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Abstract
Nanocarriers allow the connection between biomolecules and other structures to enhance the treatment efficacy, through the 
biomolecule’s properties to an existing drug, or to allow a better and specific delivery. Apigenin and orientin are biomol-
ecules with excellent therapeutic properties that are proposed in the fight against COVID-19. Besides that, graphene oxide 
is a nanomaterial that exhibits antiviral activity and is used as a nanocarrier of several drugs. We evaluated in this work, 
through molecular docking, the binding affinity between these structures to the receptor-binding domain of spike protein of 
two coronavirus variants, Delta and Omicron. The results indicate that all the structures exhibit affinity with the two protein 
targets, with binding affinity values of −11.88 to −6.65 kcal/mol for the Delta variant and values of −9.58 to −13.20 kcal/
mol for the Omicron variant, which is a successful value as found in the literature as a potential inhibitor of SARS-CoV-2 
infection. Also, through first-principles calculations based on Density Functional Theory, the interaction of graphene oxide 
with the biomolecules apigenin and orientin occurred. The results exhibit weak binding energy, which indicates that physi-
cal adsorption occurs, with better results when the biomolecule is set in parallel to the nanomaterial due to attractive π-π 
staking. These results are conducive to the development of a nanocarrier.
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Introduction

The COVID-19 pandemic brought the need for advances 
in science, and manipulation of materials at the nanometer 
scale is highlighted, as it reveals extraordinary physiologi-
cal and chemical properties [1]. Vaccines have been devel-
oped to prevent severe cases of the disease; however, non-
pharmacological measures are still needed to slow down the 

spreadness and reduce morbidity and mortality from this 
disease [2]. In this scenario, drug nanocarrier systems have 
gained prominence in research, as the search for greater effi-
ciency in the treatment of the virus has become essential. 
Thus, it seeks to avoid symptoms, serious consequences, and 
even death [1]. It allows effective and specific drug delivery 
to the target cells, which reduces the necessary dose and the 
possible side effects for the individual [3].

The SARS-CoV-2 virus causes this disease, which has 
in its composition a protein named spike, which gives it the 
classification of coronavirus. This protein is responsible for 
the cell internalization of the virus, as it is recognized by 
the human angiotensin-converting enzyme-2 (ACE-2) and 
within the cell undergoes replication controlled by the main 
protease 3-chymotrypsin-like cysteine (Mpro or 3CLpro) [1, 
3]. This virus undergoes mutations that classify it into dif-
ferent variants that can cause different symptoms. Among 
the variants, the Delta variant has the highest affinity for 
interaction with ACE-2, and the Omicron variant has muta-
tions that make it more likely not to be tackled by vaccines 
already in development [4]. Because of this, several studies 
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are being carried out via in silico methodologies for screen-
ing compounds for interacting with the spike protein, ACE-
2, and Mpro to develop alternative methods of diagnosis and 
treatment. In this way, Eskandari [5] carried out molecular 
docking studies to identify natural compounds as potential 
spike protein receptor-binding domain (RBD) and with 
Mpro inhibitors. The author suggested that vitamins such 
as riboflavin are potential inhibitors of Mpro, vitamin  B12, 
and benfotiamine are inhibitors of RBD, and bentiamine and 
folic acid are potential inhibitors for both. In this line of 
research, the natural compounds such as kadsurenin L and 
methysticin [6] and p-coumaric acid, allagic acid, kaemp-
ferol and quercetin [7] are identified as Mpro inhibitors.

Additionally, carbon nanomaterials such as graphene, and 
their derivatives like graphene oxide (GO) and carbon nano-
tubes, which are composed of a honeycomb packed on  sp2 
hybridization, are widely used for nanomedicine applications 
[1, 8, 9]. These nanomaterials are already studied as nano-
carriers for antiviral drugs against HIV and reovirus [10]. 
GO is derived from graphene, with the presence of func-
tional groups that facilitate its functionalization, that is, the 
interaction with other molecules of interest. It has an atomic 
thickness, which gives it the 2D structure classification and 
features such as biocompatibility, energy transfer efficiency, 
and amphiphilicity [11]. These properties are important for 
biomedical applications of imaging, biosensors, and drug 
nanocarriers [12]. Also, GO has antiviral activity by itself 
and demonstrably inhibits viral infection of a type of coro-
navirus that infects pigs through structural destruction [13]. 
Several studies also show that graphene and graphene oxide 
are more efficient than other nanomaterials [14], with regard 
to reducing the transmissibility and infectivity of SARS-
CoV-2, being promising for use in prophylactic approaches, 
such as masks or surface coatings [14, 15].

