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Abstract
The research was aimed at exploring the biological activities of novel series of β-lactam derivatives against MCF-7 breast cancer
cell lines via computer modeling such as quantitative structure-activity relationship (QSAR), designing new compounds and
analyzing the drug likeliness of designed compounds. The QSAR model was highly robust as it also conforms to the least
minimum requirement for QSAR model from the statistical assessments with a correlation coefficient squared (R2) of 0.8706,
correlation coefficient adjusted squared (R2

adj) of 0.8411, and cross-validation coefficient (Q
2) of 0.7844. The external validation

of R2
pred was calculated as 0.6083 for model 4. The model parameters (MATS5i and MATS1s) were used in designing new

derivative compounds with higher potency against estrogen-positive breast cancer. The pharmacokinetics test on the restructured
compounds revealed that all the compounds passed the drug likeness test and they could further proceed to clinical trials. These
reveal a breakthrough in medicine, in the research for breast cancer drug with higher effectiveness against the MCF-7 cell line.
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Introduction

Cancer, a dreadful malady, is also referred to as malignant
tumors, and it is a heterogeneous tumor that affects almost
all parts of the body. Mammary tumor is among the common
diseases that brings about morbidity and mortality among the
female being [14]. The cases that were encountered with most
anti-cancer drugs during the past three decades include drug
ineffectiveness, no drug selectivity, growing side effects, and
the drug becoming resistant to the tumor [14]. Regardless of
the up-to-date diagnostic and therapeutic advancement, mam-
mary tumor is still the common cause of mortality and the
primary utmost cancer among women worldwide [2].
Therefore, more effective and safe therapeutic agents are ur-
gently needed with many pathways to increase the positive
outcome of the patients clinically [14].

Computational approaches are regularly employed in al-
most all modern drug discovery effort, and robust success
has been attained for computer-aided lead generation and op-
timization. These techniques are mostly accurate, faster, and
cost-efficient. CADD represents more recent applications of
software tools in the designing of lead candidate [13]. CADD
technique is basically divided into two sections which are the
structure-based (SB) and ligand-based (LB) drug discovery.
The CADD technique employed depends on the crystal struc-
ture (receptor) available. One of the computer-aided tools for
drug discovery and design includes quantitative structure-
activity relationship (QSAR).

Quantitative structure-activity relationship (QSAR) is a cur-
rent technique used in optimizing template molecules and re-
designing new drug compounds. QSAR calculates the activi-
ties, toxicities, and carcinogenicities of molecules obtained
from the definition of the molecular parameters from a derived
mathematical equation [5]. It is also a known arithmetic rela-
tionship connectingmolecular compounds and biological activ-
ities for a library of molecules quantitatively [3]. An arithmetic
equation is generated from the structural info of a well-derived
calibration compound and corresponding biological activities,
while the model is validated using some validation compounds
for which the biological activities are accessible [12].

Malebari et al. [10] reported 43 novel β-lactam derivative
compounds as potent inhibitors against estrogen-positive
MCF-7 cell line. The purpose of this research is to utilize
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ligand-based drug design to design new β-lactam derivative
compounds based on an established QSAR mathematical
model as inhibitors against estrogen-positive breast cancer

(MCF-7 cell line) and, furthermore, to test for the pharmaco-
kinetic properties of the designed compounds.

Methodology

QSAR process

Data collection

Forty-four (44) new derivative compounds of β-lactams with
thier individual inhibitory concentration (IC50) against breast
cancer (MCF-7 cell line) were attained from 14 publications.

Bio-activities

The bio-activities of β-lactam derivative compounds were
measured in inhibitory concentration (IC50). The scale of log-
arithm (pIC50 = − log10 (IC50 × 10−6)) was applied to equalize
the IC50 values. The IC50 and pIC50 values of the derivatives
are seen in Table 1. It is measured in the concentration of
micromolar (μM).

Geometry optimization

This technique was used to get a desirable structure that would
be the closest to the initial structural condition [11]. 2D
sketching of Chemdraw V (12.0.2) was employed in drawing
β-lactam derivatives, and then, it was uploaded on Spartan
14 V (1.1.4) for geometrical optimization. [1]. The template
molecule is seen in Fig. 1.

