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Abstract
Small molecules such as 9,10-dihydrophenanthrene derivatives have remarkable activity toward inhibition of SARS-CoV-2 3CLpro 
and COVID-19 proliferation, which show a strong correlation between their structures and bioactivity. Therefore, these small com-
pounds could be suitable for clinical pharmaceutical use against COVID-19. The objective of this study was to remodel the structures 
of 9,10-dihydrophenanthrene derivatives to achieve a powerful biological activity against 3CLpro and favorable pharmacokinetic prop-
erties for drug design and discovery. Therefore, by the use of bioinformatics techniques, we developed robust 3D-QSAR models that 
are capable of describing the structure–activity relationship for 46 molecules based on 9,10-dihydrophenanthrene derivatives using 
CoMFA/SE (R2 = 0.97, Q2 = 0.81, R2

pred = 0.95, cR2
p = 0.71) and CoMSIA/SEHDA (R2 = 0.94, Q2 = 0.76, R2

pred = 0.91, cR2
p = 0.65) 

techniques. Accordingly, 96 lead compounds were generated based on a template molecule that showed the highest observed activity 
in vitro (T40, pIC50 = 5.81) and predicted their activities and bioavailability in silico. The rational screening outputs of 3D-QSAR, 
Molecular docking, ADMET, and MM-GBSA led to the identification of 9 novel modeled molecules as potent noncovalent drugs 
against SARS-CoV-2-3CLpro. Finally, by molecular dynamics simulations, the stability and structural dynamics of 3CLpro free 
and complex (PDB code: 6LU7) were discussed in the presence of samples of 9,10-dihydrophenanthrene derivative in an aqueous 
environment. Overall, the retrosynthesis of the proposed drug compounds in this study and the evaluation of their bioactivity in vitro 
and in vivo may be interesting for designing and discovering a new drug effective against COVID-19.
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Introduction

The world is experiencing an unstable situation at all poles due to 
the emergence of severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19), which 

has spread throughout the world and affected the majority of the 
community [1, 2]. Simultaneously, various strict precautionary 
measures have been taken to prevent the transmission and rapid 
spread of COVID-19 among people. Likewise, many efforts 
have been made worldwide to develop an effective drug to treat 
patients who are potentially infected with COVID-19, leading 
to the development of various vaccines that have been widely 
applied extensively to the public [3, 4]. However, SARS-CoV-2 
is known for viral progression leading to the production of new 
mutants cloned from it. For example, alpha variant (B.1.1.7), beta 
variant (B.1.351), gamma variant (P.1), delta variant (B.1.617.2) 
[5, 6]. Moreover, there are several other mutations of this virus 
that have been monitored around the world. In this regard, sev-
eral reports published by the World Health Organization have 
pointed out that the known SARS-CoV-2 mutations have little 
effect on the characteristics of COVID-19 represented in the 
propagation speed and the level of seriousness [7, 8]. Although 
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the vaccine proved successful against COVID-19 mutations, 
people who have been vaccinated are still at risk of reinfection 
with this virus [9]. There is a great need to find effective antivi-
ral drugs related to coronavirus, such as COVID-19 as a model. 
Meanwhile, researchers are eager to discover and design suitable 
drugs or vaccine solutions that can be used successfully against 
diseases related to SARS-CoV-2 and its variants [10]. This is 
done by targeting different protein pathways such as coronavirus 
3C-like protease (3CLpro) [11–13], papain-like protease (PLpro) 
[14], RNA-dependent RNA polymerase (RdRp) [15], viral spike 
glycoprotein (S protein) [16], transmembrane protease serine 2 
(TMPRSS2) [17], angiotensin-converting enzyme 2 (ACE2) 
[18], angiotensin AT2 receptor [19], etc. In this work, we will 
focus our research efforts on identifying novel agents that can be 
able to inhibit and eliminate coronavirus life cycle processes by 
targeting the enzymatic activity of 3-chymotrypsin-like cysteine 
protease (3CLpro) [20]. This is due to the enzymatic environ- 
ment of 3CLpro is highly suitable for coronavirus regeneration, 
it can cleave viral proteins into distinct functional fractions [21]. 
The critical importance of the 3CLpro enzyme in the coronavirus 
life cycle makes it an ideal therapeutic target for the develop-
ment of antiviral drugs with optimal activity against coronavirus 
[22]. The successful inhibition of 3CLpro enzymatic activity may 
reduce the drug resistance potential associated with COVID-19 
variants [23]. To date, there are two classes of 3CLpro inhibi-
tors for SARS-CoV-2, covalent and non-covalent inhibitors [24]. 
Their pattern of inhibition varies based on interaction mecha-
nisms between the drug ligands and active amino acid residue 
sites in the 3CLpro receptor pocket [25, 26]. Among many cova-
lent 3CLpro inhibitors, only PF-07321332 [27] and PF-00835231 
[28] have reached the clinical trial stage [29–32]. On the other 
hand, several small molecules have been reported as non- 
covalent inhibitors of 3CLpro such as sciadopitysin [33], 23R  
[34], CCF981 [35], and pyridine [36, 37]. Despite all these efforts,  
most of the proposed covalent and non-covalent SARS-CoV- 
2-3CLpro inhibitors have drug-like properties and pharmacoki-
netics that are not compelling for appropriate drug use; the  
use of covalent peptide inhibitors exacerbates the adverse side 
effects of clinical use of these drugs [38, 39]. Therefore, it has 
become necessary to explore non-covalent 3CLpro inhibitors 
with favorable drug properties, good pharmacokinetics, and 
high inhibitory activity against COVID-19. In this context, a 
recent study conducted by Zhang et al. the in vitro discovery of 
several derivatives of 9,10-dihydrophenanthrene was reported as  
potential non-covalent, non-peptide inhibitors of the SARS-CoV- 
2-3CLpro [2]. Based on in vitro results on the suitability of 9,10- 
dihydrophenanthrene derivatives for the inhibition of 3CLpro, in 
this work, we perform a large-scale computational study aided 
by bioinformatics techniques to validate in vitro results and 
also to rationalize the design of new non-covalent inhibitors of 
3CLpro as more convenient drugs against COVID-19. For this 
purpose, this study includes the following principal objectives: 
the study of the quantitative structure–activity relationship for 

9,10-dihydrofenantrene derivatives based on 3D-QSAR tech-
niques [8, 38], improvement of the biological inhibitory activ-
ity of these molecules based on the obtained pharmacological 
hypotheses, screening the most active molecular structures that 
are able to inhibit SARS-CoV-2 3CLpro, predicting the drug-like 
and drug-pharmacokinetic ADMET profiles of the candidate 
drug molecules [41, 42], exploring the potential interaction pat-
terns between active amino acids in the protein pocket of 3CLpro 
(PDB code: 6LU7) (Fig. 1) [29] and the drug molecules using 
molecular docking and MM-GBSA techniques, and performing 
molecular dynamics simulations to check the stability of candi-
date SARS-CoV-2 3CLpro inhibitors in the aquatic environment.

The rest of this work is organized as follows: the second 
section presents the materials and methods. The third sec-
tion includes the simulation results and discussions. The last 
section concludes the performed work.

Material and methods

Investigated database

Through a previous study conducted by Zhang et  al.  
[2], we collected 46 small molecules derived from 9,10- 
dihydrophenanthrene as non-covalent inhibitors of SARS-
CoV-2 3CLpro. Table 1 presents the structures of all 46 
compounds as well as their corresponding half-maximal 
inhibitory concentration (pIC50 = − Log IC50) data in the 
presence of disulfiram (DSF) drug substance used as a 
reference in the in vitro positive control [43, 44].

3D quantitative structure–activity relationship 
(3D‑QSAR) analysis

Preparation of the database

Using SYBYL-X 2.1.1 software [45], we sketched the 3D 
structures of the 9,10-dihydrophenanthrene derivatives, 

Fig. 1   Model crystal structure of SARS-CoV2-3CLpro enzyme com-
plexed with inhibitor N3 (PDB code: 6LU7)
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optimizing their energy structure to the minimum via the 
standard Tripos Powell force field (Gasteiger-Huckel par-
tial atomic charge computation, spatial isolation function, 

RMSD of 0.01 kcal/mol, input grid spacing at 2 Å, 200 
iterations). Then, due to the importance of molecular 
alignment in generating the pharmacological hypotheses 

Table 1   In vitro inhibitory activities of 9,10-dihydrophenanthrene derivatives against SARS-CoV-2 3CL.pro

01 pIC50= 4.21 02 pIC50= 4.48 03 pIC50= 4.53 04 pIC50= 5.04 05 pIC50= 5.19

06 pIC50= 4.71 07 pIC50= 4.94 08 pIC50= 4.07 09 pIC50=4.24 10 pIC50= 4.27

11 pIC50=4.23 12 pIC50=4.17 13 pIC50= 5.25 14 pIC50= 4.18 15 pIC50= 4.45

16 pIC50=4.73 17 pIC50=4.85 18 pIC50= 4.92 19 pIC50= 4.86 20 pIC50= 5.07

21 pIC50=5.61 22 pIC50=5.01 23 pIC50= 5.32 24 pIC50= 4.99 25 pIC50= 5.48
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underlying the 3D molecular structures in the 3D-QSAR 
modeling, a molecular alignment of the database items 
was performed (Fig. 2) [40, 46].

