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Abstract
Tautomerism is one of the most important phenomena to consider when designing biologically active molecules. In this 
work, we use NMR spectroscopy, IR, and X-ray analysis as well as quantum-chemical calculations in the gas phase and in a 
solvent to study tautomerism of 1- (2-, 3- and 4-pyridinecarbonyl)-4-substituted thiosemicarbazide derivatives. The tautomer 
containing both carbonyl and thione groups turned out to be the most stable. The results of the calculations are consistent 
with the experimental data obtained from NMR and IR spectroscopy and with the crystalline forms from the X-ray studies. 
The obtained results broaden the knowledge in the field of structural studies of the thiosemicarbazide scaffold, which will 
translate into an understanding of the interactions of compounds with a potential molecular target.

Keywords Computational chemistry · X-ray analysis · Tautomerism · Molecular modeling · Thiosemicarbazide

Introduction

The biological activity of the compounds is a function 
of their physical and chemical parameters which depend 
on their molecular structure [1]. Thus, it is important to 

accurately determine the structure of a chemical compound 
as it will reflect in its molecular properties [2, 3]. An elonga-
tion of the alkyl chain may result in a better fit to the active 
site, thereby increasing the potency of the drug. It could also 
result in an increase of lipophilicity, which is related to the 
ease of drug penetration into a molecular target. For exam-
ple, thioconazole, which is non-polar and poorly soluble in 
blood, is only used in antifungal skin infections. However, 
after the introduction of a hydroxyl group and more polar 
heterocyclic rings, fluconazole was obtained with better 
solubility and efficiency in systemic fungal infections [4]. 
On the other hand, the molecular structure, apart from phar-
macokinetic properties, also influences pharmacodynamics. 
For example, the key to local anesthesia is the benzoyl group 
in the cocaine structure [5]. Thus, it is so important to inves-
tigate and precisely determine the structure of the molecule 
before any biological testing.

One of the important parameters for biological activity 
is the phenomenon of tautomerism. Antonov calls tautom-
ers chemical chameleons because of their ability to change 
structure quickly depending on conditions [6]. Prototropic 
tautomerism is a proton displacement between two polar 
atoms of a given compound [7]. Related to the low-energy 
barrier between the tautomers, many factors affect the tau-
tomerization process [8]. It is determined by the ratio of the 
tautomers, which depends on the molecular structure and the 
type of chemical compound, solvent, temperature, pressure, 
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concentration, and pH [7]. The ratio of tautomers determines 
the most preferred tautomeric form in a particular environ-
ment. Tautomers differ in their molecule shapes, proton, and 
acceptor–donor properties, and therefore, depending on the 
tautomeric form, they can be involved in different molecular 
interactions with the molecular targets. In the light of above, 
determination of the most stable tautomer plays a key role in 
drug design and discovery.

One of the most common of tautomerism is the keto-enol 
tautomerism, occurring in the compounds which possess a 
carbonyl group. In nature, the most common example of 
keto-enol tautomerism is nitrogen bases, which form hydro-
gen bonds only by shifting the tautomeric equilibrium into 
the keto form [9]. Tautomeric equilibrium studies are of 
great importance because of the key role of tautomerism in 
the optimization of the biological activity of medicinal com-
pounds [9–16]. The tautomeric form may determine the sta-
bility of the ligand, which was, e.g., shown by Senthilkumar 
and Kolandaivel, who demonstrated greater stability in the 
polar environment of the bound tautomer with respect to the 
corresponding unsubstituted barbituric acid tautomer [17]. 
Temperini et al. proved that tautomeric forms determined 
the strength of interaction with the active site of an enzyme 
[18]. They showed that the complex of carbonic anhydrase 
II with chlorthalidone is bound in the compound lactimic 
form, instead of the amide form. Many studies focused on 
keto-enol tautomerism in order to rationalize the biological 
activity of the tested compounds, assuming that the keto 
and enol forms may differ in pharmacological activity [4].