Table 1 β-Lactam derivatives and its bio-activities

No/S. X R1 R2 IC50 logIC50

1 F C6H5 H 0.017 7.7696

2e F OC6H5 H 0.073 7.1367

3 F Cl H 0.040 7.3979

4 F Cl Cl 0.173 6.7610

5 F C2H3 H 0.038 7.4202

6 F C3H5 H 0.323 6.4908

7 Cl C6H5 H 0.230 6.6383

8 Cl OC6H5 H 0.430 6.3665

9 Cl Cl H 0.091 7.0400

10 Cl Cl Cl 0.140 6.8539

11 Cl C2H3 H 0.120 6.9208

12 Cl C3H5 H 0.270 6.5686

13 Br C6H5 H 0.651 6.1864

14 Br OC6H5 H 0.818 6.0872

15 Br Cl H 0.603 6.2197

16 Br Cl Cl 1.120 5.9508

17 Br C2H3 H 0.088 7.0555

18 Br C3H5 H 0.284 6.5467

19 I C6H5 H 0.648 6.1884

20 I OC6H5 H 0.208 6.6819

21 I Cl H 0.421 6.3757

22 I Cl Cl 0.885 6.0531

23 I C2H3 H 0.215 6.6676

24 I C3H5 H 1.354 5.8684

25 CHV C6H5 H 0.462 6.3354

26 CH3 OC6H5 H 2.235 5.6507

27 CH3 Cl H 0.433 6.3635

28 CH3 Cl Cl 0.747 6.1267

29 CH3 C2H3 H 0.328 6.4841

31 F H H 0.022 7.6576

32 Cl H H 0.140 6.8539

33 Br H H 0.060 7.2218

34 I H H 0.821 6.0857

35 CH3 H H 0.317 6.4989

36 F OH H 0.022 7.6577

37 Cl OH H 0.012 7.9208

38 Br OH H 0.044 7.3565

39 I OH H 0.100 7.0000

40 CH3 OH H 0.005 8.3010

41 F NH2 H 0.483 6.3161

42 Cl NH2 H 0.141 6.8508

43 OH C6H5 H 0.004 8.3979

44 H C6H5 H 0.015 7.8239
Fig. 1 Template molecule of β-lactam derivatives
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Model parameters

The model parameters were obtained for the whole derived
compounds of β-lactams using Pharmaceutical Data
Exploration Laboratory Software V (2.20) [16].

Pretreatment and division of data set

The values from the PADEL V (2.20) were prepped using
graphical user interface (GUI) 1.2 (Data Pretreatment soft-
ware), to remove relentless and undesired descriptor values
[1]. Kennard-Stone algorithm [8] was employed in splitting
the derivatives into calibration and validation fragments in
other to construct the equation (model).

Model building and validation

A mathematical equation was built using the train set as pre-
dictor variable, while the pIC50 was used as the predicted
variable by using genetic function approximation (GFA) tech-
nique of Material Studio Software V 8. The obtained equa-
tions were evaluated using Friedman formula [4].

LOF ¼ SEE

M 1−β cþd�p
M

� �� �2

where SEE is the standard estimated error; it is given as

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y exp−Y pred

� �2

N−P−1

s

C is the summation of the model definitions, p is the total
number of model descriptors, M is the sum of prediction set,

and d is a user-defined smoothing parameter [9]. The model is
verified externally using the correlation coefficient (R2). The
nearer R2 value is to 0.1, the better the regression fitness. R2 is
calculated as:

R2 ¼ 1−
∑ Y exp−Y pred

� �2

∑ Y exp−Y training

� �2

" #

where Yexp and Ypred are means of the actual and calculated
activities of the calibration sets [1]. Yminraining indicates the
average pIC50 of the train set molecules [7].

