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Abstract
COVID-19 disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) has resulted in tremendous 
loss of lives across the world and is continuing to do so. Extensive work is under progress to develop inhibitors which can 
prevent the disease by arresting the virus in its life cycle. One such way is by targeting the main protease of the virus which 
is crucial for the cleavage and conversion of polyproteins into functional units of polypeptides. In this endeavor, our effort 
was to identify hit molecule inhibitors for SARS-CoV2 main protease using fragment-based drug discovery (FBDD), based 
on the available crystal structure of chromene-based inhibitor (PDB_ID: 6M2N). The designed molecules were validated by 
molecular docking and molecular dynamics simulations. The stability of the complexes was further assessed by calculating 
their binding free energies, normal mode analysis, mechanical stiffness, and principal component analysis.

Keywords  SARS-CoV2 main protease · Virtual screening · Fragment-based drug discovery · Molecular docking · 
Molecular dynamics simulations · Binding free energy · Normal mode analysis · Mechanical stiffness · Principal 
component analysis

Introduction

Coronaviruses comprise a large family of zoonotic viruses 
that have potential to infect humans via animal interme-
diaries [1]. Coronaviruses pose a continuous threat to the 
mankind because of their ability to emerge unpredictably 
and periodically, thereby spreading rapidly and inducing 
serious infectious pandemic disease. The world previously 
witnessed outbreaks of coronavirus disease caused by other 
similar species, namely SARS-CoV in 2002 and 2003 in 
China [2]; MERS-CoV in 2012 in the Middle East [3]; 
HCoV-OC43 [4, 5] in 1967 in Salisbury, UK; HCoV-229E 
[6] in 1966 in African bats; HCoV-HKU1 [7] in 2005 in 
Hong Kong; and HCoV-NL63 [8, 9] in 2002–2003 across 
Asia, Europe, and North America. During the last 2 years, 
the novel human coronavirus, severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV2) that causes coronavirus 
disease 2019 (COVID-19) resulting in an acute infection in 

the respiratory system [1], has become a global pandemic. 
All these viruses belong to the subfamily Coronavirinae in a 
family Coronaviridae. These are nonsegmented, enveloped, 
positive‐sense single‐stranded RNA virus genomes [10], 
and the human coronaviruses have the genomic size rang-
ing from 29 to 31 kilobases. The RNA genome of the human 
SARS-CoV2 is 82% identical to that of human SARS-CoV 
[11] and shares considerable similarity in the genome; 
hence, it has been named as SARS-CoV2 [12]. The SARS-
CoV2 genome encodes open-reading frames (ORFs) ORF1a 
and ORF1ab that encode for polyproteins. These polypro-
teins are further processed into 16 nonstructural proteins 
(NSPs), NSP1 to NSP16, which constitute the replicase-
transcriptase complex. Various enzymes including the main 
protease also called as 3-chymotrypsin-like protease (NSP5), 
papain-like protease (NSP3), and RNA-dependent RNA pol-
ymerase (NSP12) are present in this complex among other 
proteins [13]. The virion contains a nucleocapsid made up 
of genomic RNA and phosphorylated nucleocapsid protein, 
buried inside the phospholipid bilayers and surrounded by 
spike protein on the membrane of virus. A type-3 transmem-
brane glycoprotein also known as membrane protein and the 
envelope protein are situated among the spike proteins in the 
virus envelope [10].
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The most prominent symptom reported in SARS-CoV2 
is respiratory distress with some patients requiring intensive 
care, high-flow oxygen therapy, and invasive and noninvasive 
ventilation. The condition could worsen due to respiratory 
failure leading to the death of the patient [14]. It was also 
observed that patients with comorbidity pose a greater risk of 
developing severe infection which may also result in death of 
an individual [15]. More than 530 million COVID-19 cases 
and close to 6.29 million deaths have been reported during 
the last 2 years and 5 months. Despite the availability of vac-
cines and large populations in various countries being already 
vaccinated, the re-emergence of SARS-CoV2 in the mutated 
forms as witnessed in the case of beta [16] and omicron [17] 
variants poses a continuous threat of COVID-19 disease. 
There have been continuous research efforts to develop anti-
viral agents against members of Coronaviridae family which 
suggested that the human receptor, angiotensin-converting 
enzyme 2 that facilitates entry of virus into the host, RNA-
dependent RNA polymerase and main protease, helicase, and 
papain-like protease, may be represented as suitable drug 
targets [11, 18–23].

