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Andrzej Pietruszczak

A Study in Grzegorczyk
Point-Free Topology
Part II: Spaces of Points

Abstract. In the second installment to Gruszczyński and Pietruszczak (Stud Log, 2018.

https://doi.org/10.1007/s11225-018-9786-8) we carry out an analysis of spaces of points

of Grzegorczyk structures. At the outset we introduce notions of a concentric and ω-

concentric topological space and we recollect some facts proven in the first part which

are important for the sequel. Theorem 2.9 is a strengthening of Theorem 5.13, as we

obtain stronger conclusion weakening Tychonoff separation axiom to mere regularity. This

leads to a stronger version of Theorem 6.10 (in form of Corollary 2.10). Further, we show

that Grzegorczyk points are maximal contracting filters in the sense of De Vries (Com-

pact spaces and compactifications, Van Gorcum and Comp. N.V., 1962), but the converse

inclusion is not necessarily true. We also compare the notions of a Grzegorczyk point and

an ultrafilter, and establish several properties of topological spaces based on Grzegorczyk

structures. The main results of the paper are representation and completion theorems for

G-structures. We prove both set-theoretical and topological representation theorems for

various classes of G-structures. We also present topological object duality theorem for

the class of complete G-structures and the class of concentric spaces, both restricted to

structures which satisfy countable chain condition. We conclude the paper with proving

equivalence of the original Grzegorczyk axiom with the one accepted by us as axiom (G).

Keywords: Grzegorczyk structures, Point-free topology, Region-based topology, Mereol-
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Concentric spaces.

7. First-Countable G-Structures

The first axiom of countability for topological spaces says that at every point
of a given space there exists a countable base. We have the following coun-
terpart of this property for quasi-separation structures: a quasi-separation
structure R is first-countable iff each pre-point Q of R contains a countable
subset which is coinitial with Q. This subset is also a pre-point of R, and
both pre-points generate the same point from PtR:
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Corollary 7.1. Let R ∈ qSep and Q ∈ QR. If X ⊆ Q and X is coinitial
with Q, then X ∈ QR and FX = FQ.

Proof. Firstly, Lemma 5.6 says that all subsets of Q which are coinitial
with Q also belong to QR. Secondly, by Corollary 5.4, FX = FQ, since
X ⊆ FQ.

Let Qω
R be the family of countable pre-points of R. Then directly

from Proposition 6.1, Corollary 7.1 and definition of first-countable quasi-
separation structures we obtain that for these kind of structures in definition
of G-structures instead of the family QR we can use the family Qω

R:

Theorem 7.2. A first-countable quasi-separation structure R is a Grzegor-
czyk structure iff R satisfies the following conditions:

∀x,y∈R

(
x � y =⇒ ∃Q∈Qω

R
∃z∈Q z � x � y

)
, (ωG�)

∀x,y∈R

(
xC y ∧ x � y =⇒ ∃Q∈Qω

R
∀z∈Q(z � x ∧ z � y)

)
. (ωG�)

We say that a G-structure is first-countable, if it is a first-countable quasi-
separation structure.

Let us remind that a subset of R is an antichain iff its any two distinct
elements are exterior to each other. We say that R satisfies the countable
chain condition (abbrv.: c.c.c.) iff every antichain of its regions is countable.

Lemma 7.3. All quasi-separation structures with c.c.c. are first-countable.

Proof. Let R be a quasi-separation structure satisfying c.c.c. and Q ∈ QR.
Then, by Lemma 5.8, there is Q′ ∈ QR such that Q′ ⊆ Q, Q′ is coinitial
with Q, and Q′ is well-ordered chain in R. Therefore Q′ is countable, because
R satisfies c.c.c. (the proof of this fact is similar to the proof of Lemma 2
from [8, p. 62] for Boolean algebras).

For completeness of presentation notice that the above lemma is not
reversible even in the class of atomic G-structures with unity.

Example 7.1. Let S be an arbitrary uncountable set and FC(S) be the
family of all finite and co-finite subsets of S. As is well-known, 〈FC(S),
⊆, ∅, S〉 is an atomic incomplete Boolean lattice, where {{x} | x ∈ S} is the
set of atoms. FC(S) does not satisfy c.c.c., but all its chains are countable
(see, e.g., Exercise 2 in [8, p. 64] or Exercise 2 in [9, p. 46]).

We put FC+(S) := FC(S) \ {∅}. Then 〈FC+(S), ⊆〉 is an atomic incom-
plete mereological field with the unity S.1 Therefore, by propositions 4.2

1See Theorems 2.4 and 2.8; and also [10, Sections III.7.6 and III.9.5] and [11, Theorems
III.1.2 and III.1.3].
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and 6.8, 〈FC+(S), ⊆, � 〉 (where )( := �, i.e., X )( Y :⇐⇒ X ∩ Y = ∅,
and so � = ⊆) is an atomic incomplete G-structure with the unity S. The
G-structure does not satisfy c.c.c., but all its chains are countable and so all
its pre-points are countable.

8. G-Structures Associated with Concentric Topological Spaces

As we noted at the end of Section 4, with an arbitrary topological space
T = 〈S,O〉 is associated the quasi-separation structure qsepT := 〈rO+, ⊆,
][ 〉, where ][ is a separation relation in rO+ defined as:

U ][ V :⇐⇒ Cl U ∩ Cl V = ∅. (df ][ )

If T is weakly regular, then qsepT is a complete separation structure and
therefore we refer to this structure as sepT . It is known that every regular
space is also weakly regular.

Let us also remind that, by Proposition 4.3(2), the relation � in rO+,
defined by (df�), meets:

U � V ⇐⇒ Cl U ⊆ V.

In Part I we analyzed T1-spaces such that all points of these spaces
have bases that meet condition (R1) (cf. Lemma 5.11, Proposition 5.12,
Theorem 6.9 and Lemmas A.2 and A.3). Thus—due to geometric appeal—
we will say that a topological space T = 〈S,O〉 is concentric iff it is a T1-
space and for any p ∈ S there is a base Bp at p such that:

∀U,V ∈Bp

(
U = V ∨ Cl U ⊆ V ∨ Cl V ⊆ U

)
. (R1)

Firstly, with the term ‘concentric space’, we can rewrite Lemmas A.2
and 5.11 as follows:

Lemma 8.1. For any concentric topological space T = 〈S,O〉:
1. T is regular (and so it is also weakly regular).

2. For any p ∈ S let Bp be a base at p satisfying (R1). Then:
(i) The family rBp := {Int Cl B | B ∈ Bp} is a base at p satisfying (R1)

and included in rO+.
(ii) By Lemma 5.11, Bp and rBp meet the following conditions:

∀U∈X ∃V ∈X Cl V ⊆ U, (R2)

∀A,B∈P(S)(∀U∈X U ∩ A �= ∅ �= U ∩ B ⇒ Cl A ∩ Cl B �= ∅) , (R3)
⋂

X = {p} . (�)
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Let us also notice that fulfillment of (R1) by a family R contained in
rO+ is equivalent to the fact that the following relation in rO+:

U � V :⇐⇒ U � V ∨ U = V,

⇐⇒ Cl U ⊆ V ∨ U = V
(df�)

linearly orders R (i.e., � is antisymmetric, transitive and total on R).
Secondly, recall from Appendix that a topological space satisfies the

countable chain condition (again, c.c.c. for short) iff each pairwise disjoint
family of its open sets is countable. Using the term ‘concentric space’, we
can rewrite together Lemmas A.3 and A.5 as follows:

Lemma 8.2. All second-countable concentric topological spaces are perfectly
normal and satisfy c.c.c.

Moreover, directly from definitions and Lemma 7.3, we have:

Lemma 8.3. 1. If a topological space T satisfies c.c.c., then qsepT satisfies
c.c.c. and so it is first-countable.

2. For any semiregular topological space T we have: T satisfies c.c.c. iff
qsepT satisfies c.c.c.

Thirdly, using the term ‘concentric space’, we can rewrite Theorem 6.9
as follows:

Theorem 8.4. For each concentric topological space T , the complete sepa-
ration structure sepT is a G-structure.

Thus, for any concentric space T , sepT will be called the G-structure
associated with T and denoted by: GcT . Directly from Theorem 8.4 and
Lemmas 8.1 and 8.3 we obtain:

Corollary 8.5. For any concentric topological space T : T satisfies c.c.c.
iff GcT satisfies c.c.c.

Moreover, directly from Lemma 8.1 we obtain:

Corollary 8.6. Let T = 〈S,O〉 be a concentric space and for any point p
let Bp be a base at p satisfying (R1). Then the regular base rBp from
Lemma 8.1 is a pre-point of the G-structure GcT .

We say that a topological space T = 〈S,O〉 is ω-concentric iff it is a T1-
space and for any p ∈ S there is a countable base at p for which the condition
(R1) holds. Obviously, all ω-concentric spaces are first-countable and concen-
tric. We will show, see (8.2), that also all first-countable concentric spaces are
ω-concentric. Now, directly from Theorem 8.4 and Corollary 8.6, we obtain:
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Corollary 8.7. For any concentric topological space T : T is ω-concentric
iff the G-structure GcT is first-countable.

Furthermore, in virtue of Lemma 5.15, we have:

Theorem 8.8. All concentric topological spaces with c.c.c. are ω-concentric.

Proof. Let T = 〈S,O〉 be a concentric space satisfying c.c.c. Then it is a
T1-space and for any p ∈ S there is a base Bp at p which is a chain of open
sets satisfying (R1). It suffices to consider only the case when Bp is infinite.
In this case, in the light of Lemma 5.15, there is a sequence (Up

n)n∈ω of sets
from Bp which is coinitial with Bp and such that ClUp

n+1 � Up
n, for any

n ∈ ω. Finally, (Up
n)n∈ω is a base at p, since Bp is a base at p and (Up

n)n∈ω

is coinitial with Bp.

In the light of the above theorem, for topological spaces we get:
the class of concentric spaces satisfying c.c.c.

= the class of ω-concentric spaces satisfying c.c.c. (8.1)

Now we prove that also:

Theorem 8.9. All first-countable regular topological spaces are ω-concentric.

Proof. Let T = 〈S,O〉 be a first-countable regular space and p ∈ S. Enu-
merate all elements of Bp: B0, B1, . . . , Bn, . . . , and notice that regularity
entails that {B ∈ Bp | Cl B ⊆ Bn ∩ Bm} �= ∅, for all n, m ∈ ω.