Another common type of tautomerism is thione-thiol tau-
tomerism, which occurs in the compounds bearing a thione 
group (Scheme 1). Jayaram et al. reported that antithyroid 
drugs are mainly in the form of the thione tautomer [19]. They 
demonstrated that the tautomeric thione form was related to 
the presence of the NH group in the structures they studied, 
which is crucial for the inhibitory effect on lactoperoxidase.

Thiosemicarbazides are a privileged scaffold in medicinal 
chemistry [20]. Their easy synthesis and broad spectrum of 
biological activity make them a promising group of thera-
peutic compounds [21–24]. From the point of view of bio-
logical activity, it is very important to study the tautomeric 
stability of thiosemicarbazides [25–28]. Knowledge of the 
preferred tautomeric form enables the correct interpretation 
of the structure–activity relationship (SAR) and molecular 
docking studies to determine ligand–protein interactions. 

In order to determine the most stable tautomeric structure, 
quantum-chemical calculations are often used [29, 30] and 
the most frequently used method for determining tautomeric 
stability is DFT [6, 8, 31–34]. Therefore, the use of compu-
tational chemistry and structural bioinformatics techniques 
is of key importance in the contemporary process of drug 
design and discovery [8, 35]. On the other hand, X-ray crys-
tallography and NMR are also used to determine the struc-
ture of chemical compounds [8, 36–40] and to confirm the 
results of quantum-chemical calculations [16, 35, 41, 42]. 
Therefore, in our research, we perform a comparison of com-
putational and experimental data.

The aim of our work is to study the phenomenon of tau-
tomerism of pyridine carbonyl thiosemicarbazide derivatives 
using quantum-chemical calculations in the gas phase and in 
the solvent environment as IR and NMR spectroscopy and 
X-ray studies for selected compounds.

Experimental

IR spectra were recorded using a Thermo Nicolet 6700 FTIR 
spectrometer, with the ATR Diamond Orbit stage. 1H and 
13C NMR spectra using DMSO-d6 as a solvent were recorded 
using the Bruker AVANCE III 600-MHz, Z-gradient BBO 
probe spectrometer. The solvent was used as received from 
a commercial supplier. Tetramethylsilane was applied as an 
internal standard. B3LYP DFT (a variant of the DFT method 
using Becke’s three-parameter hybrid functional (B3) [43], 
with a correlation functional such as the one proposed by 
Lee, Yang, and Parr (LYP) [44], using 6–311 ++ G(3df, 
3pd) basis set as included in Gaussian09 [45], was used to 
optimize the 9 tautomeric structures of compounds 1–9 in 
the ground state and in DMSO using the Polarizable Con-
tinuum Model (PCM) [46, 47]. This approach relies on the 
overlapping of spheres to form a cavity of the solute. The 
stabilization energy of the tautomers 01–09 was also calcu-
lated for the isolated molecules (gas phase) and molecules 
in DMSO solutions for all the compounds. When calculat-
ing the stabilization energy of the tautomers, the reference 
was as the least stable tautomer for each compound. The 
Continuous Set of Gauge Transformations (CSGT) approach 
[48–50] was used to compute 1H and 13C NMR chemical 
shifts in DMSO at the same theory level. Next, vibrational 
frequencies and infrared intensities were also computed. The 

Scheme 1  Exemplary tautomeric 
forms of thiosemicarbazides
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IR spectra were rescaled by 0.9608 in accordance with the 
recommendations for this level of theory [51]. B3LYP DFT 
method and the 6–311 ++ G(3df, 3pd) basis set of Gauss-
ian09 [17] software were used to calculate the energy of 
HOMO and LUMO orbitals. GaussView v. 6.0 was applied 
to visualize HOMO and LUMO orbital shapes. Electro-
static potential distribution was computed and visualized 
with ArgusLab v. 4.0.1 [52]. Non-covalent interaction maps 
were calculated with NCIPlot v. 3.0 [53] and visualized with 
VMD v. 1.9.4 [54], as reported earlier [55].