Considering the functional significance of the main pro-
tease, i.e., to carry out processing of polyproteins into NSPs, in 
the viral life cycle, and combined with the absence of closely 
related homologues in humans, main protease serves as an 
attractive target for the design of antiviral drugs. Inhibiting 
the viral activity of this enzyme would block the replicase-
transcriptase complex and therefore disrupt the viral life cycle. 
These targets are a choice for inhibition purpose also in SARS-
CoV and MERS-CoV, and hence, constant work has been 
carried out either by computational methods or experimental 
investigations to find novel molecules which can interfere with 
virus life cycle by inhibiting the main protease. For example, 
glycosylated flavonoids display a strong inhibitory activity on 
SARS-CoV2 main protease [24]. Some natural polyphenolic 
compounds, i.e., glucogallin, mangiferin, and phlorizin, may 
have the ability to be used as safe protease inhibitors, which 
may act by inhibiting type-2 transmembrane serine protease 
and main protease [25]. In silico approaches have identified 
three FDA-approved drugs, namely remdesivir, saquinavir, 
darunavir, and two small molecules such as flavone and cou-
marin derivatives that act as potential inhibitors of human 
SARS-CoV2 main protease [26]. Few drugs were identified 
and tested for treatment of COVID-19 disease such as chlo-
roquine, lopinavir, nafamostat, hydroxychloroquine, ritonavir, 
camostat, corticosteroids, and sarilumab [27]. Also a combina-
tion of drugs such as noscapine and hydroxychloroquine dem-
onstrated a strong binding affinity towards main protease [28]. 
Numerous drug candidates such as ebselen, disulfiram, car-
mofur, α-ketoamides, and peptidomimetic aldehydes 11a/11b 
have been discovered which inhibit the main protease activity 
by providing interference with the maturation process of NSPs 
[11, 22, 29, 30]. Computational studies have identified some 

of the NCI natural products as SARS-CoV2 main protease 
inhibitors [31].

The present work focuses on finding suitable inhibitors 
for the main protease in SARS-CoV2 using the computa-
tional methodologies in fragment-based drug discovery 
(FBDD). The FBDD methodology initially employs virtual 
screening of chemical fragments with low molecular weight 
and less chemical complexity and targets the sub-pockets 
within the receptor binding site [32]. The selection of frag-
ments in a library generally follows “rule of three” crite-
rion, i.e., molecular weight ≤ 300, hydrogen bond donor 
and acceptor ≤ 3, and lipophilicity index (CLogP) ≤ 3 [33, 
34]. Furthermore, it is desirable that the number of rotat-
able bonds is ≤ 3, and the polar surface area (PSA) is ≤ 60 
[35]. Such fragment hits are considered to be more suit-
able before the “hit-to-lead optimization” since they have 
reduced complexity, thereby allowing more freedom for 
optimization of various properties of the fragment hits in a 
multidimensional manner [32]. Some attractive features like 
favorable physical, pharmacokinetics, and toxicity proper-
ties can be integrated in the development of fragments [36]. 
These fragments function as building blocks, combined into 
compounds that typically recognize the protein binding site. 
The process of optimization of fragments can be done by 
linking the two independent fragments together or by add-
ing functional groups in each step to make improvements 
to the molecules [32]. These compounds are further elabo-
rated such that they bind the receptor via several nonbond-
ing interactions. Methodologies in FBDD have rapidly led 
to the identification of several FDA-approved drugs such 
as INQOVI, erdafitinib [37], ribociclib, vemurafenib [38], 
pexidartinib [39], and venetoclax [40–42].

The inhibitor 3WL complexed with SARS-CoV2 main 
protease was used as the reference structure on which FDA-
approved drug fragments were employed in order to obtain 
new lead molecules that could bind the active site of the 
receptor. Molecular docking, molecular dynamics (MD) 
simulations, and trajectory analyses were employed in order 
to propose new hit molecules to bind the SARS-CoV2 main 
protease.

Materials and methods

Protein preparation

The crystal structure of SARS-CoV2 main protease was 
solved at 2.2 Å resolution, and its three-dimensional struc-
ture complexed with inhibitor is deposited in the protein 
structure databank (PDB) with the PDB_ID: 6M2N [43]. 
The crystal structure of the main protease is a homodimer; 
chain A was selected for the computational studies as it did 
not have any missing residues. Crystal waters were deleted, 
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hydrogen atoms were added to complete the valency, and 
geometry optimization of the structure was done using mini-
mize structure tool in the UCSF Chimera [44] version 1.12 
for further studies.

Inhibitor design

We used Auto Core Fragment in silico Screening (ACFIS) 
2.0 web server available at http://​chemy​ang.​ccnu.​edu.​cn/​
ccb/​server/​ACFIS/ [45] that comprises FDA drug fragment 
database with 2883 fragment molecules for FBDD [45, 
46]. This server works on the principle of pharmacophore-
linked fragment virtual screening approach. ACFIS has three 
computational modules. PARA_GEN is a tool to generate 
parameters for ACFIS using the AMBER tools; CORE_GEN 
tool considers the protein–ligand complex and proceeds to 
deconstruct the ligand structure into fragments by cleav-
age at single bond based on retrosynthetic analysis by using 
decomposition and identification of molecules program [47] 
to derive core fragment structure from a bioactive ligand. 
CAND_GEN is a tool to link fragments to the core fragment 
structure and generate candidate molecules. The fragments in 
the library will be linked to the junction of the core fragment 
structure at the position of cleavage. ACFIS server creates 
new molecules based on growing algorithm by determining 
the core fragment structure followed by automatic linking 
of each of the fragments for improving the binding affin-
ity. Finally, the molecules are ranked based on their binding 
affinities. Output structure files and related data were down-
loaded. These molecules thus identified were used for further 
molecular docking studies.