To develop 3D-QSAR pharmacophore models, the 
database of 46 molecules was divided into two sets (80% 
for training and 20% for testing) based on the structural 
diversity method and pIC50 scoring ranges. Table S1 
presents the obtained division according to the pIC50 
ranges of the investigated compounds (low active to 
high active). The training set included 37 molecules with 
inhibitory activity values (pIC50) against 3CLpro rang-
ing from 4.07 to 5.81. These molecules were used as 
input to develop the 3D-QSAR pharmacophore models. 
Although the test set included nine items with activity 
values (pIC50) against 3CLpro ranging from 4.21 to 5.74, 

these molecules were used as samples to test the perfor-
mance and predictive power of the developed 3D-QSAR 
pharmacophore models.

Table 1   (continued)

26 pIC50=5.00 27 pIC50=4.95 28 pIC50= 5.13 29 pIC50= 5.28 30 pIC50= 5.37 

     

31 pIC50=5.57 32 pIC50=5.17 33 pIC50= 5.56 34 pIC50= 5.05 35 pIC50= 5.18 

   
 

 

36 pIC50=5.23 37 pIC50=5.44 38 pIC50= 5.08 39 pIC50= 5.48 40 pIC50= 5.81 

     
41 pIC50=5.74 42 pIC50=4.99 43 pIC50= 5.27 44 pIC50= 5.33 45 pIC50= 4.97 

 
 

 

46 pIC50=5.26 DSF pIC50=5.98 

Fig. 2   a template molecule T40, b common core, and c database 
aligned
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3D‑QSAR modeling

Approaches include comparative molecular field analysis 
(CoMFA) and comparative molecular similarity index analy-
sis (CoMSIA), which are the most recent and popular sta-
tistical methods used in 3D-QSAR modeling in drug design 
[46]. The main importance of these approaches is to provide 
valuable information on key molecular structural properties 
related to a biological response [47]. CoMFA analysis is 
used to characterize the effects of steric (S) and electrostatic 
(E) descriptors on the biological inhibitory activity, while 
CoMSIA is used to characterize the effects of steric (S), 
electrostatic (E), hydrophobic (H), hydrogen bond donor 
(D), and hydrogen bond acceptor (A) descriptors on bio-
logical inhibitory activity of the compounds. In this work, 
we perform 3D-QSAR modeling based on CoMFA and 
CoMSIA techniques to describe the relationship between the 
biological inhibitory activity of 9,10-dihydrophenanthrene 
derivatives and their 3D field descriptors (S, E, H, D, and A). 
During this process, the linear structure–activity relationship 
yielded by CoMFA and CoMSIA analysis is mapped out into 
contour maps, which are generated by the PLS algorithm 
(partial least squares) and the Tripos force field (2 Å spatial 
reference input grid in all Cartesian dimensions, sp3 hybrid 
carbon atom with a net charge of + 1, default correction fac-
tor fixed at 0.3, cutoff force constant setting at 30 kcal/mol). 
The optimal 3D-QSAR models were selected based on the 
Organization for Economic Co-operation and Development 
(OECD) principles, the Golbraikh–Tropsha criteria, and the 
Y-randomization test related to the performance of QSAR 
statistical models [48–51]. Table S2 presents the significant 
statistical parameters adopted in this work to validate the 
developed 3D-QSAR pharmacophore models.

In the initial validation protocol, the internal statistical 
significance of the 3D-QSAR pharmacophore models was 
evaluated by the leave-one-out cross-validation (Loocv) 
approach to determine the optimal component number 
(N) and the correlation coefficient of cross-validation 
(Q2). The more Q2 > 0.5 and 1 < N < 6, the more robust the 
3D-QSAR model is. After selecting the ideal N and Q2 for 
the 3D-QSAR modeling design, we evaluate the overall 
significance of the developed model by computing statis-
tical parameters such as the coefficient of determination 
(R2), the standard error of estimates (SEE), and F-value 
(Fischer’s test). If the values of R2 > 0.6 and Ftest > 0.3 and 
low SEE, the model 3D-QSAR will be able to provide an 
ideal description of pIC50 values based on the structural 
properties of investigated molecules [52].

Then, by using a Y-randomization test, we evaluated 
the stability of the correlation between pIC50 values and 
molecular descriptors (S, E, H, D, and A) in the developed 
3D-QSAR pharmacophore model. In this test, the probability 
of random correlation between pIC50 values and molecular 

descriptors is examined. We perform this test through the 
random distribution of pIC50 data to training set items in 
multiple iterations (5 iterations in this work); as a result, new 
random QSAR models are generated. Upon successful gen-
eration of new random models, their statistical significance 
indices are compared to those of the original QSAR model. 
Generally, the original QSAR model is considered stable 
when its original R2 and Q2 parameter values are greater 
than the R2 and Q2 of the random models, and that cR2

p > 0.5.
After evaluating the stability of QSAR models through 

internal validation procedures, the external predictive power 
of QSAR models is examined based on items in the test set 
using the R2

pred coefficient. As a result, when R2
pred > 0.6, 

the QSAR model is robust and able to predict the biological 
activity of compounds reliably.

After completing the validation procedures of the 
3D-QSAR pharmacophore models generated by CoMFA/
SE and CoMSIA/ESHDA techniques, the structure–activity 
relationship can be decoded and visualized as contour maps. 
Contour maps were generated based on the computation of 
field energies at each point in the grid as standard results of 
the standard deviation and the coefficient associated with a 
specific column in the spreadsheet (stdev * coeff), plotted 
as a fraction in CoMFA and CoMSIA modeling equations 
[53]. Through the use of contour maps, which are generated 
by CoMFA and CoMSIA models, the favorable structural 
field properties of 9,10-dihydrophenanthrene derivatives 
can be rationalized to achieve a high level of inhibition 
against SARS-CoV-2-3CLpro. As a result, we can derive 
new molecular structures from the template molecule (T40, 
pIC50 = 5.81). The utilization of these models also allows us 
to predict the biological inhibitory activity of the designed 
molecules against SARS-CoV-2-3CLpro, which allowed us to 
select molecules with a higher activity compared to synthe-
sized molecules as well as to disulfiram used in the positive 
control in vitro (pIC50 = 5.98).

Generation of novel compounds, drug‑like screen‑
ing, and ADME‑Tox

We use the molecule 1-(4-bromophenyl)-10-(hydroxymethyl)-
8-(4-phenylpyridin-2-yl)-9,10-dihydrophenanthren-4-ol 
(T40) as a template to generate 100 new compounds via the 
LigDream toolkit (https://​playm​olecu​le.​org/​LigDr​eam/). 
The new compound generation is powered through genera-
tive shape-based neural network decoding [54]. Novel com-
pounds exhibit new scaffolds and multiple chemical moieties 
that cover a new site in the sample chemistry space that sup-
ports drug-like properties. The pkCSM online tool was used 
to analyze ADME (absorption, distribution, metabolism, and 
excretion) pharmacokinetics of proposed drug molecules that 
achieved high predicted inhibitory activity and binding affin-
ity energies toward SARS-CoV-2-3CLpro, Osiris computations 
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were used to predict the toxicity risks of the examined mol-
ecules [55, 56].

Molecular docking

We perform molecular docking simulations to predict potential 
non-covalent interaction profiles between active amino acid sites 
in the 3CLpro receptor pocket (PDB code: 6LU7) to the proposed 
drug molecules. In this procedure, we consider active amino acid 
residues that interacted with the inhibitor N3 in 3CLpro (PDB 
code: 6LU7) as references in inhibiting the enzymatic activity of 
SARS-CoV-2-3CLpro by the generated small molecules possess-
ing high pIC50 activity and favorable drug-like properties. The 
crystal structure of the main protease COVID-19 in a complex 
with an inhibitor N3 (resolution: 2.16 Å, R-value free: 0.235, 
R-value work: 0.202, R-value observed: 0.204) [57] was adopted 
as a model to perform molecular docking simulation. Initially, 
the backbone structure of 3CLpro and the ligands were prepared. 
Protein is prepared by the elimination of water molecules and 
nonprotein elements residing in the protein, the addition of polar 
hydrogen atoms and Gasteiger charges, and the setting up of the 
flexible molecular docking grid box (x = − 10.75 Å, y = 12.46 Å, 
z = 68.92 Å, grid spacing 0.375 Å, size 40 × 60 × 40 Å3), which 
contains amino acid residues (His41, Met49, Gln189, Cys145, 
Thr190, Ala191, Pro168, Leu167, Asn142, Glu166, His172, 
Met165, His164, Phe140, Glu143, Gln192, Thr26, Thr25, Thr24, 
Ser144, Gly143, Asn142, Leu141, His172, His164, and Asp187).