Thus, by induction, we can define the following function F : ω → Bp:
F (0) ∈ {B ∈ Bp | Cl B ⊆ B0} and F (n+1) ∈ {B ∈ Bp | Cl B ⊆ Bn∩F (n)}.
We put Qp := {F (n) | n ∈ ω}. Qp is coinitial with Bp, therefore Qp is a
(countable) base at p. It fulfills (R1), since Cl F (n + 1) ⊆ F (n).

In the light of Theorem 8.9 and Lemma 8.1, for the above-mentioned classes
of topological spaces we get:

the class of first-countable regular spaces �

the class of ω-concentric spaces ⊆
the class of first-countable concentric spaces �

the class of concentric spaces �

the class of regular spaces.

Therefore for topological spaces we obtain:
the class of first-countable regular spaces =

the class of ω-concentric spaces =

the class of first-countable concentric spaces.
(8.2)
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Notice that, by Theorems 8.4 and 8.9, we can strengthen Theorem 6.10:

Corollary 8.10. If T is a first-countable regular topological space, then
the complete first-countable separation structure sepT is a G-structure.

Moreover, from Theorem 8.9 and Lemma 8.2, we obtain:

Corollary 8.11. All second-countable regular spaces are ω-concentric and
perfectly normal satisfying c.c.c.

The following theorem demonstrates that Grzegorczyk construction of
points is “correct”, in the sense that from point of view of motivations
of region-based topology formulated in the first part, for each concentric
topological space T satisfying c.c.c., the points of T are in bijective corre-
spondence with the points of GcT .

Theorem 8.12. Let T = 〈S,O〉 be a concentric space satisfying c.c.c. For
any p ∈ S let rBp be a pre-point of GcT from Corollary 8.6. Then:
1. For any p ∈ S we have FrBp = {U ∈ rO | p ∈ U}.
2. PtGcT = {FrBp : p ∈ S}.
3. The mapping b: S � p �→ FrBp ∈ PtGcT is a bijection.

Proof. Ad 1. For any p ∈ S, since rBp is a base at p, for any U ∈ rO we
have: U ∈ FrBp iff ∃B∈rBp B ⊆ U iff p ∈ U .

Ad 2. “⊆” Let p ∈ PtGcT , i.e., for some pre-point Q of GcT we have
p = FQ := {U ∈ rO | ∃X∈Q X ⊆ U}. Then |

⋂
Q| = 1, by Lemma 8.1

and Theorem 5.17. So for some p ∈ S we have {p} =
⋂

Q. We show that
p ⊆ FrBp ; and so p = FBp , by Corollary 5.3. Indeed, if U ∈ p then for some
Q ∈ Q ⊆ rO+ we have Q ⊆ U . But, since rBp is a base at p, there is a
B ∈ rBp such that p ∈ B ⊆ Q. Hence p ∈ U ; and so U ∈ FrBp , by 8.13.

“⊇” By Corollary 8.6, for any p ∈ S, the filter FrBp is a point of GcT .
Ad 3. Obviously, b is one-to-one and it is surjective, by 2.

Let us recall that for any n ∈ ω+, GcEn := 〈rE+(Rn), ⊆, ][ 〉 is the com-
plete G-structure associated with the topological Euclidean space En. For
any p ∈ Rn the family Bp of all open balls with center at p is a base
at p and, in virtue of Corollary 5.18, Bp is a pre-point of GcEn. So the fil-
ter FBp := {U ∈ rE+(Rn) | ∃B∈Bp B ⊆ U} is a point of GcEn. Thus, in
Theorem 8.12, we can substitute pre-points Bp by Qp.

Theorem 8.13. 1. For any p ∈ Rn we have FBp = {U ∈ rE+(Rn) | p ∈ U}.
2. PtGcEn = {FBp : p ∈ Rn}.
3. The mapping b: Rn � p �→ FBp ∈ PtGcEn is a bijection.
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Proof. Analogously to the proof of Theorem 8.12; we only change: T to
En; GcT to GcEn; and Qp to Bp.

9. Atoms in G-Structures. Finite G-Structures

Let R = 〈R,�, )( 〉 be any G-structure. First of all, we show that each atom
is non-tangentially included in itself and creates a pre-point of R.

Proposition 9.1. For any atom a ∈ AtR: a � a and {a} ∈ QR.

Proof. Let a ∈ AtR. Firstly, Proposition 6.2 says that every region has
at least one non-tangential part. But, by (I��), if a ∈ AtR and x � a, then
x = a. So a � a. Secondly, for {a} condition (r1) is trivial and (r2) follows
from a � a. For (r3), suppose that x, y ∈ R and a � x and a � y. Then
a � x and a � y. Hence x � y; and so xC y, by (IC�).

By the above proposition, for atoms we obtain:

Corollary 9.2. 1. For all a ∈ AtR and x ∈ R:
• a )( x iff a � x;

• aCx iff a � x iff a � x iff a � x;

• if x �= a, then a )( x − a.

2. For all a, b ∈ AtR: if a �= b then a )( b.

Proof. Ad 9.2. Let a ∈ AtR and x ∈ R. By Proposition 9.1, we have a � a.
Hence, firstly, by (df�), if x � a, then x )( a. The other implication holds by
(I�)(). Secondly, by (3.7), if a � x, then a � x. The other implication holds
by (I��). Thirdly, by (df�), if x �= a, then a )( x − a, since a � x − a.

Ad 2. Let a, b ∈ AtR and a �= b. Then b − a = b. So a )( b, by 9.2.

All finite G-structures (as finite mereological fields) are atomic. By the above
corollary, for such structures we have:

Corollary 9.3. If R is finite, then the relation � is reflexive.

Proof. Fix a region x. From Lemma 2.11, x = a1 � · · · � an, where
{a1, . . . , an} = {a ∈ AtR | a � x}. Suppose that z � x. Then, by (2.3),
for any i ∈ {1, . . . , n} we have z � ai. By Corollary 9.2, also z )( ai. Hence,
by (S4), z )( a1 � · · · � an = x. Therefore x � x, by (df�).

The following proposition characterizes finite G-structures.

Proposition 9.4. For any structure 〈R,�, )( 〉 with two binary relations �
and )( in R, the following conditions are eqivalent :



816 R. Gruszczyński, A. Pietruszczak

(a) 〈R,�, )( 〉 is a finite G-structure,

(b) 〈R,�〉 is a finite mereological field and )( = � ,

(c) 〈R,�〉 is a finite mereological structure and )( = � .

Proof. “(a) ⇒ (b)” We have )( ⊆ �, by (I�)(). Moreover, from Corollary 9.3
and (df�) we have the converse inclusion. “(b) ⇒ (a)” From Propositions
4.2 and 6.8, since all finite mereological fields are atomic. “(b) ⇔ (c)” From
Theorem 2.7 and Proposition 2.10.

10. Points vs. Contracting Filters of Quasi-Separation Structures

Let R be an arbitrary quasi-separation structure. A filter F of R is called
contracting2 iff for each x ∈ F there is a y ∈ F such that y � x. Let
us remind that points of R are filters generated by pre-points of R (cf.
Section 5). We will draw a comparison between points and contracting filters,
the latter in its maximal form (i.e. maximal among contracting filters) being
points in the sense of [2].

Directly from (I��) it follows that:

Lemma 10.1. For any contracting filter F of R and any x ∈ R we have:

x ∈ F ⇐⇒ ∃y∈F y � x ⇐⇒ ∃y∈F y � x.

Moreover, by means of the standard application of the Kuratowski-Zorn
lemma (in its “strong” form), it is provable that:

Lemma 10.2. Every contracting filter of R can be extended to a maximal
filter in the family of all contracting filters.

For brevity, we introduce after [12] the following notation: for any subset
X of R and any y ∈ R, the expression ‘y ◦◦ X’ means that y is connected
with every member of X. Formally, for all X ∈ P(R) and y ∈ R we put:

y ◦◦ X :⇐⇒ ∀x∈X xC y. (df ◦◦)

We will also use notation ‘X ◦◦ y’ with the same meaning. Similarly, for all
subsets X, Y of R, the expression ‘X ◦◦Y ’ means that each region from X is
connected with each region from Y . Formally, for all X, Y ∈ P(R) we put:

X ◦◦ Y :⇐⇒ ∀x∈X∀y∈Y xC y ⇐⇒ ∀x∈X x ◦◦ Y. (df ′ ◦◦)

2In [2] and [3] these filters are called concordant and round, respectively. The name
used by us comes from [12].
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Thus, in both cases the relation ◦◦ is symmetric. The complement of ◦◦ will
be denoted by ‘◦◦/ ’.

Let us begin with the following observations.

Lemma 10.3. For arbitrary filters F1 and F2:
F1 ⊆ F2 =⇒ ∀x∈F1∀y∈F2 x � y,

∀x∈F1∀y∈F2 x � y =⇒ F1 ◦◦ F2.

Proof. First, assume that F1 ⊆ F2, x ∈ F1 and y ∈ F2. Then also x ∈ F2.
Hence x � y, by the definition of filters. Second, we use (df ′ ◦◦) and (IC�).

Lemma 10.4. For any contracting filter F and any x ∈ R:

x ◦◦ F ⇐⇒ ∀y∈F y � x.

Proof. “⇒” Assume that (a) x ◦◦ F and (b) y ∈ F . Then, by (b), for
some y0 ∈ F we have (c) y0 � y. Moreover, (a) and (df ◦◦) entail (d) y0 Cx.
Therefore y � x, by (c), (d) and (df ′�).

“⇐” Directly from (df ◦◦) and (IC�).

Corollary 10.5. 1. For all contracting filters F1 and F2:
F1 ◦◦ F2 ⇐⇒ ∀x∈F1∀y∈F2 x � y.

2. If R has the unity 1, then for any contracting filter F and any x ∈ R:

x ∈ F ⇐⇒ x = 1 ∨ (x �= 1 ∧ −x ◦◦/ F ).

Proof. Ad 10.5. Directly from Lemma 10.4 and (df ′ ◦◦).
Ad 2. “⇒” Assume that x ∈ F , x �= 1 and −x◦◦F . Then, by Lemma 10.4,

we obtain a contradiction: x � −x. “⇐”. If x = 1, then x ∈ F . So suppose
that x �= 1 and −x ◦◦/ F . From this and Lemma 10.4, for some x0 ∈ F we
have x0 )( −x. Hence x0 � x and x ∈ F .

Lemma 10.6. If a contracting filter F satisfies the following condition:

∀x,y∈R(x ◦◦ F ∧ x � y =⇒ y ∈ F ) , (∗)

then F is a maximal in the family of all contracting filters.

Proof. Suppose that a contracting filter F satisfies (∗). Let F ′ be any
contracting filter such that F ⊆ F ′. Then F ◦◦F ′, in the light of Lemma 10.3.
Now we show that F ′ ⊆ F . Indeed, assume that x ∈ F ′. Then for some
x0 ∈ F ′ both x0 � x and x0 ◦◦ F . Hence x ∈ F , by (∗).

