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Abstract
Modified uridines seem to be able to work as hypoxic tumour cell radiosensitisers. Before they sensitise cells to ionising
radiation, they have to be incorporated into the genomic DNA and the latter process has to be preceded by the phosphorylation
of the modified uridine, which in human cells is executed by human thymidine kinase 1 (hTK1). In the current study, we present
the quantitative structure-activity relationship (QSAR) model allowing to identify and understand the molecular features of
nucleoside derivatives governing the hTK1 kinase activity. The developed model meets all requirements of a reliable QSAR
model and is based on only twomolecular properties: the shape of the nucleoside determined by atom substitutions and the ability
of the molecule to intermolecular interactions with the enzyme. These results have important implications for the rational
designing of new hTK1 substrates and should significantly reduce the time and cost of studies on new radiosensitisers.
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Introduction

The efficacy of radiotherapy, one of the most commonmodal-
ities used to combat cancer [1], is impaired by the fact that
solid tumour cells suffer from hypoxia, which make them
radioresistant [2]. In order to overcome this therapeutically
undesirable effect, radiosensitisation is necessary. One may
mention several classes of cellular radiosensitisers that have
been investigated so far [3], of which thymine analogues as
5-bromouracil (BrU)/5-iodouracil (IU) [4] and other

halogenated nucleobases [5, 6] seem to be especially promis-
ing since they work under hypoxia. Their radiosensitising ac-
tion is related to the irreversible and swift elimination of halide
anions (X−) from the modified nucleobase anion [7, 8] that is
formed due to solvated electron (e−hyd) attachment. The latter
species, the second (beside hydroxyl radicals) most abundant
product of water radiolysis [9], are amply stable under hypox-
ia, but native DNA is not sensitive to them [5]. This situation
is different for the DNA with incorporated radiosensitiser,
where the elimination of X− leaves a reactive nucleoside rad-
ical in the biopolymer. As a consequence, secondary reactions
comprising hydrogen atom transfer within the radical nucleo-
side [10, 11] or between the radical and adjacent nucleoside
[12] lead ultimately to a serious DNA damage such as single-
strand breaks [13], cyclopurine lesions [14] and DNA cross-
links [15].

Despite the abovementioned advantages of halogenated
nucleosides, they are not routinely employed in anticancer
treatment. Even in 5-bromodeoxyuridine (BrdU)/5-
iododeoxyuridine (IdU), the derivatives most thoroughly
investigated in clinical trials were not introduced into
practice due to only marginal therapeutic effects in pa-
tients [16, 17]. Probably one of the reasons that inhibit
the development of this otherwise tempting approach to
anticancer treatment is the lack of electrophil ic
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nucleosides with appropriately optimised features.
Recently, we have undertaken attempts for rational de-
signing of 5-substituted uracils prone to the dissociative
electron attachment (DEA) process [18, 19]. As a result,
we proposed a series of 5-modified uracils with the DEA
characteristics much better than those of BrdU [18, 19]
and the superior characteristics of some of them were
confirmed in the photoelectron spectroscopy [18] and ra-
diolytic studies [20, 21].