Other nanomaterials such as molybdenum disulfide 
 (MoS2) are promising alternative therapeutics to inactivate 
SARS-CoV-2. Bisht and collaborators [16] evaluated the 
interaction of 2D MoS2 nanosheets with the SARS-CoV-2 
spike protein, the human ACE-2 receptor, and the complex 
formed between them through molecular docking and atom-
istic simulations. The results show that MoS2 nanosheets 
can effectively bind to the receptor-binding domain (RBD) 
of the spike protein with good docking energies, and the 
interactions occur through various hydrogen bonds and van 
der Waals interactions. Thus, the authors clearly demonstrate 
the antiviral potential of MoS2 2D nanosheets [16].

In parallel, flavonoids are natural compounds with excel-
lent pharmacokinetic activity, which have anti-inflammatory, 
antioxidant, bactericidal, and antiviral activities, and the abil-
ity to boost the immune system. Because of this, they are pre-
sented as proposals in the fight against COVID-19, given the 
urgent need to remodel drugs [17, 18]. Lakshmi and collabo-
rators [19] point to orientin as one of the natural compounds 

that are presented as a proposal to alleviate the viral infec-
tion, without side effects, by promoting the immune system. 
His research involved in silico investigation via molecular 
docking with the spike protein and the main protease of the 
virus, as well as with the human ACE-2 receptor. Addition-
ally, Gentile and collaborators [20] investigated molecular 
dynamics, where they point to apigenin as one of the com-
pounds capable of inhibiting the main protease of SARS-
CoV-2. About nanocarriers, Rahmanian and collaborators 
[21] synthesized nano GO as a carrier of quercetin, an anti-
oxidant flavonoid capable of promoting the immune system, 
and point out that the nanomaterial is an effective, low-cost 
option with high production capacity for interaction with this 
type of biomolecule, especially for oral internalization.

In this paper, first-principles computer simulations were 
performed to study the interaction between graphene oxide 
and the biomolecules orientin and apigenin. It is intended 
to analyze the stability of the proposed system to link the 
therapeutic activities of these flavonoids to a nanocarrier 
system as a treatment method against COVID-19. After that, 
molecular docking studies were carried out to identify the 
interaction of the graphene oxide, apigenin, and orientin 
structures with the RBD of the spike protein of two corona-
virus variants, Delta, and Omicron.

Methods

Firstly, the interaction between GO and the biomolecules 
apigenin and orientin was studied through first-principles 
simulations based on Density Functional Theory (DFT) [22] 
to evaluate the proposed structures for a nanocarrier system 
against COVID-19 by their electronic properties. Then, a 
molecular docking study was performed with a target in the 
RBD of the spike protein of the Delta B.1.617.2 and Omicron 
B.1.1.529 variant to identify the conformation and the pro-
tein–ligand affinity [23]. The RBD of the spike protein was 
specifically chosen for its importance in the recognition of 
the protein by the cell and consequently in the viral infection.

