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Abstract. By a pure modal logic of names (PMLN) we mean a quantifier-free formulation

of such a logic which includes not only traditional categorical, but also modal categorical

sentences with modalities de re and which is an extension of Propositional Logic. For cate-

gorical sentences we use two interpretations: a “natural” one; and Johnson and Thomason’s

interpretation, which is suitable for some reconstructions of Aristotelian modal syllogistic

(Johnson in Notre Dame J Form Logic 30(2):271–284, 1989; Thomason in J Philos Logic

22(2):111–128, 1993 and J Philos Logic 26:129–141, 1997. In both cases we use Johnson-like

models (1989). We also analyze different kinds of versions of PMLN, for both general and

singular names. We present complete tableau systems for the different versions of PMLN.

These systems enable us to present some decidability methods. It yields “strong decidabil-

ity” in the following sense: for every inference starting with a finite set of premises (resp.

every syllogism, every formula) we can specify a finite number of steps to check whether it

is logically valid. This method gives the upper bound of the cardinality of models needed

for the examination of the validity of a given inference (resp. syllogism, formula).

Keywords: Pure modal logic of names, Semantics, Tableaus, Decidability, Modal syllo-

gistic.

Introduction

By a pure modal logic of names (PMLN) we mean a quantifier-free formu-
lation of such a logic, in which to traditional categorical sentences we add
also modal categorial sentences with modalities de re and which is an ex-
tension of Propositional Logic. In this paper we present complete tableau
systems for this logic as well as for modal syllogisms in Johnson-like models
for categorial sentences. Johnson [4] and Thomason [14,15] used a natural
interpretation for general sentences of the form ‘Every a is necessarily b’
and ‘No a is possibly b’. In Section 8 we describe pure modal logics for both
general and singular names and some tableau systems for the logics.
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We will in this paper take a natural interpretation of these four kinds of
sentence, since we do not aim to reconstruct Aristotelian syllogistic. How-
ever, to reconstruct Aristotelian modal syllogistic, in [4,14,15] the authors
have assumed unnatural interpretations of particular sentences of the form:
‘Some a is necessarily b’ and ‘Some a is not possibly b’, and as a consequence
also of general sentences of the form: ‘Every a is possibly b’ and ‘No a is
necessarily b’ (see Section 9). In the last part of the paper the unnatural
interpretation is discussed and may be compared with the former results.
Summing up, the general aim of the paper is to examine natural as well as
unnatural interpretations of modal syllogism in the light of modern tableau
tools.

In this paper we present a special kind of tableau, which we call a “mini-
max” tableau. Mini-max tableaus involve a very low number of proof steps.
They give us a decidability method for PMLN (as well as for modal syl-
logistic) which yields what we call “strong decidability”. It means that for
every inference starting with a finite set of premises (resp. every syllogism,
every formula) we can specify a finite number of steps to check whether it is
logically valid. This method gives also the upper bound of the cardinality of
models needed for the examination of the validity of a given inference (resp.
syllogism, formula).

For syllogisms, as in [3], we can also provide another decidability method
which estimates a limit of the length of a tableau for a given syllogism. This
paper is both a significant extension of [3] and a modification of it.

1. Pure Modal Logic of Names and Modal Syllogisms

1.1. Syntax

Formulas of modal syllogisms. We assume a countably infinite set GL which
contains schematic general name letters: a0, a1, a2, a3, . . . (for the first three
of these letters we will use abbreviations: ‘a’, ‘b’, and ‘c’, respectively). We
assume that the letters from GL represent various general names.

Following Thomason [14,15] a modal syllogistic formula is an expression
of any of the following forms: Aαβ, Iαβ, Eαβ, Oαβ, A�αβ, A♦αβ, I�αβ,
I♦αβ, E�αβ, E♦αβ, O�αβ, O♦αβ, for α, β ∈ GL. The notation reflects a way
to read non-modal and apodeictic propositions, respectively: Aab: b belongs
to every a, Eab: b belongs to no a, Iab: b belongs to some a, Oab: b does
not belong to some a; A�ab: b of necessity belongs to every a; E�ab: b of
necessity belongs to no a; I�ab: b belongs of necessity to some a; O�ab: b of
necessity does not belong to some a (see, e.g., [1] and [7, p. 10]). Similar
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readings hold for formulas with ‘♦’, where ‘of necessity’ is replaced with ‘of
possibility’.

Let Forsyll be the set of all syllogistic formulas. All formulas with symbols
A, I, E, or O we will call non-modal. For any • ∈ {blank,�,♦} all formulas
with I• or O• we will call particular (for short: p-formulas), and all formulas
with A• or E• we will call general (for short: g-formulas).

We present English glosses for modal syllogistic formulas under a formal
interpretation which reflects a natural way of understanding them [see, e.g.,
7, pp. 10–35]. Moreover, the interpretations are expressed by translations
into formulas of monadic first-order modal logic:1

1. Aab: Every a is b ∀x(ax ⊃ bx)
A�ab: Every a must be b, Every a is necessarily b ∀x(ax ⊃ � bx)
A♦ab: Every a may be b, Every a is possibly b ∀x(ax ⊃ ♦ bx)

2. Eab: No a is b ¬ ∃x(ax ∧ bx)
E�ab: No a may be b, No a is possibly b ¬ ∃x(ax ∧ ♦ bx)
E♦ab: No a must be b, No a is necessarily b ¬ ∃x(ax ∧ � bx)

3. Iab: Some a is b ∃x(ax ∧ bx)
I�ab: Some a must be b, Some a is necessarily b ∃x(ax ∧ � bx)
I♦ab: Some a may be b, Some a is possibly b ∃x(ax ∧ ♦ bx)

4. Oab: Some a is not b ∃x(ax ∧ ¬ bx)
O�ab: Some a must not be b ∃x(ax ∧ �¬ bx)

Some a is not possibly b ∃x(ax ∧ ¬♦ bx)
O♦ab: Some a may not be b ∃x(ax ∧ ♦¬ bx)

Some a is not necessarily b ∃x(ax ∧ ¬ � bx)

Syllogisms. By syllogism we mean any pair 〈Ψ, ϕ〉, where Ψ is a non-empty
finite subset2 of Forsyll (for short: Ψ ∈ Pfin(Forsyll) \ {∅}) and ϕ ∈ Forsyll.3

Formulas of PMLN. All formulas of PMLN are built with members of
Forsyll by the use of classical propositional connectives and parentheses.
These formulas are members of For which is the smallest set such that:

1Formulas of monadic first-order modal logic are defined in a standard way: ‘ax’ and
‘bx’ stands for ‘x is a’ and ‘x is b’, respectively; ‘�’ and ‘♦’ stand for the de dicto operators
‘it is necessary that’ and ‘it is possible that’, respectively.

2For any set S let P(S) (resp. Pfin(S)) be the family of all (resp. finite) subsets of S.
3The denotation of the term ‘syllogism’ is in our paper wider than in [1].
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• Forsyll ⊆ For;

• if ϕ ∈ For, than �¬ ϕ� ∈ For;

• if ϕ,ψ ∈ For, than �(ϕ ◦ ψ)� ∈ For, where ◦ ∈ {∧,∨,⊃,≡}.

For any Φ ∈ P(For) let GL(Φ) be the set of letters from GL which occur in
at least one formula of Φ.

1.2. Semantics

Models and the notion of truth for For. A model4 for For is any quadruple
〈D, d , d�, d♦〉, where D is a set (domain; possible empty) and d , d�, d♦ are
functions from GL into P(D) satisfying the following condition:

(�) d�(α) ⊆ d(α) ⊆ d♦(α), for any α ∈ GL.

Intuitively, d(a) is the denotation of a in M, i.e., it is the set of all objects
which are a. Moreover, d�(a) (resp. d♦(a)) is the set of all objects which are
necessarily (resp. possibly) a.5

Let Mod be the class of all models for For. The empty model M∅ is the
only model with the empty universe. This model has also empty denotation
functions, i.e., d(α) = d�(α) = d♦(α) = ∅, for any α ∈ GL.

We use the following interpretation of formulas from For in model M =
〈D, d , d�, d♦〉, for all α, β ∈ GL, ϕ,ψ ∈ For, and • ∈ {blank,�,♦}:

M � A•αβ iff d(α) ⊆ d•(β),

M � E•αβ iff d(α) ∩ d∗(β) = ∅ ,

where ∗ = blank,♦,�, for • = blank,�,♦, respectively,

M � I•αβ iff d(α) ∩ d•(β) �= ∅ ,

M � O•αβ iff d(α) � d∗(β) ,

where ∗ = blank,♦,�, for • = blank,�,♦, respectively,

M � ¬ϕ iff M � ϕ ,

M � (ϕ ∧ ψ) iff M � ϕ and M � ψ ,

M � (ϕ ∨ ψ) iff M � ϕ or M � ψ ,

M � (ϕ ⊃ ψ) iff M � ϕ or M � ψ ,

M � (ϕ ≡ ψ) iff either M � ϕ and M � ψ, or M � ϕ and M � ψ .