Here, it should be emphasised that in order to become a
part of the cellular DNA, after translocation from the extra-
cellular environment to the cytosol, a nucleoside has to be
phosphorylated to its triphosphate. The first stage of phos-
phorylation, the conversion of the nucleoside to the nucleo-
side monophosphate, is usually the rate-limiting step [22].
Hence, the favourable DEA profile [18, 19] is necessary, but
not a sufficient requirement for an efficient radiosensitising
nucleoside. Taking into account that chemical synthesis is
frequently not a trivial task and usually is a time-
consuming and costly process, it is difficult to overestimate
access to a computational model that could tell, yet before
the actual synthesis, if the proposed derivative is a good
substrate for nucleoside kinase. Basically, one can employ
a variant of the quantum mechanics/molecular mechanics
(QM/MM) approach to model the first, most demanding
phosphorylation step of a studied nucleoside by hTK1 ki-
nase. However, this is definitely not a simple task. Indeed,
the experimental structures of the hTK1 kinase are not suit-
able for reaction mechanism studies since hTK1 changes its
quaternary structure upon binding substrates [23]. On the
other hand, the active site amino acids are flexible [24],
which makes accurate diffraction measurement for the enzy-
matic pocket impossible. Out of three available crystal struc-
tures [24–26], only one monomer in one of those structures
includes full amino acid sequence of the active site. Thus, in
order to obtain the active hTK1 geometry, one has to com-
plete missing amino acid sequence, dock proper substrates,
and carry out a long molecular dynamics (MD) simulation
that should lead to a ligand-hTK1 complex suitable for the
QM/MM calculations. Only a representative structure from
the MD simulation, with the proper choice of high-layer
atoms and additional constraints, if necessary, would enable
the QM/MM calculations to be completed. Moreover, a few
enzymatic mechanisms for phosphate transfer have been
proposed so far [27, 28]: dissociative, associative or concert-
ed and they all should be modelled to decide which of the
pathways is most probable. Although the computational pro-
cedure described above would bring us a direct insight into
the enzymatic process under consideration as well as allow
to select nucleosides suitable for phosphorylation, it is com-
putationally very demanding and needs up to dozen or so
months to be completed. Taking into account the fact that
usually a significant number of possible derivatives have to

be scrutinised, a less time-consuming approach is desirable.
Therefore, quantitative structure-activity relationship
(QSAR) seems to be a method of choice for selecting the
most promising nucleoside derivatives since to build a sta-
tistical model and choose appropriate compounds, one needs
only a fraction of time compared to the described above
QM/MM methodology. It is interesting to mention, that re-
cently, the Bintelligent^ consensus modelling approach was
proposed [29]. This approach integrates models that are de-
veloped by means of different combinations of descriptors
and/or different modelling methods; in consequence, predic-
tion is based on multiple individual models (each based on
individual set of descriptors) instead of single regression
equation. It offers improvements of the predictability of the
model [29]. On the other hand, due to the fact that consen-
sus model is based on large number of descriptors, its mech-
anistic interpretation is frequently more difficult (in compar-
ison to simple QSAR model) [30]. In terms of the
Organisation for Economic Cooperation and Development
principles related to QSAR model development and valida-
tion [31], the benefits related to improvement of the model’s
statistics are as valuable as the complexity and interpretabil-
ity power of the model.

In the following, we will demonstrate the development
of a simple correlation model that predicts with an accept-
able accuracy the ease of various uridine derivatives to be
phosphorylated by human thymidine kinase 1 (hTK1).
The derived correlation equation depends on three de-
scriptors only, which enables the observed activities to
be rationalised in terms of the molecular features of the
studied nucleosides.

Methodology

Data collection

The experimental data related to the hTK1 phosphorylation
activity was collected from the available literature [32, 33] and
was logarithmically transformed to decrease the range of data
variation. The experimental data were available for 26 nucle-
oside analogues. Details related to the structures of analysed
nucleosides one can find in Table S1 (Supplementary
materials).

Molecular descriptors calculation

Geometries of nucleoside analogues in the trans-
conformation were optimised with the Gaussian09 soft-
ware [34], at the B3LYP/6-31++G(d,p) density functional
theory level with the polarisable continuum model [35] to
account for water environment. After the optimisation, the
molecular descriptors were calculated with the use of the
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DRAGON software [36]. We have calculated 957 descrip-
tors for each nucleoside.

QSAR model development and validation

In the first step, the set of 26 nucleosides was sorted accord-
ing to the increasing values of log A. Then, data was divided
into training (T—1) and validation (V—2) sets with the
usage of the B3:1 algorithm^, in which every the third com-
pound is assigned to the validation set, whereas the remain-
ing ones form the training set. The second and first before
the last compounds were independently assigned to valida-
tion set.

QSAR model was developed with the application of the
multiple linear regression (MLR) approach [37, 38]. We as-
sumed that the modelled activity (log A) could be expressed as
a function of molecular descriptors (x1, x2, x3,…):

log A ¼ a1 x1 þ a2 x2 þ a3 x3 þ…þ an xn þ b ð1Þ

where a1, a2, a3,…, an are the regression coefficients and b is
the intercept.