DFT simulation

DFT simulation and calculation parameters

The ab  initio methodology allows the understanding of 
chemical, physical, and biological phenomena by solving 
Schrödinger’s equation, which describes the electron move-
ment around the atom nucleus by their wave function. Mean-
while, the DFT is a theory formulated by Hohenberg and 
Kohn, which reduces the computational effort by indicating 
theorems that show that the electron density can take the 
focus instead of each electron of the wave function.
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The computational simulation was performed using the 
SIESTA software (Spanish Initiative for Electronic Simula-
tions with Thousands of Atoms) [24], which uses the DFT 
[25] and some approximations to solve the electronic prob-
lem. The local density approximation [26] was used as an 
auxiliary tool for computational calculations, as it provides 
us with theoretical results equivalent to the experimental 
ones in weakly interacting systems, such as simulations 
involving GO and organic molecules [27]. Pseudopoten-
tials were used to simplify the description of electrons. The 
double zeta polarization (DZP) basis set was chosen, with 
an energy shift of 0.05 eV and energy cutoff of 200Ry, and 
all the calculations were performed to converge when the 
residual forces on each atom were smaller than 0.05 eV/Å, 
for all the simulations. The super-cell size was 30 Å in x, 
y, and z directions, which is enough size so that the repli-
cated system does not interfere with the simulation; that is, 
it does not become periodic. The methodology is similarly 
approached on other studies, which verified the adsorption 
of small aromatic molecules in pristine and functionalized 
graphene [28], of 17 β-estradiol in graphene oxide [27], and 
of pentachlorophenol on carbon nanostructures [29], and 
also, to identify a weak interaction force between graphene 
and doxorubicin [30], and the stability of π-aromatic interac-
tion of different groups adsorbed in graphene surface [31].

The isolated biomolecules apigenin (PDB: 5280443) and 
orientin (PDB: 5281675), and GO interacting with each of 
the biomolecules, were analyzed separately. We have ana-
lyzed the gap between HOMO (highest occupied molecular 
orbital) and LUMO (lowest unoccupied molecular orbital) 

of the system. The charge plots of them were visualized by 
choosing 0.001 eV/Å3 as the contour value. The binding 
energy was calculated according to Eq. 1 which calculates 
a basis set superposition energy (BSSE) [32]. By BSSE, 
the interaction energy is calculated considering the initial 
configuration of the formed interacting system (AB). For 
this, it is subtracted from the energy by A without explicitly 
considering B, which is treated as a ghost (A + B(ghost)), and 
vice versa (A(ghost) + B) [31].

The charge transferences between all systems are calcu-
lated as shown in Eq. 2 for the biomolecule, so the negative/
positive transferences indicate that the biomolecule donates/
accepts electronic charge.

(1)Ebinding = E
AB

− E
A(ghost)+B − E

A+B(ghost)

(2)Charge transference = Etheoretical − Eresultant

These analyses will show us through the energy and 
energy difference in eV, and the characteristics of interac-
tion between GO and biomolecules. Thus, it is possible to 
assume that the proposed system fulfills its characteristics 
as a potential nanocarrier.

Molecular docking

Structures preparation, molecular docking, and results 
analysis

The SARS-CoV-2 Delta variant Crystal structure file 
(PDB:7V7V) and the SARS-CoV-2 S Omicron Spike 
(PDB:7QO7) were treated using the AutoDockTools soft-
ware, which required the addition of charges and hydrogen 
atoms, where the conversion to pdbqt format was also per-
formed, while the three-dimensional structures of the ligands 
apigenin and orientin were acquired from PubChem, treated 
by adding a torsion point in the structure, and converted to 
pdbqt format also by AutoDockTools [33].

The molecular docking was performed using AMDock 
software, which is a graphical tool that helps docking between 
protein and ligand using AutoDock4 [34]. Autodock proved 
to be an effective tool in predicting binding conformation and 
binding energy of flexible ligands to flexible macromolecules 
through a semi-empirical binding affinity force field. Auto-
dock 4 software uses a scoring function to evaluate interac-
tions, returning us a binding affinity value in kcal/mol, by 
which it is possible to evaluate potential inhibitors and binding 
states [35]. The ligand-docking calculation follows Eq. 3.

where L refers to the “ligand,” SP refers to the “spike pro-
tein,” ∆Sconf is an estimate of the conformational entropy 
lost upon binding, and V is a pair-wise evaluation for disper-
sion/repulsion energies, hydrogen bonds, electrostatics, and 
desolvation [36]. These binding affinity analyses are expected 
to be useful in rational drug design by virtual screening and 
other applicability. The default parameters for the grid box 
were centered at 221.3 Å × 175.5 Å × 276.3 Å (x, y, and z) 
to cover the region of RBD of the Delta spike protein [37]. 
For the Omicron spike protein, the default parameters for the 
grid box were centered at 213.6 Å × 181.5 Å × 134.3 Å (x, y, 
and z) to cover the region of RBD (residues 330–520) [38].