Table 2 Externally validating Eq. 4

No. logIC50 ALogP ATSC0i MATS5i MATS1s ETA_Beta_ns_d Ypred

22 6.0531 0.7305 65.7792 −0.1148 −0.0233 2.5 5.8359

3 7.3979 0.0003 84.6455 0.0638 −0.0331 2.5 7.5686

28 6.1267 1.0375 65.9475 −0.1293 −0.0298 2.0 5.8965

18 6.5467 0.0355 74.8107 −0.0640 −0.0059 2.5 6.2287

36 7.6576 1.4952 86.0986 0.0348 −0.0867 2.5 7.2948

31 7.6576 0.3256 85.3414 0.0519 −0.0351 2.5 7.2794

42 6.8508 1.1099 67.3467 −0.1138 −0.0981 2.5 6.9724

6 6.4908 96.3243 96.3243 0.0592 −0.0205 2.5 6.7437

10 6.8539 61.3644 61.3644 −0.0350 −0.0251 2.5 6.4113

23 6.6676 75.1465 75.1465 −0.0517 −0.0162 2.5 6.2759

11 6.9208 70.4746 70.4746 0.0171 −0.0179 2.5 6.9492

12 6.5686 74.1892 74.1892 −0.0344 −0.0071 2.5 6.4584

26 5.6507 83.5391 83.5395 −0.1170 −0.0499 2.5 6.3432

27 6.3635 66.7514 66.7514 −0.1385 −0.0277 2.0 6.3223

33 7.2218 63.5676 63.5676 −0.0955 −0.0238 2.5 6.5371

Table 3 Externally validating Eq. 4 (continuation)

Ypred − Yobs (Ypred − Yobs)
2 Ymintrn (Ymintrn − Yobs) (Ymintrn − Yobs)

2

− 0.2171 0.0471 6.8258 − 0.7728 0.5971

0.1706 0.0291 6.8258 0.5721 0.3273

− 0.2302 0.0529 6.8258 − 0.6991 0.4888

− 0.3170 0.1011 6.8258 − 0.2791 0.0770

− 0.3627 0.1316 6.8258 0.8318 0.6918

− 0.3782 0.1420 6.8258 0.8318 0.6918

0.1217 0.0148 6.8258 0.0240 0.0006

0.2529 0.0630 6.8258 − 0.3350 0.1122

− 0.4426 0.1959 6.8258 0.0281 0.00079

− 0.3917 0.1534 6.8258 − 0.1582 0.0250

0.0284 0.0008 6.8258 0.0950 0.0090

− 0.1102 0.0121 6.8258 − 0.2572 0.0661

0.6925 0.4795 6.8258 − 0.0751 1.3808

− 0.0412 0.0017 6.8258 − 0.4623 0.2137

− 0.6848 0.4687 6.8258 0.39960 0.1569

∑( ob – pred)
2 = 1.8961 ∑( obs − train)

2 = 4.8401 ∴ 2 test = 1
− (1.8961/4.8401) = 0.60826
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R2-based metrics could be a bit misleading, and mean ab-
solute error (MAE)–based metrics are known to be straight-
forward determinant for predicting errors. MAE values are
kept constant, and the effectives of the calculated activity is
known if 5% of the residual values are absent [12]. It is
expressed as:

MAE ¼ 1

n
x∑ Y obs−Y pred

� �

Modeling assessment

The mathematical equation (model) produced is made to un-
dertake statistical test like cross-validated test, R2 Fisher’s test,
and R2 predicted.

Applicability domain

A model validation should be within the training domain and
it is essential for the compounds to be assessed as fitting with-
in the domain to ascertain the model. An applicability domain
is evaluated by the leverage value for every molecule. The
leverage (L) defines the applicability domain of the generated
equation [15]. It is formulated as:

Li ¼ xi X TX
� �−k

xiT i ¼ K…;Pð Þ

where XT is the matrix transpose of X used in constructing the
equation, Xi is the matrix of prediction sets of I, and X is the n x
k matrix of train set descriptors. (E*) is the warning leverage;
it is a predictive tool that tests for outliers. It is written as:

E* ¼ 3 hþ 1ð Þ
m

h stands for the total structural parameters andm is the total
compounds of train sets. William’s plot is a plot of standard-
ized values vs. leverage values of both the training
(calibration) and test (validation) sets. Molecules that stay
within the calculated H* on the graph are the calculated
compounds.