X-ray data of 9 were collected on the KUMA Diffraction 
KM-4 CCD diffractometer (MoKα (λ = 0.71073 Å) radiation, 
ω scans, T = 296(2) K; crystal sizes 0.50 × 0.30 × 0.05 mm, 
absorption correction: multi-scan CrysAlisPro [56], Tmin/
Tmax of 0.7711/1.0000). The structure was solved by direct 
methods using SHELXS97 [56] and refined by full-matrix 
least squares with SHELXL-2014/7 [57]. The N-bound H 
atoms were located by difference Fourier synthesis and 
refined freely. The remaining H atoms were positioned 
geometrically and treated as riding on their parent C atoms 
with C-H distances of 0.93 Å (aromatic). All H atoms were 
refined with isotropic displacement parameters taken as 1.5 
times those of the respective parent atoms. Electron density 
associated with an additional disordered solvent molecule 
was removed with the SQUEEZE procedure in PLATON 
[58] (the solvent-accessible volume of 316 Å3 with 76 
electrons in the cavities). All calculations were performed 
using the WINGX version 1.64.05 package [59]. CCDC-
2189746 for 9 contains the supplementary crystallographic 
data for this paper. These data can be obtained free of charge 
at www. ccdc. cam. ac. uk/ conts/ retri eving. html (or from the 
Cambridge Crystallographic Data Centre (CCDC), 12 Union 
Road, Cambridge CB2 1EZ, UK; fax: + 44(0) 1223 336 033; 
email: deposit@ccdc.cam.ac.uk).

Crystal data of C1: C13H10N4OS, M = 341.21, mono-
clinic, space group P21/c, a = 12.7027(9), b = 9.9754(6), 
c = 13.5119(7) Å, β = 90.851(6), V = 1711.96(18) 
Å3, Z = 4, dcalc = 1.324  Mg   m−3, F(000) = 696, μ(Mo 
Kα) = 0.503   mm−1, T = 296  K, 7580 measured reflec-
tions (θ range 2.54–29.07o), 3861 unique reflections, final 
R = 0.048, wR = 0.121, S = 1.027 for 2773 reflections with 
I > 2σ(I) (Supplement 1).

Results and discussion

Thiosemicarbazides are a very important group of com-
pounds used in organic synthesis to obtain biologically 
active systems, e.g., triazoles, thiadiazoles, and oxadia-
zoles [60, 61]. For several years, researchers have focused 
on thiosemicarbazide derivatives as privileged structures 
for biological activity. Their antiviral and anthelmintic 
properties are widely described in the literature [62, 63]. 

Many compounds from this group exhibit antimicrobial 
activity against Klebsiella pneumoniae, Staphylococ-
cus aureus, and Escherichia coli comparable to standard 
antibacterial drugs [64]. Thiosemicarbazide derivatives 
containing a thiazole ring were screened for inhibitory 
activity against Mycobacterium tuberculosis H37Ra and 
Mycobacterium bovis strains [65].

Our group obtained a series of 1- (2-, 3-, 4- 
pyridinecarbonyl)-4-substituted thiosemicarbazide deriva-
tives and evaluated their antimicrobial and antitumor activity  
(Scheme 2) [21, 22].

The title compounds were synthesized in the reaction 
of 2- or 3- or 4-pyridinecarboxylic acid hydrazide reaction 
with 4-methylphenyl or 4-nitrophenyl or 2,4-dichlorophenyl 
isothiocyanate according to the previously described proce-
dure [21, 22]. Biological studies have shown that some of 
these compounds (1, 2, 4–6) display antibacterial activity 
against Staphylococcus epidermidis, Streptococcus mutans, 
and Streptococcus sanguinis with MIC values in the range 
of 7.81–62.5 mg/mL and show a therapeutic index higher 
than that of ethacridine lactate. Furthermore, compound 
(3) potently inhibits the proliferation of HepG2 (human 
hepatocellular carcinoma) and MCF-7 (human breast 
adenocarcinoma) cells with an  IC50 = 2.09 ± 0.11 μM and 
8.63 ± 1.75 μM, respectively, in a concentration-dependent 
manner [21] and (2) inhibits A549 (lung adenocarcinoma 
cell line) with an  IC50 = 4.96 ± 1.96 μg/mL [22].