Molecular docking

Molecular docking is a tool to predict molecular recogni-
tion between a small molecule and a target macromolecule 
in terms of binding modes and binding affinity. Molecu-
lar docking involves generating the most favorable bind-
ing mode of a ligand to its target macromolecule. Virtual 
screening of molecules by molecular docking was performed  
by using PyRx [48] and AutoDock 4.2 [49] software. Both the  
docking methods were validated by docking 3WL into the 
active site of main protease 6M2N as seen in Supplementary 
Fig. 1A, B. The interacting residues within a radius of 5 Å 
with respect to reference molecule 3WL were considered 
for generation of grid box. The protein macromolecule and 
ligands were imported using input molecule tools in PyRx 
and were converted from .pdb into .pdbqt format. Grid box 
was generated and adjusted so that it includes the active site 
residues at the binding site, with the exhaustiveness value of 
10. The results were analyzed for determining the best con-
formers with lowest binding energy (kcal/mol) and hydrogen 
bond interactions with the active site residues. The result 

output was exported to a file for visualization and analysis 
purpose using discovery studio visualizer.

The best ranked molecules were subjected to another 
round of docking studies using AutoDock 4.2 tools in order 
to dock them inside a 5 Å cavity defined around the ref-
erence molecule 3WL. The protein was cleaned by dele-
tion of heteroatoms and water molecules, torsions were 
set, polar hydrogens were added, and structure was saved 
in .pdbqt format. Similarly, the designed molecules were 
loaded, and torsions were set and saved in .pdbqt format. 
The calculations for protein–ligand flexible docking were 
performed using the Lamarckian genetic algorithm. The 
maximum number of generations simulated during each GA  
run was set to 27,000, and the rates of the gene mutation 
and crossover were set to 0.02 and 0.8, respectively. The 
threshold RMSD value was set to 2 Å, and the number of 
docking poses generated for each molecule was set to 10 for  
AutoDock as well as PyRx. A grid box with the dimen-
sions of X: −32.464 Å, Y: −62.314 Å, and Z: 43.532 Å and a 
grid spacing of 0.375 Å was used with exhaustiveness value 
of 10. The conformers obtained were ranked based on the 
nature of interactions, root-mean-square deviation (RMSD) 
values, and binding affinity scores.

Drug likeness

The absorption, distribution, metabolism, and excretion 
(ADME) parameters describe the pharmacokinetic proper-
ties associated with the ligand molecules and have a crucial 
role to play in the process of drug discovery and develop-
ment. The ADME properties of the docked molecules were 
measured using the SwissADME server [50]. SwissADME 
server is a free webtool to predict the drug-likeness prop-
erties of small molecules; it displays the pharmacokinetic 
properties in the form of topological polar surface area 
(TPSA), consensus LogPO/W, Log S, and Log KP, and syn-
thetic accessibility values.

Molecular dynamics simulations

Proteins are inherently flexible biomolecules which combine 
with a ligand to form the protein–ligand complex; this com-
plex attains stability mediated by various nonbonding interac-
tions such as van der Waals (vdW), electrostatic (el), hydrogen 
bonding, and hydrophobic. These kinds of interactions can be 
studied using MD simulations. Proteins identified by X-ray 
diffraction consider static conditions, while the MD simu-
lations can be used to find the consistency in non-covalent 
interactions and the stability of protein–ligand complexes. 
The MD simulation studies were run for the apo form of 
main protease as well as with the reference molecule bound 
in the complex form using GROMACS 5.1.4 [51] software 
for 250 ns. The force fields for protein were generated using  
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AMBER ff99SB [52], and force fields for hit molecules 
and reference ligand were generated in antechamber [53]  
using ACPYPE [54] scripts. The complexes were immersed 
in a cubic box filled with water molecules as simple point  
charge (SPC) [55] model. The neutralization of the system 
was done by adding Na+ and Cl− ions. This was followed  
by energy minimization using steepest descent method for 
50,000 steps to relieve the system from short-range bad 
contacts. The equilibration of the system is performed in 
two steps by allowing the system to get equilibrated until it 
reaches 300-K temperature in the constant number, volume 
and temperature (NVT) step and also until it attains the suit-
able density in constant number, pressure and temperature 
(NPT) (1 atm, 300 K) step. The NVT and NPT equilibration 
were performed for 100 ps timescale to energy minimize the 
system. For temperature and pressure couplings, V-rescale 
thermostat [56] and Parrinello and Rahman methods [57] 
were used respectively. The long-range electrostatics were 
handled using the particle mesh Ewald method [58]. The 
Lennard–Jones interactions, real space interactions, were 
truncated at 9 Å, and hydrogen bonds were constrained 
using LINCS algorithm [59]. The final production run was 
performed for 250 ns timescale involving 125 million steps. 
The final models for all molecular systems were obtained 
by averaging the snapshots generated from the trajectories  
of MD simulations. The RMSD and root-mean-square fluc-
tuations (RMSF) were calculated using gmx rms and gmx  
rmsf commands, respectively, of GROMACS to study the 
conformational variations in the protein bound to reference 
and hit molecule complexes.