Notice that if R has the unity then instead of condition (∗) we can take two
other conditions equivalents with it.
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Proposition 10.7 [4]. If R has the unity 1, then for any contracting filter
F the following conditions are equivalent :

(a) F satisfies (∗).

(b) F satisfies:

∀x,y∈R (x � y =⇒ y ∈ F ∨ (x �= 1 ∧ −x ∈ F )
)
. (∗∗)

(c) F satisfies:

∀x,y∈R (x ◦◦ F ◦◦ y =⇒ xC y). (∗∗∗)

Proof. “(a) ⇒ (b)” Suppose that x � y and y /∈ F . Then x ◦◦/ F , by (∗).
Hence x �= 1 and also −x �= 1. Thus −x ∈ F , by Corollary 10.5(2).

“(b) ⇒ (c)” Suppose that x )( y. Then x �= 1 �= y and so −x �= 1 �= −y.
Moreover, x � −y, by (3.9). Hence either −x ∈ F or −y ∈ F , by (∗∗). Thus
by Corollary 10.5(2), either x ◦◦/ F or y ◦◦/ F .

“(c) ⇒ (a)” Suppose that x ◦◦ F and x � y. If y = 1 then y ∈ F ; so let
y �= 1. Then x )( −y, by (3.9). Hence −y ◦◦/ F , by (∗∗∗). Thus y ∈ F , by
Corollary 10.5(2).

Let PtR be the family of all points in R.

Proposition 10.8. Every point from PtR is a contracting filter.

Proof. Let x ∈ p, i.e., there is Q ∈ QR such that p = {y ∈ R | ∃u∈Q u � y}.
Then for some u0 ∈ Q we have u0 � x. Moreover, by the property (r2), for
some v0 ∈ Q, v0 � u0. From this and (3.7) we obtain that v0 � x.

Example 10.1. For any n > 0, the structure GcEn is complete G-structure
(cf. Section 8). There are G-structures in which there are contracting filters
which are not Grzegorczyk points. For example, the set from Figure 4 is
contracting but it is neither a pre-point nor a point.

From the Propositions 10.8 and 5.2(2), Lemmas 10.1 and 10.4 and Corol-
lary 10.5 we have:

Corollary 10.9. 1. For any p ∈ PtR and any x ∈ R:
x ∈ p ⇐⇒ ∃y∈p y � x ⇐⇒ ∃y∈p y � x,

x ◦◦ p ⇐⇒ ∀y∈p y � x.

2. For all p, q ∈ PtR:
p ◦◦ q ⇐⇒ ∀x∈p∀y∈p x � y,

p ◦◦ q =⇒ p = q.
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3. If R has the unity 1, then for any p ∈ PtR and any x ∈ R:

x ∈ p ⇐⇒ x = 1 ∨ (x �= 1 ∧ −x ◦◦/ p).

Finally observe that some maximal filters in the family of all contracting
filters in R do not have to be ultrafilters in R. Directly from Lemma 10.4
and Proposition 2.15 we obtain:

Proposition 10.10. For any contracting filter F the following conditions
are equivalent :
(a) F ∈ Ult(R);

(b) ∀x∈R(x ◦◦ F ⇒ x ∈ F ).

11. Some Properties of Points of G-Structures

Now let R = 〈R,�, )( 〉 be any G-structure. We prove that the following
conditions hold:

∀x∈R∃p∈PtR x ∈ p, (11.1)

∀x,y∈R∀p∈PtR

(
x ∈ p ∧ y ∈ p ⇐⇒ x � y ∧ x � y ∈ p

)
, (11.2)

∀x,y∈R

(
x � y =⇒ ∃p∈PtR(x � y ∈ p ∧ x ∈ p ∧ y ∈ p

)
, (11.3)

∀x,y∈R

(
x � y ⇐⇒ ∃p∈PtR(x ∈ p ∧ y ∈ p)

)
, (11.4)

∀x,y∈R

(
xC y ⇐⇒ ∃p∈PtR∀z∈p(z � x ∧ z � y)

)
, (11.5)

∀x,y∈R

(
x � y ⇐⇒ ∀p∈PtR(y ∈ p ∨ ∃z∈p z � x)

)
. (11.6)

Proof. Ad (11.1): By (6.2), for any x ∈ R there is Q ∈ QR such that for
some z ∈ Q we have z � x. Therefore x ∈ p := {y ∈ R | ∃u∈Q u � y }.

Ad (11.2): From the definition of filters and (2.4).
Ad (11.3): From (11.1) and (11.2).
Ad (11.4): From (11.2) and (11.3).
Ad (11.5): “⇒” Let xC y. Then, by (G), there is Q ∈ QR such that for

any v ∈ Q: v � x and v � y. We put p := {z ∈ R | ∃u∈Q u � z} and let
z ∈ p be arbitrary. Then for some w ∈ Q we have: w � z, w � x, and w � y.
Hence z � x and z � y, by (MF).

“⇐” Let p be a point such that for any z ∈ p: z � x and z � y. For some
Qp ∈ QR we have that p is generated by Qp. So Qp ⊆ p. Therefore also for
any z ∈ Qp: z � x and z � y. Thus, by (r3), we have xC y.

Ad (11.6) “⇒” Let x � y. Assume for a contradiction that for some
point p ∈ PtR we have (a) y /∈ p and ∀z∈p z � x. Hence (b) ∀z∈p z � y, and
therefore we obtain (c) ∀z∈p z − y )( x (since z − y � y and x � y). The
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point p is generated by some QR � Qp ⊆ p. Thanks to (b) we have (d):
∀u,v∈Qp u � v − y. Indeed, by (r1) and (I��), either v � u or u � v. In the
first case: v − y � v � u. In the second case: u − y � v − y and u − y � u;
so v − y � u. Since Qp �= ∅, we pick a member v0 thereof. Thus, by (r3), (a)
and (d), we have v0 − y Cx, which contradicts (c).

“⇐” Suppose that x � y, i.e., there is u0 ∈ R such that (a) u0 � y
and (b) u0 Cx. Then, by (b) and (11.5), there is p0 ∈ PtR such that (c):
∀z∈p0(z � u0 ∧ z � x). Thus y /∈ p, by (a) and (c).

Remark 11.1. Condition (11.1) is a counterpart of the first one of two
axioms accepted in [1] instead of (G). The second one of these axioms is
implication “from left to right” in condition (11.5).

In [1] points are defined in a different way than in [6], since by a represen-
tative of a point the authors mean an arbitrary subset S of R satisfying two
conditions (these are A and B at the beginning of Section 3 in [1, p. 434]):
the first one says that X is totally ordered by � and has no minimal ele-
ment with respect to � (that is: ∀x∈S∃y∈S(y � x ∧ y �= x)), the second
one is (r3). This entails that—unlike in this paper—all representatives of
points are infinite. Another important consequence is also the fact that all
structures from [1] are non-atomic (cf. Proposition 4.2).

Thanks to (11.1) we may prove the following:

Theorem 11.1. R is finite iff the set PtR is finite.

Proof. “⇒” Obvious. “⇐” Suppose that R is infinite. Then R has an
infinite antichain A, in virtue of Lemma 2.12(2). By (11.1), for any y ∈ A
there is py ∈ PtR such that y ∈ py. Since A is an antichain and every point
is a filter, elements of {py | y ∈ A} ⊆ PtR must be pairwise distinct, and
therefore the family PtR is also infinite.

Obviously, in the light of Corollary 10.9, conditions (11.5) and (11.6) can be
written as:

∀x,y∈R

(
xC y ⇐⇒ ∃p∈PtR x ◦◦ p ◦◦ y

)
, (11.5′)

∀x,y∈R

(
x � y ⇐⇒ ∀p∈PtR(x ◦◦ p ⇒ y ∈ p)

)
. (11.6′)

From (3.9), (11.6) and the definition of filters follows that if R has the
unity 1, then:

∀x∈R\{1}
(
x )( −x ⇐⇒ ∀p∈PtR(x ∈ p ∨ −x ∈ p)

)
. (11.7)

Indeed, for any x �= 1: x )( −x iff x � x iff ∀p∈PtR(x ∈ p ∨ ∃z∈p z � x) iff
∀p∈PtR(x ∈ p ∨ −x ∈ p); since for any z ∈ R: z � x iff z � −x.
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Corollary 5.3 says that in an arbitrary quasi-separation structure any
given point is a maximal filter in the family of all points. However, by (11.6′),
Lemma 10.6 and Proposition 10.8, this result can be strengthened.

Proposition 11.2. In an arbitrary G-structure every point is a maximal
filter in the family of all contracting filters. Formally, for any p ∈ PtR and
any contracting filter F : if p ⊆ F , then p = F .

Proof. By (11.6′), any point p satisfies condition (∗) from Lemma 10.6, i.e.,
we have: ∀x,y∈R(x ◦◦ p ∧ x � y =⇒ y ∈ p). Thus, we use Proposition 10.8
and Lemma 10.6.

We will strengthen Example 10.1 by showing that there is a G-structure in
which in the family of all contracting filters there is a maximal element which
is not a point. This may even happen in complete G-structures satisfying
the following condition:

∀x,y∈R (x � y =⇒ ∃z∈R x � z � y) , (IA•)

which is the point-free counterpart of the interpolation condition (IA) from
Section 4 (see also page 835).

Example 11.1. The complete G-structure GcE1 (cf. Section 8) satisfies (IA•).
Let S be the family {(n, +∞) | n ∈ ω} of open infinite segments in R.
We consider the contracting filter FS generated by S and its contracting
maximal extension F∗

S in the family of all contracting filters. Notice that
F∗

S does not satisfy (11.5′), so it is not a member of PtGcE1 . To see that, we
define two open subset of R:

U := Int Cl
⋃

n∈ω(4n, +∞) and V := Int Cl
⋃

n∈ω(4n + 2, +∞) .

We have V ◦◦ F∗
S ◦◦ U , yet Cl V ∩ Cl U = ∅, i.e., V ][ U .

12. Points vs. Ultrafilters of G-Structures

Let M = 〈R,�〉 be an arbitrary mereological field (with or without unity).
Then Proposition 2.15 says that F is an ultrafilter of M iff for any x ∈ R
either x ∈ F or there is a y ∈ F such that y � x. We obtain:

Lemma 12.1. For any x ∈ R: x ∈ AtM iff Fx ∈ Ult(M).