The results were analyzed regarding the conformation 
score, the interaction affinity resulting from the best con-
formation, that is, the one with the most negative binding 
energy, and the types of protein–ligand interactions formed. 
The stability of the docked structures was examined using 
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the RMSD (root-mean-square deviation) parameter, which 
is the distance between the ligand and receptor and must be 
less than 2 angstroms [33]. Discovery Studio 2021 software 
was used to visualize the interaction results and the 2D map 
of interaction was performed through LigPlot software. The 
proposed methodology was similarly approached in other 
studies, such as the interaction in the complex formed by 
graphene and glutamate [39], and for single-walled carbon 
nanotubes and human mitochondrial voltage-dependent 
anion channel [40].

Results and discussion

This study aimed to analyze, by means of first-principles 
calculations based on DFT, the feasibility of interaction 
between the GO, and the flavonoids apigenin and orien-
tin, for the development of a nanocarrier; and, by means of 
molecular docking, the interaction of these structures to the 
spike proteins of the Delta and Omicron variants separately, 
to identify the ligands as inhibitors of the target protein, 
therefore, acting against the SARS-CoV-2 viral infection. 
All results showed RMSD lower than 2 angstroms; therefore, 

they are considered reliable docking results. In summary, the 
stability of the system formed with GO as a nanocarrier of 
the biomolecules apigenin and orientin was guaranteed by 
ab initio simulation, while the interaction of ligands with 
target proteins was verified by molecular docking.

DFT simulations and analysis

Isolated structures

Initially, we evaluated the isolated structures of GO, apigenin, 
and orientin (Fig. 1). The energy levels/bands and the plot of 
the charge in the region of HOMO (highest occupied molecu-
lar orbital) and LUMO (lowest unoccupied molecular orbital) 
were analyzed. The studied GO has the molecular formula 
 C55H21O6; it is a planar structure of graphene with chemi-
cal groups functionalizing the structure, such as carboxyl, 
hydroxyl, and epoxy, which allows the structure to be more 
interactive and provides for biological applications [11]. The 
results show that the GO has a HOMO/LUMO difference of 
0.60 eV, similar to the results of De Oliveira and collabora-
tors [27]. In this case, the charge plot on HOMO is arranged 
at the ends of the sheet, with emphasis on the carboxylic 

Fig. 1  Structures studied (a). 
Energy bands and charge plot 
(b) in the HOMO and LUMO 
of the studied structures: GO, 
apigenin, and orientin. Value 
used for the isosurface is 0.001 
 e−/A3
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group, and on LUMO in the central region, especially on the 
hydroxyl groups, which shows us the greater interaction pro-
pensity of oxygen atoms. Furthermore, studies indicate that 
GO can be doped with aromatic molecules by interacting in 
regions containing COOH groups and via π-π stacking, tak-
ing advantage of their  sp2 hybridization sites [41].

In the case of apigenin, it has a HOMO/LUMO difference 
of 2.50 eV, a value that agrees with the flavonoid gap varia-
tion result from Bitew and collaborators [42] who studied it 
by DFT/B3LYP hybrid functional. Additionally, the charge 
plot in HOMO is arranged over the aromatic part, while 
in LUMO it is arranged over most atoms, as is also found 
in the work of Zheng and collaborators [43]. On the other 
hand, orientin has a HOMO/LUMO difference of 2.50 eV, 
like the results of Li and collaborators [44], who used the 
Becke exchange methodology plus Lee-Yan-Parr correlation 
(BLYP). The charge plot of orientin is found in the literature, 
distributed over the aromatic part of the molecule in both 
HOMO and LUMO.

After evaluating the structural and electronic properties 
of the isolated structures, four interaction configurations 

were selected. Initially, all configurations were performed 
to evaluate the most favorable distance for the interaction 
to occur, with the distance up to 3 Å (ranging from 0.25 to 
0.25 Å). When the best distance was found, the system was 
optimized for further analysis of the results. In the next top-
ics, we will present the results of the interaction of GO with 
apigenin and with orientin.