Due to the key importance of the influence of physico-
chemical parameters on biological activity, we decided to 
investigate the phenomenon of tautomerism for the obtained 
thiosemicarbazide derivatives. The phenomenon of tautom-
erism, especially of the proton transfer, plays an important 
role in modern organic chemistry, biochemistry, drug chem-
istry, pharmacology, and molecular biology.

Related to the possibility of migration of labile pro-
tons from NH groups to carbonyl (C = O) or thione (C = S) 
groups, the thiosemicarbazide derivatives studied by us 
may exist in nine tautomeric forms (Fig. 1). We showed in 
our earlier work that in the solid state, thiosemicarbazides 
exist in the keto-thione form [22]. Here, we present experi-
mental and computational studies of the tautomerism phe-
nomenon for new biologically active compounds 1–9.

R2-NCS

CH3OHO

H
N

NH2
R1

O

N
N

S

N
R2

H

H H

R1

R1 R2

pyridin-2-yl 4-CH3SC6H4 (1), 4-NO2C6H4 (2), 2,4-Cl2C6H3 (3)
pyridin-3-yl 4-CH3SC6H4 (4), 4-NO2C6H4 (5), 2,4-Cl2C6H3 (6)
pyridin-4-yl 4-CH3SC6H4 (7), 4-NO2C6H4 (8), 2,4-Cl2C6H3 (9)

Scheme  2  Synthesis of 1-pyridinecarbonyl-4-substituted thiosemi-
carbazide derivatives (1–9)
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B3LYP DFT approach and 6–311 ++ G(3df, 3pd) basis 
set as included in Gaussian09 were used to optimize energy 
and geometry of compounds 1–9 in the ground state (in vac-
uum) and in DMSO. The stabilization energy values were 
calculated as the difference between the value of the most 
stable tautomer and the corresponding one. The population 
analysis of tautomeric forms was estimated using a non-
degenerate Boltzmann distribution. The results of the cal-
culations are presented in Table 1.

The obtained values of energy stabilization indicated 
that tautomer 01 is the most stable in both the gas phase and 
DMSO for all the studied compounds, which shows that the 

presence of ketone and thione groups in the carbonyl thiosem-
icarbazide system stabilized molecules 1–9 in both considered 
environments. In the case of compounds 4–6 and 5–9 with 
pyridyn-3-yl and pyridin-4-yl substituents, respectively, two 
tautomeric forms 01 and 02 can coexist both in the gas phase 
and in the solution, wherein the population of them is accord-
ing to the relation 01 >> 02, with the highest participation of 
tautomeric form 02 observed for 5 of 1.30% and 8 of 1.28% 
in the gas phase. In other analyzed cases, the population of 
the tautomeric forms 02–09 in considered environments is 
below the threshold of the detectability of conventional ana-
lytical methods with the highest stabilization energy for the 

Fig. 1  Possible tautomeric 
forms of the 1,4-disubstituted 
thiosemicarbazide derivatives
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tautomeric form 09, ranging from 42.80 kcal/mol for 2 to 
54.80 kcal/mol for 6 in the gas phase and from 48.75 kcal/
mol for 2 to 57.74 kcal/mol for 8 in DMSO.

Molecular orbitals and their properties, i.e., energy, are 
useful for explaining the electronic properties of the com-
pounds. Frontier electron density is often applied for predict-
ing the most reactive position in π-electron systems and to 
explain a number of reactions in conjugated systems [66].

HOMO (Highest Occupied Molecular Orbital) and 
LUMO (Lowest Unoccupied Molecular Orbital) energy is 
often used to determine the chemical reactivity of molecules. 
During molecular interactions, the LUMO accepts electrons 
while the HOMO represents electron donors [67]. Energies 
of HOMO and LUMO as well as LUMO–HOMO gap for 
the most stable tautomer 01 of compounds 1–9 are presented 
in Table 2. HOMO and LUMO orbitals for tautomer 01 of 
the most active compounds 2 and 3 are shown in Fig. 2. It 
can be seen that for 2, both HOMO and LUMO orbitals 
are present on the thiosemicarbazide and phenyl part of the 
molecule, making it most reactive, in contrast to the pyridyl 
moiety which is not reactive. The reason for this is the large 
accumulation of electronegative atoms on one side of the 
molecule. However, for 3, the LUMO orbital is stretched 

into the entire molecule and the distribution of the HOMO 
orbital is the same as previously described for 2.