Proof. “⇒” Assume for a contradiction that (a) x ∈ AtM and (b) Fx /∈
Ult(M). Then, by (a), for any z ∈ R either x � z or x � z. Moreover, by (b)
and Proposition 2.15, for some z0 ∈ R both x � z0 and for any y ∈ Fx we
have y � z0. But x ∈ Fx. So we obtain a contradiction: x � z0 and x � z0.
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“⇐” In the light of Proposition 2.15, if Fx ∈ Ult(M) then for any z ∈ R
either x � z or both x � y0 and y0 � z. Hence for any z ∈ R either x � z or
x � z. So x ∈ AtM.

A filter F of M is said to be free iff there is no x ∈ R such that for any
y ∈ F we have x � y. We obtain:

Lemma 12.2. Each ultrafilter of M either is free or principal generated by
an atom.

Proof. Let F be an ultrafilter of M that is not free. Then for some x0 ∈ R
for any y ∈ F we have x0 � y. Moreover, by Proposition 2.15, if x0 /∈ F then
there is a y ∈ F such that y � x0; and so we obtain a contradiction. Hence
x0 ∈ F . Therefore F = Fx0 . Moreover, x0 ∈ AtM, by Lemma 12.1.

Let us remind:

Lemma 12.3. 1. Every infinite Boolean lattice has a free ultrafilter.

2. [cf. 7, Lemma 43] In every complete Boolean lattice no free ultrafilter is
generated by a chain.

Hence, by Theorems 2.6 and 2.8 we obtain, respectively :
4. Every infinite mereological field with unity has a free ultrafilter.

5. In every mereological structure no free ultrafilter is generated by a chain.

Thanks to existence of free ultrafilters we have a general way of con-
structing G-structures for which all filters are contracting and the family of
points is properly included in the family of all free ultrafilters.

Proposition 12.4. Let 〈R,�〉 be an atomic infinite mereological structure.
Then in the complete G-structure R := 〈R,�, � 〉 all filters are contracting
and there is a free ultrafilter which is not a point.

Proof. Let 〈R,�〉 be any atomic infinite mereological structure with unity
1. By Proposition 6.8, R := 〈R,�, � 〉 is a complete G-structure, where
)( := � and � = �. Therefore all filters of R are contracting.

In the atomic infinite complete Boolean lattice B := 〈R0 ,�0 , 0 , 1〉 (cf.
Theorem 2.8) the set {−a | a ∈ AtB} of co-atoms has finite intersection
property and generates the co-finite free filter Fc of B. By the Kuratowski-
Zorn lemma, the filter Fc can be extended to a free ultrafilter U of B. But,
by Lemma 12.3(2), no free ultrafilter of B is generated by a chain. Hence
U is not generated by any chain. Therefore U /∈ PtR, since all members of
QR are chains.
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Now let R be an arbitrary G-structure (with or without unity). First,
directly from (11.6) and Proposition 2.15 we obtain:

Proposition 12.5. PtR ⊆ Ult(R) iff the relation � is reflexive (and also
)( = � and � = � , by Proposition 3.3 ).

Remark 12.1. If PtR ⊆ Ult(R), then � is reflexive and so, by (11.6′), we
have: ∀x∈R∀p∈PtR(x◦◦p ⇒ x ∈ p). And this is in line with propositions 10.8
and 10.10 .

Moreover, we obtain:

Proposition 12.6. If R has the unity 1, then PtR ⊆ Ult(R) iff for any
x ∈ R \ {1} we have x )( −x.

Proof. Let R have the unity 1. Then, by Proposition 2.13, for any p ∈ PtR:
p ∈ Ult(R) iff for any x ∈ R\{1} either x ∈ p or −x ∈ p iff for any x ∈ R\{1}
we have x )( −x, by (11.7).

From (11.1) and Corollary 5.3 we obtain that points may be principal filters
only if they are generated by atoms, i.e.:

Proposition 12.7. For all p ∈ PtR and x ∈ R: if p = Fx, then x ∈ AtR.
What’s more, for any x ∈ R the following conditions are equivalent :

(a) Fx ∈ PtR,

(b) x ∈ AtR,

(c) Fx ∈ Ult(R).

Proof. “(a) ⇒ (b)” If x /∈ AtR then for some x0 ∈ R we have x0 � x.
Moreover, by (11.1), for some p0 ∈ PtR we have x0 ∈ p0. Thus, Fx � p0.
Hence, Fx /∈ PtR, in virtue of Corollary 5.3.3

“(b) ⇒ (a)” If x ∈ AtR, then {x} ∈ QR, by Proposition 9.1. Thus,
Fx ∈ PtR.

“(b) ⇔ (c)” By Lemma 12.1.

This, on the other hand, for complete G-structures entails:

Proposition 12.8 [4]. If R is complete, then for each p ∈ PtR ∩ Ult(R)
there is an a ∈ AtR such that p = Fa.

Proof. Let p ∈ PtR∩Ult(R). Then, by Lemma 12.3(4), p is not free, since
p is generated by a chain. So, by Lemma 12.2, p = Fa for some a ∈ AtR.

3Of course, also Fx /∈ Ult(R). We get therefore another justification for “(c) ⇒ (b)”.
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For completeness of presentation, we provide an incomplete G-structure with
unity for which the above proposition fails.

Example 12.1. Let FC(ω) be the family of all finite and co-finite subsets
of ω. It is well-known that 〈FC(ω), ⊆, ∅, ω〉 is an atomic incomplete Boolean
lattice, where {{n} | n ∈ ω} is the set of atoms. We put FC+(ω) :=
FC(ω) \ {∅}. Then 〈FC+(ω), ⊆〉 is an atomic incomplete mereological field
with the unity ω. Thus, by propositions 4.2 and 6.8, FC := 〈FC+(ω), ⊆, � 〉
(where )( := �, i.e., X )( Y :⇐⇒ X ∩ Y = ∅ and so � = ⊆) is an
atomic incomplete G-structure with the unity ω. The structure has only
one free ultrafilter, the family Fc of all co-finite subsets of ω. The filter Fc

is generated by the chain Q := {ω \ {0, . . . , n} | n ∈ ω}. Indeed, let K be
a co-finite subset of ω with the complement {k1, . . . , kn} in which k∗ is the
largest number. Then ω \ {0, . . . , k∗} ⊆ K.

Now notice that the family Q is a pre-point. Indeed, conditions (r1) and
(r2) are obvious. For (r3) suppose that sets X and Y from FC+(ω) have
non-empty intersections with each set from Q. Then X and Y are co-finite,
and so X ∩ Y �= ∅.

Thus, Fc is both a point and an ultrafilter, but there is no n ∈ ω such
that Fc = F{n}, i.e., Fc in not generated by any atom.

Now notice that:

Proposition 12.9. If R is finite, then R is complete and PtR = Ult(R) =
{Fa | a ∈ AtR}.

Proof. Let R be finite. Then, in virtue of Proposition 2.10, R is based on
a complete mereological structure. Thus, PtR ⊆ Ult(R), by Corollary 9.3
and Proposition 12.5. For the converse inclusion we apply Lemma 2.14 and
suppose that F ∈ Ult(R) = Ult(R) = {Fa | a ∈ AtR}. Hence for some a ∈
AtR we have F = Fa := {x ∈ R | a � x}. But {a} ∈ QR, by Proposition 9.1.
So Fa ∈ PtR.

We also get the converse implication:

Proposition 12.10. If R is complete and Ult(R) ⊆ PtR, then R is finite.

Proof. Suppose that R is complete, 1 is its unity, and Ult(R) ⊆ PtR.
By (I��) and (r1), all elements of QR are chains in the non-trivial complete
Boolean lattice 〈R0 ,�0 , 0 , 1〉 (cf. Theorem 2.8). Hence, by the assumption,
every ultrafilter of R is generated by a chain. So, by Lemma 12.3(4), every
ultrafilter is principal, and by Lemma 12.3(4), R0 and R are finite.
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Example 12.1 shows that also Proposition 12.10 fails for some incomplete
G-structures.

Example 12.2. Let us continue with Example 12.1. Since Fc is the only
free ultrafilter of FC, the remaining ultrafilters of FC are principal and gen-
erated by atoms. By Proposition 12.7, all principal filters are points. Thus,
Ult(FC) ⊆ PtFC, however, the G-structure FC is infinite.

From the Kuratowski-Zorn lemma and Corollary 5.3 we have:

Proposition 12.11. Ult(R) ⊆ PtR iff PtR = Ult(R), i.e., if all ultrafilters
are points, then also all points are ultrafilters.

Proof. Let Ult(R) ⊆ PtR and p be an arbitrary point. Then p is a filter in
R. So, by the Kuratowski-Zorn lemma, for some F ∈ Ult(R) we have p ⊆ F .
However, Ult(R) ⊆ PtR. So F ∈ PtR and p = F , in light of Corollary 5.3.
Thus, PtR ⊆ Ult(R).

13. Internal Points and Adherent Points of Regions

Let R = 〈R,�, )( 〉 be any G-structure. We introduce an operation that
assigns to an arbitrary region x ∈ R the set of all points of whose x is an
element. Formally we have the operation Irl : R → P+(PtR) such that:

Irl(x) := { p ∈ PtR | x ∈ p }. (df Irl)

Elements of Irl(x) will be called internal points of the region x. In light of
(11.1), every region has an internal point, i.e., for any x ∈ R we have:

Irl(x) �= ∅. (13.1)

In light of (df Irl) and Corollary 5.4 we obtain:

Proposition 13.1. For any Q ∈ QR:

{FQ} =
⋂

{Irl(x) | x ∈ FQ} =
⋂

{Irl(x) | x ∈ Q}.

Thus, for any p ∈ PtR we have {p} =
⋂

{Irl(x) | x ∈ Q}, where p = FQ.4

Proof. Let Q ∈ QR and q ∈ PtR. If q ∈
⋂

{Irl(x) | x ∈ Q}, then Q ⊆ q.
So FQ = q, by Corollary 5.4. Thus,

⋂
{Irl(x) | x ∈ Q} ⊆ {FQ} ⊆

⋂
{Irl(x) |

x ∈ FQ} ⊆
⋂

{Irl(x) | x ∈ Q}, since Q ⊆ FQ ∈
⋂

{Irl(x) | x ∈ FQ}.