Binding free energies

The interaction energy between the protein and ligand is 
vital to study about the overall stability of the complex and 
to assess how well the ligand fits into the protein binding 
site. Also, the contribution from amino acid residues which 
form the ligand binding site in complex formation can be 
estimated from binding free energy. The Poisson-Boltzmann 
or Generalized Born and Surface Area Continuum Solva-
tion (MM-PBSA and MM-GBSA) [60] are methods that can 
estimate the free energy of binding of small molecules to the 
protein. The output trajectories from GROMACS with the 
g_mmpbsa tool were used to calculate binding free energies 
for all the complexes. The linear interaction energy (LIE) 
method [61], which is based upon estimations of force fields 
in the receptor-ligand interactions and thermal conforma-
tional sampling, was used for calculation of ligand binding 
free energies. The gmx lie tool was utilized to compute free 
energy estimate based on analysis from nonbonded energies.

Generally, the binding free energy of a protein in complex 
with a ligand is expressed as [62, 63]:

Here, Gcomplex is the total free energy of protein–ligand 
complex, and Gprotein and Gligand are the total free ener-
gies of isolated forms of protein and ligand in the solvent, 
respectively.

In the LIE approach, the binding free energy is estimated 
according to the following equation and is divided into polar 
and nonpolar contributions [64].

where ⟨⟩ depicts the MD averages for the nonbonded vdW 
and el interactions of the ligand with its surrounding envi-
ronment (l-s). The Δ's depict change in the MD averages 
when ligand is transferred from solution (free state) to the 
binding site of the solvated receptor (bound state). The 
coefficients α and β corresponding to parameters for nonpo-
lar and polar interactions, respectively, are scaling factors 
for these energies, and γ is a constant term which could 
also be implemented as surface-area dependent [65, 66]. 
The values taken for α, β, and γ were 0.181, 0.5, and 0, 
respectively.

Normal mode analysis and mechanical stiffness

Protein dynamics is very essential to understand molecu-
lar events in a cell such as ligand recognition, binding, and 
transport [67]. The ensembles of structures can provide 
information about the structural variations important for bio-
logical activity [68, 69]. We used software suite of programs  
in ProDy [67] to develop the elastic network model-based 
normal mode analysis (NMA), and dihedral angles were 
taken as independent variables for all molecular systems. The  
mechanical stiffness plots were developed for all molecular 
systems using anisotropic network model [70].

Principal component analysis

Principal component analysis (PCA) is a covariance-matrix-
based mathematical technique to find global and correlated 
motions in atomic simulations of protein [71]. The overall 
motion of main protease was assessed through PCA tech-
nique by generating a 3N × 3N covariance matrix followed 
by its diagonalization to construct eigenvectors. The tech-
nique was employed for all the simulated molecular systems 
using MODE-TASK [72], and calculations were carried out 
from 0 to 250 ns MD simulations trajectories.

ΔGbinding = Gcomplex − (Gprotein + Gligand)

ΔGbind = �Δ⟨Vl−s
vdW⟩ + �Δ⟨Vl−s

el⟩ + �
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Results and discussions

Overall fold and active site of SARS‑CoV2 main 
protease

Several crystal structures of SARS-CoV2 main protease 
in complex with peptide-based inhibitors are available in 
the Protein Data Bank (PDB) with IDs as follows: 6XMK, 
6XBH, 7BRP, 7CB7, and 7CBT. We have selected the 
crystal structure of SARS-CoV2 main protease in complex 
with a small molecule inhibitor (3WL), having PDB_ID: 
6M2N [43] as the reference system. The three-dimensional 
structure of SARS-CoV2 main protease contains three 
domains. The domain 1 (8–101 amino acid residues) and 
domain 2 (102–184) fold into β-barrels and bear close 
resemblance to the chymotrypsin, whereas domain 3 
(201–306) is mainly composed of α-helices. The substrate 
binding region, which is located at the cleft of domains  
1 and 2, comprises of catalytic dyad His41 and Cys145, 
in which Cys serves as a nucleophile, while His acts as a 
proton acceptor. There are two deeply buried subsites (S1 
and S2) and three shallow subsites (S3–S5) in addition 
to the catalytic site that also contribute to the active site 
of main protease. The S1 subsite is composed of Phe140, 
Gly143, Cys145, His163, Glu166, and His172, and S2 sub-
site is composed of Thr25, His41, and Cys145 amino acid 
residues. The shallow subsites S3–S5 are formed by His41, 
Met49, Met165, Glu166, and Gln189 amino acid residues 
[26]. This molecule makes multiple hydrogen bonds with 
side chain and main chain atoms in the protein active site. 
The small molecule 3WL chromene moiety forms hydro-
gen bonding interactions with residues Leu141, Gly143, 

Ser144, and Glu166. The phenyl ring moiety is embedded 
in a hydrophobic pocket formed by His41, Cys44, Met49, 
and Tyr54 as shown in Fig. 1.