4The notion of model is based on [15], where Thomason adopted Johnson’s notion from
[4] and his own notion from [14].

5All pairs of the form 〈D, d〉 are models for non-modal formulas [see, e.g., 8–11].
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If M � ϕ then we say that the formula ϕ is true in M. Otherwise, i.e. M � ϕ,
we say that it is false in M. If for any ψ from Ψ ⊆ For we have M � ψ, then
we write M � Ψ .

Note that the empty model M∅ plays the same role as for any set D
the model MD,∅ := 〈D, α �→ ∅, α �→ ∅, α �→ ∅〉 which has empty denotation
functions.

Lemma 1.1. For any set D and any ϕ ∈ For: MD,∅ � ϕ iff M∅ � ϕ.

Logical entailment and equivalence. Logically valid formulas and syllogisms.
For all Ψ ∈ P(For) and ϕ ∈ For, we say that Ψ logically entails ϕ (we write:
Ψ |= ϕ) iff there is no model M in Mod such that M � Ψ and M � ϕ.
If Ψ = {ψ1, . . . , ψn} (n > 0), then we write: ψ1, . . . , ψn |= ϕ. Formulas
ϕ,ψ ∈ For are logically equivalent (we write: ϕ |==| ψ) iff ϕ |= ψ and ψ |= ϕ.
Moreover, a formula ϕ is logically valid (we write: |= ϕ) iff ∅ |= ϕ.

Note that, by Lemma 1.1, we obtain:

Claim 1.2. For any Ψ ∈ P(For) and ϕ ∈ For: Ψ |= ϕ iff there is no non-
empty model M in Mod such that M � Ψ and M � ϕ.

We say that a syllogism 〈Ψ, ϕ〉 is logically valid iff Ψ |= ϕ. Of course,
a syllogism 〈{ψ1, . . . , ψn}, ϕ〉 is logically valid iff the formula �ψ1 ⊃ (. . . ⊃
(ψn ⊃ ϕ))� (resp. �(ψ1 ∧ · · · ∧ ψn) ⊃ ϕ�) is logically valid.

Note that for categorical sentences we obtain:

Claim 1.3. For all α, β ∈ GL:

1. A•αβ |==| ¬ O∗αβ and E•αβ |==| ¬ I∗αβ, where ∗ = blank,♦,�, for
• = blank,�,♦, respectively.

2. For any X ∈ {A, I,E,O}: X�αβ |= Xαβ |= X♦αβ.

3. Iαβ |==| Iβα and Eαβ |==| Eβα.

4. Iαα |==| I♦αα.

5. I•αβ |= Iαα and O•αβ |= Iαα, for any • ∈ {blank,�,♦}.
6. |= Aαα and |= A♦αα. So also |= ¬ Oαα and |= ¬ O�αα.

7. �|= A�αα and �|= I•αα, for any • ∈ {blank,�,♦}.
8. A•αβ �|= I•αβ, E•αβ �|= O•αβ, for any • ∈ {blank,�,♦}.
9. I•αβ �|= I•βα and E•αβ �|= E•βα, for any • ∈ {�,♦}.

Logical contradiction. We say that ϕ,ψ ∈ For are logically contradictory
iff ϕ |==| ¬ψ. Of course, ϕ and ¬ϕ are logically contradictory. Moreover,
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by Claim 1.3, for all α, β ∈ GL, if • = blank,�,♦ and ∗ = blank,♦,�,
respectively, then formulas in the following pairs are logically contradictory:
{A•αβ,O∗αβ} and {E•αβ, I∗αβ}. These are the only pairs of the syllogistic
formulas which are logically contradictory.

1.3. Compactness of Entailment in Pure Modal Logic of Names

We can prove that the relation |= is compact just by embedding it into the
consequence relation of Classical Quantified Logic (CQL), which is compact.
To do this, we use a transformation of formulas from For into a set of formu-
las of a monadic first order language and then we will use the compactness
property of CQL.

A transformation For into some monadic first-order language. For For we
use a monadic first-order language L that has the set of variables Var :=
{x0, x1, x2, . . .} (for ‘x0’ we will use ‘x’) and the set of monadic predicates
PL := {α• : α ∈ GL and • is either blank, or �, or ♦}. Moreover, L does
not have any other non-logical constants. Finally, let ForL be the set of all
formulas of L which are obtained in the standard way.

We use the following transformation t from For into ForL, where for all
α, β ∈ GL, ϕ,ψ ∈ For, and • ∈ {blank,�,♦} we put:

t(A•αβ) := �∀x(αx ⊃ β•x)�,

t(E•αβ) := �¬∃x(αx ∧ β∗x)�,

where ∗ = blank,♦,�, for • = blank,�,♦, respectively,

t(I•αβ) := �∃x(αx ∧ β•x)�,

t(O•αβ) := �∃x(αx ∧ ¬ β∗x)�,

where ∗ = blank,♦,�, for • = blank,�,♦, respectively,

t(¬ϕ) = �¬t(ϕ)�,

t(ϕ ◦ ψ) = �t(ϕ) ◦ t(ψ)�, for ◦ ∈ {∧,∨,⊃,≡}.

Moreover, for any Ψ ⊆ For we put t(Ψ) := {t(ψ) : ψ ∈ Ψ}. As we can see
the transformation is an injection.

Models for L. A model for L is any pair ML = 〈D, I〉, where D is a non-
empty set and I is a function from PL into P(D). Let ModL be the class
of all models of L. For any model ML = 〈D, I〉, any function v : Var → D
is a valuation of variables. We introduce, in the standard way, the notion
of truth of formulas of ForL in ML (we write: ML � ϕ). Of course, for all
π ∈ PL and xi ∈ Var: ML � πxi iff v(xi) ∈ I(π).



Pure Modal Logic of Names and Tableau Systems 1267

For all Ψ ∈ P(ForL) and ϕ ∈ ForL, also as usual, we say that in CQL Ψ
logically entails ϕ (we write: Ψ |=CQL ϕ) iff there is no model ML ∈ ModL
such that ML � Ψ and ML � ϕ.

For any α ∈ GL we consider the following sentences from ForL:
T�

α := ∀x(α�x ⊃ αx)

T♦
α := ∀x(αx ⊃ α♦x).

Moreover, for any Φ ∈ P(For) we put:

TΦ := {T�
α ∈ ForL : α ∈ GL(Φ)} ∪ {T♦

α ∈ ForL : α ∈ GL(Φ)}.

That is, TΦ ∈ P(ForL) and it is the set of all formulas of the form T�
α or T♦

α

in which α ∈ GL(Φ). We obtain:

Lemma 1.4. For all Ψ ∈ P(For) and ϕ ∈ For:

Ψ |= ϕ iff TΨ∪{ϕ} ∪ t(Ψ) |=CQL t(ϕ).

Proof. “⇒” Let Ψ |= ϕ, ML = 〈D, I〉 ∈ ModL, and ML � TΨ∪{ϕ} ∪ t(Ψ).
Then, firstly, we have:

(��) I(α�) ⊆ I(α) ⊆ I(α♦), for any α ∈ GL(Ψ ∪ {ϕ}).

Second, we consider the following model M = 〈D, d , d�, d�〉 from Mod \
{M∅}, where for all α ∈ GL and • ∈ {blank,�,♦} we put:

d•(α) :=

{
I(α•) if α ∈ GL(Ψ ∪ {ϕ})
∅ otherwise

Of course, for any χ ∈ Ψ ∪ {ϕ} we have (∗): M � χ iff ML � t(χ). Hence
M � Ψ , since ML � t(Ψ). Therefore M � ϕ, by the first assumption. So
ML � t(ϕ), by (∗).

“⇐” Let TΨ∪{ϕ} ∪ t(Ψ) |=CQL t(ϕ), M = 〈D, d , d�, d�〉 ∈ Mod \ {M∅},
and M � Ψ . For all α ∈ GL and • ∈ {blank,�,♦} we put I(α•) := d•(α).
Then ML := 〈D, I〉 belongs to ModL and satisfies the condition (��) for any
α ∈ GL. Moreover, for any ψ ∈ For we have (∗): M � ψ iff ML � t(ψ). So,
by (��), ML � TΨ∪{ϕ} ∪ t(Ψ), since M � Ψ . Hence ML � t(ϕ), by the first
assumption. Therefore M � ϕ, by (∗).

Theorem 1.5 (Compactness). For all Ψ ∈ P(For) and ϕ ∈ For:

Ψ |= ϕ iff there is Ψfin ∈ Pfin(Ψ) such that Ψfin |= ϕ.

Proof. “⇒” Let Ψ |= ϕ. Then TΨ∪{ϕ} ∪ t(Ψ) |=CQL t(ϕ), by Lemma 1.4.
Hence, by the compactness of CQL, we obtain two finite sets Tfin

Ψ∪{ϕ} and
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t(Ψ)fin such that Tfin
Ψ∪{ϕ} ∪ t(Ψ)fin |=CQL t(ϕ). Moreover, since t is an in-

jection, so for some finite subset Ψfin of Ψ we have: t(Ψ)fin = t(Ψfin). Hence
Ψfin |= ϕ, by Lemma 1.4.