GO and biomolecule interaction—DFT simulations 
and analysis

For the study of GO interacting with apigenin, we evaluated 
four distinct configurations (Fig. 2), where four configura-
tions were assembled with the biomolecule perpendicular 
to the GO on the edge of the structure (GO + apigenin_1) 
and in the middle of the GO (GO + apigenin_2) and with the 
two structures parallel to each other, on the edges of the GO 
(GO + apigenin_3 and GO + apigenin_4). For the study of 
GO interacting with orientin, the configurations studied are 
shown in Fig. 3; the configurations were modeled so that the 
charge density region of the biomolecule remained parallel 

Fig. 2  Studied configurations 
for GO and apigenin interac-
tion (a). Energy bands of GO, 
apigenin, and GO + apigenin_4 
(b). Charge plot in HOMO 
and LUMO for the most stable 
configuration (value used for the 
isosurface is 0.001  e−/Å3) (c)
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to the GO, approaching a region of few functional groups 
(GO + orientin_1), approaching the oxygen-containing 
groups of both structures (GO + orientin_2 and GO + orien-
tin_3), and approaching the carbons of the aromatic rings of 
both structures (GO + orientin_4). Figure 3 shows the con-
figurations studied for the interaction of GO with orientin. 
Table 1 shows the values of connection energy, distance, 
HOMO/LUMO difference, and electronic charge transfer 
obtained in the different configurations. The most stable 
results are marked, that is, the ones with the lowest energy. 
It is noteworthy that all the resulting energies are negative 
and, therefore, indicate an interaction between the systems.

The simulations demonstrate that the perpendicular con-
figurations resulted in the least attractive energies, while 
the system GO + apigenin_4 is the configuration of greater 
stability because it comparatively presents a lower value of 

total energy. In this configuration, apigenin is arranged in 
a planar way over the GO, in which we obtained binding 
energy of −0.96 eV. In this system, the HOMO/LUMO dif-
ference was 0.53 eV, like GO alone. Thus, it is also veri-
fied that in the energy bands of GO + apigenin_4, which are 
shown in Fig. 2b, the association of apigenin does not cause 
considerable modification in the bands of isolated GO.

The calculations of the most stable distances identified 
that the most stable system was the GO + orientin_3, as it 
comparatively presents a lower total energy value. This con-
figuration resulted in the binding energy of −1.86 eV. The 
energy bands are shown in Fig. 3b, where we can see that the 
GO + orientin_3 system presents a HOMO/LUMO differ-
ence of 0.36 eV, a value that shows some modification when 
compared to the isolated GO (0.61 eV). Additionally, cou-
pled with the low value of total energy, it indicates a physical 

Fig. 3  Studied configurations 
for GO and orientin interac-
tion (a). Energy bands of GO, 
orientin, and GO + orientin_3 
(b). Charge plot in HOMO 
and LUMO for the most stable 
configuration (value used for the 
isosurface is 0.001  e−/A3) (c)
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adsorption system, where the association of compounds does 
not cause chemical modification of them; however, interac-
tion still occurs due to negative energy values.

The least attractive configurations which occur in configu-
rations 1 and 2 can be explained by the repulsions between 
the hydrogen atoms [31]. A theoretical study [45] of the 
interaction of apigenin with hexagonal boron nitride (h-BN), 
a structure similar to pure graphene, through DFT with the 
Lee–Yang–Parr [46] functional through the Dmol 3 [47] 
(B3LYP) package shows that the interaction is favored by 
“stacking-AA.” In the cited work, the authors obtained bind-
ing energy in the order of 1.61 eV, like that found in this work, 
of 1.24 eV, emphasizing that they are different structures, only 
similar. The author suggests that the interaction is favored 
by the interactions of the aromatic rings of apigenin through 
hydrophobic interactions and π-π bonding interactions.