Inhibitor design and molecular docking

Here, we used SARS-CoV2 main protease complexed with 
3WL molecule. The molecule 3WL was divided into two 
fragments (as shown in Fig. 2): fragment 1 (chromene 
ring) and fragment 2 (phenyl ring) that have binding 
affinity values −15.73 kcal/mol and −4.95 kcal/mol and 
ligand efficiency values (LE) 1.12 (fragment 1) and 0.82 
(fragment 2) as shown in Supplementary Table 1 using 
ACFIS server. The molecular size can be eliminated by 
using LE rather than potency. The LE of fragment 1 (1.12) 
is relatively higher than the fragment 2 (0.82). However, 
comprehensively considered with Gbind, LE, and new 
fragment growing spaces, fragment 2 was selected as a 
core fragment to perform CAND_GEN calculation. In 
this molecule, also, since the 5,6,7-trihydroxy-2-phenyl-
4H-chromen-4-one chromene ring makes several hydrogen 
bonding interactions with the protein active site, only the 
phenyl ring was searched for FBDD. The screening and 
linking was performed at fragment 2 (phenyl) ring posi-
tion. The screening of FDA-approved fragment library 
with 2883 fragment molecules with integrated energy 
calculations identified 29 fragments. These fragments 
were successfully joined with the chromene ring in frag-
ment 1 to form 29 new molecules. The output coordinates 
were downloaded and used for docking studies. The 29 
hit molecules obtained by FBDD approach using ACFIS 
server were docked into the active site of main protease 

Fig. 1   The nonbonding interactions of 3WL in the binding site of SARS-CoV2 main protease (PDB_ID: 6M2N)
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using PyRx and AutoDock to study their binding inter-
actions that are shown in Table 1 and Supplementary 
Table 2. Also, the cluster RMSD mostly ranged from 
0.00 to 1.76 Å, wherein the lowest energy docking pose 
from the largest cluster was selected. In other terms, the 
best conformer from the possible generated conformers 
was selected based on RMSD value and the binding affin-
ity score. The ten best molecules selected from both the 
docking methods show binding affinity in the range −9.0 
to −6.8 kcal/mol (AutoDock) and −8.5 to −6.7 kcal/mol 
(PyRx), while the reference molecule 3WL had dock-
ing score of −7.7 and −7.2 kcal/mol using AutoDock and 
PyRx, respectively, as shown in Table 1. The intermo-
lecular interactions such as hydrogen bonding, vdW, el, 
and hydrophobic observed due to the docked hit mol-
ecules within the active site residues such as His41, 
Leu141, Asn142, Gly143, Ser144, Cys145, and Glu166 
also favored the selection of best conformers. The best ten 
molecules from the docking studies were used for drug-
likeness studies.

Drug‑likeness properties

The ADME properties of the selected 10 molecules and 
reference molecule are tabulated in Table 2. The synthetic 
accessibility values for hit molecules lie within 2.92–4.03 
which is indicative of their ease of synthesis. The topological 
surface area lies between 90.90 and 120 Å2, and the lipophi-
licity parameter consensus LogP is less than 3. Log S values 
for the hit molecules are comparable with the reference mol-
ecule which indicates that their water solubility is similar with 
the reference molecule. The skin permeation of hit molecules 
expressed as Log Kpvalue is also in good agreement with 
respect to reference molecule. All the qualified molecules 
were used for further stability studies by MD simulations.

Molecular dynamics simulations

The main protease 6M2N complexed with reference mol-
ecule 3WL and hit molecules were subjected to 250 ns of  
MD simulations using GROMACS 5.1.4. Out of the ten mol-
ecules studied, four molecules (Hit I, Hit II, Hit III, Hit IV  
with 1H-benzo[d]imidazol-5-yl, 3H-indol-3-yl, isoxazol-5- 
ylmethyl, 6-fluoro-1,2,3,4-tetrahydronaphthalen-2-yl formate 
groups, respectively) exhibit stability throughout 250 ns MD 
simulations. The structural changes of these four molecular 
systems were analyzed by comparison of initial and aver-
age structures. In this manuscript, we report the screened 
molecules designed from FBDD that show good binding 
affinity and nonbonding interactions with SARS-CoV2 
main protease. The results demonstrated that protein attains 
stability when it binds with screened-in hit molecules and 
maintains the hydrogen bonding interactions with important 
amino acids compared with reference molecule (3WL). The 
RMSD plots in Fig. 3a revealed that the structures attained 
stability after 10 ns of MD simulations. The main protease 
when complexed with Hit I, Hit II, Hit III, and Hit IV indi-
cated greater structural stability of these four complexes. The 
hit molecules (I, III, IV) exhibit lower RMSD (lower than 
0.25 nm), whereas Hit II exhibited RMSD value of 0.27 nm, 
and the reference molecule 3WL showed relatively higher 
RMSD (~ 0.28 nm) as shown in Fig. 3a. The RMSD of apo 
protein is higher (~ 4 Å) when compared with the complexes 
of reference and the hit molecules identified in this work, 
suggesting that binding of both reference and hit molecules 
enhances the structural stability of SARS-CoV2 main pro-
tease. In the ligand RMSD plots (Fig. 3b), we observed an 
abrupt change in the RMSD of Hit IV. From the examina-
tion of Hit IV-active site interacting residues, we observed 
that around 160–170 ns of MD simulations Glu166, His163, 
and Ser144 form hydrogen bonding interactions, whereas 

Fig. 2   The fragment-based approach on 3WL for selection of hit molecules. A 3WL B Fragment 1 (chromene ring) C Fragment 2 (phenyl ring)
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Table 1   Binding affinity (kcal/
mol) and interacting residues 
in the docking of 3WL and ten 
best hit molecules into SARS-
CoV2 main protease. The 
residues that make hydrogen 
bonds are highlighted in bold
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1. Hit I