The optimal descriptors were selected in two steps:
first, to reduce the descriptor-compound ratio, we selected
descriptors significantly correlated with log A (r > 0.60),
and then we applied genetic algorithm (GA) [39] imple-
mented in the QSARINS software [40]. The purpose of
the genetic algorithm application was to find the descrip-
tors that allow to obtain model with the highest validation

and cross-validation parameters. The setup of GA was as
follows: generation per size = 500 and mutation rate =
45%.

The model fitting, robustness and predictive abilities
were evaluated based on the parameters summarised in
Table 1 [41–46]. Model’s robustness was also verified
by the application of the Y-scrambling procedure. The
Williams plot technique was employed to determine the
QSAR mode l app l i c a b i l i t y doma i n [ 47–50 ] .
Additionally, in order to select an optimal model (based
on optimal set of descriptors), the double cross-
validation procedure was performed with the double
cross-validation tool (version 2.0) developed by Roy
and Ambure [51].

Results and discussion

The multiple linear regression technique was employed in
order to develop the quantitative structure-activity relationship
model (QSAR) [37, 38]. This model allows to identify the
physicochemical features of nucleoside derivatives governing
the hTK1 kinase activity, which should enable new hTK1
substrates to be designed rationally and tested before
synthesis.

As it was mentioned in the BMethodology^ section, the
experimental data related to the hTK1 phosphorylation activ-
ity were collected from the available literature [32, 33] and
were logarithmically transformed to decrease the range of data
variation (Table 2).

Table 1 Quality measures for QSAR models [41–46]

Goodness of fit Robustness Predictive ability

Correlation coefficient R2 ¼ 1−
∑
n

i¼1
yobsi −ypredið Þ2

∑
n

i¼1
yobsi −yobsð Þ2 Q2

CV ¼ 1−
∑
n

i¼1
yobsi −ypredcvið Þ2

∑
n

i¼1
yobsi −yobsið Þ2 Q2

Ext ¼ 1−
∑
k

j¼1
yobsj −ypredjð Þ2

∑
k

j¼1
yobsj −ŷobsjð Þ2

Root mean square error RMSEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

n¼1
yobsi −ypredi

� �

r

2 RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

n¼1
yobsi −ypredcvi

� �

r

2 RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
k

j−1
yobsj −ypredj

� �

s

2

CCC CCC ¼
2 ∑

n

i¼1
xi−xð Þ yi−yð Þ

∑
n

i¼1
xi−xð Þ2þ∑

n

i¼1
y1−yð Þ2þn x−yð Þ2

Modified r2 r2m ¼ r2 1−
ffiffiffiffiffiffiffiffiffiffiffi

r2−r20
p

� �

yi
obs means the experimental (observed) value of the property for the ith compound from training set, yi

pred the predicted value of the property for the ith
compound from training set, yi

predcv the predicted value of the property for the temporary included (cross-validated) ith compound from training set, yobs

the mean experimental value of the property in the training set, n the number of compounds in the training set, yj
obs the experimental (observed) value of

the property for the jth compound from validation set, yj
pred the predicted value of the property for jth compound from validation set, ŷobs the mean

experimental value of the property in the validation set, k the number of compounds in the validation set, x and y the abscissa and ordinate values of the
graph plotting the prediction experimental data values vs the ones calculated using the model, n the number of compounds and X and y the averages of
abscissa and ordinate values, respectively; squared correlation coefficient values between the observed and predicted values of the compounds with/
without intercept (r2 /r0

2 )
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The QSAR model is described by Eq. (2):

logA ¼ 0:073−0:011 P VSA LogP 6þ 2:92 HATS4v

þ 3:52 E3un

¼ 20; nval ¼ 6; F ¼ 16:53; p < 10−4; R2

¼ 0:75 Q2
CV ¼ 0:65 Q2

Ext ¼ 0:71;RMSEC

¼ 0:17;RMSECV ¼ 0:19;RMSEP ¼ 0:17; r2m

¼ 0:55;CCC ¼ 0:86 ð2Þ

where n and nval stand for the number of compounds in the
training and validation set, respectively, while the remaining
parameters are defined in Table 1.