On the other hand, the ligands were prepared by opti-
mizing the structures of the designed molecules as well as 
the inhibitors N3 and disulfiram via the three-parameter 
Becke hybrid method based on the Lee–Yang–Parr function 
(B3LYP) with 6-31G + (d,p) base in the solvent water based 
on the density functional theory (DFT), which is provided 
by the Gaussian 09 software [58]. This was done to ensure 
proper equilibration of the system and to check the proton 
and polar hydrogen atom states of the ligands in the aque-
ous environment [59]. In the present study, we performed 
molecular docking using AutoDockTools-1.5.7 and Auto-
Dock vina [60, 61]. The molecular docking visualizations 
were displayed by Discovery Studio 2016 [62]. The molecu-
lar docking protocol is validated by the re-docking strategy 
based on the evaluation of the root mean square deviation 
(RMSD) between the original and re-docked N3 inhibi-
tor [40]. After that, we evaluated the backbone stability of 
3CLpro protein complexed with N3 in an aqueous system by 
molecular dynamics simulations.

Molecular mechanics‑generalized Born surface area 
(MM‑GBSA)

MM-GBSA computations were used to re-examine novel 
binding modes in protein–ligand systems (screened by 

molecular docking and ADME-Tox predictions). This 
procedure aimed at selecting the most free-bound ligands 
to the 3CLpro active pocket site, based on MM-GBSA, 
which generates parameters such as binding free energy 
(ΔGbind), hydrogen bond energy (ΔGbind H-bond), van 
der Waals energy (ΔGbind vdW), covalent energy (ΔGbind 
Covalent), coulomb energy (ΔGbind Coulomb), lipophilic 
energy (ΔGbind Lipo), generalized Born electrostatic solva-
tion energy (ΔGbind Solv_GB), and packing energy (ΔGbind 
Packing). MM-GBSA computations performed using MM-
GBSA Prime tool available in Schrödinger 2020–3 [63, 64]. 
Systems (protein–ligand) were prepared by minimizing their 
energy using the OPLS3e force field and V5GB solvent 
model at pH 7 ± 2. Consequently, the energy of the protein 
ligands (E complex) and ligands (E ligands) is minimized, 
leading to the generation of binding free energy (ΔGbind) for 
complexes (Eq. 1) [65].

Molecular dynamics (MD)

Using the simulated protein environment, we perform MD 
simulations to evaluate the stability level of the affinity of 
the 3CLpro (PDB code: 6LU7) enzyme to candidate drug 
ligands. The MD computer simulations allow us to ana-
lyze the properties of molecular systems made up of many 
molecules, as well as to track the trajectories of atoms and 
molecules based on numerically solving Newton’s equa-
tions of motion of a system of interacting particles dur-
ing a time frame [66, 67]. In this work, MD simulations 
were implemented using the Desmond package avail-
able in Schrödinger 2020–3 academic software [68]. The 
OPLS3e force field was used for modeling the complexes 
obtained by molecular docking. The docked protein–ligand 
systems (6LU7 uncomplexed and complexed to ligands) 
were solvated using the orthorhombic single point charge 
(SPC) explicit water model [69, 70]. Using the water model 
(SPC), an orthorhombic simulation box was prepared with 
the minimum distance between the edge surface of the pro-
tein and the protein boundary surface of 10 Å. Then, the 
charge of the solvated systems was neutralized to zero by 
adding Na+ and Cl− counter ions, adjusting the physiologi-
cal salt concentration to 0.15 M, optimizing the energies of 
the systems to a minimum of 2000 steps, using a Columbian 
reaction with 9 Å cutoffs and grid phase of 0.8 Å, as well 
as smooth particle mesh Ewald method with a tolerance 
of 1E−09 that were used to resolve long-range electrostatic 
interactions [71]. The Nose–Hoover thermal algorithm and 
the Martina-Tobias-Klein method were employed to generate 
slow heating of the systems under 300 K temperature and 
1.01325 pressure bar, using 10,000 frames of each simulated 

(1)ΔGbind = Ecomplexe(minimized) + Eligand(minimized) + Ereceptor(minimized)
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trajectory, 1.2 ps recording intervals for energy, and 10 ps 
for trajectory under an isothermal-isobaric ensemble (NPT), 
1 ps and 2 fs for system relaxation [72, 73], and finally set-
ting up the MD simulation time set to 100 ns for each sepa-
rate system.

The Maestro software GUI and the Simulation Interaction 
Diagram tool in the Desmond package were used to extract 
and analyze the dynamics of the interactions between the 
target protein 6LU7 and its proposed inhibitors. The Simu-
lation Quality Analysis tool implemented in Desmond was 
used to analyze the dynamics of certain thermodynamic 
properties such as total and potential energies (ET and EP), 
temperature (T), pressure (P), and volume (V) depending 
on the time frame This is due to the perfect compatibility of 
this tool’s algorithms with force field computational models 
such as CHARMM, AMBER, and OPLS used in quantum 
and biochemical research [74]. Aquatic molecular dynamics 
simulation was the final step in this study, which is used to 
test the molecular dynamics stability of 3CLpro in the pres-
ence of a designed 9,10-dihydrophenanthrene derivative.

Results and discussion

3D‑QSAR modeling

Upon the preparation and alignment of the database, we 
use the PLS algorithm to determine the linear relation-
ship between the observed biological activity (pIC50) and 
the field descriptors of 9,10-dihydrophenanthrene deriva-
tives computed by the CoMFA and CoMSIA techniques. 
Table 2 presents the statistical significance scores obtained 
for selected CoMFA and CoMSIA models.

CoMFA and CoMSIA statistical models

The results of the PLS analysis presented in Table 2 indi-
cate the high power of both CoMFA and CoMSIA models 
to describe the quantitative relationship between the field 
descriptors (S, E, H, D, and A) and the inhibitory activity of 
9,10-dihydrophenanthrene derivatives against SARS-CoV-
2-3CLpro. This can be confirmed by the high values of the 

determination coefficients (R2 = 0.97 and R2 = 0.94), internal 
validation by (LOOCV) (Q2

loocv = 0.81 and Q2
loocv = 0.76), 

Fischer test (F = 107.50 and F = 67.45), Y-randomization 
test (cR2

p = 0.71 and cR2
p = 0.65, see Table S3), external test 

(R2
pred = 0.95 and R2

pred = 0.91) on the one hand, and the 
low SEE values (SEE = 0.105 and SEE = 0.131) on the other 
hand for CoMFA and CoMSIA models, respectively. The 
high correlation coefficients (R2) for the CoMFA and CoM-
SIA models can be confirmed by the low residual values 
between the observed and predicted activities through the 
proposed 3D-QSAR models (Table S4). Also, we can notice 
that electrostatic (E) and steric (S) fields have a significant 
effect on the predictive performance of the inhibitory activ-
ity of SARS-CoV-2-3CLpro with fractions of 58% and 30% 
and 41.3% and 13.5% for the CoMFA and CoMSIA mod-
els, respectively. Furthermore, through the CoMSIA model, 
we can see the strong dependence of hydrophobic (H) and 
donor hydrogen bond (D) fields (27.5% and 21.2%) on the 
predictive power compared to hydrogen bond acceptor (A) 
fields (7.9%). By proportioning the contributions of the field 
descriptors (fractions), we can conclude that the biological 
inhibitory activity of 9,10-dihydrophenantrene derivatives is 
influenced principally by their electrostatic (E), steric (S), 
hydrophobic (H), and hydrogen bond acceptor (A) proper-
ties. All statistical parameters obtained from CoMFA and 
CoMSIA analyses indicate the excellent performance of the 
CoMFA/SE and CoMSIA/SEHDA models in predicting 
inhibitory activity against 3CLpro based on the structure of 
9,10-dihydrophenanthrene derivatives. Thus, these models 
can be reliably exploited to predict the bioactivity of new 
small molecules that can be modeled.

