
symbols of the alphabet I" appear only while deriving the words of L(G);
they do not occur in the words of L(G). Thus, I" plays an auxiliary role in
the process of defining the language L(G).

A grammar G = (X,T,P, «) is context-free if each production of P is of
the form X — z, where X is a variable (i.e., a non-terminal symbol) and
x is a string of symbols from (X UT')*.

THEOREM 4.4. (Sheila Greibach [5]). Every context-free language without
e is generated by a grammar G for which every production is of the form
X — ad, where X is a variable, a is a terminal and § is a (possibly empty)
string of variables. Furthermore, every word of the language L(G) can be
derived by means of a leftmost derivation in G.

The proof of the above theorem is constructive—an algorithm is provided
which, for every context free-grammar G in which no production of the form
v — e occurs, converts it to Greibach normal form. We omit the details. m

Since the theory of context-free languages is inherently linked with push-
down automata, 3 is also called the input alphabet and I'—the stack alphabet.

The formal apparatus of context-free grammars and pushdown automata
can be accommodated to the study of the problem of agency in action theory.
Such a move will require a certain terminological switch. Terminal symbols
of a given grammar, viz, the elements of X, are, as yet, consistently called
action symbols, the elements of ¥ *—sequential actions while the elements
of I' will be referred to as agent symbols (names of agents, or agents, for
short).

I'* is the set consisting of all finite sequences of I'. Each sequence v € I'*
of variables is called a queue of agents. (In automata theory the elements
of I are called stack symbols and the elements of I'* are called states of the
stack. We depart from this terminology here.)

Let M = (W,V,Vg) be a model. (We have not yet defined initial and
final states.) The Cartesian product

S:=W xI'*

is called the set of possible situations. Accordingly, each situation is repre-
sented as an ordered pair
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s = (w,7),

where w is a state and v is a queue of agents assigned to w. 7 is also called
the label of s.

X~ denotes a queue of agents in which the agent X occupies the first
place. (In the theory of pushdown automata, X~ is called a stack with X
on the top of it.)

Given a grammar G = (X,I',P,a) in the Greibach normal form, we
define the transition relation Tr between situations of S. Transitions are
determined by productions of P and states of W. To this end we shall read
productions in a certain uniform way.

Let X — ad be a fixed production. We shall interprete this production
as follows:

the agent X performs the action represented by a; after performing it,
X is replaced by the queue of agents 6.

Let s and s’ be situations. We shall say that s is transformed into s’ in
accordance with the production X — a0 if for some string v and states w, w’,
it is the case that s = (w, Xv), s = (v, 07) and wVg(a)w'.

Thus passing from s to s’ is accomplished by means of the action V(a)
leading from the state w to the state w’ and “replacing” the first agent X
in the queue X~ by the queue of agents §. This results in the queue 7.

We then write s Tr s’ for any such a situation s’ obtained from s in
accordance with some production of G. T'r is the transition relation between
situations.

Let s be a situation. Let V(a) be an atomic action, where a € ¥. We
shall say that the action V' (a) is permitted for the agent X in the situation s
if and only if s is of the form (w, X+) and there exists a production X — ad
in G and a state w’ such that wVg(a)w’ holds.

In other words, permissibility of V'(a) for X in s = (w, X+) means that,
for some production X — ad, the action V'(a) of the agent X in s turns the
situation s = (w, X=) into the situation s’ = (w’, é7). It follows that sTrs’.

We may also say that X is the agent of the action V (a) in the situation s.

We thus see that the functioning of such ‘pushdown’ situational action
system is determined by simultaneous transititions between states of W
accomplished by actions of V' (a), a € X, and accompanying transitions be-
tween queues of agents that perform the consecutive actions. These moves
are all determined by the productions of G. The relation T'r thus organizes
the rules of cooperation between agents while performing the actions.
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In an analogous way one may define the notion “V'(a) is obligatory for the
agent X in a situation s”. This notion takes into account initial situations
and final situations as well as the agent «. Let I be a non-empty set of
states. We call it the set of initial states. Initial situations are of the form
s = (w,a), where w is a state belonging to I and « is the start symbol.
Final situations are of the form s = (w, e), where w is a state and the stack
e is empty. We shall omit the definitional details, because the relationship
betewen agency and context free grammars will be discussed at length in
another paper.

Inferential bases and weak adequacy. The fact that = and =, are infini-
tary systems gives rise to a number of questions. We mention three problems.

1. Give an axiom system for |= endowed with a recursive list of possibly
infinitary rules of inference that is adequate for .

2. An analogous question concerns =, . If A and B are regular actions,
then P(AB) — P(A) and P(A,) — P(A*), n € w, are tautologies of
Freg - Moreover |=,, validates the following w-type infinitary rule of
inference:

{=P(A") :n € w}/-P(A").

F=reg also validates the formulas O(A) — P(A) and O(A™) — O(A*),
n € w, and the rule

{=0(A") :n € w}/-O(A").

We ask how to characterize =, in terms of logical axioms and (possibly
infinitary) rules of inference as the least consequence operation that
validates these axioms and rules.

3. Although the above results show that the logical systems = and =,
are inherently infinitary, the Weak Completeness Theorem appears to
be an interesting option. In other words, we ask about axiomatizations
of not the whole systems but only of the sets of their tautologies. The
problem whether there exists a recursive set of logical axioms and fini-
tary Hilbert-style rules that would axiomatize the sets of tautologies of
ey needs special scrutiny.
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