Drug likeness analysis

The ADME properties of a molecule are an important deter-
minant of its therapeutic potency. ADME and bio-availability
test play an important role in the drug likeness of new drug
molecules [17]. In this research, SwissADME was employed
in evaluating the physicochemical properties, pharmacokinet-
ics, and drug similarity of the designed compounds.
Furthermore, the designed compounds were checked to en-
sure compliance with five rules of Lipinski [6].

Table 4 The bio-activities (pIC50), calculated activities, and residual
values of model 4

No/S. IC50 logIC50 Residual

1 0.017 7.7696 0.2090

2 0.073 7.1367 − 0.1669
3* 0.040 7.3979 0.1707

4 0.173 6.7610 − 0.7543
5 0.038 7.4202 0.4821

6* 0.323 6.4908 0.2527

7 0.230 6.6383 − 0.0807
8 0.430 6.3665 − 0.3466
9 0.091 7.0400 0.2780

10* 0.140 6.8539 − 0.4426
11* 0.120 6.9208 0.0284

12* 0.270 6.5686 − 0.1102
13 0.651 6.1864 − 0.1520
14 0.818 6.0872 − 0.2899
15 0.603 6.2197 − 0.1724
16 1.120 5.9508 − 0.0207
17 0.088 7.0555 0.0709

18* 0.284 6.5467 − 0.3170
19 0.648 6.1884 − 0.0468
20 0.208 6.6819 0.4945

21 0.421 6.3757 0.2257

22* 0.885 6.0531 − 0.2171
23* 0.215 6.6676 − 0.3917
24 1.354 5.8684 0.0072

25 0.462 6.3354 0.0373

26* 2.235 5.6507 0.6925

27* 0.433 6.3635 − 0.0412
28* 0.747 6.1267 − 0.2302
29 0.328 6.4841 − 0.2059
31* 0.022 7.6576 − 0.3782
32 0.140 6.8539 0.0197

33* 0.060 7.2218 − 0.6848
34 0.821 6.0857 − 0.0899
35 0.317 6.4989 0.03045

36* 0.022 7.6577 − 0.3627
37 0.012 7.9208 0.2397

38 0.044 7.3565 − 0.1076
39 0.100 7.0000 0.1606

40 0.005 8.3010 − 0.0981
41 0.483 6.3161 − 0.0707
42* 0.141 6.8508 0.1217

43 0.004 8.3979 0.1478

44 0.015 7.8239 0.3198

The compounds with an asterisk (*) are called the validation sets
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Result and discussion

QSAR investigation

QSAR analysis was used in building a simple mathematical
equation in calculating an enhanced biological activity from
β-lactam derivatives. The QSAR analysis also correlated the
molecular descriptors (model parameters) with the physico-
chemical properties of the 43 derivative compounds (bio-
activities) using statistical methods. Based on the genetic
function approximation (GFA) technique employed, 4 math-
ematical equations were produced to predict the biological
activities of β-lactam derivatives. Model 4 (four) passed both

internal and external validation with a correlation coefficient
squared (R2) of 0.8706, correlation coefficient adjusted
squared (R2

adj) of 0.8411, and cross-validation coefficient
(Q2) of 0.7844. The external validation of R2

pred of 0.6083
for model 4 was calculated using the model descriptors from
the test set as shown in Tables 2 and 3; the MAE was found to
be close to zero which reconfirms the strength of the equation
(model) [12]. The effectiveness of the equations was mea-
sured by the reliability of the calibration set and calculated
pIC50 of the validation set, which agrees with the criteria pro-
posed by Golbraikh and Tropsha (R2

pred > 0.6) for a robust
equation as seen in Table 6.