Analysis of CoMFA and CoMSIA contour maps

The 3D QSAR models can be interpreted at the molecu-
lar scale based on contour surface plots of the 3D struc-
ture–activity relationships generated by the proposed 
CoMFA and CoMSIA models (Figs. 3, 4). From Figs. 3a, b 
and 4a, b, we can notice a very similar spatial arrangement 
of the steric and electrostatic contours of CoMFA and CoM-
SIA on the structure of the template molecule (T40), which 
confirms the significant impact of the descriptors (S and E) 

Table 2   Summary of statistical 
significance results for CoMFA 
and CoMSIA models

Q2 coefficient of cross-validation correlation, N optimal number of components identified by leave-one-
out cross-validation (loocv), SEE standard error of estimate, R2 conventional coefficient of determination, 
R2

pred coefficient of determination according to the external test, cR2
p: Y-randomization test; fractions: con-

tributions of steric (S), electrostatic (E), hydrophobic (H), donor (D), and acceptor (A) hydrogen bonds

Q2 R2 SEE F N R2
pred

cR2
p S E H D A

Threshold  > 0.5  > 0.6 Small High 1–6  > 0.6  > 0.5 0 < Fractions < 1
CoMFA 0.81 0.97 0.105 107.50 3 0.95 0.71 0.413 0.587 - - -
CoMSIA 0.76 0.94 0.131 67.45 4 0.91 0.65 0.135 0.299 0.275 0.079 0.212
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on the inhibitory biological activity (pIC50). The predomi-
nance of yellow contour maps over green contour maps in 
the molecule T40 backbone indicates that large ring radicals 
negatively affected the bioactivity of 9,10-dihydrophenan-
threne derivatives against SARS-CoV-2 3CLpro. Thus, the 
biological activity of the new molecules derived from mol-
ecule T40 can be improved by introducing smaller moieties 
into the pharmacological sites covered by the yellow con-
tours. Moreover, the predominance of blue contours over 
red contours along with the 4-phenylpyridin-2-yl moiety 
indicates that the enhancement of this site with electron-
donating groups is favorable for the improved biological 
activity of (1-(4-bromophenyl)-10-(hydroxymethyl)-8-(4-
phenylpyridin-2-yl)-9,10-dihydrophenanthren-4-ol) against 
SARS-CoV-2 3CLpro.

On the other hand, the positioning of the white contours 
on the carbon sites C22 and C30 in the bromobenzene and 

phenyl rings indicates that these sites are unfavorable for 
hydrophobic moieties; so, the upgrade of C22 and C30 sites 
with hydrophilic moieties can be favorable to improve pIC50 
biological inhibitory activity (Fig. 4c). The dominance of the 
cyan over purple contour near the hydroxyl group indicates 
that this site is suitable for 80% of the hydrogen bond donor 
radicals (Fig. 4e), while the 4-phenylpyridin-2-yl region cov-
ered by 80% of the magenta contours is suitable to enhance 
the biological activity (pIC50) through the insertion of 
hydrogen bond donor radicals at this site (Fig. 4e). Further-
more, the linear distribution of observed pIC50 values versus 
those predicted by the CoMFA and CoMSIA models (Fig. 3c 
and Fig. 4f) confirms the hypotheses of a high pharmaco-
logical correlation between pIC50 and the field properties 
(S, E) and (H, D, A) of 9,10-dihydrophenanthrene deriva-
tives. As a result, the developed 3D-QSAR pharmacophore 
models (CoMSIA and CoMFA) can be exploited reliably 

Fig. 3   Contour maps generated by CoMFA model, a steric field interactions (green = 80% favorable/yellow = 20% unfavorable), b electrostatic 
field interactions (blue = 80% favorable/red = 20% unfavorable). c pIC50 observed vs. pIC50 predicted

Fig. 4   Contour maps generated by the CoMSIA model, a steric field 
interactions (green = favorable/yellow = unfavorable), b electrostatic 
field interactions (blue = 80% favorable/red = 20% unfavorable), c 
hydrophobic field interactions (yellow = 80% favorable/white = 20% 

unfavorable), d hydrogen bond-donor field interactions (cyan = 80% 
favorable / purple = 20% unfavorable), (e) hydrogen bond-acceptor 
field interactions (magenta = 80% favorable/red = 20% unfavorable). f 
pIC50 observed vs. pIC50 predicted
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to rationalize the generation of new molecules based on 
reference molecule T40 and predict their activities against 
SARS-CoV-2 3CLpro.

Generation of novel compounds from 1‑(4‑bromophenyl)‑1
0‑(hydroxymethyl)‑8‑(4‑phenylpyridin‑2‑yl)‑9,10‑ 
dihydrophenanthren‑4‑ol (T40)

Based on the pharmacological hypotheses obtained by 
the CoMFA and CoMSIA models (Fig.  5), new sets of 
(1-(4-bromophenyl)-10-(hydroxymethyl)-8-(4-phenylpyridin-
2-yl)-9,10-dihydrophenanthren-4-ol) derivatives can be gener-
ated and their biological activity and pharmacokinetic proper-
ties can be predicted.

Through the use of LigDream and the artificial neural net-
work tools in the PlayMolecule platform (https://​playm​olecu​le.​
org/​LigDr​eam/), 96 new molecules (D1–D96) were generated 
from the template compound (T40) based on auto-encoders 
and captioning networks approaches [75]. Once the new mol-
ecules are generated, we filter them based on the drug-likeness 
criteria (e.g., Lipinski RO5, Ghose violations, bioavailability, 
and synthetic accessibility) [76–79]. Table S5 shows the drug-
like profile of the 96 new molecules generated from the struc-
ture of the reference molecule (T40), as well as the N3 inhibi-
tor properties. The inflexible drug-like screening predicted that 
47 new molecules did not violate any of Lipinski’s and Ghose’s 
rules (Table S5). Also, we can notice that the bioavailability 
and synthetic accessibility of the 47 screened small molecules 
were 0.55 and (2 < SA < 4), respectively. Template molecule 
(T40) and inhibitor N3 were observed to violate Lipinski’s 
(2 violations) and Ghose’s (3 violations), with poor bioavail-
ability (0.17) and synthetic accessibility (4.07 and 6.43). This 
indicates that the 47 new molecules can act as an effective 

alternative oral drug against 3CLpro compared to the template 
molecule (T40) and inhibitor N3. To further validate these 
hypotheses, we apply the CoMFA and CoMSIA models to 
the new 47 candidate molecules and predict their inhibitory 
activity against SARS-CoV-2 3CLpro. The pIC50 of the novel 
designed molecules were predicted after preparing their 3D 
structures using the same strategy employed for 3D-QSAR 
modeling in this work (Fig. 6).

Thanks to the perfect alignment between the 47 filtered 
molecules and the template structure shown in Fig. 6, we 
can conclude that the structural improvements made to the 
structure of compound T40 were coherent with the pharma-
cological hypotheses extracted from this structure via the 
proposed CoMFA and CoMSIA models. Hence, the predic-
tions of the biological inhibitory activity of new molecules 
against SARS-CoV-2 3CLpro by the CoMFA and CoMSIA 
models will be more stable and precise. Table 3 presents 
the predicted biological activities generated by CoMFA and 
CoMSIA models for all 47 candidate non-covalent SARS-
CoV-2 3CLpro inhibitors.

From Table 3, we can notice that twenty new derived 
molecules (D02, D06, D07, D08, D12, D18, D23, D25, 
D26, D27, D28, D30, D38, D43, D44, D76, D87, D88, 
D92, D94) showed significantly better inhibitory activity 
(pIC50 > 6) than the reference inhibitors, which are molecule 
T40 (pIC50 = 5.8), DSF (pIC50 = 5.98) and N3 (pIC50 = 3.90). 
This means that the modular changes made to the structure 
of the template molecule (T40) were favorable to improving 
the biological activity of the proposed new class of non-
covalent inhibitors of SARS-CoV-2 3CLpro. Thus, the 20 
computer-based non-covalent inhibitors proposed in the cur-
rent study (Fig. S1) can reach an excellent inhibitory activity 
against SARS-CoV-2 3CLpro and reach the therapeutic goal 
against COVID-19. To further confirm these hypotheses, 

Fig. 5   Characterization of structural properties favorable to design 
novel SARS-CoV-2 3CL.pro inhibitors based on molecular structure 
(T40)

Fig. 6   3D visualization of molecular alignment poses between the 
template (T40) and newly generated compounds
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we perform molecular docking simulations and evaluate 
the level of binding energies of proposed molecules to the 
3CLpro enzyme.

Molecular docking simulation

Molecular docking protocol validation

First, we perform a re-docking of the covalent inhibitor N3 
with the 3CLpro receptor; this is done to validate the molecu-
lar docking protocol and also to get insight into the refer-
ence active amino acid residues involved in non-covalent 
interactions inside the 3CLpro protein pocket (PDB code: 
6LU7). Figure 7 displays 3D and 2D visualizations of the 
re-docking pathways of ligand N3 inside the 3CLpro receptor 
pocket (6LU7).