4The last statement of the proposition is formulated without a proof in [6, p. 234].
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Figure 1. The point p is internal of the region x

The spatial intuitions behind the concept of internal point are depicted in
Figure 1 and are very well expressed by the following binary relation in
PtR × R :

p � x :⇐⇒ p ∈ Irl(x) :⇐⇒ x ∈ p. (df �)

Of course, if p�x, then we also say that p is an internal point of the region x.
Due to PtR �= ∅, the definition of points, (df Irl), (11.4), and (11.2),

respectively, the following conditions hold:

∀x,y∈R

(
x � y ⇐⇒ Irl(x) ∩ Irl(y) �= ∅

)
, (13.2)

∀x,y∈R

(
x � y =⇒ Irl(x � y) = Irl(x) ∩ Irl(y)

)
. (13.3)

Remark 13.1. Condition (13.3) is analogous to the standard property of
the ordinary interior operation Int : P(S) → P(S), for a topological space
〈S,O〉: Int(X ∩Y ) = Int X ∩ Int Y , for all X, Y ∈ P(S) (see Appendix in the
first part of the paper). So we can see that the operation Irl : R → P+(PtR)
indeed deserves the name of interior of a region. Other properties of Int are
not expressible by means of Irl, since formulas ‘Irl(x) � x’ and ‘Irl(x) = x’
are meaningless. In the presented theory the notion of open region does not
make any sense.

Further, by (13.3), (sep�), and (11.1), we have:

PtR =
⋃

x∈R Irl(x), (13.4)

∀x,y∈R

(
x � y ⇐⇒ Irl(x) ⊆ Irl(y)

)
, (13.5)

∀x,y∈R

(
x = y ⇐⇒ Irl(x) = Irl(y)

)
, (13.6)

∀x∈R

(
Irl(x) = PtR ⇐⇒ x is the unity of R

)
. (13.7)

Proof. Ad (13.4): Let p ∈ PtR, i.e., for some ∅ �= Qp ∈ QR we have
p = {y ∈ R | ∃x∈Qp x � y}. Then there is an x ∈ Qp such that p ∈ Irl(x),
since Qp ⊆ p.

Ad (13.5): If x � y, then x � y = x. Hence, by (13.3), we have Irl(x) =
Irl(x � y) = Irl(x) ∩ Irl(y); so Irl(x) ⊆ Irl(y). Conversely, let x � y. Then,
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Figure 2. Both points p and q are adherent to the region x, but q is not

internal of x

by (11.1), there exists p ∈ PtR such that x−y ∈ p. So x ∈ p and y /∈ p (i.e.,
Irl(x) � Irl(y)), since p is a filter, x − y � x, and x − y � y.

Ad (13.6): By (13.5) and reflexivity and antisymmetry of �.
Ad (13.7): “⇒” By (13.5). “⇐” Since the unity belongs to all points.

After [1] we introduce another binary relation in PtR × R:

pA x :⇐⇒ ∀y∈p y � x ⇐⇒ x ◦◦ p . (dfA)

If pA x, we say that the point p is adherent to the region x. The intuitions
associated with the operation are presented in Figure 2.

By the definition of filters, (df Irl), (df �) and (dfA), the relation � is
included in the relation A, i.e., all internal points of a region are also its
adherent points, i.e., for any x ∈ R we have:

Irl(x) ⊆ A(x) := {p ∈ PtR | pA x}. (13.8)

Directly from (dfA) and (2.3) the operation A : R → P+(PtR) has the
following property:

∀x,y∈R A(x � y) = A(x) ∪ A(y) , (13.9)

Remark 13.2. Referring to Remark 13.1, note that condition (13.9) is anal-
ogous to the property of the ordinary closure operation Cl : P(S) → P(S),
for a topological space 〈S,O〉: Cl(X ∪Y ) = Cl X ∪Cl Y , for all X, Y ∈ P(S).

The relation � can also be expressed by means of A and Irl:

A(x) ⊆ A(y) ⇐⇒ x � y ⇐⇒ Irl(x) ⊆ A(y), (13.10)

x = y ⇐⇒ A(x) = A(y). (13.11)

Ad (13.10): Let x � y. Then x � y = y and by (13.9), A(y) = A(x � y) =
A(x) ∪A(y); so A(x) ⊆ A(y). Thus Irl(x) ⊆ A(y), by (13.8). Now let x � y.
Then, by (11.1), there exists p ∈ PtR such that x − y ∈ p. Hence p ∈
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Irl(x − y) ⊆ Irl(x), by (13.5). Yet p /∈ A(y), since x − y � y. In consequence
Irl(x) � A(y) and A(x) � A(y), by (13.8).

Ad (13.11): By (13.10) and and reflexivity and antisymmetry of �.
Using (11.5), (11.6), and (13.8), respectively, for all x, y ∈ R we obtain:

xC y ⇐⇒ A(x) ∩ A(y) �= ∅,
(13.12)

x )( y ⇐⇒ A(x) ∩ A(y) = ∅,

x � y ⇐⇒ A(x) ⊆ Irl(y). (13.13)

x � x ⇐⇒ A(x) = Irl(x). (13.14)

If R has the unity 1 then for any x ∈ R \ {1}:

Irl(−x) = PtR \ A(x),

A(−x) = PtR \ Irl(x).
(13.15)

Indeed, p ∈ Irl(−x) iff −x ∈ p iff (by Corollary 10.9) ∃y∈p y � −x iff
∃y∈p y � x iff ¬ ∀y∈p y � x. For the second equality apply x = − − x.

Remark 13.3. In reference to remarks 13.1 and 13.2 , observe that condition
(13.15) is analogous to the properties of the operations Int and Cl, for a
topological space 〈S,O〉: Int X = S \ Cl(S \ X) and Cl X = S \ Int(S \ X),
for any X ∈ P(S).

14. Set-Theoretical Version of Representation Theorem

Let R1 = 〈R1,�1, )(1〉 and R2 = 〈R2,�2, )(2〉 be relational structures with
binary relations. A strong homomorphism from R1 into R2 is a map h : R1 →
R2 such that for all x, y ∈ R1:

x �1 y ⇐⇒ h(x) �2 h(y),

x )(1 y ⇐⇒ h(x) )(2 h(y).

A one-to-one (resp. onto) strong homomorphism is called an embedding or a
monomorphism (resp. an epimorphism). A map is an isomorphism from R1

onto R2 iff it is both an embedding and an epimorphism iff it is a bijective
strong homomorphism. We say that R1 and R2 are isomorphic (R1

∼= R2)
iff there exists an isomorphism from R1 onto R2. If e is an embedding, then
R1 is isomorphic to 〈e[R1],�2|e[R1], )(2|e[R1]〉 via e.

Lemma 14.1. If R1 is a G-structure and e is an embedding from R1 into R2,
then 〈e[R1],�2|e[R1], )(2|e[R1]〉 is also a G-structure.

Let R = 〈R,�, )( 〉 be any G-structure. A representation of R is an iso-
morphism from R into a G-structure whose universe is included in P+(PtR).
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A representation ı is reduced iff the image ı[R] separates the points of PtR,
i.e., iff for any two distinct p, q ∈ PtR, there is an x ∈ R such that p ∈ ı(x)
and q /∈ ı(x). A representation ı is perfect iff for all p ∈ PtR and x ∈ R:
x ∈ p iff p ∈ ı(x). We can construct a G-structure for which the operation
Irl will be a reduced and perfect representation of R.

Firstly, notice that the image Irl[R] is included in P+(PtR). Secondly,
since by (13.6) the operation Irl is one-to-one, in the family Irl[R] we can
introduce the following binary relation:

X )( Y :⇐⇒ A ◦ Irl−1(X) ∩ A ◦ Irl−1(Y ) = ∅. (df )( )

It means that for any x, y ∈ R we have:

Irl(x) )( Irl(y) ⇐⇒ A(x) ∩ A(y) = ∅. (14.1)

Thus, we can put Irl[R] := 〈Irl[R], ⊆, )( 〉.

Theorem 14.2. 1. The operation Irl is an isomorphism of R onto Irl[R].

2. Irl[R] is a G-structure.

3. The operation Irl is a reduced and perfect representation of R.

4. If R has the unity 1, then Irl[R] has the unity PtR and Irl(1) = PtR.

5. R is complete iff Irl[R] is complete.

Proof. Ad 1. By (13.5), (13.6), (13.12) and (14.1).
Ad 2. From Lemma 14.1 and 14.2.
Ad 3. Directly from definitions, for any two distinct p, q ∈ PtR, there is

an x ∈ R such that x ∈ p and x /∈ q, so p ∈ Irl(x) and q /∈ Irl(x). Moreover,
for all p ∈ PtR and x ∈ R: x ∈ p iff p ∈ Irl(x).

Ad 4. By (13.7). Ad 5. Obvious.

15. Topological Spaces for G-Structures

In this section we move on to the construction of a topological space in
the set of points (as sets of regions) of a given G-structure. To this end a
standard method of generating of topology via basis will be applied.

15.1. From the Base of Topology to the Family of Open Sets

Let R = 〈R,�, )( 〉 be an arbitrary G-structure. As basis for the set PtR
may be taken the image of R with respect to the operation Irl:

BR := Irl[R] := { Irl(x) | x ∈ R } . (dfBR)
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Indeed, for x, y ∈ R, if p ∈ Irl(x)∩ Irl(y), then x � y and so p ∈ Irl(x� y) =
Irl(x) ∩ Irl(y), by (13.2) and (13.3). Moreover, directly from the defintions
of the families QR and PtR, for any p ∈ PtR there is an x ∈ R such that
p ∈ Irl(x), i.e., x ∈ p.

Thus—in the standard way—we can introduce the family OR of open
sets on PtR which is generated by BR. That is, for any Γ ∈ P(PtR) we
put:

Γ ∈ OR :⇐⇒ Γ =
⋃

B, for some subfamily B of BR. (df OR)

The family OR will be called the Grzegorczyk topology (shortly: G-topology)
of R, while the topological space 〈PtR,OR〉 takes the name of Grzegor-
czyk topological space of R (shortly: G-topological space of R) and we put
Gts R := 〈PtR,OR〉. Let rOR be the family of all regular open sets in
Gts R; rO+

R := rOR \ {∅}. Further, ClR and ClopR are the families of all
closed and all clopen sets in Gts R, respectively.

In [6] the author did not use the base BR for the introduction of the
topology OR. He introduced the family of open sets by the definition D2 [cf.
6, p. 232] which corresponds to the following property of the family OR:

Ω ∈ OR ⇐⇒ ∀p∈Ω∃x∈p Irl(x) ⊆ Ω

⇐⇒ ∀p∈Ω∃x∈p∀q∈PtR(x ∈ q ⇒ q ∈ Ω).
(15.1)

Proof. “⇒”: Let Γ ∈ OR, i.e., for some subfamily B of BR we have Γ =⋃
B. Suppose that p ∈ Γ , i.e., there is a B0 ∈ B such that p ∈ B0. Then for

some x0 ∈ R we have p ∈ Irl(x0) = B0 ⊆ Γ .
“⇐”: We have Γ =

⋃
{B ∈ BR | B ⊆ Γ}, i.e., Γ ∈ OR. Clearly,

⋃
{B ∈

BR | B ⊆ Γ} ⊆ Γ . For the converse inclusion we assume that p ∈ Γ . Then
for some x0 ∈ p we have Irl(x0) ⊆ Γ .