2. Auxiliary Singular Formulas for Tableaus

Auxiliary singular names. Let AI be the infinite, countable set of the fol-
lowing auxiliary indexes: i0, i1, i2, . . . (for the first two of these indexes we
will use ‘i’ and ‘j’, respectively). These indexes are auxiliary singular names
that are needed for the construction of tableaus.

Auxiliary singular formulas and their negations. An auxiliary singular for-
mula is any expression which has one of the following forms: �ıεα�, �ıε�α�,
and �ıε♦α�, for some i ∈ AI and α ∈ GL.6 We read, respectively, the aux-
iliary singular formulas ‘iεa’, ‘iε�a’, and ‘iε♦a’ as follows: “i is a”, “i is
necessarily a”, and “i is possibly a”.

If σ is an auxiliary singular formula, then �¬ σ� is its negation. Let Σ be
the set of all auxiliary singular formulas and their negations. Moreover, let
Σ¬ be the set of all negations of singular formulas; so Σ¬ � Σ.

Notion of truth for the set For∪Σ. By Claim 1.2, the empty model M∅ does
not have an influence on the relation |=. Thus, we will use only non-empty
models from Mod. Moreover, for any non-empty domain D we introduce a
function v : AI → D which is a valuation of indexes. A valuation of indexes
in a model is a valuation into its domain.

For any non-empty model M = 〈D, d , d�, d♦〉 and any valuation of in-
dexes v : AI → D we can extend the notion of truth to the set For ∪ Σ. For
all ı ∈ AI, α ∈ GL, σ ∈ Σ, and ϕ ∈ For we put:

M, v � ıε•α iff v(ı) ∈ d•(α) , for any • ∈ {blank,�,♦},

M, v � ¬ σ iff M, v � σ ,

M, v � ϕ iff M � ϕ .

Logical entailment for For ∪ Σ. For all Ψ ∈ P(For ∪ Σ) and ϕ ∈ For ∪ Σ,
we say that Ψ logically entails ϕ (we write: Ψ |= ϕ) iff for any non-empty
model M and any valuation v in its domain: if M, v � Ψ , then M, v � ϕ.

6Although we use symbol ε, of course it is not Stanis�law Leśniewski’s constant.
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¬ ¬ ϕ

↓
ϕ

(E¬¬)

ϕ ∧ ψ

↓
ϕ

ψ

(E∧)

¬(ϕ ∨ ψ)

↓¬ϕ

¬ψ

(E¬∨)

¬(ϕ ⊃ ψ)

↓
ϕ

¬ψ

(E¬⊃)

ϕ ≡ ψ

↓
ϕ ⊃ ψ

ψ ⊃ ϕ

(E≡)

Table 1. The rule (E¬¬) and non-branching elimination rules (NBE)

Claim 2.1. For all α, β ∈ GL, ı ∈ AI, and • ∈ {blank,�,♦}:
(i) A•αβ, ıεα |= ıε•β and E•αβ, ıεα |= ¬ ıε∗β, where ∗ = blank,♦,�, for

• = blank,�,♦, respectively.

(ii) ıε�α |= ıεα |= ıε♦α.

3. Tableaus

To examine Ψ |= ϕ we will apply tableaus that are a kind of finite trees
constructed from formulas of Ψ ∪ {¬ϕ} ∪ Σ by rules we introduce below.

3.1. Tableau Rules

Tableaus are build by so-called tableau rules. We will first outline the rules.
Afterwards, we will provide a precise definition of a tableau that will formally
specify their behaviour. We have seven groups of rules. Only the first three
kinds decompose sentences with classical propositional connectives.

The first group consists of a single rule (E¬¬) of elimination of double
negation. Formally, this rule is the set {〈¬¬ϕ, ϕ〉 : ϕ ∈ For} (cf. Table 1).

The second group has four members (E∧), E¬∨), (E¬⊃), (E≡) and they
do not lead to branches in tableaus either. We will denote these rules by
(NBE) for “non-branching elimination”. Formally, each rule in (NBE) is a
set of triples of the form 〈ϕ, 〈ψ, χ〉〉, where ϕ, ψ, χ ∈ For have a particular
form given by the relevant schemes from Table 1. The ordered pair 〈ψ, χ〉
plays the role of a conjunction of conclusions.

The third group of rules, (E∨), (E ⊃), (E¬∧), (E¬≡), make two branches
in tableaus (cf. Table 2). We will denote these rules by (BE) for“branching
elimination”. Formally, each rule in (BE) is a set of ordered pairs 〈ϕ, {ψ1,
ψ2}〉, where ϕ,ψ1, ψ2 ∈ For have a particular form given by the relevant
schemes. In this case the set {ψ1, ψ2} plays the role of alternative conclu-
sions.

The rules of the other four types are divided into two categories: “rules
of inference” and “rules of choice”.
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ϕ ∨ ψ

↙↘
ϕ ψ

(E∨)

ϕ ⊃ ψ

↙↘
¬ϕ ψ

(E⊃)

¬(ϕ ∧ ψ)

↙↘
¬ϕ ¬ψ

(E¬∧)

¬(ϕ ≡ ψ)

↙↘
ϕ ∧ ¬ψ ¬ϕ ∧ ψ

(E¬≡)

Table 2. Branching elimination rules (BE)

¬ A•αβ

↓
O∗αβ

¬ O•αβ

↓
A∗αβ

¬ E•αβ

↓
I∗αβ

¬ I•αβ

↓
E∗αβ

where ∗ = blank, ♦, �, for • = blank, �, ♦, respectively.

Table 3. Rules inference (RI¬)

For any • ∈ {blank, �, ♦}:

A•αβ

ıεα

↓
ıε•β

E•αβ

ıεα

↓
¬ ıε∗β

where ∗ = blank, ♦, �, for • = blank, �, ♦, respectively.

Table 4. Rules of inference for general formulas (RIg)

The fourth group of rules consists of twelve rules of inference; one rule for
one type of categorical formulas. Each of these rules transforms the negation
of a given categorical formula into a logically contradictory formula (cf.
Table 3). So these twelve rules we denote by (RI¬). Formally, each rule in
(RI¬) is a set of ordered pairs of the form 〈ϕ, ψ〉, where ϕ, ψ ∈ For have a
particular form given by the relevant schemes.

The fifth group of rules consists of six rules of inference; one rule for one
type of general formulas (cf. Table 4). So these six rules we denote by (RIg).
Formally, each rule in (RIg) is a set of ordered pairs of the form 〈{ϕ, σ}, ς〉,
where ϕ ∈ For and σ, ς ∈ Σ have a particular form given by the relevant
schemes. In this case {ϕ, σ} plays the role of a set of premises.

The sixth group of rules consists of two rules of inference for auxiliary
singular formulas (cf. Table 5). So these two rules we denote by (RIa). For-
mally, each rule in (RIa) is a set of ordered pairs of the form 〈σ, ς〉, where
σ, ς ∈ Σ \ Σ¬ have a particular form given by the relevant schemes.

The seventh group of rules consists of six rules of choice for particular
formulas; one rule for one each of particular formula (cf. Table 6). These six
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ıε�α

↓
ıεα

ıεα

↓
ıε♦α

Table 5. Rules of inference for auxiliary singular formulas (RIa)

For any • ∈ {blank, �, ♦} and any new index ı:

I•αβ

↓
ıεα

ıε•β

O•αβ

↓
ıεα

¬ ıε∗β

where ∗ = blank, ♦, �, for • = blank, �, ♦, respectively.

Table 6. Rules (RC) for particular formulas

rules we denote by (RC). Formally, each of rules of (RC) is a triple of the
form 〈ϕ, 〈σ, ς〉〉, where ϕ ∈ For and σ, ς ∈ Σ have a specific form given by
the relevant schemes. In this case 〈σ, ς〉 plays the role of a conjunction of
conclusions.

3.2. Tableaus. Closed Tableaus. Open Tableaus

Let Φ be a non-empty (maybe infinite) subset of For. A tableau for Φ is any
non-empty finite tree of formulas from For ∪ Σ which meets all of the
following four conditions:

1. The tree T has only one root (i.e., the node at the top) belonging to Φ.

2. From each of the nodes of T at most two edges (arrows) start.

3. If from a given node in T two edges start with formulas ψ1 and ψ2,
respectively, then in the initial path from the root to this node there is
a node with the formula ϕ such that the pair 〈ϕ, {ψl, ψ2}〉 belongs to
some rule of (BE).