Investigation of protein and ligand electrostatic poten-
tial aimed at optimizing electrostatic complementarity is of 
great importance in drug design [68]. The distribution of 
electrostatic potential maps for the most stable tautomer 01 
of compounds 2 and 3 is presented in Fig. 3. It can be seen 
that pyridyl nitrogen, the nearby carbonyl oxygen, and nitro 
group oxygen atoms are the most electronegative part of 
compound 2, similarly as for compound 3, which, however, 
does not possess a nitro group.

Non-covalent interactions are crucial for the explana-
tion of a number of chemical, biological, and technological 
problems [53]. A thorough description of these interactions, 
in particular their positions in real space, is the starting 
point for decoupling the complex balance of forces that 
define the interactions [53]. Non-covalent interaction maps 
for the most stable tautomer 01 of compounds 2 and 3 are 
presented in Fig. 4. A number of week attracting interac-
tions (green) have been identified for the compounds stud-
ied. Furthermore, we studied experimental and computed 
NMR spectra of the most stable tautomer 01 of compounds 
1–9. 1H NMR spectra for all the derivatives show peaks of 
 N7-H,  N9-H, and  N10-H at 9.58–10.18 ppm, 9.73–0.27 ppm, 
and 10.74–11.00 ppm, respectively, which is supported 
by the literature [55, 69, 70]. The signals in the range of 
7.22–9.12 ppm confirmed the presence of two phenyl rings. 
These signals differed depending on the position of the het-
eroatom on the phenyl ring and on the type of the second 
substituent [55, 71].

13C NMR spectra confirmed the presence of carbonyl 
group (C = O) signal in the range of 163–165 ppm and thione 
group (C = S) signal in the range of 181–189 ppm. This cor-
relates with the chemical shifts obtained for these atoms by 
several authors [21, 22, 53, 72–74]. Related to the presence of 
many highly electronegative atoms, the chemical shifts differ 
slightly. The most stable tautomer has a carbonyl and a thione 
group, which is confirmed by these studies. Experimental and 

Table 2  Energies of HOMO and LUMO orbitals for the most stable 
tautomer of compounds 1–9 

Compound EHOMO (eV) ELUMO (eV) LUMO–HOMO 
gap (eV)

1  − 5.76  − 1.87 3.89
2  − 6.81  − 2.83 3.98
3  − 6.47  − 2.05 4.42
4  − 5.82  − 2.00 3.82
5  − 6.91  − 2.89 4.02
6  − 6.12  − 1.72 4.40
7  − 5.85  − 2.17 3.68
8  − 6.96  − 2.93 4.03
9  − 6.15  − 1.75 4.40

Fig. 2  HOMO (A, C) and 
LUMO (B, D) orbitals for the 
most stable tautomer of com-
pounds 2 (A, B) and 3 (C, D)
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computed 1H and 13C NMR spectra are presented in Table 3 
and they correspond well with each other.

We also conducted a detailed analysis of experimental 
and computed IR spectra of the most stable tautomer 01 
for compounds 1–9 (Table 4), as they can provide valuable 
structural information about the compounds. The presence 
of a band in the absorption range 3328–2937  cm−1 indicates 
the presence of NH groups. Analysis of the IR spectra con-
firms the presence of strong absorption band characteristic 
of the group C = O in the range of 1701–1653  cm−1. Another 
structural feature of the tested derivatives of thiosemicar-
bazide is a thione group, which occurs in the spectra in the 
range of 1307–1296  cm−1 [69, 74]. Moreover, the IR spectra 
of compounds 1–9 did not reveal a C-SH stretching band in 
the ~ 2600  cm−1 range [69], which confirms our assumptions 
regarding the most likely tautomeric state. The experimental 
and computed scaled IR frequencies are in good accordance 
and confirm the energetical preference of tautomer 01 in 
case of all compounds studied.