The calculated charge transfer was 0.21  e− for apigenin, 
which acts as a charge donor. The HOMO and LUMO charge 

density plot is shown in Fig. 3c, where we observe a concen-
tration of electronic charges for both HOMO and LUMO only 
on GO and the absence of charges on apigenin. The interac-
tion of GO occurs by physical adsorption with apigenin, and 
this is a weak interaction. The calculated charge transfer was 
0.03 eV; that is, orientin receives charge from the GO. The 
loading plot for the GO + orientin_3 configuration shows that 
both in HOMO and LUMO the electronic charge is localized 
on the GO as it is shown in Fig. 3c, indicating that a weak 
interaction occurs, that is, physical adsorption. We emphasize 
that the simulations studied in both systems showed better 
results when configured by keeping the GO and the biomol-
ecule in a parallel position with each other, which is due to 
attractive π-π staking [31, 41].

Molecular docking simulations and interaction analysis

The molecular docking results showed different conforma-
tions in relation to the target protein; however, the dockings 
with the best score were chosen for comparative presentation 
in Table 2. The 2D maps of interactions made by LigPlot are 
shown in Fig. 4.

The analysis of GO exhibits four hydrogen bonds (H 
bond) in chain A (Tyr394, Arg464, Arg353 and Arg355) for 
Delta, and just one H bond (Ala519) in chain A for Omicron. 
Also, for the Omicron variant these interactions are made 
all in chain A, while GO interacts with Delta in chains A 
and B. Apigenin forms just one H bond with Delta chain 
A (Gln472), and four H bonds with Omicron in chains A 
(Tyr418 and Arg454) and C (Phe372 and Phe374). And ori-
entin forms four H bonds, two of them on amino acid residue 
Leu333 chain A, and the other two on amino acid residue 
Glu167 chain B for the Delta variant, and for the Omicron 
variant, three H bonds on chain A (Thr330, Asn357, and 
Pro327). The non-ligand hydrophobic bonds (HP-bond) are 
all different when comparing the results between variants, so 
we can assume that they are interacting with different areas.

Table 1  Results of the interaction in different configurations of the 
system containing GO and apigenin

Configuration Ebinding (eV) Shorter 
distance 
(Å)

HOMO/
LUMO gap 
(eV)

Charge  
transference 
 (e−)

GO + api-
genin_1

−0.14811 2.26 0.62 0.77

GO + api-
genin_2

−0.18483 2.04 0.60 0.03

GO + api-
genin_3

−0.30015 2.70 0.56 0.06

GO + api-
genin_4

−0.96217 1.54 0.53 0.21

GO + orientin_1 −0.19695 2.20 0.60 0.03
GO + orientin_2 −0.23515 2.08 0.63 −0.04
GO + orientin_3 −1.86545 1.47 0.36 0.03
GO + orientin_4 −1.40304 1.53 0.76 −0.04

Table 2  Molecular docking results of ligand interactions against RBD Spike protein of Delta and Omicron variants of coronavirus

Variant Ligand Affinity (kcal/mol) H-bond and their length in Å Non-ligand HP-bond

Delta GO −11.88 Tyr394 (2.49), Arg464 (2.69), Arg353 (2.45), 
and Arg355(2.68)

Chain A: Trp351 and Lys354;
Chain B: Cys164, Thr165, and Asn163

Delta Apigenin −6.91 Gln472 (2.70) Chain A: Ile470, Glu469, Phe454, Arg455, 
Tyr471, and Lys456

Delta Orientin −6.65 Leu333 (3.23 and 2.51), and Glu167 (2.83 and 
2.72)

Chain A: Pro335, Asn332, Cys334, Cys359, 
Arg355, Ser357, Ile356, and Asn358;

Chain B: Val169, Tyr168, Thr165, Phe166
Omicron GO −13.2 Ala519 (2.74) Chain A: Pro518, Thr330, Thr520, Ile329, 

Asn357, Gln561, Asn541, and Pro327
Omicron Apigenin −9.60 Phe372 (3.0), Tyr418 (2.88), Arg454 (2.67), and 

Phe374 (2.79)
Chain A: Asn484, Cys485, Tyr846, Tyr470, and 

Phe453; Chain B: Lys375 and Thr373
Omicron Orientin −9.58 Thr330 (2.81), Asn357 (3.09), and Pro327 (2.79) Chain A: Val521, Thr520, Val359, Cys522, 

Cys358, Phe326, Pro518, Ala519, and Ile329
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Fig. 4  Binding sites of Delta (a) and Omicron (b) spike proteins, and two-dimensional map of interactions between the protein target and the 
proposed ligands (c)
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For both the Delta variant and the Omicron variant, GO was 
presented with the lowest affinity (−11.88 and −13.20 kcal/
mol, respectively). In the literature, GO is identified as a struc-
ture with potential for interacting with the spike protein, with 
values from −10.5 to −8.3 kcal/mol, with docking related to 
another variation of the spike protein [48].