4. For any initial path P in T which has the form (ϕ1, . . . , ϕn) (i.e., ϕ1 is the
root of T ), for any l � n at least one of the following conditions is met:
(i) ϕl ∈ Φ.
(ii) There is a j < l such that 〈ϕj , ϕl〉 belongs to some rule of (E¬¬),

or of (RIa), or of (RN).
(iii) There is a j < l such that for some ψ ∈ For the pair 〈ϕj , {ϕl, ψ}〉 be-

longs to some rule of (BE) and for the initial subpath P ′ of P which
has the form (ϕ1, . . . , ϕj , . . . , ϕl−1) the path (P ′, ψ) belongs to T .
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(iv) There are j, k < l such that 〈{ϕj , ϕk}, ϕl〉 belongs to some rule of
(RIg).

(v) There are j < l and ψ ∈ For ∪ Σ such that for the initial subpath
P ′ of P which has the form (ϕ1, . . . , ϕj , . . . , ϕl) the path (P ′, ψ)
belongs to T and 〈ϕj , 〈ϕl, ψ〉〉 belongs to some rule either of (NBE)
or of (RC), where in the second case the index ı from ϕl and ψ
does not occur in the initial subpath P ′′ of P which has the form
(ϕ1, . . . , ϕl−1);

(vi) There is a j < l − 1 such that 〈ϕj , 〈ϕl−1, ϕl〉〉 belongs to some rule
either of (NBE) or of (RC), where in the second case the index ı
from ϕl−1 and ϕl does not occur in the initial subpath P ′ of P
which has the form (ϕ1, . . . , ϕl−2).

Clearly, in a tableau for some Φ only a finite subset of formulas in Φ that
occur in the tableau forms a proof. So any tableau for Φ is also a tableau
for each set of formulas which is a superset of Φ.

Any path from a root to a bottom is called a branch. A branch in a given
tableau is closed iff there are formulas from For ∪ Σ of the form ϕ and ¬ ϕ
on two of its nodes; otherwise it is open. A tableau is closed iff every its
branch is closed; otherwise is open.

4. Tableau Proofs. Soundness

For all Ψ ∈ P(For) and ϕ ∈ For, we say that ϕ has a tableau proof from Ψ
(we write: Ψ � ϕ) iff there is a closed tableau for the set Ψ ∪ {¬ ϕ}.

We prove that the relation � is sound, i.e.:

Theorem 4.1 (Soundness). For all Ψ ∈ P(For) and ϕ ∈ For:

if Ψ � ϕ then Ψ |= ϕ.

Proof. Assume that Ψ � ϕ, i.e., there is a closed tableau T for Ψ ∪ {¬ϕ}.
Suppose towards a contradiction that Ψ �|= ϕ. Then there is a non-empty
model M = 〈D, d , d�, d♦〉 ∈ Mod such that M � Ψ , but M � ϕ; so M �
Ψ ∪ {¬ ϕ}.

Note that all tableau rules of the types (NBE) and (RN) preserve truth
and moreover at least one conclusion derived from the application of a rule of
type (BE) preserves truth. Hence for some closed branch B in T all formulas
from For which are in B are true in M, because M � Ψ ∪ {¬ ϕ}. Let ForB

be the set of all formulas from For which are in B. So M � ForB.
If in branch B no rules of (RC) were used, then in B there would be only

formulas from ForB. But this contradicts the fact that B is closed. So we
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suppose that on B some rule of (RC) is used at least once. Let ΣB be the
set of all auxiliary formulas on B which we obtain by rules of (RC) and let
IB be the set of all indexes which appear in the formulas from ΣB. We have
IB �= ∅. Since rules from the group (RC) were used only to formulas from
ForB and M � ForB, there is a valuation v : IB → D such that M, v � ΣB.
Since all other tableau rules preserve truth for M and v , so by induction on
the length of B, we show that all formulas on B are also true in M. But this
contradicts the fact that B is closed.

5. Completeness

Since the logical consequence relation |= is compact, we can focus on tableaus
for non-empty finite sets. Let Φ be any non-empty finite subset of For.

In the light of Claim 1.3 we see that the rules of (RC) do not have to be
applied to all p-formulas in a given branch of a given tableau. It is enough
to apply the rules to the so-called essential p-formulas in a given branch.
For any tableau T and any branch B of T a p-formula ϕ is essential in B
iff there is no p-formula ψ on B such that ψ |= ϕ and ϕ �|= ψ.

Now we introduce a special kind of tableaus, called mini-max. They are
maximal since all relevant expressions are decomposed, but minimal since
only relevant expressions are decomposed.

We say that a tableau T for Φ is “mini-max” iff T satisfies the following
conditions:

1. T begins with a single path in which there occur all members from Φ
(we will call this path the initial list).

2. In each branch B of T, any rule that could be applied to a formula was
applied exactly once, with the exception of the following cases:

• rules of (RC) were applied only to essential p-formulas,
• rules of (RC) were applied only to one of two equivalent formulas

(see points 3 and 4 of Claim 1.3),
• in B we have a pair of formulas χ and �¬χ�.

Of course, for any non-empty finite subset of For there is a “mini-max”
tableau. Note that formulas of the form �O�αα� and �Oαα� cannot appear
in an open branch in “mini-max” tableaus (cf. Claim 1.3.6 and the rules
of (RC) and (RIa)). All “mini-max” tableaus are complete in the standard
sense [see, e.g., 13, p. 9].

In Sections 5–8 for a given branch B, let pB
e be the number of all essential

non-equivalent p-formulas in B. For the Completeness Theorem we use the
following Completeness Lemma:
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Lemma 5.1. For any non-empty finite subset Φ of For and any “mini-max”
open tableau T for Φ, there is a model MT ∈ Mod such that MT � Φ and
the cardinality of MT is equal to min{pB

e : B is an open branch in T}.
Proof. Let B be an open branch in T such that B has the smallest number
of essential formulas that are not equivalent to p-formulas in B among all
open branches in T . By definition of T , all formulas from Φ are on B. We
construct the following model MT = 〈D, d , d�, d♦〉 from Mod. First, we put:

D = {ı ∈ AI : ∃α∈GL �ıεα� is in B }.

Because T is “mini-max”, we have: D = ∅ iff there is no p-formula in B iff
pB
e = 0. Moreover, Card(D) = pB

e and for any ı ∈ AI we have:

ı ∈ D iff ∃α∈GL �ıε•α� is in B, for some • ∈ {blank,�,♦}.

Second, for all α ∈ GL and • ∈ {blank,�,♦} we put:

d•(α) := {ı ∈ D : �ıε•α� is in B}.

Now we show that MT is a model from Mod, i.e., for any α in GL:
d�(α) ⊆ d(α) ⊆ d♦(α). Indeed, if ı ∈ d�(α), then �ıε�α� is in B. Hence, by
some rule of (RIa), also �ıεα� is in B, since T is “mini-max”. So ı ∈ d(α).
Similarly we show that d(α) ⊆ d♦(α).

Now we prove that for any ϕ ∈ For we obtain: if ϕ is in B, then MT � ϕ.
The proof is by induction on the complexity of formulas.

(a) We consider the case of formulas of Forsyll.
Suppose that for some • ∈ {blank,�,♦}, �I•αβ� is in B. Then, if �I•αβ�

is essential in B, then by some rule of (RC), for some ı ∈ AI we have:
�ıεα� and �ıε•β� are in B.7 If �I•αβ� is not essential in B then • �= �. So if
• = blank then �I�αβ� is in B. Hence, by some rule of (RC), for some ı ∈ AI
we have: �ıεα� and �ıε�β� are in B. So, by some rule of (RIa), �ıεβ� is also
in B. Moreover, if • = ♦ then �I∗αβ� is in B, for some ∗ ∈ {blank,�}.
Hence, by some rule of (RC), for some ı ∈ AI we have: �ıεα� and �ıε∗β�
are in B. So, by some rule of (RIa), �ıε♦β� is also in B. Thus, in all cases,
ı ∈ d(α) ∩ d•(β); so MT � I•αβ.

Suppose that �O•αβ� is in B, for some • ∈ {blank,�,♦}. Then, if
�O•αβ� is essential in B, then by some rule of (RC), for some ı ∈ AI we have:
�ıεα� and �¬ ıε∗β� are in B, where ∗ = blank,♦,�, for • = blank,�,♦,

7Sometimes the effect is because some rule of (RC) was applied to a formula equivalent
to �I•αβ�, since B is a branch of a “mini-max”. For example, • = blank and rule of (RC)
was applied to �Iβα�, or α = β and • ∈ {blank, ♦}, but rule of (RC) was applied either
to �Iαα� or to �I♦αα�.
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respectively. Hence ı ∈ d(α) and �ıε∗β� is not in B, since B is open. If
�O•αβ� is not essential in B then • �= �. So if • = blank then �O�αβ� is
in B. Therefore, by some rule of (RC), for some ı ∈ AI we have: �ıεα� and
�¬ ıε♦β� are in B. Hence ı ∈ d(α) and �ıε♦β� is not in B, since B is open.
So, by some rule of (RIa), also �ıεβ� is not in B. Moreover, if • = ♦ then
�O∗αβ� is in B, for some ∗ ∈ {blank,�}. Therefore, by some rule of (RC),
for some ı ∈ AI we have: �ıεα� and �¬ ıε�β� are in B, where � = blank,♦,
for ∗ = blank,�, respectively. Hence ı ∈ d(α) and �ıε�β� is not in B, since
B is open. So, by some rule of (RIa), also �ıε♦β� is not in B. Thus, in all
cases, ı /∈ d∗(β), where ∗ = blank,♦,�, for • = blank,�,♦, respectively.
Therefore d(α) � d∗(β), i.e., MT � O•αβ.