In order to confirm the synthesis pathway, the assumed 
molecular structures, and identification of the tautomeric 
form in the crystalline state for the compounds obtained, 
X-ray studies were performed and structures were described 
for compounds 3, 4, and 6 [73]. Here, we presented the crys-
tal and molecular structure of the next, compound 9, in the 
investigated series of carbonyl thiosemicarbazides. The 
molecular structure of 9 in the conformation observed in 
the crystal is shown in Fig. 5.

The molecule occurs in N1-amino/S3-thione/N4-amino/
N5-amino/O7-keto, 01 (Fig. 1), tautomeric form, which 
is confirmed by the C3–S3 and C5–O5 bond lengths of 
1.683(2) and 1.218(3) Å, respectively, typical for the thione 
and carbonyl groups [75], and the positions of the amino 
H-atoms at the difference electron-density map in the imme-
diate vicinity of the N1, N4, and N5 atoms. The torsion 
angles C21–N1–C2–N4, N1–C2–N4–N5, C2–N4–N5–C6, 
and N4–N5–C6–C31 of − 178.6(2), 5.4(3), 92.7(3), and 
176.70(19)o, respectively, show that the carbonyl thio-
semicarbazide chain adopts a trans–cis-gauche-trans con-
formation. The 2,4-dichlorophenyl and pyridyl substituents 
with respect to the carbonyl thiosemicarbazide system have 
the gauche and cis conformations, respectively, as shown 
by the torsion angles C22–C21–N1–C2 of 110.6(3)o and 
N5–C6–C31–C32 of − 13.8(3)o. The thione C2–S3 group 
adopts a trans conformation with respect to N4–N5 with 
the torsion angle N5–N4–C2–S3 of − 176.11(17)o, while 
the carbonyl C6–O7 group has the cis position with respect 
to this bond and is practically coplanar with the pyridine 
ring, as evidenced by the torsion angles N4–N5–C6–O7 and 
C32–C31–C6–O7 of − 4.9(3) and 167.8(2)o, respectively. In 
the crystal structures of 9, the molecular packing is influ-
enced by the net of strong intermolecular hydrogen bonds 
N1–H1…N34i [N1–H1 = 0.79(3), H1…N34 = 2.22(3), N1…
N34 = 2.993(3) Å, N1–H1…N34 = 167(3)o, (i) = 1-x, 1-y, 
-z], N4–H4…S3ii [N4–H4 = 0.82(3), H4…S3 = 2.52 (3), 
N4…S3 = 3.312(2) Å, N4–H4…S3 = 166(3)o, (ii) = 1-x, 
1-y, 1-z] and N5–H5…O7iii [N5–H5 = 0.76(3), H5…

Fig. 3  Molecular structures 
of the most stable tautomer of 
compounds 2 (A) and 3 (B). 
Electrostatic potential surface 
for the most stable tautomer of 
compounds 2 (C) and 3 (D)

Fig. 4  Non-covalent interaction maps for the most stable tautomer of 
compounds 2 (A) and 3 (B). Green spots depict attractive interactions 
while red spots depict repulsive interactions
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O7 = 2.21(3), N5…O7 = 2.893(3) Å, N5–H5…O7 = 151(3)
o, (iii) = 1-x, ½ + y, ½-z], which stabilized the tautomeric 
form observed in crystal. Moreover, the π…π interaction 
between pyridine rings within the molecular dimer formed 
by inversion-related molecules is observed; the centroid-
to-centroid separation and the angle between the overlap-
ping planes of these rings are 3.4947(14) Å and 0.03(12)

o, respectively. It is worth noting that the intermolecular 
interactions observed in the crystal are in good agree-
ment with the predicted non-covalent interactions shown 
in Fig. 4. In our previous research on thiosemicarbazide 
derivatives, we presented the crystal and molecular struc-
tures of several compounds containing this system, e.g., 
4-cyclohexyl-1-(4-nitrophenyl)carbonyl thiosemicarbazide 

Table 3  Experimental and computed 1H and 13C NMR chemical shifts for the most stable tautomer 01 of compounds 1–9

Atom Compounds and NMR chemical shifts (ppm)