The perfect superposition mode (RMSD = 0.131 < 2 Å) 
between the original and re-docked N3 ligand inside the 
3CLpro pocket (Fig.  7a) indicates the high precision of 
molecular docking predictions performed by AutoDock vina 
software. Also, Fig. 7b indicates that the N3 ligand (original 
and re-docked) interacted with the same active amino acid 
residues that are His41, Met49, Gln189, Thr190, Ala191, 
Pro168, Leu167, Cys145, Glu166, His172, Met165, His164, 
Phe140, and Glu143. Furthermore, we can see that most 
non-covalent interactions between the ligand N3 and the 
protein 6LU7 resulted from hydrophobic (Alkyl, Pi-Alkyl, 
Pi-Sigma), hydrogen bonds (conventional and carbon), 

and van der Waals interactions. Therefore, we consider 
the interactions of molecule T40 and its novel derivatives 
with certain of these residues as a reference mechanism for 
inhibiting 3CLpro via non-covalent interactions. To complete 
the molecular docking validation protocol, we performed a 
molecular dynamics simulation on the crystalline complex 
(PDB:6LU7), this was done to evaluate the stability of the 
3D structure of the 6LU7 receptor in the aqueous environ-
ment, as well as the stability of N3 in the active pocket of 
3CLpro (Fig. 8).

Figure  8a indicates that the 6LU7 backbone RMSD 
reached a remarkable equilibrium around the 1.8 Å range 
with some fluctuations that did not exceed approximately 
2.4 Å throughout the MD simulation. The N3 ligand showed 
fluctuations in RMDS ranging from 2.4 to 4.8 Å from the 
onset of the simulation to around 35 ns, before stabilizing 
in the range of 1.2 to 3 Å until the end of the MD simulation 
time. From Fig. 8b and c, we can notice that N3 contacted 
the same active amino acid residues in the 6LU7 pocket pre-
dicted by the molecular re-docking protocol. The majority of 
the interactions were of the hydrogen bond and hydropho-
bic and water-bridge type. Most of the interactions formed 
with N3 inside the active pocket of 3CLpro spanned from 25 
to more than 100% of the MD simulation time, this is due 
to the large size of the N3 structure, which does not allow 
it to perform more flexible interactions inside the active 
pocket. Therefore, small molecules may be more flexible in 
terms of their interactions and stability in the 3CLpro pocket 

Table 3   The predicted pIC50 activities of 47 screened molecules against SARS-CoV-2 3CL.pro

Templates (compound T40: pIC50 = 5.81), inhibitors (DSF: pIC50 = 5.98), and (N3:pIC50 = 3.90 [29])
Compounds with boldface values showed better inhibitory activity than the reference inhibitors (T40, DSF and N3)

Comp pIC50 Comp pIC50 Comp pIC50

CoMFA/SE CoMSIA/SEHD CoMFA/SE CoMSIA/SEHD CoMFA/SE CoMSIA/SEHD

D02 6.302 6.938 D25 6.144 6.878 D76 6.300 6.986
D03 6.146 5.918 D26 6.290 6.913 D78 5.180 4.789
D04 6.080 5.929 D27 6.149 6.988 D79 5.167 4.781
D05 6.123 5.877 D28 6.238 6.858 D80 5.160 4.827
D06 6.261 6.967 D30 6.105 6.847 D81 5.163 5.013
D07 6.187 6.893 D38 6.165 6.736 D82 5.179 4.994
D08 6.259 6.852 D41 5.125 5.007 D84 5.172 5.997
D12 6.240 6.826 D42 5.195 4.918 D87 6.221 6.005
D13 6.161 5.931 D43 6.246 6.860 D88 6.268 6.015
D14 6.107 5.950 D44 6.159 6.724 D92 6.239 6.969
D17 6.143 5.963 D45 5.809 4.924 D94 6.226 6.850
D18 6.218 6.857 D46 5.278 4.842 - - -
D19 6.190 5.947 D49 3.930 4.675 - - -
D20 5.891 4.937 D54 5.227 4.965 - - -
D21 6.106 5.983 D60 5.250 5.029 - - -
D22 6.369 5.994 D62 5.060 4.893 - - -
D23 6.104 6.231 D70 4.997 4.885 - - -
D24 6.145 5.830 D73 4.861 4.767 - - -
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compared to large molecules such as the peptide inhibitor 
N3 as a model.

Molecular docking test

Molecular docking was performed to find potential active 
residue sites in the 3CLpro enzyme pocket with which the 
designed and synthesized 9,10-dihydrophenanthrene deriva-
tives can interact. Furthermore, we evaluated the binding 
affinity energies of the examined ligands and screened the 
best potential non-covalent inhibitors of 3CLpro. This is done 
by selecting ligands that reach the lowest energy level when 
binding to the active pocket of the 3CLpro receptor.

Figure  9 shows a 3D visualization of the optimal 
conformation positions of the new 20 derivatives of 
9,10-dihydrophenanthrene, T40, inhibitors DSF and 
N3 in the active pocket of SARS-CoV-2 3CLpro (PDB 
code:6LU7).

Figure 9 shows the optimal docking position of the inves-
tigated molecules in the active pocket of the 3CLpro. This 
means that the small molecules of 9,10-dihydrophenanthrene 
derivatives can target the enzymatic activity of SARS-CoV-2 
3CLpro and achieve a potential inhibition of 3CLpro through 
non-covalent interactions. Table S6 provides a detailed sum-
mary of the most important molecular docking results regard-
ing the binding affinity energies and interactions of the studied 
ligands in the active pocket of 3CLpro. From the molecular 

docking results presented in Table S6, we can notice that 
all new modeled molecules, as well as T40 and the DSF 
inhibitor, interacted with the majority of active residues in 
the 3CLpro pocket with which inhibitor N3 interacted. Most 
non-covalent interactions that were formed between the inves-
tigated molecules and 3CLpro were hydrophobic, hydrogen 
bonds (Pi-donor, carbon, and conventional hydrogen bonds), 
electrostatic, and van der Waals. This further confirms that the 
9,10-dihydrophenanthrene-derivatives are flexible in terms of 
inhibiting the enzymatic activity of 3CLpro by non-covalent 
mechanisms. Thus, active sites (His164, Cys145, Glu166, 
His41, His163, Gly143, Ser144, Asn142, Phe140, Leu141, 
Met165, Pro168, Leu167) in the 3CLpro pocket, which interact 
with template molecule (T40) can consider those active sites 
as new potential keys involved in inhibition of SARS-CoV-2 
3CLpro enzymatic activity through non-covalent interactions.

Analysis of binding affinity energies of ligands  From 
Table S6, we can notice that among twenty proposed mole-
cules 11 molecules D06 (− 10.5 kcal/mol), D07 (− 10.7 kcal/
mol), D08 (− 10.8 kcal/mol), D12 (− 10.6 kcal/mol), D18 
(− 10.4 kcal/mol), D23 (− 10.9 kcal/mol), D25 (− 10.6 kcal/
mol), D26 (− 10. 5 kcal/mol), D27 (− 10.5 kcal/mol), D30 
(− 10.5 kcal/mol), D76 (− 11.1 kcal/mol) appeared to be 
more stable in terms of binding affinity energies compared 
to template molecules T40 (− 10.2  kcal/mol) and DSF 
(− 4.7 kcal/mol) inside the active site of the main protease 

Fig. 7   a 3D superposition of original (black) and re-docked (yellow) N3 ligands in the 6LU7 active pocket of 6LU7 (RMSD = 0.121 Å). b N3 
(native and re-docked) interaction patterns with active residues in the 3CLpro pocket
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Fig. 7   (continued)
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pocket. Likewise, we can note that the eleven candidate 
molecules were able to interact with most of the active 
amino acid residues with which the reference inhibitor N3 
(− 13.5 kcal/mol) interacted within the active pocket of 
3CLpro. Thus, the high biological binding of the proposed 
small molecules to 6LU7 is likely to achieve excellent inhi-
bition against SARS-CoV-2 3CLpro compared to the tem-
plate molecule T40.

Non‑covalent interaction analysis of examined ligands  Figure S2 
displays a 2D visualization plot of key non-covalent interactions 
between the active reference residues in the 3CLpro pocket and the 
eleven filtered molecules adjacent to templates (T40 and DSF). 
All non-covalent ligand–protein interactions identified in Fig. S2 
are classified and summarized in Table 4.

From Fig. S2 (complex DSF-6LU7), we can observe that 
the structure of the DSF inhibitor used in the positive control 

interacts via a carbon-hydrogen bond with the active refer-
ence sites occupied by Gln189 (5.82 Å), three hydropho-
bic bonds (alkyl and pi-alkyl) with reference active sites 
occupied by residues Leu27 (4.27 Å), Cys145 (5.06 Å), and 
His41 (5.59 Å), as well as other interactions of the van der 
Waals class.