       
6-fluoro-5-(5,6,7-trihydroxy-4-

oxo-4H-chromen-2-yl)-1,2,3,4-

tetrahydronaphthalen-2-yl formate

-8.2 -8.2

Thr26, Leu27, 

His41, Cys44,

Asp48, Met49,

Tyr54, Leu141, 

Asn142,Gly143, 

Ser144,Cys145,

His163, His164, 

Met165,Glu166, 

Asp187,Arg188,

Gln189

2. Hit II

(S)-5,6,7-trihydroxy-2-(3H-indol-

3-yl)-4H-chromen-4-one

-8 -7.9

Thr26, Leu27, 

His41, Cys44, 

Asp48, Met49, 

Tyr54, Leu141, 

Asn142,Gly143, 

Ser144,Cys145, 

His163, His164, 

Met165,Glu166, 

Asp187,Arg188, 

Gln189

3. Hit III -6.8 -6.7

Thr26, Leu27,

His41, Cys44,

Asp48, Met49, 

Tyr54, Leu141, 

Asn142,Gly143, 

Ser144,Cys145, 

His163, His164, 

5,6,7-trihydroxy-2-(isoxazol-5-

ylmethyl)-4H-chromen-4-one

Met165,Glu166, 

Asp187,Arg188, 

Gln189

4. Hit 

IV

2-(1H-benzo[d]imidazol-5-yl)-

5,6,7-trihydroxy-4H-chromen-4-

one

-8 -8.5

Thr26, Leu27, 

His41, Cys44, 

Asp48, Met49, 

Tyr54, Leu141, 

Asn142, Gly143, 

Ser144, Cys145, 

His163, His164, 

Met165, Glu166, 

Asp187, Arg188, 

Gln189

5. Hit V

5,6,7-trihydroxy-4-oxo-4H-

chromen-2-yl benzoate

-7.3 -7.4

Thr26, Leu27, 

His41, Cys44, 

Asp48, Met49,

Tyr54, Leu141, 

Asn142,Gly143, 

Ser144,Cys145, 

His163, His164, 

Met165,Glu166, 

Asp187,Arg188, 

Gln189
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Table 1   (continued)

7. Hit 

VII

5,6,7-trihydroxy-2-(1H-indol-4-

yl)-4H-chromen-4-one

-7.6 -7.6

Thr26, Leu27, 

His41, Cys44, 

Asp48, Met49, 

Tyr54, Leu141, 

Asn142,Gly143, 

Ser144,Cys145, 

His163, His164, 

Met165,Glu166, 

Asp187,Arg188, 

Gln189

8. Hit 

VIII

5,6,7-trihydroxy-2-(1H-indol-7-

yl)-4H-chromen-4-one

-7.7 -7.3

Thr26, Leu27,

His41, Cys44, 

Asp48, Met49,

Tyr54, Leu141, 

Asn142,Gly143, 

Ser144,Cys145, 

His163, His164, 

Met165,Glu166, 

Asp187,Arg188, 

Gln189

9. Hit 

IX

5,6,7-trihydroxy-2-(3-

methylbenzyl)-4H-chromen-4-one

-7.6 -7.9

Thr26, Leu27, 

His41, Cys44, 

Asp48, Met49, 

Tyr54, Leu141, 

Asn142, Gly143, 

Ser144, Cys145, 

His163, His164, 

Met165, Glu166, 

Asp187, Arg188, 

Gln189

10. Hit X

2-(tert-butoxy)-5,6,7-trihydroxy-

6.2 -6.5

Thr26, Leu27, 

His41, Cys44, 

Asp48, Met49, 

Tyr54, Leu141, 

Asn142,Gly143, 

Ser144,Cys145, 

His163, His164, 

Met165,Glu166, 

Asp187,Arg188, 

5,6,7-trihydroxy-2-(3-

methylbenzyl)-4H-chromen-4-one

6. Hit VI

(R)-2-(5,6,7-trihydroxy-4-oxo-

4H-chromen-2-yl)pyrrolidin-1-

ium

-7.0 -7.1

Thr26, Leu27,

His41, Cys44, 

Asp48, Met49,

Tyr54, Leu141, 

Asn142, Gly143, 

Ser144, Cys145, 

His163, His164, 

Met165, Glu166, 

Asp187, Arg188, 

Gln189

4H-chromen-4-one Gln189
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during 170–190 ns, Met49, Leu141, Glu166, and His172 
form hydrogen bonding interactions. The conformational 
changes in Hit IV and therefore altered interacting amino acid 
residues in the binding pocket of SARS-CoV2 main protease 
may be responsible for abrupt change in its RMSD value.