The visual correlation between the experimentally mea-
sured and predicted values of log A for the training (T) and

validation (V) sets, presented in Fig. 1, confirms the high
quality of the model. All parameters listed below Eq. (2) and
employed to verified model’s fitting, robustness and predic-
tive abilities (calculated by means of quality measurement
summarised in Table 1, [41–46]) meet the required criteria
and, therefore, also proves the model’s quality. The Y-
scrambling procedure (Fig. 2) additionally confirms that ob-
tained model was not a result of by chance correlation.

The applicability domain of the QSAR model was verified
based on the plot of the standardised residuals (differences
between the predicted and observed values of log A) versus
the leverages, the so-called Williams plot (Fig. 3) [47–50].
The leverage value, in this case, expresses similarity of a given
compound, for which the prediction is made to the set of
training compounds. Thus, the Williams plot helps to assess
the influence of structural similarity between the compounds
on the predicting error. All deoxythymidine derivatives used
in the training and validation sets were situated in the range of

Table 2 Experimental and predicted values of log Awith data split into a training set and a validation set as well as other QSARmodel details [32, 33]

Substrate P_VSA_LogP_6 HATS4v E3u log A T/V log Ap Leverages Residuals

2′-Deoxythymidine (T) 27.818 0.160 0.437 2 1 1.77 0.09 1.25

2′-Deoxyuridine (U) 27.818 0.175 0.508 1.89 1 2.06 0.17 − 1.12
3′-Fluoro-5-ethynyl-2′-deoxyuridine (FEU) 94.901 0.178 0.408 1 1 0.96 0.46 0.28

3′-Fluoro-methyl-2′-deoxythymidine (FMT) 42.778 0.175 0.397 1.18 1 1.50 0.14 − 1.99
3′-Azido-methyl-2′-deoxythymidine (AZMT) 55.520 0.151 0.354 1.18 1 1.14 0.32 0.26

3′,5-Difluoro-2′-deoxyuridine (FFU) 57.738 0.182 0.455 1.3 1 1.56 0.10 − 1.55
3-(2-Propynyl)-2′-deoxythymidine (3-PropT) 79.941 0.125 0.482 1.32 1 1.24 0.43 0.69

3-(2,3-Dihydroxypropyl)-2′-deoxythymidine (3-DHPT) 27.818 0.095 0.463 1.44 1 1.67 0.21 − 1.57
3′-Fluoro-5-cyclopropyl-2′-deoxyuridine (FCPU) 42.778 0.142 0.452 1.52 1 1.60 0.07 − 0.50
2′,3′-Dideoxythymidine (HHT) 27.818 0.155 0.436 1.6 1 1.75 0.09 − 0.91
3-Methyl-2′-deoxythymidine (3-MeT) 27.818 0.131 0.378 1.65 1 1.47 0.27 1.17

3′-Azido-2′-deoxythymidine (AZT) 27.818 0.173 0.416 1.72 1 1.73 0.13 −0.13
3-Ethyl-2′-deoxythymidine (3-EtT) 27.818 0.111 0.471 1.79 1 1.74 0.16 0.22

3′-Azido-5-iodo-2′-deoxyuridine (AZIU) 59.796 0.230 0.467 1.85 1 1.72 0.25 0.84

1-(2′-Deoxy-2′-fluoro-1-D-arabinofuranosyl)
-5-iodouracil (FIAU)

42.778 0.225 0.457 1.88 1 1.86 0.19 0.07

5-Bromo-2′-deoxyuridine (5-BrU) 27.818 0.203 0.483 1.9 1 2.06 0.17 − 1.03
5-Ethyl-2′-deoxyuridine (5-EtU) 27.818 0.144 0.432 1.9 1 1.70 0.10 1.06