However, the non-covalent interactions generated between 
T40 (template) and the reference active sites in 3CLpro (Fig. S2, 
complex T40-6LU7) indicate that the moiety (OH, R1) inter-
acts with the active reference residues His164 (5.00 Å), 
Cys145 (6.77 Å) through two conventional hydrogen bonds. 
Moreover, the moiety (bromobenzyl, R2) interacted with one 
electrostatic bond with the reference site Glu166 (4.79 Å), and 
three hydrophobic bonds (stacked amide-Pi, alkyl, Pi-alkyl) 
between the moiety (4-phenylpyridine, R3) and the active 
reference sites Leu167 (6.54 Å), Pro18 (4.33 Å), Met165 
(5.06 Å), as well as other interactions of van der Waals class. 
The overall non-covalent interactions and number of hydrogen 

Fig. 8   a The root means square deviation of the atomic positions of 
the 6LU7 protease and the N3 inhibitor. b 2D visualization of con-
tacts made between 6LU7 and N3 that persist beyond 30% of the MD 

simulation. c Histogram of contacts between 6LU7 and N3 during 
100 ns of the MD simulation
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bonds generated in the complex (40-6LU7) led to higher bind-
ing affinity energy for template 40 (BAE = − 10.2 kcal/mol) 
compared to DSF inhibitor (BAE = − 4.7 kcal/mol). Also, from 
Fig. S2, (complex 40-6LU7), we can notice the main contribu-
tion of pharmacophore sites (R1, R2, R3) in the generation of 
most non-covalent inhibitory interactions. This implies that the 
3D-QSAR pharmacophore modeling predictions were accurate 
in rationalizing the pharmacophore sites in the structure of 
template molecule T40 that are favorable to achieving high 
inhibitory activity against SARS-CoV-2 3CLpro. As a result, 
the structural modifications applied to the structure of T40 
explain the significant improvement in the inhibitory activity 
and binding affinity energies of the eleven novel molecules 
(D06, D07, D08, D12, D18, D23, D25, D26, D27, D30, and 
D76) screened as promising inhibitors of 3CLpro enzymatic 
activity.

To sum up, the molecular docking simulation results indi-
cated that the eleven novel small molecules achieved perfect 
docking poses in the active pocket of 3CLpro where the pep-
tide inhibitor N3 interacts. The optimal binding modes, high 
binding affinity energies, and high predicted pIC50 biological 
activity of these molecules provide a strong theoretical basis 
for the nomination of these molecules as novel drug agents 
against COVID-19.

ADME‑Tox prediction

The discovery of coronavirus protease inhibitors targeting 
3CLpro has been a major innovation due to the poor phar-
macokinetic properties of large peptide compounds such 
as the N3 (PubChem Compound CID: 6,323,191) covalent 
inhibitor model [80, 81]. Thus, the discovery of novel non-
covalent 3CLpro inhibitors based on small molecule struc-
tures could be an effective therapeutic key against COVID-
19 compared to covalent 3CLpro inhibitors. The evaluation of 

absorption, distribution, metabolism, excretion, and toxicity 
(ADME-Tox) properties is important in drug discovery and 
design to ensure effective and safe drugs. Based on this, 
we evaluate the pharmacokinetic properties (ADME-Tox) 
of eleven small molecules (D06, D07, D08, D12, D18, 
D23, D25, D26, D27, D30, and D76) candidates to reach 
the 3CLpro enzyme with sufficient inhibitory concentration, 
biological binding, and high drug response. Table S7 pre-
sents ADME-Tox predictions assessed in this work.

From the ADME-Tox predictions presented in Table S7, 
it can be observed that all examined molecules can be a 
substrate of P-glycoprotein, which explains the high absorp-
tion rates of these molecules in the human intestine (> 90%). 
In contrast, the N3 inhibitor showed a low absorption of 
57.88%; so, the small intestine may not be able to absorb 
enough N3 peptide, which may lead to rapid clearance before 
reaching the therapeutic target. Regarding distribution prop-
erty, the negative VDss values for all molecules indicate that 
the distribution of these molecules is in the bloodstream of 
the body. The significantly low fraction unbound (FU) val-
ues of the examined molecules suggest that these molecules 
are more likely to bind the protease than to the plasma. Fur-
thermore, all molecules were unable to penetrate the central 
nervous system (CNS) and the blood–brain barrier (BBB), 
except molecule D12 (logBB = 0.29), which means that the 
proposed molecules have no potential impact on the brain. 
In terms of metabolism, all examined molecules could be 
substrates for the enzyme cytochrome 3A4 is responsible 
for drug metabolism in the human body; so, the drug com-
pounds will not be rapidly excreted and metabolized by the 
human body. Regarding the excretion property, the low total 
clearance values of all molecules mean that the 11 proposed 
drug molecules as well as the template molecule T40, have 
significant half-life and stability in the body. This may allow 
them to reach their therapeutic target before excretion, unlike 

Fig. 9   Molecular docking of 
the best conformations of the 
selected compounds, T40, N3, 
and DSF in the active pocket 
of the SARS-CoV-2 3CL.pro 
(the re-docked N3 ligand is 
highlighted in yellow)
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the N3 inhibitor, which has a high total clearance value of 
0.65. Regarding the risks of toxicity, Osiris predictions show 
that D06 is likely to have slight toxicity as irritation, as well 
as D30, which is mutagenic and carcinogenic, whereas the 
remaining compounds did not indicate any potential toxic-
ity risks. Due to the potential toxicity risks of D06 and D30, 
we eliminate them and keep only those molecules that do 
not have any predicted toxic effect. Based on ADME-Tox 
predictions, the nine selected molecules (D07, D08, D12, 
D18, D23, D25, D26, D27, and D76) are identified as highly 
favorable for drug design.

MM‑GBSA computations

Table 5 shows the binding free energy values obtained by 
MM-GBSA for the selected ligands (D07, D08, D12, D18, 
D23, D25, D26, D27, and D76) and also for references (T40 
and N3). Although the ligands (T40 and N3) did not show a 
good fit for drug-like features, their presence as references 
were necessary during the in silico validation routines. The 
MM-GBSA computations presented in Table 6 indicate that 
the binding energies of the designed ligands range from 
the lowest value of − 47.83 kcal/mol (D27) to the highest 
level of − 59.54 kcal/mol (D23). The proposed drug ligands 
showed relatively higher binding energies than the refer-
ence molecule T40 (− 47.77 kcal/mol) and less than the N3 
peptide inhibitor (− 83.84 kcal/mol). Among the ligand/
protein binding patterns evaluated via MM-GBSA, we can 
notice the significant contribution of (ΔGbind Vdw), (ΔGbind 
H-bond), (ΔGbind Coulomb), (ΔGbind Lipo), and (ΔGbind 
Packing) energies to the average binding energy (ΔGbind) 
of the nine proposed drug molecules and also for the refer-
ences (T40 and N3). The positive energy contribution of 
(ΔGbind Solv_GB) and (ΔGbind Covalent) was not favorable 
to (ΔGbind), which can lead to resistance against the binding. 
This means that the effect of the energies of non-binding 
interactions is much more favorable to achieving high and 
equilibrium stability of the examined ligands in the active 

pocket of 3CLpro compared to potential covalent interactions. 
In brief, the obtained MM-GBSA computations confirm the 
molecular docking results related to the high binding affinity 
energies of the proposed small molecule (D07, D08, D12, 
D18, D23, D25, D26, D2, and D76) toward the active site 
inside the 3CLpro pocket.

Molecular dynamics simulations

Molecular dynamics simulations were performed to examine 
the stability level of potential non-covalent interactions between 
the active residues of the 3CLpro (6LU7) pocket and investi-
gated 9,10-dihydrophenanthrene derivatives. For this purpose, 
we consider the samples D08-6LU7(ΔGbind = − 55.15 kcal/
mol), D23-6LU7 (ΔGbind = − 59.54  kcal/mol), and D76-
6LU7 (ΔGbind = − 57.30 kcal/mol) as test items and sample 
T40-6LU7 (ΔGbind = − 47.77 kcal/mol) as a reference in MD 
simulations protocol.

RMSD and RMSF analysis

The root mean square deviation (RMSD) and fluctuation 
(RMSF) parameters were used to estimate the range of 
potential fluctuations in the backbone of 6LU7 proteases 
(uncomplexed and complexed). The RMSD and RMSF indi-
ces express the average α-carbon backbone for all atoms of 
amino acid residues that formed the 6LU7 systems. In this 
work, RMSD and RMSF variations of examined 6LU7 sys-
tems were evaluated based on the first frame of the uncom-
plexed 6LU7 backbone (6LU7 free). Figure 10 shows the 
RMSD and RMSF time scales obtained after 100 ns of MD 
simulation trajectory.