1 2 3 4 5 6 7 8 9

Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc

C1 127 133 124 126 128 136 129 133 124 127 128 134 122 135 121 127 128 133
C5 127 133 124 126 127 136 129 133 124 127 133 139 132 135 121 127 133 138
C2 122 130 123 133 128 135 124 130 125 133 129 134 122 135 125 133 129 134
C4 122 130 123 133 129 135 124 130 125 133 129 137 122 135 125 133 132 137
C3 134 149 149 150 127 143 137 149 146 150 133 143 140 143 143 150 133 143
C6 138 141 138 155 123 142 136 141 144 155 136 142 137 142 151 155 140 142
C8 181 181 181 178 182 179 182 181 181 178 183 179 183 179 189 178 182 179
C11 163 168 164 169 164 169 165 167 165 168 165 167 165 167 164 168 165 167
C12 139 159 149 159 149 159 129 134 128 134 132 134 137 146 141 146 137 146
C13 126 129 124 129 123 129 136 141 136 141 137 141 122 127 122 127 122 127
C17 - - - - - - 149 159 149 159 149 159 122 127 122 127 122 127
C18 16 19 - - - - 16 19 - - - - 16 19 - - - -
C14 136 145 138 159 149 159 124 130 124 130 124 130 151 160 151 160 151 160
C16 148 159 149 145 149 145 - - - - - - 151 160 151 160 151 160
C15 127 133 128 134 127 134 153 162 153 163 153 162 - - - - - -
H1 7.26 7.66 7.92 8.13 8.08 8.37 7.38 7.64 7.90 8.11 7.41 8.40 7.38 8.43 7.88 8.11 7.71 8.43
H5 7.26 7.66 7.92 8.13 - - 7.38 7.64 7.90 8.11 - - 7.38 8.43 7.88 8.11 - -
H2 7.40 7.44 8.21 8.79 7.42 7.56 7.24 7.45 8.23 8.11 7.41 7.59 7.24 7.65 8.23 8.79 7.44 7.57
H4 7.40 7.44 8.21 8.79 7.42 7.73 7.24 7.45 8.23 8.79 7.68 7.73 7.24 7.65 8.23 8.79 7.36 7.73
H3 - - - - - - - - - - - - - - - - - -
H7 9.73 7.38 10.09 7.79 9.58 7.59 9.81 7.35 10.16 7.77 9.75 7.51 9.84 7.62 10.18 7.79 9.76 7.62
H9 9.73 9.50 10.20 9.85 9.96 9.75 9.81 9.54 10.24 9.88 10.02 9.77 9.84 9.75 10.27 9.83 10.05 9.75
H10 10.74 10.87 10.90 10.83 10.84 10.79 10.77 10.94 10.89 10.91 10.86 11.00 10.85 11.12 11.00 11.08 10.95 11.12
H13 8.07 8.09 8.06 8.10 7.66 8.07 8.28 8.33 8.29 8.37 8.28 8.36 7.85 8.04 7.88 8.03 7.86 8.04
H17 - - - - - - 9.11 9.51 9.11 9.52 9.11 9.53 7.85 8.04 7.88 8.03 7.86 8.04
H14 8.02 8.25 8.06 8.27 7.66 8.25 7.56 7.77 7.58 7.79 7.56 7.78 8.78 9.16 8.80 9.17 8.78 9.16
H16 8.60 9.12 8.71 9.14 8.69 9.13 - - - - - - 8.78 9.16 8.80 9.17 8.78 9.16
H15 8.02 7.84 7.67 7.87 8.03 7.86 8.76 9.12 8.78 9.15 8.76 9.13 - - - - - -
H18 2.46 2.54 - - - - 2.47 2.55 - - - 2.47 2.55
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[21], 4-(2,4-dichlorophenyl)-1-(pyridin-2-yl)carbonyl thio-
semicarbazide (3), 4-(4-methylthiophenyl)-1-(pyridin-3-yl)
carbonyl thiosemicarbazide (4), 4-(2,4-dichlorophenyl)-
1-(pyr idin-3-yl)carbonyl thiosemicarbazide (6) , 
4-(2-fluorophenyl)-1-(pyridin-4-yl)carbonyl thiosemicar-
bazide, and 4-(2-chlorophenyl)-1-(pyridin-4-yl)carbonyl-
thiosemicarbazide [76]. All these compounds exist in the 
crystalline state in the tautomeric N1-amino/N3-amino/
N4-amino/S2-thione/O5-keto form the same as compound 9.