Y ¼ −0:619650812*ALogp2þ 11:748891707*MATS5i–6:583353004*GATS5eþ 8:783141246*GATS1s

þ 0:245270016*nHBAccþ 9:277548 ð1Þ

Y ¼ −0:683762136*ALogp2þ 8:522074982*MATS5i

þ 8:041720811*GATS1s–0:257469582*CrippenLogP–0:418234209*ETA Beta ns dþ 4:354169 ð2Þ

Y ¼ −0:570977806*ALogp2þ 10:984779979*MATS5i

þ 9:660965568*GATS1s–1:970549610*GATS5s−0:532187476*ETA Beta ns dþ 5:00093 ð3Þ

Y ¼ −0:708666994*ALogp2–0:014820037*ATSC0i

þ 7:327733722*MATS5i−19:009577528*MATS1s−0:526316186*ETA Beta ns dþ 9:042494 ð4Þ

Table 5 Description of model
parameters and its classes for Eq.
4

Name Definition Class Mean
effect

ALogP2 Square of AlogP. 2D 0.1436

ATSC0i Centered Broto-Moreau autocorrelation—lag 0/weighted by
first ionization potential

2D 0.5085

MATS5i Moran autocorrelation—lag 5/ weighted by first ionization
potential

2D 0.1443

MATS1s Moran autocorrelation—lag 1/weighted by I-state 2D − 0.3687
ETA_Beta_ns_d A measure of ion electrons entering in resonance 2D 0.5724

Table 6 Statistical analysis of
model 1 parameters ALogP2 ATSC0i MATS5i MATS1s ETA_Beta_ns_d VIF P value

ALogP2 1 1.1421 4.61E−06
ATSC0i 0.1769 1 2.1360 0.0504

MATS5i 0.1416 0.7186 1 2.2741 7.3E−07
MATS1s 0.2759 0.0548 0.2166 1 1.2296 9.37E−09
ETA_Beta_ns_d −0.0574 0.2359 0.2923 0.2571 1 1.1511 6.94E−05
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The effectiveness of the equation was measured by the
value of the calibration set and calculated pIC50 of the valida-
tion set. The observed, calculated, and residual values of β-
lactam compounds are seen in Table 4. The low residual value

from the difference between the biological activities and cal-
culated activities displays the effectiveness of the equation.
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Fig. 3 A graph of standardized residual against bio-activities
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Fig. 4 A plot of leverages versus standard residual (William’s plot)
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Fig. 2 Plot of predicted activities versus inhibition concentration

Table 7 Newly designed β-lactam derivative compounds with their
new inhibition concentration (pIC50)

S/No. Structures New predicted activity 
(pIC50)

1 9.6702

2 9.5546

3 10.6637

4 

 

9.8178 

5 

 

9.0060 

6 

 

10.3570 
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Both internal and external validations confirm model 4 to be
very potent and extremely effective.

Table 5 shows the definition of the descriptors that were
used in building the mathematical model; the descriptors were
used in validating the model both internally and externally.

The mean effect of the mathematical model was executed
statistically to evaluate the contribution of each model param-
eter individually. From the coefficient of the mean effect
values, ALogP2, ATSC0i, MATS5i, and MATS1 had a pos-
itive coefficient, meaning that increasing the model parame-
ters would increase the biological activities of the derivatives.
Furthermore, ETA_Beta_ns_d having a negative coefficient
means that decreasing the model parameter would also in-
crease the biological activities of the derivative compounds
as proven in Table 6. Variance inflation factor (VIF) gives a
degree of the inter-relationship among the model parameters.
The VIF scores were within the approved value of 1–5, indi-
cating that there is no co-linearity between the bio-activities
and model parameters of the derived model, as shown in
Table 6. The null hypothesis shows no significant connection
amid the bio-activity and model parameters of the derived
equation at p > 0.05. At a 95% confidence level, the P values
of the model parameters were below 0.05. Therefore, the null
hypothesis is rejected and the alternative hypothesis is accept-
ed. This indicates that there is no co-linearity between the bio-
activity and model parameters of the constructed model, as
shown in Table 6.

Figure 2 shows a plot of observed activities against the
calculated activities of both the test set and the train set of
β-lactam derivatives. The graph showed that the predicted
activity was in good agreement with its experimental values
as shown in Table 2, conforming to the effectiveness and
stability of the built model.