Suppose that �A•αβ� is in B, for some • ∈ {blank,�,♦}. If ı ∈ d(α)
then �ıεα� is in B. So also �ıε•β� is in B, by some rule of (RIg). Hence
ı ∈ d•(β). Thus, d(α) ⊆ d•(β), i.e., MT � A•αβ.

Suppose that �E•αβ� is in B, for some • ∈ {blank,�,♦}. If ı ∈ d(α)
then �ıεα� is in B. Hence, by some rule of (RIg), �¬ ıε∗β� is in B, where
∗ = blank,♦,�, for • = blank,�,♦, respectively. So �ıε∗β� is not in B,
since B is open. Hence ı /∈ d∗(β). Thus, d(α) ∩ d∗(β) = ∅, i.e., MT � E•αβ.

(b) Now we consider the case of negation of formulas from Forsyll. Suppose
that �¬ I•αβ� (resp. �¬O•αβ�, �¬ A•αβ�, �¬ E•αβ�) is in B, for some • ∈
{blank,�,♦}. Then, by some rule of (RN), �E∗αβ� (resp. �A∗αβ�, �O∗αβ�,
�I∗αβ�) is in B, where ∗ = blank,♦,�, for • = blank,�,♦, respectively. So,
by (a), MT � E∗αβ (resp. MT � A∗αβ, MT � O∗αβ, MT � I∗αβ). Hence
MT � ¬I•αβ (resp. MT � ¬ O•αβ, MT � ¬ A•αβ, MT � ¬E•αβ).

(c) For other complex formulas we naturally consider inductive steps. We
use the elimination rules and the fact that T is “mini-max”.

Since all formulas from Φ are in B, so MT � Φ.

By Lemma 5.1 and Theorem 1.5 (compactness of the relation |=) we
obtain that the tableau approach is complete.

Theorem 5.2 (Completeness). For all Ψ ⊆ For and ϕ ∈ For:

if Ψ |= ϕ, then Ψ � ϕ.

Proof. Let Ψ |= ϕ. Then, by the compactness of |=, there is a finite subset
Ψfin of Ψ such that Ψfin |= ϕ. Now we suppose towards contradiction that
Ψfin � ϕ. Then there is a “mini-max” open tableau T for Ψfin∪{¬ϕ}. Hence,
by Lemma 5.1, there is a model MT ∈ Mod such that MT � Ψfin ∪ {¬ϕ}.
So we obtain a contradiction: Ψfin �|= ϕ. Thus, Ψfin � ϕ. So also Ψ � ϕ.
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6. Decidability and Cardinalities of Models

The decidability of Ψ |= ϕ for the pure modal logic of names is considered in
the case when Ψ is finite. Thus, let Ψ ∈ Pfin(For). The decidability of Ψ |= ϕ
can be tested in the following two ways.

First, we have already established decidability on the basis of Lemma 1.4,
since the relation |=CQL is decidable. However, we dare for more! We want to
estimate the cardinalities of models for the logic under research that are less
than the cardinalities of models for CQL. It is known that, for Ψ ∈ P(ForL)
and ϕ ∈ ForL, in order to check whether Ψ |=CQL ϕ we have to examine
models with a cardinality not bigger than 2k, where k is the number of
monadic predicates of PL that occur in the formulas from the set Ψ ∪ {ϕ}.
Let us note that we mean not only letters from GL, but also all instances of
the form α•, where α ∈ GL and • ∈ {blank,�,♦}.

Either by Lemma 1.4 and the decidability of monadic first-order logic, or
by Lemma 5.1 and Theorem 4.1 we obtain:

Theorem 6.1 (Decidability). For all Ψ ∈ Pfin(For) and ϕ ∈ For, the problem
whether Ψ |= ϕ is decidable.

Proof. For Ψ ∪ {¬ϕ} we build some “mini-max” tableau. If the tableau is
closed, then Ψ � ϕ. So Ψ |= ϕ, by soundness (Theorem 4.1). If the tableau
is open, then Ψ �|= ϕ, by Lemma 5.1.

As we declared, we would like to estimate the cardinality of a given model
to check if Ψ |= ϕ.8 First, we obtain the following theorem for formulas that
have a disjunctive normal form. Note that each formula χ from For can be
written in a disjunctive normal form χd. Moreover, let Ψd := {ψd : ψ ∈ Ψ}.

Theorem 6.2. For all Ψ ∈ Pfin(For) and ϕ ∈ For the following conditions
are equivalent :

(a) Ψ � ϕ.

(b) Ψd � ϕd.

(c) For some mini-max open tableau T for Ψd ∪ {(¬ϕ)d} there is a model
MT ∈ Mod such that MT � Ψd ∪ {(¬ϕ)d} and the cardinality of MT

is equal to min{pB
e : B is an open branch in T}.

(d) Ψd �|= ϕd.

8In [3], we carried out a similar examination for modal syllogisms. There, we also gave
the length of tableaus for modal syllogisms. But those tableaus were not branching. Here,
we are not concerned with the length of tableaus.



Pure Modal Logic of Names and Tableau Systems 1277

(e) Ψ �|= ϕ.

Proof. “(a) ⇔ (e)” and “(b) ⇔ (d)” By Theorems 4.1 and 5.2.
“(b) ⇒ (c)” Let Ψd � ϕd. Then all tableaus for Ψd ∪ {(¬ϕ)d} are open

and there exists a “mini-max” open tableau for Ψd ∪ {(¬ϕ)d}. So we use
Lemma 5.1. “(c) ⇒ (d)” By definition. “(d) ⇔ (e)” This case is obvious.

Now we assume the following notations. For any formula χ, let kχ be
the number of conjunctions occurring in χd. For any i from {1, . . . , kχ}, let
Ci

χ be the set of all non-negated p-formulas and all negated g-formulas that
occur in the i-th conjunction in χd.9

We put the members of Ψ as a sequence (ψ1, . . . , ψn) (for Ψ = ∅ we put
n := 0). Let Λ be the set of all sequences (l1, . . . , ln, ln+1) of numbers such
that 1 � li � kψi

, for i = 1, . . . , n, and 1 � ln+1 � k¬ϕ. Then for any
λ = (l1, . . . , ln, ln+1) ∈ Λ we define the following set:

Bλ := Cl1
ψ1

∪ · · · ∪ Cln
ψn

∪ Cln+1¬ϕ .

Clearly, any set Bλ, for λ ∈ Λ, corresponds to a branch in a tableau build
from Ψd ∪ {(¬ϕ)d}. For any λ ∈ Λ we define the essential p-formulas in the
set Bλ, as for a given branch of a given tableau (see p. 13). Let pB

λ

e be the
number of all essential, non-equivalent p-formulas in Bλ.

Once again let us note that formulas having one of the forms �O�αα�,
�Oαα�, �¬A♦αα�, and �¬Aαα� cannot appear in any open branch in “mini-
max” tableaus. So let Λ∗ be the set of all λ ∈ Λ such that no such formula
is a member of set Bλ. We put Max(Ψ, ϕ) := max{pB

λ

e : λ ∈ Λ∗}.10 From
Theorem 6.2 we obtain:

Theorem 6.3. For all Ψ ∈ Pfin(For) and ϕ ∈ For:

Ψ |= ϕ iff there is no M ∈ Mod such that M � Ψ ∪ {¬ϕ} and the
power of M is not greater than Max(Ψ, ϕ).

Proof. “⇒” Obvious. “⇐” Suppose that Ψ �|= ϕ. Then, by Theorem 6.2,
for some mini-max open tableau T for Ψd ∪ {(¬ϕ)d} there is a model MT

from Mod such that MT � Ψd ∪{(¬ϕ)d} and the cardinality of MT is equal
to min{pB

e : B is an open branch in T}. Hence the cardinality of MT is not
greater than Max(Ψ, ϕ). Of course, MT � Ψ ∪ {¬ϕ}, too.

9We apply of course rules from (RN) to negated g-formulas and receive corresponding
non-negated p-formulas.

10Note that Max(Ψ, ϕ) does not depend on the enumerated members of set Ψ and
moreover Max(Ψ, ϕ) = Max(∅,

∧
Ψ → ϕ).
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Let S = 〈Ψ, ϕ〉 be such a syllogism, where Ψ ∈ Pfin(Forsyll) \ {∅} and
ϕ ∈ Forsyll (see p. 3). Then the set Λ has one element and any tableau for
Ψ ∪ {¬ ϕ} has got only one branch. Of course, if either some formula of the
form �O�αα� or �Oαα� belongs to Ψ , or ϕ has the form �A♦αα� or �Aαα�,
then Ψ |= ϕ. In the other case we obtain that an upper estimation of the
cardinality of models is the number pSe of essential, but non-equivalent p-
formulas in Ψ ∪ {ϕ}, where ϕ is the formula of Forsyll which we obtain from
�¬ϕ�, by the suitable rule of (RN).