3-n-Butyl-2′-deoxythymidine (3-nBuT) 27.818 0.090 0.517 1.93 1 1.84 0.36 0.62

5-Fluoro-2′-deoxyuridine (5-FU) 42.778 0.184 0.499 1.98 1 1.89 0.14 0.49

5-Chloro-2′-deoxyuridine (5-ClU) 27.818 0.199 0.486 2.29 1 2.05 0.17 1.40

3-Isopropyl-2′-deoxythymidine (3-IsoT) 27.818 0.101 0.425 1.23 2 1.55 0.21 − 1.73
3′-Fluoro-2′-deoxythymidine (FLT) 42.778 0.159 0.418 1.48 2 1.53 0.08 − 0.32
1-(2′-Deoxy-2′-fluoro-1-D-arabinofuranosyl)

-thymine (FMAU)
42.778 0.172 0.424 1.68 2 1.59 0.07 0.41

3′-Azido-2′-deoxyuridine (AZU) 59.796 0.193 0.501 1.85 2 1.73 0.22 0.56

3-Benzylo-2′-deoxythymidine (3-BnT) 27.818 0.114 0.475 1.92 2 1.77 0.15 0.73

5-Iodo-2′-deoxyuridine (5-IU) 27.818 0.214 0.476 2.23 2 2.06 0.21 0.80

log A is the experimentally measured activity of hTK [29]; log Ap is the predicted activity of hTK
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residuals differing by ± 3 standard deviations from the mean
value and do not exceed calculated leverage threshold for this
model. Thus, there were no outlying predictions observed.

The QSAR model depicted by Eq. (2) is a linear combina-
tion of three descriptors (descriptors are not correlated to each
other, Fig. S1 in the Supplementary materials), namely:
P__VSA_logP_6, HATS4v and E3u. The selection of the op-
timal model (based on the optimal set of descriptors) was
confirmed by the double cross-validation procedure [51]
(Table S2 in the Supplementary materials). The conformation
changes of a molecule as well as the total number and bond
lengths influence the value of the HATS4v and E3u descrip-
tors. Thus, both indirectly provide information related to the
molecular shape. The P_VSA descriptor, on the other hand,
expresses the van der Waals surface area (VSA) that is occu-
pied by molecule atoms having given property in a certain
range [52, 53]. Several properties could be taken into account
in P_VSA descriptor calculations, such as atomic weight and
ionisation potential. In the case of P_VSA_logP_6, lipophilic-
ity is considered. Thus, this descriptor represents the size of
VSA occupied by the atoms with lipophilicity within the spec-
ified range and thus encodes the availability of molecular
fragments for intermolecular hydrophobic interactions [53].

The worked out QSAR model (Eq. (2)) indicates that both
impact of atoms on the shape of the nucleoside analogues,
coded in HATS4v and E3u descriptors, and the size of their
VSA capable of intermolecular hydrophobic interactions, de-
scribed by P_VSA_logP_6, are the key properties that influ-
ence the hTK1 phosphorylat ion act iv i ty against
deoxythymidine derivatives. The sign of the equation coeffi-
cient related to the P_VSA_logP_6 descriptor is negative while
those related to HATS4v and E3u are positive. This indicates
that increasing the values of P_VSA_logP_6 results in decreas-
ing the values of the hTK1 activity while increasing the values
of HATS4v and E3u causes the increase in its activity (com-
pounds with higher values of P_VSA_logP_6 and lower values
of HATS4v and E3u are worse substrates for hTK1).

Among the nucleoside analogues employed for the devel-
opment of the QSARmodel, there are derivatives substituted at
deoxyribose: 3′-OH (e.g. AZMT) and 2′ analogues (e.g.
FMAU) as well as molecules with the N3 (e.g. IsoT) and 5C
modification of pyrimidine (e.g. 5-CldU; Table 2). The highest
activities are observed for the compounds substituted with hal-
ogens at the 5C position. These derivatives exhibit the highest
values of both the HATS4v and E3u descriptors (see Table 2).
Modification of the N3 position with an alkyl residue results in
the decreased values of both descriptors and in consequence
decreases the hTk1 activity. It indicates that substitution at the
N3 position with the alkyl group changes the shape of a mol-
ecule. It was proven that substitution in this position hinders the
hydrogen bonding between the N3 nitrogen of pyrimidine base
and the main chain carbonyl of residue 178 in the enzyme that
is required to tight spacing of the lasso-like loop [32, 33, 54].
Substitution at deoxyribose is also not favourable. 3′-OH ana-
logues as well as 2′ derivatives exhibit lower activity than dT.
The only exception is FIAU. However, this nucleoside is
substituted not only at the 2′ position but also at the 5 position
of pyrimidine. The lower activity (higher values of
P_VSA_logP_6 and lower values of HATS4v and E3u) of 3′-