From Fig. 10a, it appears that the Cα atoms of the 6LU7 
protease backbone were not affected in their stability after 
D08, D23, and D76 ligands docked into the active pocket of 
6LU7 during 100 ns of the MD trajectory. Some slight fluc-
tuations in the amino acid side chains were observed in the 

Table 5   Prime MM-GBSA energies for binding of ligands to the active site of 3CL.pro compared to the references N3 and T40

MM-GBSA /(kcal/mol) Selected ligands/6LU7 Reference 
ligands/6LU7

D07 D08 D12 D18 D23 D25 D26 D27 D76 T40 N3

ΔGbind  − 53.51  − 55.15  − 51.93  − 50.43  − 59.54  − 52.24  − 48.92  − 47.83  − 57.30  − 47.77  − 83.84
ΔGbind Vdw  − 45.89  − 56.18  − 44.44  − 44.09  − 52.87  − 48.12  − 42.18  − 42.97  − 51.58  − 48.34  − 84.31
ΔGbind Hbond  − 2.00  − 2.21  − 1.85  − 1.99  − 0.16  − 1.86  − 0.34  − 0.44  − 0.31  − 2.72  − 0.56
ΔGbind Coulomb  − 15.84  − 20.62  − 12.05  − 11.07  − 17.54  − 13.56  − 4.69  − 6.17  − 6.05  − 7.24  − 30.72
ΔGbind Lipo  − 19.33  − 16.97  − 15.47  − 15.51  − 21.99  − 18.39  − 20.00  − 20.40  − 19.92  − 22.83  − 20.61
ΔGbind Packing  − 2.54  − 2.71  − 2.28  − 2.47  − 1.01  − 2.28  − 2.21  − 1.73  − 2.26  − 2.71  − 0.03
ΔGbind Solv_GB 26.11 28.50 21.15 21.87 21.02 23.87 21.34 24.24 22.76 28.82 46.07
ΔGbind Covalent 5.00 1.04 3.02 2.85 2.02 3.11 2.16 3.95 2.07 4.10 8.50
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D08-6LU7 complex from 70 to 80 ns; these fluctuations did 
not exceed 1.5 Å after which D08-6LU7 returned to equilib-
rium until the end of the MD simulation time set at 100 ns. 
The average RMSD values obtained for 6LU7 free and com-
plexed with the ligands D08, D23, D76, and T40, respec-
tively, were 1.239 Å, 1.179 Å, 1.876 Å, 1.305 Å, 1.284 Å, 
and 1.400 Å. The low values of fluctuations observed in the 
RMSD indicate that the proposed drug molecules reached a 
good equilibrium in the 6LU6 protease pocket.

The mean RMSF values of the α-carbon residues of the 
examined systems 6LU7, 6LU7-D08, 6LU7-D23, 6LU7-
D76, and 6LU7-T40, respectively, were 0.821 Å, 0.961 Å, 
0.886 Å, 0.873 Å, and 0.788 Å (Fig. 10b). Despite the 
presence of some fluctuations related to extreme resi-
due sequences (SER_47, LEU_50, ASN_51, ASP_155, 
THR_304, PHE_305, and GLN_306), the average values 
of these fluctuations did not exceed 4.5 Å, indicating the 
expected high stability of the examined ligands in the active 
pocket of 6LU7.

The RMSF data presented in Fig. 10c indicate the pres-
ence of some fluctuations in the structures of the D08, D23, 
D76, and T40 ligands. The observed fluctuations could be 
due to some structural properties of the ligands, such as rota-
tion angles, torsion, and flexible interactions between the 
ligands and their binding sites in the active 6LU7 pocket.

Dynamics of protein–ligand interactions (PL‑contacts)

As previously mentioned in Fig. 7b, the active site in the 
6LU7 protease pocket contains the polar amino acids threo-
nine (Thr190, Thr24), glutamine (Gln189, Gln192), aspara-
gine (Asn142) and aspartic (Asp187), serine (Ser144), and 
the negatively charged glutamic acid (Glu166), positively 
charged amino acids such as histidine (His163, His172, 
His41, His164) and nonpolar amino acids such as pheny-
lalanine (Phe140), methionine (Met165, Met49), leucine 
(Leu167), proline (Pro168), alanine (Ala191), and the 
hydrophobic amino acid cysteine (Cys145). Interactions 
of the tested ligands with these residues and not moving 
away from the active pocket containing them can be consid-
ered a mechanism of inhibition of the enzymatic activity of 
3CLpro. Figures 11 and 12 show synthetic diagrams of the 
key contacts that occur between the protein and the exam-
ined ligands during the MD simulations.

From Fig. 11 and 12, we can see that the examined ligands 
were able to maintain most interactions with the residues pre-
dicted by molecular docking, meaning that the small designed 
molecules were able to dock into the active 3CLpro pocket 
throughout the MD simulation and did not move away from 
the target active site. Table 6 presents a summary of the key 
protein–ligand contacts for the examined complexes 6LU7-
D08, 6LU7-D23, 6LU7-D76, and 6LU7-T40, as well as the 
contact ratios identified at all 100 ns of MD simulations.Ta
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From Table 6, we can notice that ligand D8 was able to 
contact by conventional hydrogen bonds with the residues 
Thr24 (12%), Thr25 (18%), His41 (15%), Gln192 (13%), 
Ser144 (60%), Gln189 (20%) Cy145 (10%), Thr45 (8%), 
Asn142 (3%), Glu166 (4%), and Thr190 (5%). Additionally, 
a hydrogen bond formed through a water bridge with the 
amino acid Thr26 (16%). D08 is also contacted by hydro-
phobic interactions with Leu27 (6%), His41 (56%), Met49 
(40%), Cys145 (10%), Met165 (37%), Leu167 (5%), Pro168 
(6%), and Ala191 (3%).

For ligand D23, it was able to bind via hydrogen bonds to 
amino acid residues His41, Asn142 (ion bridge and water), 
and Val186 for periods less than 10%, as well as bind to 

Glu166 (25%), Asp187 (54%), and Gln189 (18%). Hydro-
phobic interactions were also formed with His41 (16%), 
Met49 (18%), Cy145 (10%), Met165 (38%), and with Pro168 
and Leu166 (< 10%).

For ligand D76, there is a hydrogen bond contact with res-
idues Asp (83%), His164 (42% water-bridge-aided), Glu166 
(23%), Gln189 (13% water-bridge aided), and Val186 (5%). 
Additionally, hydrophobic interactions were formed with 
Met49 (5%), Met165 (22%), Leu167 (6%), and Pro168 (26%).

Ligand T40 was contacted by hydrogen bonds with 
the amino acid residues Thr16 (< 3%), His41(22%), 
Glu166(41%), and Gln189(18%). In addition, hydrophobic 
interactions were formed between T40 and the amino acid 

Fig. 10   a RMSD of free protease 6LU7, complexed with ligands D08, D23, D76, and T40. b RMSF of backbone atoms in free 6LU7, com-
plexed with the ligands D08, D23, D76, and T40. c RMSF of ligands D08, D23, D76, and T40 complexed with 6LU7.

Fig. 11   Contact histogram of 6LU7-D08, 6LU7-D23, 6LU7-D76, and 6LU7-T40 along the MD time course

1684 Structural Chemistry (2022) 33:1667–1690
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residues His41 (20%), Met49 (12%), Met165 (40%), Leu167 
(50%), Pro168 (52%), and Ala191 (< 10%).

Moreover, from Table 6, we can also notice that the 
water bridge interactions contributed to the stability of 
ligands D8, D23, D76, and T40 inside the 3CLpro active 
pocket. The medium to low contact ratios of non-covalent 
interactions formed between ligands D08, D23, D76, and 
T40 with active amino acid residues in the 6LU7 pocket 
can be explained by their high ΔGbind (from − 47.77 
to − 57.30 kcal/mol). This means that the structures of the 
proposed drug molecules have a flexible structure and good 
structural properties that allow them to make many contacts 
in the active pocket through different interactional modes.

From the summary of protein–ligand interactions presented 
in Figs. 11, 12, and Table 6, it can be concluded that weak 
H-bonds, hydrophobic bonds, and water bridges strongly con-
tribute to the stability of the drug ligands (D8, D23, D76, and 
T40) with 3CLpro. These weak non-covalent interactions are 
very appropriate for drug ligands to achieve protein binding 
compatibility and reach the desired therapeutic target, as well 
as to facilitate the removal of drug compounds after reach-
ing the therapy. This is because strong covalent interactions 
between the ligand and the receptor are difficult to remove and 
can result in the opposite effect of covalent drug compounds. 
Therefore, non-covalent small molecule drugs may have very 
comparable therapeutic and pharmacokinetic activity against 
SARS-CoV-2 3CLpro compared to covalent drug molecules 
such as covalent Michael inhibitor (N3).