Of course, if S = 〈Ψ, ϕ〉 is non-modal then, in the second case, pSe is the
number of non-modal particular non-equivalent formulas in the set Ψ ∪{ϕ}.
In [2,3] some larger estimations were made. An upper estimation of the
cardinality of models was the number of non-modal particular formulas in
Ψ ∪ {ϕ}. However, in those papers two various approaches to the presented
problem were outlined.

In [9,11] the cardinalities of models for non-modal pure logic of names
were also examined. For any non-modal formula ϕ from For the upper es-
timation of cardinalities of its models is 1

2n(n + 1), where n is the number
of letters from GL occurring in ϕ. It is difficult to compare that number
with number Max(∅, ϕ) as it does not make sense to try to count the number
of non-modal particular non-equivalent formulas built with letters occuring
in ϕ.

Moreover, even for the non-modal pure logic of names, it would be a
mistake to compare our results with the results presented by Kulicki [5,6].
First, Kulicki used a so-called strong interpretation for formulas of the form
�Aαβ�: M � Aαβ iff ∅ �= d(α) ⊆ d(β). So we have: Aαβ |= Iαβ. Second,
Kulicki examined the cardinalities of models only for Horn formulas which
have the form �(χ1 ∧ · · · ∧ χn) → χn+1�, where χi is �Aαβ� or �Iα′β′�, for
some α, β, α′, β′ ∈ GL. These Horn formulas correspond only to syllogisms
that are limited to those two kind of categorical sentences.

7. Tableau Proofs with Other Version of Tableau Contradiction

To make tableau proofs shorter we may use an extended version of the no-
tion of tableau contradiction and apply it to our earlier notions of the closed
tableau and the tableau proof. Hence, to the pairs of tableau contradictory
formulas we defined earlier we add all pairs of logically contradictory syl-
logistic formulas from Forsyll (see p. 5). So, a branch in a given tableau is
closed, if at some of its node there is a formula either of the from �Oαα�
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Iab, Aab ∨ Eab � Aab (in both versions):

(i)

Iab

↓
Aab ∨ Eab

↓
¬ Aab

↙↘
AabEab

↓
iεa

↓
iεb

↓
¬ iεb

(ii)

Iab

↓
Aab ∨ Eab

↓
¬ Aab

↙↘
AabEab

Closed tableaus for

{Iab, Aab ∨ Eab, ¬ Aab}:

(i) in the first version

(ii) in the second version

Table 7. Example of proofs with regular and extended notion of tableau

contradiction.

or of the from �O�αα� (cf. Claim 1.3.6). Due to that we have the following
fact:

Proposition 7.1. Ψ � ϕ in the first version iff Ψ � ϕ in the second version.

Proof. “⇒” This case is obvious.
“⇐” Suppose that Ψ � ϕ in the second version and for Ψ ∪ {¬ϕ} there

is a closed tableau T such that T has a branch B which is not closed in
the first version of tableau contradiction. Then on B we have either �Oαα�,
or �O�αα�, or both �A•αβ� and �O∗αβ�, or both �E•αβ� and �I∗αβ�,
where ∗ = blank,♦,� for • = blank,�,♦, respectively. Hence, by use of
appropriate rules of the types (RC), (RIa), and (RIg) we obtain, in the first
case: �ıεα� and �¬ ıεα�; in the second case: �ıεα�, �¬ ıε♦α�, and �ıε♦α�;
in the third case: �ıεα�, �¬ ıε•β�, and �ıε•β�; in the fourth case: �ıεα�,
�ıε∗β�, and �¬ ıε∗β�. So we obtain a branch B′ which is closed in the first
version (see the example in Table 7).

8. Pure Modal Logic for Both General and Singular Names

So far we have considered the pure modal logic of names only for gen-
eral names. It includes indexes for auxiliary singular names only in tableau
proofs. Now—beside the letters from GL representing general names—we
would like to use also schematic letters representing «real» singular names.
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We shall show that our examination of the logic of general names from
the former sections can be successfully repeated for the logic of both kinds
of names.

8.1. Formulas

We fix a countably infinite set SL which contains schematic letters: n0, n1,
n2, . . . (for the first two schematic letters we will use ‘n’ and ‘m’, respec-
tively). We assume that these letters represent various singular names.

A singular formula is any expression which has one of the following forms:
�νεα�, �νε�α�, and �νε♦α�, where ν ∈ SL and α ∈ GL. Let Forsin be the
set of all singular formulas.

Now, formulas are made of formulas Forsyll and Forsin by the use of
Boolean connectives and brackets. Let For+ be the smallest set such that

• Forsyll ∪ Forsin ⊆ For+;

• if ϕ ∈ For+, than �¬ϕ� ∈ For+;

• if ϕ,ψ ∈ For+, than �(ϕ ◦ ψ)� ∈ For+, where ◦ ∈ {∧,∨,⊃,≡}.

8.2. Semantics

Models and the notion of truth for For+. A model for For+ we call any
quintuple 〈D, d s , d , d�, d♦〉, where D is a non-empty set, d s is a function
from SL into D, and the quadruple 〈D, d , d�, d♦〉 is a non-empty model
from Mod for For (see p. 4). Let Mod+ be the class of all models for For+.

The notion of truth for Forsin is similar to that which we used for Σ
(here denotation function d s replaces valuation v). We use the following
interpretation of formulas from For+ in all models M = 〈D, d s , d , d�, d♦〉 ∈
Mod+, ν ∈ SL, α ∈ GL, and • ∈ {blank,�,♦}:

M � νε•α iff d s(ν) ∈ d•(α).

The remaining conditions have been left unchanged (the are on p. 4).

Logical entailment, equivalence, and contradiction. These three notions are
introduced for For+ in the same way as for For on p. 5. We obtain:

Claim 8.1. For all α, β ∈ GL and ν ∈ SL:

1. A•αβ, νεα |= νε•β, for any • ∈ {blank,�,♦}.
2. E•αβ, νεα |= ¬ νε•β, for any • ∈ {blank,�,♦}.
3. νε�α |= νεα |= νε♦α.

4. νεα, νε•β |= I•αβ, for any • ∈ {blank,�,♦}.
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5. νεα,¬ νε•β |= O∗αβ, where ∗ = blank,♦,�, for • = blank,�,♦, re-
spectively.

Compactness of logical entailment. We obtain this result in a way similar to
how obtained it for For in Section 1.3. However, we use a monadic first-order
logic with individual constants [see, e.g., 12].

Now we use the monadic first-order language L+ with monadic predicates
from PL and individual constants from SL. So we have also atomic formulas
of the form �πν�, where π ∈ PL and ν ∈ SL. Let ForL+ be the set of all
formulas of L+ which we obtain in a standard way.

The transformation t from p. 6 is enriched with the following condition
for all ν ∈ SL and α ∈ GL:

t(νε•α) := �α•ν�, for any • ∈ {blank,�,♦}.

Ordinarily, a model for L+ is any pair ML+ = 〈D, I〉, where D is a non-
empty set and I is a function from SL into D and from PL into P(D).

We obtain the relevant counterpart of Lemma 1.4. Hence, by the com-
pactness of Classical Quantified Logic, we also obtain the relevant version
of Theorem 1.5, which is that the relation |= for For+ is also compact.

Soundness, completeness and decidability. We use the same notion of tabl-
eau and the same tableau rules as in Section 3. The only difference is that
now in the description of the rules a variable ‘ı’ takes values from the union
of sets AI and SL, whereas in the former case it only took values from the
set AI. Using the above rules we obtain the following facts that correspond
to those in Claim 8.1:

Claim 8.2. For all α, β ∈ GL and ν ∈ SL:

1. A•αβ, νεα � νε•β, for any • ∈ {blank,�,♦}.
2. E•αβ, νεα � ¬ νε•β, for any • ∈ {blank,�,♦}.
3. νε�α � νεα � νε♦α.

4. νεα, νε•β � I•αβ, for any • ∈ {blank,�,♦}.
5. νεα,¬ νε•β � O∗αβ, where ∗ = blank,♦,�, for • = blank,�,♦, re-

spectively.

Proof. 4. νεα, νε•β,¬ I•αβ
RN−−→ E∗αβ

RI1−−→ ¬ νε•β ×
5. νεα,¬νε•β,¬ O∗αβ

RN−−→ A•αβ
RI1−−→ νε•β ×
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Similarly, we obtain a suitable counterpart of Lemma 5.1, where for any
branch B, lB is the number of letters from SL occurring in singular formulas
on B:

Lemma 8.3. For any non-empty finite subset Φ of For+ and any “mini-
max” open tableau T for Φ, there is a model MT ∈ Mod+ such that MT � Φ
and its cardinality is equal to min{pB

e + lB + 1 : B is an open branch in T}.