Regarding the biomolecules, both apigenin and orientin 
show themselves as better inhibitors against the Omicron var-
iant of SARS-CoV-2 spike protein, presenting a significant 
number of hydrogen bonds and affinity binding of −9.6 kcal/
mol and −9.58 kcal/mol, respectively. This must occur because 
the Omicron variant presents several modifications on its struc-
ture including on RBD which increases its transmission capac-
ity [49]. The binding affinity reached for apigenin is in accord-
ance with the studies of Subbaiyan (2020) [50] and also with 
the values reached for polyphenols catechin and curcumin [51] 
and for other flavonoids, which presented the affinity binding 
values from −11.2 to −8.0 kcal/mol against spike protein [52].

The binding affinity values are in agreement with 
results that indicate inhibitory activity of the spike protein 
with other binding structures [5, 48, 52–54 ]. From the point 
of view of binding energy, GO shows strong interactions with 
the targets of the variant Delta and Omicron of SARS-CoV-2.

The molecular docking points out to the structures GO, api-
genin, and orientin as potential inhibitors of the RBD of spike 
protein of the Delta and Omicron variants presenting results 
similar to those pointed out by other authors [5, 48, 52–54]. 
These results coupled with other characteristics such as the 
large surface area of the GO allow it to act as a nanocarrier 
[9]. Studies show that the proposal of a GO-based nanocarrier 
doped with molecules via π-π bonding, as pointed out in this 
work, is successfully carried out [41]. The therapeutic activi-
ties of the chosen biomolecules are pointed out in the literature; 
however, it is noteworthy that new molecular docking studies 
[55–57] and subsequent in vitro tests should be performed to 
analyze the interaction of the system with the target proteins 
of SARS-CoV-2, as a proposed treatment against COVID-19.

Conclusion

In this paper, we evaluated the interaction of GO with the 
biomolecules of apigenin and orientin through first-principles 
calculations based on Density Functional Theory. The results 
show that the most stable systems of the interaction of GO 
with apigenin and orientin present binding energy of −0.96 
and −1.86 eV, respectively. These more stable configurations 
show that the interaction between GO and the biomolecules 
occurs when the structures are arranged parallel to each other; 
that is, it occurs via π-π stacking found in different studies. 
Together, the results of electronic charge transfer and 3D plot 
in HOMO and LUMO corroborate that the weak interaction 
occurs through physical adsorption. The resulting binding 

energies indicate physical adsorption between the systems, 
which is desired in a nanocarrier complex in order to remain 
the structure of the adsorbed biomolecule. At the same time, 
we studied the interaction of the ligands GO, apigenin, and 
orientin in relation to the RBD of two variants (Delta and 
Omicron) of the spike protein of SARS-CoV-2, the virus that 
causes COVID-19. It was verified that the protein–ligand 
interaction suggested the structures as potential inhibitors by 
forming bonds with amino acid residues on the RBD. Among 
the studied structures, the GO presented the lowest binding 
affinity of −13.20 and −11.88 kcal/mol. Regarding the bio-
molecules, they presented values lower than −6.0 reaching 
to −9.6 kcal/mol and are also suggestive to the spike protein 
inhibition because these values are like the ones reached in the 
cited studies. It is noteworthy that the best results in binding 
affinity of the structures were in relation to the Omicron variant 
of the coronavirus, which has been identified as a variant in 
2021. The molecular docking results show that all the studied 
structures are presented as potential inhibitors of SARS-CoV-2 
Delta and Omicron infection, while the ab initio results show 
that the GO-based system is promising as a nanocarrier of the 
biomolecules apigenin and orientin.
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