The RMSF plots analyzed the residual fluctuations of 
protein during MD simulations. Higher fluctuations are 
observed in the regions: Cys44-Asn53, Phe140-Ser144, 
Ile152-Val157, and Gln273-Thr280 that are away from the 
active site and dimer interface of the SARS-CoV2 main pro-
tease. The RMSF plot of proteins is given in Fig. 4. It can be 
seen from the RMSF plot that most regions of main protease 
have fluctuations below 2 Å. The amino acid region from 
Cys44 to Asn53 that forms a loop-helix in domain 1 has high 
fluctuations in the apo protein (up to 4.5 Å), while it is stabi-
lized in the presence of reference and hit molecules (RMSF 
below 2.5 Å). The lower fluctuations could be attributed to 
the stability gained by the SARS-CoV2 main protease refer-
ence and hit molecule complexes resulting from the close 
proximity and the presence of nonbonding interactions in 
this region (Supplementary Fig. 2). It is likely that this loop-
helix is functioning as a flap in order to open and close the 
active site of SARS-CoV2 main protease. It is intriguing 
to observe that both the apo and SARS-CoV2-ligand com-
plexes have a slightly higher RMSF up to 2.6 Å in domain 3 
(Gln273-Thr280) that is away from the ligand binding site. 
The higher flexibility in domain 3 was also observed in our 
previous studies [31]. The stability of the identified hit mol-
ecules is comparable to the reference inhibitor, 3WL. These 
analyses showed that the docking poses of the hit molecules 
are accurate and comparable with the reference inhibitor 
molecule. The intermolecular hydrogen bonding interac-
tions were stabilized throughout the 250 ns MD simulations 
as shown in Supplementary Fig. 3. The average structure 
taken from 0 to 250 ns MD simulations trajectories were 
analyzed for intermolecular hydrogen bonding interactions 

for reference and hit molecules and shown in Table 3. The 
occupancies of the interactions throughout the MD simula-
tions and in the last 20 ns are provided in the Supplementary 
Table 3. During the last 20 ns of MD simulations, the refer-
ence 3WL, Hit I, Hit II, and Hit IV retain stable hydrogen 
bonding interactions with SARS-CoV2 main protease, while 
the hydrogen bonding interactions are less stable when com-
plexed with Hit III.

Normal mode and mechanical stiffness analysis

The NMA provides essential information about the ensem-
bles of structures attained by protein during MD simula-
tions run and hence illustrates the overall protein dynamics. 
The structural changes of protein also determine the pattern 
of mobility across its various domains and regions. From 
the RMSF plot, the regions in protein structure showing 
greater fluctuations such as Cys44-Asn53, Phe140-Ser144, 
Ile152-Val157, and Gln273-Thr280 were observed. The 
same observation was also demonstrated through the NMA 
and mechanical stiffness plots in all molecular systems. 
We obtained ten normal modes for each molecular system 
from MD trajectories, selected first three modes, and made 
comparisons with the apo structure of main protease. The 
regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, 
and Gln273-Thr280 displayed higher mobility in apo pro-
tein, and that was slightly decreased in protein complexes 
with hit molecules (Fig. 5). Therefore, from this method, 
we studied about the conformational changes in apo and hit 
molecules bound complexes and located the flexible regions 
in the structure of SARS-CoV2 main protease.

The mechanical stiffness was analyzed for all the molecu-
lar systems, and the structural deviations were compared 
with the apo form of the main protease (Fig. 5). The flex-
ibility caused by residues involving Cys44-Asn53, Phe140-
Ser144, Ile152-Val157, and Gln273-Thr280 displayed lower 

Table 2   Pharmacokinetic 
properties of reference molecule,  
3WL and four hit molecules

Standard values for reference TPSA = 0 to 140 Å.2, Log Po/w =  −4.0 to 5.6, Log Kp =  −6.1 to −0.19 cm/s, 
synthetic accessibility scale = 1 to 10 [50, 73–75]

Compounds TPSA (Å2) Consensus 
Log Po/w

Log S (ESOL) Log Kp (skin  
permeation) (cm/s)

Synthetic 
accessibility

3WL 90.90 2.24  −4.03  −5.70 3.02
Hit I 90.90 2.65  −4.19  −5.76 3.87
Hit II 103.26 1.96  −3.37  −6.87 3.87
Hit III 116.93 0.98  −2.88  −6.96 3.14
Hit IV 119.58 1.78  −3.71  −6.61 2.92
Hit V 117.2 2.02  −3.77  −6.34 3.11
Hit VI 107.51 0.00  −2.39  −7.25 3.21
Hit VII 106.69 2.27  −4.06  −6.21 2.95
Hit VIII 106.69 2.31  −4.06  −6.21 3.09
Hit IX 90.90 2.65  −4.19  −5.76 3.18
Hit X 100.13 1.73  −3.13  −6.36 3.29
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Fig. 3   a The RMSD plot of SARS-CoV2 main protease apo and when complexed with reference and identified hit molecules (I to IV). b The 
RMSD plots of ligand, reference molecule, 3WL, and four hit molecules (I to IV) when complexed with SARS-CoV2 main protease
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effective stiffness for all molecular systems. This can be 
more clearly understood from the mean plots of mechanical 
stiffness which showed effective spring constant value of 8 k 
(a.u) for fluctuating regions and value greater than 12 k (a.u) 
for the stable regions in the protein structure. The mean plots 
also indicate that protein-bound hit complexes had increased 
stability than the apo form that is reflected by mean values 
greater than 12 k (a.u) and less than 8 k (a.u). These values 
suggest that protein shows elastic behavior due to the fluctu-
ating residues in all complexed molecular systems studied. 
Therefore, from NMA and mechanical stiffness plots, we 
observed mechanically weak behavior caused by fluctuating 
regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, 
and Gln273-Thr280.