15.2. Interiors and Closures of Sets in G-Topological Spaces

Let R be an G-structure. Using the fact that the family BR is a basis of
Gts R we see that the operation of interior, Int : P(PtR) → P(PtR), has
the following property: for all p ∈ PtR and Γ ⊆ PtR

p ∈ Int Γ ⇐⇒ ∃x∈p Irl(x) ⊆ Γ,

⇐⇒ ∃x∈p∀q∈PtR(x ∈ q ⇒ q ∈ Γ ).
(15.2)

Indeed, p ∈ Int Γ iff ∃Δ∈BR
p ∈ Δ ⊆ Γ iff ∃x∈R p ∈ Irl(x) ⊆ Γ iff

∃x∈p Irl(x) ⊆ Γ iff ∃x∈p∀q∈PtR(x ∈ q ⇒ q ∈ Γ ).
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We also obtain that the operation of closure, Cl : P(PtR) → P(PtR),
satisfies the following for all p ∈ PtR and Γ ⊆ PtR:

p ∈ Cl Γ ⇐⇒ ∀x∈p Irl(x) ∩ Γ �= ∅,

⇐⇒ ∀x∈p∃r∈Γ x ∈ r ⇐⇒ p ⊆
⋃

Γ .
(15.3)

Indeed, p ∈ Cl Γ iff ∀Δ∈BR
(p ∈ Δ ⇒ Δ ∩ Γ �= ∅) iff ∀x∈R(p ∈ Irl(x) ⇒

Irl(x) ∩ Γ �= ∅) iff ∀x∈p Irl(x) ∩ Γ �= ∅ iff ∀x∈p∃r∈Γ x ∈ r iff p ⊆
⋃

Γ .
Moreover, by (15.3) and (13.2), for all p ∈ PtR and x ∈ R we have:

p ∈ Cl Irl(x) ⇐⇒ ∀y∈p y � x. (15.4)

Indeed, p ∈ Cl Irl(x) iff ∀y∈p Irl(y) ∩ Irl(x) �= ∅ iff ∀y∈p y � x.
Directly from (15.4) we obtain that for each region the set of its adherent

points is the closure of the set of its internal points:

A(x) = Cl Irl(x). (15.5)

Now by (15.5) and, respectively, (13.12)–(13.14), we can express the relations
C, )( and � by means of topological notions. For all x, y ∈ R:

xC y ⇐⇒ Cl Irl(x) ∩ Cl Irl(y) �= ∅,
(15.6)

x )( y ⇐⇒ Cl Irl(x) ∩ Cl Irl(y) = ∅,

x � y ⇐⇒ Cl Irl(x) ⊆ Irl(y), (15.7)

x � x ⇐⇒ Cl Irl(x) = Irl(x). (15.8)

After Grzegorczyk we demonstrate that:

Theorem 15.1. For any x ∈ R, Irl(x) ∈ rO+
R. So BR ⊆ rO+

R.

In this way we will have shown that the space Gts R is semiregular
(although, through Theorem 16.2, we will obtain that this space is also
concentric; and so it is regular, by Lemma 8.1).

Proof of Theorem 15.1. Firstly, Irl(x) ⊆ Int Cl Irl(x), since Irl(x) ∈ OR.
Secondly, let p ∈ Int Cl Irl(x). Then, by (15.2), for some y0 ∈ p we have
Irl(y0) ⊆ Cl Irl(x). We show (∗): ∀z∈R(z � y0 ⇒ z � x). Indeed, let z be
arbitrary region such that z � y0. Then, by (11.3), for some q0 ∈ PtR we
have y0 ∈ q0 and z ∈ q0. So q0 ∈ Irl(y0) ⊆ Cl Irl(x). Thus, z � x, by (15.4).

From (∗) we obtain y0 � x, because � is separative. Hence x ∈ p, and so
p ∈ Irl(x). �

Finally notice that if R has the unity 1, then—using (15.5) and (13.15)—
for any x ∈ R \ {1} we obtain:

Irl(−x) = Int(PtR \ Irl(x)). (15.9)
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16. The Separation Axioms for G-Topological Spaces

Let R = 〈R,�, )( 〉 be any G-structure and Gts R := 〈PtR,OR〉 be its
G-topological space generated by BR. First we get:

Lemma 16.1. For any p ∈ PtR there is a subfamily of BR that is a base
at p and satisfies (R1). Moreover, if R is first-countable, then there is a
countable base at p which satisfies (R1).

Proof. Let p ∈ PtR, i.e., for some Q ∈ QR we have p = FQ = {x ∈ R |
∃y∈Q y � x}. We put BQ := {Irl(y) | y ∈ Q}.

Firstly, we show that the family BQ is a base at p. Suppose that Ω ∈ OR

and p ∈ Ω. Then for some B ∈ BR we have p ∈ B ⊆ Ω. But for some x0 ∈ R
we have B = Irl(x0) and x0 ∈ p. Hence for some y0 ∈ Q we have y0 � x0.
So Irl(y0) ⊆ Irl(x0), by (13.5). Moreover, p ∈ Irl(y0) ⊆ Ω and Irl(y0) ∈ BQ,
since y0 ∈ Q ⊆ p.

Secondly, we show that the family BQ satisfies (R1). Suppose that
B1, B2 ∈ BQ and B1 �= B2. So for some x1, x2 ∈ Q we have that B1 = Irl(x1)
and B2 = Irl(x2). By (13.6) we have x1 �= x2. Hence, by (r1), either x1 � x2

or x2 � x1. We now apply (15.7).
Moreover, in the light of Corollary 7.1, if R is first-countable, then there is

a countable Q′ ∈ QR which is coinitial with Q and such that p = FQ = FQ′ .
Of course, the family BQ′ := {Irl(y) | y ∈ Q′} is countable. As for BQ, we
show that BQ′ is a base at p and satisfies (R1).

From the above lemma we obtain:

Theorem 16.2. 1. Gts R is concentric.

2. If R is first-countable, then Gts R is ω-concentric.

Proof. Gts R is a Urysohn space and so it is also a T1-space. Indeed,
suppose that p, q ∈ PtR are distinct points. Then, by Corollary 10.9(2),
there are x ∈ p and y ∈ q such that x )( y. So p ∈ Irl(x), q ∈ Irl(y) and
Cl Irl(x) ∩ Cl Irl(y) = ∅, by (15.6). Now apply Lemma 16.1.

Let us remember, see (8.2), that the class of ω-concentric topological spaces
is equal to both the class of first-countable concentric topological spaces and
the class of first-countable regular topological spaces.

It seems that nothing more can be said about separation axioms for
G-topological spaces of G-structures without making additional assump-
tions about these structures. There is more to be said, however, about G-
topological spaces built on G-structures created from regular open sets of
some topological spaces (see Section 19).
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17. G-Structures for G-Topological Spaces

Let R be any G-structure and Gts R := 〈PtR,OR〉 be its G-topological
space. Theorem 16.2 says that Gts R is concentric. With Gts R—as with all
concentric topological spaces (see Theorem 8.4)—is associated the complete
G-structure 〈rO+

R, ⊆, ][ 〉 (see (df ][ ) on p. 811). Thus, according to the
convention from page 812, we will denote it by Gc(Gts R). The following
diagram illustrates adopted conventions:

R �→ Gts R

concentric

�→ Gc(Gts R)
complete G-structure

Now notice that, respectively, from the fact that BR := Irl[R] ⊆ rO+
R is a

base of Gts R, Theorems 16.2 and 8.8 and (13.2) we obtain (cf. Corollary 8.5
and (8.1)):

Proposition 17.1. The following conditions are equivalent :

(a) R satisfies c.c.c.

(b) Gts R satisfies c.c.c. (and so it is ω-concentric).

(c) Gc(Gts R) satisfies c.c.c.

Thus, by Proposition 17.1 and Theorem 8.9, for G-structures satisfying
c.c.c. we obtain:

R

satisfies c.c.c.

�→ Gts R
satisfies c.c.c.

ω-concentric

�→ Gc(Gts R)
satisfies c.c.c.

Furthermore, for first-countable G-structures (which form a wider class than
the class of G-structures satisfying c.c.c.; see Lemma 7.3) from Theorem 16.2
and Corollary 8.7 we obtain:

R

first-countable

�→ Gts R

ω-concentric

�→ Gc(Gts R)
first-countable

18. Completions and the Topological Version of Representation
Theorems

Let R = 〈R,�, )( 〉 be any G-structure. Theorem 15.1 says that Irl[R] ⊆ rO+
R.

Hence, by (13.5), (13.6) and (15.6), we obtain:

Proposition 18.1. Irl is an embedding of R into Gc(Gts R).
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By (14.1) and (15.5), the relation )( is equal to ][ on Irl[R] =: BR (see
p. 829). Furthermore, BR ⊆ rO+

R and BR is dense in Gts R, since BR is a
base of Gts R. Therefore we obtain:

Proposition 18.2. 1. Irl[R] = 〈BR, ⊆, ][ 〉.
2. The G-structure Irl[R] is a dense substructure of Gc(Gts R).

So, by using Proposition 18.1, we obtain:

Corollary 18.3. The pair 〈Gc(Gts R), Irl〉 is a completion of R.5

We prove that the complete G-structure Gc(Gts R) is equal to the G-
structure Irl[R] if and only if R is complete. For the proof of this fact we
need the following lemma.

Lemma 18.4. For any X ∈ P(R) that has a mereological sum, Irl(
⊔

X) =
Int Cl

⋃
x∈X Irl(x).

Proof. Suppose that X ∈ P(X) has a mereological sum. Then X �= ∅ and⊔
X := (ι z) z sum X.
“⊆” Using (15.3), we prove that Irl(

⊔
X) ⊆ Cl

⋃
x∈X Irl(x), which gives

that Irl(
⊔

X) ⊆ Int Cl
⋃

x∈X Irl(x), since Irl(
⊔

X) is open. Thus, let p ∈
Irl(

⊔
X), i.e.,

⊔
X ∈ p. If y ∈ p then y �

⊔
X. Hence for some z0 ∈ R we

have z0 � y and z0 � ⊔
X. By (13.5), we have Irl(z0) ⊆ Irl(y). By (df

⊔
)

and (df sum), for some x0 ∈ X we have x0 � z0. Hence Irl(x0) ∩ Irl(z0) �= ∅,
by (13.2). Therefore also Irl(y) ∩ Irl(x0) �= ∅. So Irl(y) ∩

⋃
x∈X Irl(x) �= ∅.