Fig. 3 Williams plot: standardised residuals versus leverages. Solid lines
indicate ± 3 standard deviation units. Dash lines indicates the threshold
value (h* = 0.60)

Fig. 2 Y-scrambling results: average values of the square errors of
calibration and cross-validation of the real QSARmodel and 400 random
models

Fig. 1 Calculated vs. observed values of log A
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OH derivatives is probably related to the lack of hydrogen
bonds that cannot be formed in the ligand-enzyme complex
between the substituted 3′-OH group and the amino group of
Gly182 [32, 33, 54–56]. 2 ′-Fluoro derivat ive of
deoxythymidine differs from dT mostly in the value of
P_VSA_logP_6while the HATS4v and E3u descriptors remain
almost the same. This indicates that the shape of the FMAU is,
in this case, not changed and that the addition of fluorine in 2′
position affects intermolecular interactions. This agrees with
the finding that interactions between the 2′-OH group and
Tyr187 are hindered when the nucleoside is substituted at the
2′ position [32]. Indeed, the Tyr187 nucleoside 2′-OH interac-
tions are necessary to keep the lasso in place [32].

Considering that the most promising group of analogues
constitutes 5C derivatives, we will finally focus on this class
of nucleosides. It can be noticed that the changes in the activ-
ity of halogen derivatives follow the following pattern: 5-
CldU > 5-IdU > 5-BrdU > 5-FdU and the worst substrate is
the unsubstituted nucleoside, i.e. dT. When one compares
the values of descriptors calculated for all these molecules,
one finds out that the HATS4v and E3u descriptors which
code the size and shape of the studied analogues have the
smallest values, equal to 0.160 and 0.437, respectively, for
dT (see Table 2). P_VSA_logP_6 for 5-halogenated deriva-
tives are similar (except that for 5-FU), which means that they
are similar in terms of intermolecular interactions. The impact
of size of substituent at position 5 on the phosphorylation
reaction was previously proven. The proper size of a substit-
uent at the 5 position is required to fit the binding pocket in the
hTK1 enzyme [32]. However, due to the fact that activities of
the iodo and methyl analogues are different beside similar size
of 5-substitients, the steric hindrance is not sufficient to ex-
plain the observed differences in activity. The other important
issue is their ability to intermolecular interactions. The
polarisability of iodine is much larger than that of the other
analysed 5-substituents [57], which might be responsible for
the stronger interaction between the nucleoside and enzyme,
and in consequence makes 5-IdU the best (among the
analysed compound) substrate for hTK1.

Conclusion

Due to the limited availability of structural data concerning
hTK1, the significant flexibility of its enzymatic pocket, com-
plex phosphorylation mechanism and high computational cost
of QM/MM simulations, showing that a given nucleoside is a
suitable substrate for hTK1 with calculations at the atomic
level, seem to be more than difficult. Therefore, we have de-
veloped a QSAR model that allows to identify the molecular
features of thymidine analogues governing their activity
against hTK1. Two properties turned out to be the key features
responsible for the phosphorylation process: the shape of the

nucleoside determined by atom substitution coded in the
HATS4v and E3u descriptors and the ability of molecules
to hydrophobic interactions coded by the P_VSA_logP_6
descriptor. The model meets all requirements related to
QSAR model’s development and therefore can be applied
to predict the activity of new nucleoside before its syn-
thesis. The obtained results also indicate that the most
promising analogues are those substituted at the 5C posi-
tion. Designing a new substrate for hTK1 one should fo-
cus on the modification of uridine at this position. A valu-
able substituent needs to meet two requirements: be at
least as large as methyl group and be able to interact
strongly with the enzyme-binding pocket.
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