Principal component analysis

The conformational changes in the apo form, reference 
3WL, and hit molecules bound molecular systems were 
monitored during the entire simulations run of MD trajecto-
ries through PCA scatter plots. The PCA scatter plots for all 
the molecular systems are depicted in Fig. 6. From the plots, 
it is observed that the molecular system such as 3WL and 
Hit III bound complex showed large protein conformational 
changes and therefore vary distribution in scatter plots.

PCA calculations reveal the conformational changes 
in a protein as a function of time from the MD simula-
tions trajectories. PCA was performed on 250 ns MD 
simulations trajectories to understand the alterations in 
the SARS-CoV2 main protease structure. We generated 
25,000 frames for each molecular system, and the motion 
of Cα atoms in each molecular system was monitored. 
The conformational ensembles of the main protease in all 
molecular systems under study were analyzed by project-
ing the trajectories of PC1 and PC2 into a two-dimensional 
space. When these are mapped onto each other, the struc-
tures with a high degree of similarity cluster together. The 
conformational changes of the SARS-CoV2 main protease 
in apo form, 3WL, and hit molecules bound molecular 
systems were monitored. We observed that the first two 
principal components (PC1 and PC2) capture majority of 
the variance in the original distribution of conformational 
ensembles in the molecular systems as shown in Fig. 6. 
The distribution of Cα atoms was greater for 3WL and Hit 
III bound molecular system which indicates that greater 
conformational changes of protein are observed, and also, 
apo protein shows significant distribution throughout MD 
simulations. This demonstrated that the conformational 
distributions of main protease bound with 3WL and Hit III 
were remarkably different from other molecular systems. 

Fig. 4   The RMSF plots of apo and complexes of SARS-CoV2 main protease with reference and hit molecules (I to IV)
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Table 3   The intermolecular interactions between reference and hit molecules (I to IV) with SARS-CoV2 main protease

Sl. No Ligands Average structure Amino acid

residues 

1. 3WL

Thr25, Thr26, 

Leu27, His41, 

Met49, Cys145, 

His164, Met165, 

Asp187, Arg188,

2. Hit I

His41, Asn142, 

Cys145, His164, 

Met165, Glu166, 

Leu167, Pro168, 

Gln189, Thr190, 

Ala191, Gln192
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Table 3   (continued)

3. Hit II

His41, Met49, 

Leu141, Asn142, 

Gly143, Ser144, 

Cys145, His163, 

His164, Met165, 

Glu166, Asp187, 

Arg188, Gln189

4. Hit III

His41, Leu141, 

Asn142, His163, 

His164, Met165, 

Glu166, His172, 

Asp187, Arg188, 

Gln189

5. Hit IV

His41, Met49, 

Tyr54, Phe140, 

Leu141, Asn142, 

Cys145, His163, 

Met165, Glu166, 

Asp187, Arg188, 

Gln189

The residues that form hydrogen bonding interactions are shown in bold
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Fig. 5   NMA and mechanical stiffness plots of SARS-Cov2 main protease. A Apo. B 3WL. C Hit I. D Hit II. E Hit III. F Hit IV
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Fig. 5   (continued)
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Fig. 5   (continued)
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Fig. 5   (continued)
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Fig. 6   PCA scatter plots for SARS-CoV2 main protease. A Apo. B 3WL. C Hit I. D Hit II. E Hit III. F Hit IV

1484 Structural Chemistry (2022) 33:1467–1487



1 3

The frequencies of PCA scatter plots were quantified, 
and the highest frequency is observed in 3WL and Hit 
III bound main protease, indicative of their higher pro-
tein conformational changes compared to other molecular 
systems.

Binding free energies

The binding free energy, vdW, el, polar, and apolar solva-
tion energies were calculated and compared to the refer-
ence inhibitor molecule in order to rank the hit molecules 
as high- or low-potent inhibitors. The binding free ener-
gies of all the complexes are depicted in Table 4. On the 
whole, from the binding free energy studies, we infer that 
the designed hit molecules using FBDD are comparable to 
the reference molecule, 3WL, in particular Hit III is closer 
to the reference molecule.

Conclusions

The crystal structure of SARS-CoV2 main protease (PDB_
ID: 6M2N) in complex with inhibitor molecule 3WL was 
selected as the reference structure to design new hit mol-
ecules based on FBDD approach. The FBDD approach 
identified 29 hit molecules which retained fragment 1 of 
3WL and fragment 2 replaced by different chemical enti-
ties. These molecules were studied for their binding affinity 
in the active site by molecular docking as well as for drug-
likeness properties, and the best four hit molecules were 
selected containing fragment 2 as 1H-benzo[d]imidazol-
5-yl, 3H-indol-3-yl, isoxazol-5-ylmethyl, and 6-fluoro-
1,2,3,4-tetrahydronaphthalen-2-yl formate groups. MD 
simulations and binding free energy calculations proposed 
the four hit molecules to be stable in complexed form and 
fit well inside the active site of SARS-CoV2 main protease.
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