From this, by (15.3), we infer that p ∈ Cl
⋃

x∈X Irl(x).
“⊇” We have ∀x∈X x � ⊔

X. Hence ∀x∈X Irl(x) ⊆ Irl(
⊔

X), by (13.5);
and so

⋃
x∈X Irl(x) ⊆ Irl(

⊔
X). But, by Theorem 15.1, the set Irl(

⊔
X) is

regular open, so the conclusion follows.

Theorem 18.5. BR = rO+
R iff R is complete.

Proof. “⇒” If BR = rO+
R then Irl[R] = Gc(Gts R) and so Irl[R] is com-

plete. Hence R is also complete, by Theorem 14.2(5).
“⇐” Theorem 15.1 says that BR ⊆ rO+

R . For the converse inclusion
suppose that R is complete and Ω ∈ rO+

R. Then for some X ∈ P(R) we
have Ω =

⋃
x∈X Irl(x), since Ω ∈ OR and BR is a base of Gts R. So, by

Lemma 18.4, Ω = Int Cl Ω = Irl(
⊔

X), since Ω is regular open and X has
a mereological sum. To conclude, Ω ∈ BR.

5For G-structures R1 = 〈R1,�1, )(1〉 and R2 = 〈R2,�2, )(2〉 and a mapping e : R1 →
R2, a pair 〈R2, e〉 is said to be a completion of R1 iff both R2 is complete, e is an embedding
from R1 into R2 and the image e[R1] is dense in R2 (i.e., for any y ∈ R2 there is an x ∈ R1

such that e(x) �2 y).
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Thus, by means of Theorems 14.2 and 18.5 , we obtain:

Theorem 18.6. The operation Irl is an isomorphism from R onto Gc(Gts R)
iff R is complete.

Remark 18.1. Proposition 4.3(4) says that if Gts R is a normal space then
the relation � on rO+

R is dense in Gc(Gts R), i.e., satisfies:

∀U,V ∈rO+
R

(
U � V =⇒ ∃W∈rO+

R
(U �W ∧ W � V )

)
,

∀U,V ∈rO+
R

(
Cl U ⊆ V =⇒ ∃W∈rO+

R
(Cl U ⊆ W ∧ Cl W ⊆ V )

)
.

(IA)

Thus, by Theorem 18.6, if R is complete and Gts R is a normal space, then
the relation � on R is dense in R, i.e., it satisfies condition (IA•).

After all the work so far we are in a position to obtain representation the-
orems that characterize G-structures. Firstly, from Theorems 14.2, 16.2(1)
and 18.6 and Proposition 18.2(1), respectively, we obtain:

Theorem 18.7. 1. Every G-structure is isomorphic to a dense substructure
of a G-structure for a concentric topological space.

2. Every complete G-structure is isomorphic to a G-structure for a concen-
tric topological space.

Secondly, from Theorems 14.2, 16.2(1) and 18.6 and Propositions 17.1
and 18.2(2), respectively, we obtain:

Theorem 18.8. 1. Any G-structure satisfying c.c.c. is isomorphic to a
dense substructure of a G-structure satisfying c.c.c. for an ω-concentric
topological space satisfying c.c.c.

2. Any complete G-structure satisfying c.c.c. is isomorphic to a G-structure
satisfying c.c.c. for an ω-concentric topological space satisfying c.c.c.

Thirdly, from Theorems 14.2, 16.2(2) and 18.6 , respectively, we obtain:

Theorem 18.9. 1. Any first-countable G-structure is isomorphic to a dense
substructure of a G-structure for an ω-concentric space.

2. Any complete first-countable G-structure is isomorphic to a G-structure
for an ω-concentric space.

Fourthly, from Theorems 14.2, 16.2 and 18.6 , respectively, we obtain (cf.
Corollary 8.11):

Theorem 18.10. 1. Any countable G-structure is isomorphic to a dense
substructure of a G-structure for a second-countable regular space.
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2. Any complete countable G-structure is isomorphic to a G-structure for a
second-countable regular space.

Proof. For any countable G-structure R, the G-topological space Gts R is
regular and second-countable, since Irl[R] is a countable base of Gts R.

19. G-Topological Spaces of G-Structures for Concentric
Topological Spaces

With a concentric topological space T we associate the complete G-structure
GcT := 〈rO+, ⊆, ][ 〉. So we can consider the following G-topological space
Gts(GcT ) := 〈PtGcT ,OGcT 〉 with the base BGcT = { Irl(U) | U ∈ rO+ }. By
Theorem 8.12 we obtain:

Theorem 19.1. If a concentric space T satisfies c.c.c., then the bijection
b: S � p �→ FrBp ∈ PtGcT from Theorem 8.12 is a homeomorphism of T
onto Gts(GcT ).

Proof. We show that the bijection b: S � p �→ FrBp ∈ PtGcT from Theo-
rem 8.12 is both continuous and open.

First, for any Ω ∈ BR, where Ω = Irl(U) for some U ∈ rO+, we show that
b−1[Ω] ∈ O. Indeed, by Theorem 8.12(1), for any p ∈ S: p ∈ b−1[Irl(U)] iff
b(p) ∈ Irl(U) iff FrBp ∈ Irl(U) iff U ∈ rOp iff p ∈ U . Thus, b−1[Irl(U)] = U .

Second, for any U ∈ rO+, using (15.1), we show that b[U ] ∈ OR. Suppose
that p ∈ b[U ] = {FrBp | p ∈ U}. Then, by Theorem 8.12(1), for some p ∈ U
we have p = FrBp = {V ∈ rO+ | p ∈ V }. So U ∈ p. Now let q be an
arbitrary point of PtGcT such that U ∈ q. Then for some q ∈ S we have
q = FrBq = {V ∈ rO+ | q ∈ V } and so q ∈ U . So q ∈ b[U ].

Clearly, if a concentric space T satisfies c.c.c., then Gts(GcT ) must also satisfy
c.c.c. Therefore Theorems 18.8(2) and 19.1 yield the following object duality
for subclasses of Grzegorczyk structures and concentric spaces:

Theorem 19.2. Every complete G-structure satisfying c.c.c. is isomorphic
to a G-structure for a concentric space satisfying c.c.c.; and every concentric
c.c.c. space is homeomorphic to a concentric space satisfying c.c.c. for some
complete G-structure satisfying c.c.c.

Corollary 8.11 says that all second-countable regular topological spaces
are ω-concentric and perfectly normal satisfying c.c.c. Thus, by Theo-
rem 19.1 and the fact that having countable basis is a topological property,
i.e., it is preserved under homeomorphisms, we obtain:
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Corollary 19.3. If T is second-countable regular, then T and Gts(GcT ) are
homeomorphic and Gts(GcT ) is second-countable, ω-concentric and perfectly
normal satisfying c.c.c.

In reference to Section 8, with the Euclidean topological space En we
associate the complete G-structure GcEn := 〈rE+(Rn), ⊆, ][ 〉, for any n ∈ ω+.
In the light of Theorem 19.1 we obtain:

Theorem 19.4. The bijection b: Rn � p �→ FBp ∈ PtGcEn from Theo-
rem 8.13 is a homeomorphism of En onto Gts(GcEn) := 〈PtGcEn ,OGcEn〉.

Remark 19.1. To conclude, we observe that in light of Corollary 19.3 and
Theorem 18.10(2) it is tempting to draw a conclusion that we obtain another
object duality, this time for countable G-structures and second-countable
topological spaces. Unfortunately this is not the case, since given second-
countable regular space T , GcT does not have to be countable. The standard
Euclidean topology En and GcEn serve a suitable counterexample.

20. Some Properties of G-Topological Spaces

20.1. G-Topological Spaces for Finite G-Structures

If a G-structure R is finite, then we not only have that BR = rO+
R, but also:

Proposition 20.1. If R is finite, then Gts R is discrete and OR = BR.

Proof. If R is finite, then the set PtR is finite, by Theorem 11.1. Gts R is a
T1-space, therefore Gts R is discrete. By Proposition 12.9, PtR = Ult(R) =
{Fa | a ∈ AtR}. Now we show that P(PtR) ⊆ BR. Suppose that Γ ∈
P(PtR). Then for some a1, . . . , an ∈ AtR we have Γ = {Fa1 , . . . ,Fan

}.
Since all points are ultrafilters, for any p ∈ PtR: p ∈ Irl(a1 � · · · � an) iff
a1 � · · · � an ∈ p iff ∃1�i�n ai ∈ p iff ∃1�i�n Fai

= p iff p ∈ Γ. Hence
Γ = Irl(a1 � · · · � an), i.e., Γ ∈ BR.

20.2. G-Topological Spaces vs. Stone Spaces of G-Structures

Let R ∈ G. As for Boolean lattices (algebras), the Stone space of R (or the
space of ultrafilters of R; shortly: UltR) is the topological space whose set of
points is the set Ult(R) of all ultrafilters of R and the topology is generated
by the base s[R] := {s(x) | x ∈ R}, where the Stone map s: R → P(Ult(R))
is defined by s(x) := {F ∈ Ult(R) | x ∈ F} (cf. Section 2.9).

If R has the unity 1 then the Stone space of R is identical with the Stone
space of the non-trivial Boolean algebra 〈R0 , +, ·, –, 0 , 1〉 (cf. Theorems 2.5
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and 2.6). As is well known: A Boolean algebra is finite iff its Stone space is
finite and discrete.

In general, Gts R is different from UltR, since—usually—both PtR �

Ult(R) and Ult(R) � PtR. Indeed, firstly, by Proposition 12.5, if PtR ⊆
Ult(R) then the relation � is reflexive, )( = � and � = � ; and in the
case when R has the unity 1, for any x ∈ R \ {1} we have x )( −x. Sec-
ondly, by Proposition 12.10, if Ult(R) ⊆ PtR and R is complete, then R

is finite. Moreover, by Proposition 12.11 (for which we use the Kuratowski-
Zorn lemma): Ult(R) ⊆ PtR iff PtR = Ult(R).

Finally, by Proposition 12.9, if R is finite, then R is complete and PtR =
Ult(R) = {Fa | a ∈ AtR}. Moreover, for any x ∈ R we have s(x) = Irl(x).
So Gts R = UltR. Notice that, by Proposition 20.1, in this case Gts R is
discrete and BR = OR, as for the finite Boolean algebra 〈R0 , +, ·, –, 0 , 1〉.