Figure 3 is a graph of standardized against experimental
activity; from the plot, it is shown that the values of both test
and train set spread on both sides of zero point on the plot,
showing no systematic errors between the standardized resid-
ual versus the biological activity (experimental activity).

Figure 4 shows a diagram of standardized residual against
leverage values also calledWilliam’s plot. All the compounds
fell within the applicability domain from the calculated lever-
age of L = 0.6429, thou 1 compound was outside the applica-
bility domain which might be due to a slight change in the
molecular structure as compared with the remaining mole-
cules in the data set.

Ligand-based drug design

Six (6) new β-lactam derivative compounds were designed
using the ligand-based approach. This approach uses the mo-
lecular descriptors obtained from the mathematical QSAR
model; adjustments were made on the lead compounds (37
and 43) based on the definition of the molecular descriptors
(ATSC0i and MATS55i) as shown in Table 5. The newly

Fig. 5 The bio-availability radar
is for compounds 37 and 43

Table 8 Pharmacokinetic test of the designed β-lactam compounds

S/No. MW (g/mol) nAH nRB HBA HBD MR TPSA (Å2) iLOGP BBB PAINS Brenk

1 437.83 12 7 8 2 110.06 114.76 2.69 No 0 0

2 436.84 12 7 7 2 111.20 120.55 2.41 No 0 0

3 437.83 12 7 8 2 110.06 114.76 2.51 No 0 0

4 479.83 18 8 8 2 130.40 114.76 3.54 No 0 0

5 479.48 18 8 8 2 130.40 114.76 2.88 No 0 0

6 478.49 18 8 7 2 131.54 120.55 3.08 No 0 0

MW molecular weight (< 500 mg/mol), nAH number of aromatic heavy atoms, nRB rotatable bonds, HBA hydrogen bond acceptors, HBD hydrogen
bond donors, MR molecular refractivity, TPSA topological polar surface area, BBB blood–brain barrier
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designed compounds with their new calculated activities are
seen visually in Table 7.

Computational pharmacokinetics of the designed
compounds

The physicochemical properties of the designed derivatives
were explored for its drug-like properties. Compounds 37 and
43 revealed the characteristics of the effective drug-like tem-
plate compounds as seen in Table 8. The compounds showed
no violation of Lipinski’s rule of five, high GI absorption, 0.55
oral bio-availability score, and zero PAINS alerts + (pain-assay
interference structural alerts) indorsing its dependability for fur-
ther clinical trials. The bio-availability radar is for compounds
37 and 43 and is shown in Fig. 5; it gives a quick glance at the
pharmacokinetic properties of the structures.

Conclusion

QSAR and pharmacokinetics analysis carried out on the
β-lactam derivatives proved the derivative compounds to
be standard anti-breast cancer agents against MCF-7 cell
line. The effectiveness of the generated QSAR model was
assessed using internal and external validation test; the
model conformed to the minimum approved values, indi-
cating the equation could be used in designing new β-
lactam derivative compounds with enhanced anti-cancer
activities. The statistical analysis carried out on the
QSAR model showed that ALogP2, ATSC0i, MATS5i,
and MATS1s had a positive coefficient, meaning that in-
creasing the model parameters would increase the biolog-
ical activities of the β-lactam derivative compounds,
while ETA_Beta_ns_d having a negative coefficient
means decreasing the model parameter would also in-
crease the biological activities of the derivative com-
pounds. Compounds 37 and 43 were chosen as template
compounds in designing 6 new derivative compounds be-
cause they had higher predicted activity and low residual
values. The molecular descriptors (MATS5i and
MATS1s) had more significance, and based on their mean
effect, adjustments were made on the fragments of the
template compounds.

Furthermore, the pharmacokinetic analysis (drug likeliness
test) carried out on the newly designed compounds revealed
that all the compounds passed the drug likeness test (ADME
and other physicochemical properties) and they also had zero
violation to Lipinski rule of five: a standard measure used in
assessing the drug likeness of molecules. This concludes that
the compounds can move on to the next step of pre-clinical
trial, proving a tremendous discovery for medicine in finding
permanent solutions to estrogen-positive breast cancer (MCF-
7 cell line).
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