A search of the Cambridge Structural Database (CSD; 
version 5.43; November 2021, [77]) for the presence of the 
carbonyl thiosemicarbazide system in organic molecules 
(restrictions applied: R ≤ 0.1, only non-disordered, no 
errors, not polymeric, no ions) revealed 102 crystal struc-
tures with this system. In all these structures, the carbonyl 
thiosemicarbazide system is in the N-amino/S-thione/O-keto 
01 tautomeric form (Fig. 1). It should be noted that there 
are three crystal structures in the CSD with the carbonyl 

thiosemicarbazide system in the ionic structure: imidazolium 
N-(naphthalen-1-ylcarbamothioyl)-3,5-dinitrobenzenecar-
bohydrazonate, hexamethylenetetraminium N-(naphthalen-
1-ylcarbamothioyl)-3,5-dinitrobenzenecarbohydra zonate, 
and triethylammonium N-(naphthalen-1-ylcarbamothioyl)-
3,5-dinitrobenzene carbohydrazonate with the Refcodes 
MATLIE, MATLOK, and MATLUQ, respectively, and only 
in these structures the carbonyl thiosemicarbazide system 
appears in a different tautomeric form, namely, N1-amino/
S3-thione/N4-amino/N5-imino/O7-hydroxy, 02 tautomeric 
form (Fig. 1).

In summarizing the results of X-ray studies of the crystal 
structures of compounds containing the carbonyl thiosemi-
carbazide system, it can be stated that the organic compounds 
containing this system occur in the 01 tautomeric form in the 
crystalline state. Only in the case of ionization of the oxygen 
atom of the carbonyl thiosemicarbazide system, the tauto-
meric equilibrium shifts towards the tautomeric form 02.

Table 4  Experimental and computed (raw and scaled) IR frequencies for the most stable tautomer 01 of compounds 1–9 

Comp. IR frequencies (  cm−1)

N-NH7 N-NH9 N-NH10 C = S C = O

Exp. Comp. Exp. Comp. Exp. Comp. Exp. Comp. Exp Comp.

Raw Scaled Raw Scaled Raw Scaled Raw Scaled Raw Scaled

1 3296 3577 3462 3238 3504 3392 3207 3458 3347 1306 1356 1313 1655 1724 1669
2 3328 3573 3459 3291 3497 3385 3230 3469 3357 1324 1349 1306 1664 1731 1676
3 3271 3547 3433 3242 3508 3395 3195 3466 3354 1299 1357 1313 1655 1731 1675
4 3271 3577 3462 3244 3505 3392 3189 3444 3334 1296 1358 1314 1653 1702 1648
5 3316 3575 3460 3237 3505 3393 3204 3466 3354 1297 1349 1306 1657 1706 1652
6 3314 3547 3433 3150 3513 3400 3088 3462 3351 1302 1357 1314 1701 1706 1651
7 3224 3577 3462 3097 3511 3398 2937 3452 3341 1298 1365 1321 1667 1703 1649
8 3238 3574 3459 3265 3511 3398 3101 3471 3359 1307 1349 1306 1663 1707 1652
9 3310 3545 3431 3117 3519 3406 2954 3468 3357 1302 1359 1316 1677 1707 1652

Fig. 5  The molecular structure 
of 9 with atom labeling and 
displacement ellipsoids (30% 
probability level)
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Conclusion

The experimental and theoretical studies of 1- (2-, 3- and 
4-pyridinecarbonyl)-4-substituted thiosemicarbazide deriva-
tives have shown that the most stable tautomeric form 
contains a carbonyl and thione group. The obtained data 
broaden the knowledge of the tautomerism of thiosemicar-
bazide derivatives and can be used for the rational design of 
new therapeutic compounds.
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