20.3. Atoms and Isolated Points: Atomic G-Structures

We have the following characterization of the set AtR of atoms of R ∈ G:

Proposition 20.2. For any x ∈ R: x ∈ AtR iff the set Irl(x) is a singleton.

Proof. “⇒” Suppose that x ∈ AtR and p, q ∈ Irl(x), i.e., x ∈ p and x ∈ q.
If y ∈ p, then y � x and so x � y. Therefore y ∈ q. Thus, p = q, by
Corollary 5.3. So Irl(x) is a singleton.

“⇐” Suppose that x /∈ AtR. Then, by (MF), for some y1, y2 ∈ R we have
y1 � x, y2 � x, and y1 � y2. Hence Irl(y1) ∩ Irl(y2) = ∅, by (13.2). So for
some p1, p2 ∈ PtR we have p1 ∈ Irl(y1), p2 ∈ Irl(y2) and p1 �= p2. Since
y1 ∈ p1, y2 ∈ p2 and all points are filters, both x ∈ p1 and x ∈ p2, i.e.,
p1, p2 ∈ Irl(x). Therefore the set Irl(x) is not a singleton.

A point p of PtR is isolated in the G-topological space Gts R iff {p} ∈ OR.
As an important consequence of the above definition we get:

Proposition 20.3. For any isolated point p ∈ PtR there is a ∈ AtR such
that {p} = Irl(a).

Proof. Suppose that {p} ∈ OR. Then {p} =
⋃

x∈X Irl(x), for some X ∈
P(PtR). We show that X is a singleton. Assume for a contradiction that
for some x1, x2 ∈ X we have x1 �= x2. Then ∅ �= Irl(x1) �= Irl(x2) �= ∅, by
(13.1) and (13.6). So Irl(x1) ∪ Irl(x2) is not a singleton.

Thus, for some x ∈ R we have {p} = Irl(x). From this and Proposi-
tion 20.2 follows that x ∈ AtR.

Thus, the above two propositions entail:
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Corollary 20.4. A point p ∈ PtR is isolated iff there is an a ∈ AtR
such that {p} = Irl(a). So the isolated points of Gts R are in bijective
correspondence with the atoms of R. More specifically, an isolated point
p ∈ PtR corresponds to an atom a ∈ AtR iff Irl(a) = {p}.

Corollary 20.5. AtR �= ∅ iff there is at least one isolated point.

Proof. “⇒” If x ∈ AtR then Irl(x) is a singleton, by Proposition 20.2. So
the only element of the set Irl(x) is an isolated point.

“⇐” By Proposition 20.3.

Proposition 20.6. R is atomic iff the set of all isolated points is dense in
Gts R.

Proof. “⇒” A set is dense in Gts R iff it has at least one common point
with each set from O+

R. Assume that R is atomic and Ω ∈ O+
R. Then for

some x ∈ R we have Irl(x) ⊆ Ω. Moreover, for some a ∈ AtR we have a � x.
Hence Irl(a) ⊆ Irl(x), by (13.5). But, by Proposition 20.2, for some p ∈ PtR
we have Irl(a) = {p}. So p is isolated and p ∈ Ω.

“⇐” Suppose that the set of all isolated points is dense in Gts R. Then
for any x ∈ R there is an isolated point p ∈ PtR such that p ∈ Irl(x). So, by
Proposition 20.3, there is an a ∈ AtR such that {p} = Irl(a). Hence a ∈ p.
So also a � x, since x ∈ p. Therefore a � x.

Remark 20.1. The facts from this subsection are counterparts of the well
know property of Boolean algebras [see, e.g., 9, Proposition 7.18]: The iso-
lated points of Stone space of a Boolean algebra B are in bijective corre-
spondence with its atoms. More specifically, an isolated point U ∈ Ult(B)
corresponds to an atom a ∈ AtB iff s(a) = {U}. Moreover, a Boolean algebra
B is atomic iff the set of all isolated points is dense in UltB.

20.4. Connected G-Topological Spaces

By conditions (13.14) and (15.8), for any x ∈ R we obtain:
x � x ⇐⇒ Irl(x) ∈ ClopR. (20.1)

Proposition 20.7. If Gts R is connected then:
1. For any x ∈ R which is not the unity we have x � x.

2. If R has the unity 1, then for any x ∈ R \ {1} we have xC−x.

3. If R is non-trivial, then AtR = ∅.

Proof. Ad 1. Assume for a contradiction that for x ∈ R which is not the
unity we have x � x. Hence, by (20.1), the set Irl(x) is clopen in Gts R. But
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by (13.1) and (13.7), we have ∅ �= Irl(x) �= PtR. Hence ClopR �= {∅,PtR},
i.e., Gts R is not connected.

Ad 2. By 1 and (3.9).
Ad 3. Assume that R is non-trivial. Then, by Proposition 9.1, if a ∈ AtR,

then a is not the unity and a � a. Hence, by 1, we have AtR = ∅.

Further, for complete G-structures we obtain:

Proposition 20.8. Let R be complete and satisfy the following condition:

∀x∈R (x �= 1 =⇒ xC−x). (C6)

Then Gts R is connected.

Proof. Suppose that R is complete and Gts R is not connected. By The-
orem 18.5 we have BR = rO+

R. Moreover, there is Ω ∈ ClopR such that
∅ �= Ω �= PtR. So Ω ∈ rO+

R = BR and for some x ∈ R, Ω = Irl(x). Since
Ω �= PtR, we have that x �= 1, by (13.7). Therefore x � x and x )( −x, by
(20.1) and (3.9), respectively.

21. On Grzegorczyk’s Original Formulation of G-Structures

Grzegorczyk’s original formulation of his theory in [6] is slightly different
from ours and in this section we would like to explain those differences.

21.1. Completeness of Mereological Fields

In [6] Grzegorczyk did not explicitly assume that mereological fields are
complete (and so that G-structures are complete). As Theorem 18.6 shows,
axiom (∃sum) is necessary to prove that two G-structures R and Gts R :=
〈rO+

R, ⊆, ][ 〉 are isomorphic. However, such a result can be found in [6,
p. 235] with its proof appealing to completeness of underlying structure.
So it is reasonable to admit that axiom (∃sum) was implicitly assumed by
Grzegorczyk.

21.2. The Original Version of Axiom (G)

Instead of (G), Grzegorczyk formulates the following axiom (or rather the
one which is equivalent to the following): for all connected x, y ∈ R there
exists an X ∈ P+(R) such that X, x, and y satisfy (r1)–(r3), the condition

(g2) for any z ∈ X we have z � x and z � y

and the following condition:
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(g1org) ∃z∈R

(
z ∈ X ∧ (x � y ⇒ z � x)

)
.

That is, the Grzegorczyk’s axiom has the form which is equivalent to the
following:

∀x,y∈R

(
xC y =⇒ ∃X∈P(R) X, x, y satisfy (r1)–(r3), (g1org), (g2)

)
. (Gorg)

Only after he defines the notion of representative of a point (in other words,
the notion of pre-point). However, we will prove that both formulations with
(G) and (Gorg), respectively, yield equivalent theories.

Notice that the role of the first conjunct of (g1org) is to ensure the non-
emptiness of the set of regions satisfying all the conditions. In the definition
of the family QR we require that only non-empty sets are representatives
of points and we use this family in (G). So we do not have to say anything
about non-emptiness of the set postulated by the axiom in (g1). Actually
Grzegorczyk defines representatives of points6 in a way analogous to us, but
the order of axioms and definitions is different. As we mentioned above –
first, he introduces axiom (Gorg) and then defines counterpart of our set QR.
Thus he must somehow ensure non-emptiness of sets that generate points
and he chooses the way described.

Theorem 21.1. For any quasi-separation structure R = 〈R,�, )( 〉 the con-
ditions (G) and (Gorg) are equivalent.

Proof. “G ⇒ (Gorg)” Suppose that xC y. Then, by (G), for some Q0 ∈ QR

we have: Q0, x, and y satisfy (g1) and (g2). Now suppose that x � y. Then
also x � y. Hence, by (g1), for some z0 ∈ Q0 we have z0 � x � y = x. So we
obtain: x � y ⇒ ∃z∈Q0 z � x. But this is equivalent to: ∃z∈Q0(x � y ⇒ z � x)
and ∃z∈R(z ∈ Q0 ∧ (x � y ⇒ z � x)). Thus, Q0, x, and y satisfy (g1org). So
we obtain (Gorg).

“(Gorg) ⇒ (G�) ∧ (G�)” (see Proposition 6.1) Firstly, we show that (G�)
holds. Let x � y. Then by reflexivity of C and (Gorg) applied to x � y, for
some X0 ⊆ R satisfying (r1)–(r3) we have: X0, x/x � y, and y/x � y satisfy
(g1org). But, by (g1org), we get X0 �= ∅, so X0 ∈ QR. Moreover, by (g1org)
and reflexivity of �, for some z0 ∈ X0 we have z0 � x � y. Secondly, also
(G�) holds. Suppose that xC y and x � y. Then X ∈ QR, since by (g1org)
we have X �= ∅. The rest we obtain by (g2).

6See the predicate Q(x) in [6, p. 232].
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[5] Gruszczyński, R., and A. Pietruszczak, A study in Grzegorczyk point-free topol-

ogy Part I: Separation and Grzegorczyk structures, Studia Logica, 2018. https://doi.

org/10.1007/s11225-018-9786-8.

[6] Grzegorczyk, A., Axiomatizability of geometry without points, Synthese 12(2–3):

228–235, 1960. https://doi.org/10.1007/BF00485101.

[7] Hamkins, J. D., and D. Seabold, Well-founded Boolean ultrapowers as large cardinal

embeddings, 2012. http://arxiv.org/abs/1206.6075.

[8] Helmos, P. R., Lectures on Boolean Agebras, D. Van Nostrad Company, Inc., Prince-

ton, New Jersey, Toronto, New York, London, 1963.

[9] Koppelberg, S., Handbook of Boolean Algebras, vol. 1, J. D. Monk and R. Bonnet

(eds.), Elsevier, 1989.
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lishing House, Toruń, 2018. https://doi.org/10.12775/9751.

[12] Roeper, P., Region-based topology, Journal of Philosophical Logic 26(3): 251–309,

1997. https://doi.org/10.1023/A:1017904631349.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1305/ndjfl/1039886519
https://doi.org/10.1007/s11225-018-9786-8
https://doi.org/10.1007/s11225-018-9786-8
https://doi.org/10.1007/BF00485101
http://arxiv.org/abs/1206.6075
https://doi.org/10.12775/9751
https://doi.org/10.1023/A:1017904631349


A Study in Grzegorczyk Point-Free Topology 843
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