Proof. Let B be an open branch in T such that B has the smallest number
pB
e among all open branches in T . By definition of T , all formulas of Φ are on

B. We construct the following model MT = 〈D, d s , d , d�, d♦〉 from Mod+.
If pB

e + lB = 0, then D := {0} and for all • ∈ {blank,�,♦}, α ∈ GL, and
ν ∈ SL we put: d•(α) := ∅ and d s(ν) := 0.

If pB
e + lB > 0, then we put:

D := {0} ∪ {ı ∈ AI : ∃α∈GL �ıεα� is on B} ∪
{ν ∈ SL : ∃α∈GL �νε•α� is on B, for some • ∈ {blank,�,♦}}.

Because T is “mini-max”, Card(D) = pB
e + lB + 1 and for any ı ∈ SL ∪ AI

we have:

ı ∈ D iff ∃α∈GL �ıε•α� is on B, for some • ∈ {blank,�,♦}.

Moreover, for all α ∈ GL and • ∈ {blank,�,♦} we put:

d•(α) := {ı ∈ SL ∪ AI : �ıε•α� is on B}.

So 0 /∈ d•(α). Moreover, for any ν ∈ SL we put:

d s(ν) :=

{
ν if ν ∈ D

0 if ν /∈ D

MT := {D, d s , d , d�, d♦} belongs to Mod+, because it satisfies condition
(�), as shown in the proof of Lemma 5.1.

Now we show that for any ϕ ∈ For+ we obtain: if ϕ is on B, then MT � ϕ.
The proof is by induction on the complexity of formulas.

Suppose that for some • ∈ {blank,�,♦}, �νε•α� is on B. Then ν ∈ D,
d s(ν) = ν, and ν ∈ d•(α). So MT � νε•α.

Suppose that �¬ νε•α� is on B, for some • ∈ {blank,�,♦}. Then �νε•α�
is not on B, since B is open. So ν /∈ d•(α). Hence in both cases d s(ν) = ν
and d s(ν) = 0 we have d s(ν) /∈ d•(α). So MT � νε•α and MT � ¬ νε•α.

The rest is as in the proof of Lemma 5.1.
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We also have soundness theorem (a counterpart of Theorem 4.1), com-
pleteness theorem (a counterpart of Theorem 5.2), and decidability (a coun-
terpart of theorems 6.2 and 6.3). In the last case we replace merely a number
pB
e with a number pB

e + lB + 1; and also in the calculation of the number
Max(Ψ, ϕ).

Its decidability is a result of the fact that relation |=CQL is decidable.
In addition, we would like to estimate cardinalities of models for For+ that
are less than the cardinalities of models for CQL. It is known that for Ψ ∈
P(ForL+) and ϕ ∈ ForL+ to check whether Ψ |=CQL ϕ it is enough to
examine all models whose cardinalities are not greater than 2k, where k is
a number of all monadic predicates from PL occurring in the set Ψ ∪ {ϕ}.
So the number of individual constants occurring in this set is not essential
[see 12, Corollary 2].11

9. Aristotelian Modal Syllogisms

9.1. Semantics

As we mentioned in the introduction, in [4,14,15] the aim was to reconstruct
Aristotelian modal syllogistic [1], where the pairs of formulas I�αβ and I�βα
(and so also E♦αβ and E♦βα) are equivalent. So in [4,14,15] for models of
the form 〈D, d , d�, d♦〉, satisfying among others condition (�) from p. 4, a
different interpretation of I� and E♦ we use:

M � I�αβ iff d�(α) ∩ d�(β) �= ∅ ,

M � E♦αβ iff M � I�αβ iff d�(α) ∩ d�(β) = ∅ .

Moreover, for some reasons given in [4,14,15] another interpretation of O�

and so of A♦ were used:
M � O�αβ iff d�(α) � d♦(β) ,

M � A♦αβ iff M � O�αβ iff d�(α) ⊆ d♦(β) .

11The latter becomes important if we consider a monadic predicate logic with equality.
Then an examination of whether Ψ |=CQL ϕ requires only the examination of all models
with a cardinality not greater than l + 2k · max{n, 1}, where k is a number of all monadic
predicates occurring in the set Ψ ∪ {ϕ}, l (resp. n) is a number of all individual constants
(resp. variables) occurring in the non-tautological equations from this set, and the tauto-
logical equations have the form �A = A�. If in the set Ψ ∪ {ϕ} there are no variables then
the above estimation can be reduced to max{l, 1} + min{2k − 1, q − max{l, 1}}, where q is
the number of individual constants occurring in this set [see 12, p. 52].
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In [4,14,15] various conditions on a denotation for models are imposed. For
example, in [14,15] (�) is assumed plus for all α, β ∈ GL:

d�(α) �= ∅ , (1Ar)

if d(α) ∩ d♦(β) �= ∅ then d♦(α) ∩ d(β) �= ∅, (2Ar)

if d(α) ∩ d(β) �= ∅ then d(α) ∩ d�(β) �= ∅, (3Ar)

if d(α) ⊆ d�(β) then d♦(α) ⊆ d♦(β). (4Ar)

Let ModAr be the class of all models satisfying conditions (�) and (1Ar)–
(4Ar). For this class we construct in the standard way the relation |=Ar.
Using the revised interpretation and the conditions (�), (1Ar), and (2Ar) we
obtain:

Claim 9.1. For all α, β ∈ GL:

1. A•αβ |==|Ar ¬O∗αβ and E•αβ |==|Ar ¬ I∗αβ, where ∗ = blank,♦,�,
for • = blank,�,♦, respectively.

2. For any X ∈ {A, I,E,O}: X�αβ |=Ar Xαβ |=Ar X♦αβ.

3. I•αβ |==|Ar I•βα and E•αβ |==|Ar E•βα, for any • ∈ {blank,�,♦}.
4. |=Ar I•αα, for any • ∈ {blank,�,♦}.12
5. |=Ar Aαα and |=Ar A♦αα.

6. A•αβ |=Ar I•αβ and E•αβ |=Ar O•αβ, for any • ∈ {blank,�,♦}.
7. �|=Ar A�αα.

9.2. Tableau Rules

We use the rules (RIg) only for • ∈ {blank,�} and the rules (RC) only for
• ∈ {blank,♦}. For the revised interpretation of I�, E♦, O�, A♦ we describe
tableau rules in Table 8.

However, the rules (RIg), for • ∈ {blank,�}, (RIAr
1 ), (RIa), (RN), (RC),

for • ∈ {blank,�}, and (RCAr) are not sufficient for a reconstruction of the
theory from [14], since they do not reflect conditions (1Ar)–(4Ar) imposed
on models. These conditions are reflected by the rules in Table 9. The rule
(1Ar

r ) says that �jε�α� can be put in any place in a tableau, but must be
a new index in the tableau.

12We find condition (1Ar) non-intuitive. Why should it be that ‘Some thief must be
a thief’ is logically valid in both interpretations of I� (in the natural interpretation for
|= I�aa we use both (�) and (1Ar))?
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A♦αβ

ıε�α

↓
ıε♦β

E♦αβ

ıε�α

↓
¬ ıε�β

(RIAr
1 )

I�αβ

↓
jε�α

jε�β

O�αβ

↓
jε�α

¬ jε♦β

(RCAr)

where ı is any index where j is a new index in a tableau

Table 8. Rules (RIa1) and (RCa)

↓
jε�α

(1Ar
r )

ıεα

ıε♦β

↓
jε♦α

jεβ

(2Ar
r )

ıεα

ıεβ

↓
jεα

jε�β

(3Ar
r )

A�αβ

ıε♦α

↓
ıε♦β

(4Ar
r )

where ı is any index, but j is a new index in a tableau

Table 9. Additional rules

Using the above rules we obtain the following facts corresponding to those
in Claim 9.1:

Claim 9.2. For all α, β ∈ GL:

1. A•αβ ��Ar ¬O∗αβ and E•αβ ��Ar ¬ I∗αβ, where ∗ = blank,♦,�, for
• = blank,�,♦, respectively.

2. For any X ∈ {A, I,E,O}: X�αβ �Ar Xαβ �Ar X♦αβ.

3. I•αβ ��Ar I•βα and E•αβ ��Ar E•βα, for any • ∈ {blank,�,♦}.
4. �Ar I•αα, for any • ∈ {blank,�,♦}.
5. �Ar Aαα and �Ar A♦αα.

6. A•αβ �Ar I•αβ and E•αβ �Ar O•αβ, for any • ∈ {blank,�,♦}.

Proof. 3. I�αβ,¬ I�βα
RCAr

−−−→ jε�α, jε�β
RN−−→ E♦βα

RIAr
1−−−→ ¬ jε�β ×.

I♦αβ,¬ I♦βα
RC−−→ iεα, iε♦β

2Ar
r−−→ jε♦α, jεβ

RN−−→ E�βα
RIAr

1−−−→ ¬ jε♦α ×.