Properties of ligands

Figure 13 presents the properties of D08, D23, D76, and T40 
ligands estimated at over 100 ns of MD simulation. A total 
of six properties of ligands were evaluated: ligand RMSD, 

radius of gyration (rGyr), intramolecular hydrogen bonds 
(intra-HB), molecular surface area (MolSA), solvent acces-
sible surface area (SASA), and polar surface area (PSA).

For ligand D08 in 6LU7-D08, the RMSD ranged from 
0.5 to 1.5 Å, and its equilibrium was approximately at 1 Å. 
rGyr was limited to the range (4.25–4.75 Å), and its equi-
librium was around 4.5 Å. The intra-HB was high through-
out the MD simulation. MolSA was in the range (376–400 
Å2), and its equilibrium was about 390 Å2. SASA showed 
strong fluctuations ranging from about (200–600 Å2) over 
the time interval (40–80 ns), then stabilized at around 400 Å. 
PSA was in the range (120–180 Å2), and its equilibrium was 
around 160 Å2.

In the 6LU7-D23 complex, the ligand D23 showed 
many fluctuations in RMSD ranging from 0.8–2.4 Å and 
stabilized at about 1.6 Å. rGyr ranged from 5.6 to 4.4 Å 
and stabilized at about 5 Å. Intra-HB was low throughout 
the MD simulation. MolSA was ranged between 375 and 
420 Å2 and stabilized perfectly along the simulation time 
at about 405 Å2. SASA showed strong fluctuations around 
the range 200–400 Å2 and later stabilized at around 200 
Å2. PSA was found limited in the range 80–140 Å2 and 
stabilized at around 120 Å2.

In the 6LU7-D76 complex, the ligand D76 showed per-
fect stability in terms of RMSD in the range 0.5–1.2 Å over 
the simulation period with some slight fluctuations at about 
80 ns. rGyr was in the range 4.8–4.5 Å and stabilized at 
about 4.65 Å. Intra-HB was not detected in the D76 ligand. 
MolSA was in the range 376–392 Å2 and stabilized at 
approximately 384 Å2. The SASA was in the range 180–300 
Å2 and almost stabilized at 240 Å2. PSA was in the range of 
75–105 Å2 and stabilized at about 90 Å2.

In the 6LU7-T40 complex, the RMSD of the ligand T40 
was in the range 0.5–1.8 Å and stabilized at about 1.2 Å. 

Fig. 12   2D visualization of summary contacts between 6LU7 and the ligands D08, D23, D76, and T40 throughout the MD simulations time 
course
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rGyr was in the range 4.8–5.7 Å and stabilized after 40 ns 
at about 5.4 Å. Intra-HB was not detected in the T40 ligand. 
MolSA was in the range 424–448 Å2 and stabilized at about 

440 Å2. SASA was in the range of about 160–320 Å2; it sta-
bilizes at about 240 Å2 after 40 ns of the MD trajectory. PSA 
was in the range 70–100 Å2 and stabilized at about 80 Å2.

Fig. 13   Timeline of the proper-
ties of the ligands D08, D23, 
D76, and T40 complexed with 
6LU7 during 100 ns of MD 
trajectory

Fig. 14   The thermodynamic properties of the 6LU7 systems (6LU7 Free, 6LU7-D08, 6LU7-D23, 6LU7-D76, and 6LU7-T40)
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Thermodynamic properties analysis

The summary of the quality of the MD simulation is ana-
lyzed through the computation of the stability profile for the 
investigated systems in terms of the variation in total energy 
(E), potential energy (E_P), temperature (T), pressure (P), 
and volume (V) over the 100 ns of MD simulation trajectory. 
Figure 14 shows the thermodynamic properties diagrams 
generated for the 6LU7, 6LU7-D08, 6LU7-D23, 6LU7-D76, 
and 6LU7-T40 systems.

The generated thermodynamic properties show that the 
scores (E, EP, T, P, and V) of the complexes (6LU7-D08, 
6LU7-D23, 6LU7-D76, and 6LU7-T40) remained stable 
and close to those of free 6LU7. This finding can be con-
firmed by the average values (E, EP, T, P, and V) of the 
6LU7 complexes that are very close to those of free 6LU7 
(Table 7). These results further prove that the structures of 
small 9,10-dihydrophenanthrene compounds can reach per-
fect stability in the active pocket of 3CLpro.

All in all, molecular dynamics analyses show the high 
stability of the samples (D08, D23, D76, and T40) inside 
the 3CLpro active pocket. Therefore, the choice of the nine 
molecules (D07, D08, D12, D18, D23, D25, D26, D27, and 
D76) screened through 3D-QSAR, molecular docking, drug-
like, ADMET, and MM-GBSA studies can be validated as 
promising non-covalent inhibitors of SARS-CoV 3CLpro.

Conclusion

The outbreak of coronavirus 2019 (COVID-19) has nega-
tively impacted daily life in all regions of the world. Due to 
the severity of COVID-19 caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), it is necessary 
to advance the search for an appropriate and effective drug 
against COVID-19. In this context, 3-chymotrypsin-like 
cysteine protease (3CLpro) is an indispensable input to viral 
replication. Therefore, inhibition of 3CLpro enzymatic activ-
ity becomes an attractive target against COVID-19. To search 
for novel pharmacological compounds against COVID-19 
through computer-aided drug design, we used a series of 46 

small molecules derived from 9,10-dihydrophenanthrene as 
potential inhibitors of SARS-CoV-2 3CLpro in the compu-
tational analysis and pharmaceutical parameters screening. 
In this study, the 3D quantitative structure–activity relation-
ship (3D-QSAR) for 9,10-dihydrophenanthrene derivatives 
was carefully analyzed and described using CoMFA and 
CoMSIA techniques. As a result, based on the structure 
of the 9,10-dihydrophenanthrenes derivatives, two models 
CoMFA/SE and CoMSIA/SEHDA were developed. Both 
models showed a high ability to predict the biological activ-
ity of pIC50 against SARS-CoV-2 3CLpro, the pharmacologi-
cal sites were rationalized, and the most important features 
favorable for modeling and improving the biological activity 
of the studied molecules were identified. Accordingly, 96 
new drug molecules were generated based on the structure of 
the synthesized template molecule T40 exhibiting the high-
est biological activity pIC50 observed in vitro, followed by 
bioavailability parameter screening to select candidate drug 
compounds.

Then, the bioactivity (pIC50) of the modeled molecules 
was predicted by 3D-QSAR models, their non-covalent 
interaction to 3CLpro (PDB code:6LU7) was investigated via 
molecular docking, and in silico pharmacokinetics, ADME 
properties, and toxicity were evaluated, as well as free bind-
ing energies (ΔGbind) were scored by MM-GBSA computa-
tions. The results of this study demonstrated that the gener-
ated nine compounds generated D07, D08, D12, D18, D23, 
D25, D26, D27, and D76 have high biological inhibitory 
activity (pIC50), excellent non-covalent binding to 3CLpro, 
good pharmacokinetic suitability and less potential toxicity 
compared to the template synthesized compound T40 and 
N3 peptidic inhibitor. The results obtained were confirmed 
by molecular dynamics simulations of the tested systems 
(6LU7 uncomplexed and complex). For this purpose, the 
structural stability and dynamics of free and complexed with 
the tested ligands (D08, D23, D76, and T40) in an aqueous 
environment were discussed.

Finally, we have shown that nine small molecules mod-
eled on 9,10-dihydrophenanthrene structures have the poten-
tial to act as a promising non-covalent drug candidate against 
COVID-19 by inhibiting the enzymatic activity of 3CLpro.

Table 7   Scores average of the thermodynamics properties of analyzed systems

Systems Average property values

Total energy (kcal/mol) Potential energy 
(kcal/mol)

Temperature (K) Pressure (bar) Volume (Å3)

6LU7-Free  − 99,905.370  − 122,063.495 298.705 1.409 362,814.329
6LU7-D08  − 99,756.824  − 121,927.605 298.714 1.565 362,806.668
6LU7-D23  − 99,661.259  − 121,823.752 298.702 1.193 362,702.992
6LU7-D76  − 99,649.019  − 121,807.582 298.709 1.247 362,706.347
6LU7-T40  − 99,603.363  − 121,760.057 298.704 1.885 362,615.184
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Therefore, the adoption of the small molecule structures 
proposed in this study will be useful as a key starting point 
for the development of therapy against COVID-19. Thus, 
the retrosynthesis of these molecules and the evaluation of 
their bioactivity in vitro and in vivo may be of interest in 
the context of SARS-CoV-2 3CLpro drug design and dis-
covery. Also, the potential activity of the proposed small 
molecules against other protein pathways of coronaviruses 
can be investigated.
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