4. ¬ I�αα
RN−−→ E♦αα

1Ar
r−−→ jε�α

RIAr
1−−−→ ¬ jε�α ×

¬ Iαα
RN−−→ Eαα

1Ar
r−−→ jε�α

RI2−−→ jεα
RI1−−→ ¬ jεα ×

¬ I♦αα
RN−−→ E�αα

1Ar
r−−→ jε�α

RI2−−→ jεα
RI2−−→ jε♦α

RI1−−→ ¬ jε♦α ×
6. A�αβ,¬ I�αβ

RN−−→ E♦αβ
1Ar
r−−→ jε�α

RIAr
1−−−→ ¬ jε�β

RI2−−→ jεα
RI1−−→ jε�β ×

A♦αβ,¬ I♦αβ
RN−−→ E�αβ

1Ar
r−−→ jε�α

RIAr
1−−−→ jε♦β

RI2−−→ jεα
RI1−−→ ¬ jε♦β ×
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Under the unnatural interpretations of I�, E♦, O� and A♦ which we have
assumed here, which satisfy conditions (�), (1Ar)–(4Ar) we can reformulate
and prove counterparts of the facts given in Sections 3–6.

9.3. Soundness

We prove that the revised relation �Ar is sound, i.e.:

Theorem 9.3 (Soundness). For all Ψ ∈ P(For) and ϕ ∈ For:

if Ψ �Ar ϕ then Ψ |=Ar ϕ.

Proof. Assume that Ψ �Ar ϕ, i.e., there is a closed tableau T for Ψ ∪{¬ϕ}.
Suppose towards contradiction that Ψ �|=Ar ϕ. Then there is a non-empty
model M = 〈D, d , d�, d♦〉 ∈ ModAr such that M �Ar Ψ , but M �Ar ϕ; so
M �Ar Ψ ∪ {¬ϕ}.

Note that all tableau rules of the types (NBE) and (RN) preserve truth
and moreover at least one conclusion derived from the application of a rule of
type (BE) preserves truth. Hence for some closed branch B in T all formulas
from For which are in B are true in M, because M � Ψ ∪ {¬ ϕ}. Let ForB

be the set of all formulas from For which are in B. So M � ForB.
If in B no rule of type (RC) was used, then in B there would be only

formulas of ForB. But this contradicts the fact that B is closed. So we
suppose that in B at least once some rule of type (RC) or (RCAr) was used.
Let Σ1

B be the set of auxiliary formulas in B which we obtain by rules of
(RC) and (RCAr). Let I1B be the set of all indexes which appear in formulas
from Σ1

B. We have I1B �= ∅. Since we apply the rules of (RC) and (RCAr) only
to formulas from ForB and M � ForB, there is a valuation v1 : I1B → D such
that M, v1 � Σ1

B. Then we suppose we could use also a rule of type (1Ar
r )–

(3Ar
r ). Let Σ2

B be the set of auxiliary formulas in B which we obtain by rules
of (1Ar

r )–(3Ar
r ). Let I2B be the set of all indexes which appear in formulas

from Σ2
B. We have I2B �= ∅. Since we apply the rules of (1Ar

r )–(3Ar
r ) only to

formulas from Σ1
B and M � Σ1

B, by interpretation and the conditions (1Ar)–
(3Ar), there is a valuation v2 : I2B → D such that M, v2 � Σ2

B. Moreover, by
interpretation and the condition (4Ar), all other tableau rules preserve truth
for M and v1 ∪ v2. Hence, by induction on the length of B, we show that
all formulas in B are true in M, too. But this contradicts the fact that B is
closed.

9.4. Compactness, Completeness, and Decidability

By appropriate modification to the relevant proofs, we can obtain the coun-
terparts of the facts from Sections 3–6.
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For all α, β ∈ GL besides the formulas T�
α and T♦

α we consider the fol-
lowing sentences from ForL:

1Ar
α := ∃x α�x

2Ar
α,β := ∃x(α♦x ∧ βx) ⊃ ∃x(αx ∧ β♦x)

3Ar
α,β := ∃x(αx ∧ βx) ⊃ ∃x(αx ∧ β�x)

4Ar
α,β := ∀x(αx ⊃ β�x) ⊃ ∀x(α♦x ⊃ β♦x)

Moreover, for any Φ ∈ P(For) we put:

ArΦ := TΦ ∪ {1Ar
α ∈ ForL : α ∈ GL(Φ)}

∪ {kAr
α,β ∈ ForL : k = 2, 3, 4 & α, β ∈ GL(Φ)}.

We obtain the results corresponding to Lemma 1.4 and Theorem 1.5:

Lemma 9.4. For all Ψ ∈ P(For) and ϕ ∈ For:

Ψ |=Ar ϕ iff ArΨ∪{ϕ} ∪ t(Ψ) |=CQL t(ϕ).

Theorem 9.5 (Compactness). For all Ψ ∈ P(For) and ϕ ∈ For:

Ψ |=Ar ϕ iff there is Ψfin ∈ Pfin(Ψ) such that Ψfin |=Ar ϕ.

We can easily specify the notion of a mini-max tableau for any non-empty
finite subset Φ of For, where the rule (1Ar

r ) we use only for some α that occurs
in some formula from Φ. For each such α we use this rule exactly once and
the formula of the form �jε�α� we put in the initial list. Moreover, we do
not apply rules (RC) to formulas �I•αα�, for any • ∈ {blank,�,♦}.

For Completeness Theorem we use the following Completeness Lemma:13

Lemma 9.6. Let Φ be any non-empty finite subset of For and T be any
“mini-max” open tableau for Φ. Then there is a model MT ∈ ModAr such
that MT � Φ.

Proof. Let B be an open branch in T . By definition, all formulas of Φ are in
B. As in the proof of Lemma 5.1 we construct a model MT = 〈D, d , d�, d♦〉
from ModAr.

Now we show that MT is a model from ModAr, i.e., for all α, β ∈ GL M

we have: (�) and (1Ar)–(4Ar). Condition (�) we can show as in the proof of
Lemma 5.1.

For (1Ar): By rule (1Ar
r ), for any α that occurs in some formula from Φ

on the initial list we have �jε�α�. Therefore d�(α) �= ∅.

13We will not be concerned here with the problem of minimal models, as we were in
the case of Lemma 5.1.
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For (2Ar): Suppose that d(α)∩d♦(β) �= ∅. Then for some ı ∈ AI formulas
�ıεα� and �ıε♦β� are in B. In B we also used the rule (2Ar

r ). Hence for some
new j ∈ AI formulas �jε♦α� and �jεβ� are in B. Therefore d♦(α)∩d(β) �= ∅.

For (3Ar): Suppose that d(α) ∩ d(β) �= ∅. Then for some ı ∈ AI formulas
�ıεα� and �ıεβ� are in B. In B we also used the rule (3Ar

r ). Hence for some
new j ∈ AI formulas �jεα� and �jε�β� are in B. So d(α) ∩ d�(β) �= ∅.

For (4Ar): Suppose that we have d(α) ⊆ d�(β). Then, by (1Ar
r ) and (RI2),

a formula �A�αβ� is in B. So we can use the rule (4Ar
r ) to get d♦(α) ⊆ d♦(β),

if d♦(α) �= ∅, and in consequence some �ıε♦α� is in the branch.
Now we show that for any ϕ ∈ For we obtain: if ϕ is in B, then MT � ϕ.

The proof is by induction on the complexity of formulas as in the proof of
Lemma 5.1. We use the rules of (RIAr

1 ) and of (RCAr) only for A♦, E♦, I�,
and O�.

We have a counterpart of Theorem 5.2:

Theorem 9.7 (Completeness). For all Ψ ⊆ For and ϕ ∈ For:

if Ψ |=Ar ϕ, then Ψ �Ar ϕ.

Finally, we obtain a theorem corresponding to Theorem 6.1:

Theorem 9.8 (Decidability). For all Ψ ∈ Pfin(For) and ϕ ∈ For, the problem
whether Ψ |=Ar ϕ is decidable.

Both theorems just give an alternative decision procedure for determin-
ing validity in the Thomason-Johnson semantics of Aristotelian modal syl-
logisms.
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[11] Pietruszczak, A., Cardinalities of models for pure calculi of names, Reports on Math-

ematical Logic 28:87–102, 1994.

[12] Pietruszczak, A., Cardinalities of models for monadic predicate logic (with equality

and individual constants), Reports on Mathematical Logic 30:49–64, 1996.

[13] Priest, G., An Introduction to Non-Classical Logic, 2th edition, Cambridge University

Press, 2008. https://doi.org/10.1017/CBO9780511801174

[14] Thomason, S., Semantic analysis of the modal syllogistic, Journal of Philosophical

Logic 22(2):111–128, 1993. https://doi.org/10.1007/BF01049258

[15] Thomason, S., Relational models for the modal syllogistic, Journal of Philosophical

Logic 26:129–141, 1997. https://doi.org/10.1023/A:1004200616124

A. Pietruszczak, T. Jarmużek
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