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Abstract It is shown that the H· · · B contacts in 1-
silacyclohex-2-enes are clearly stabilizing and strong,
whereas those in 1-silacyclopent-2-enes are much weaker.
This result is supported by analysis of QTAIM-based
parameters and appropriate structural changes taking place
upon the open form → closed form transformation and is
in full agreement with previous NMR spectroscopic data
[Wrackmeyer et al. (2006) Appl Organometal Chem 20:99–
105]. Also, the influence of electronic and steric effects
originating from the presence of specific substituents on the
strength of the H· · · B contacts is discussed in detail. Some
problems and ideas associated with the use of the so-called
open-closed method utilized in assessing values of inter-
action energies are discussed in detail. Particular attention
is paid to the correct choice of reference open systems. It
is shown that their partial geometry optimization leads to
reliable values of interaction energies.

Keywords Charge-inverted hydrogen bond · Triel bond ·
Silicon · Boron · Interaction energy · Intramolecular
interaction · DFT · PBE0 · Molecular modeling

Introduction

Wrackmeyer is most likely the first who paid attention to
the presence and the bonding character of a Si–H–B bridge
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in organoboron compounds [1–4]. The role of this bridge in
the formation of heterocyclic systems containing both sil-
icon and boron atoms was discussed on the basis of both
NMR and IR spectroscopic data [1]. Also, the presence of
a Si–H–B bridge in 3-bora-4-methylene-homoadamantane
was determined on the basis of X-ray structural measure-
ments [2]. More importantly for the present article, based
on the NMR spectra obtained for two members (1 and 2
in Fig. 1) of 1-silacyclopent-2-enes, Wrackmeyer et al. [4]
have concluded that Si–H–B bridges in these molecules are
either absent or extremely weak. This was to be in opposi-
tion to their 1-silacyclohex-2-ene counterparts (3 and 4 in
Fig. 1), where existences of Si–H–B bridges have been con-
firmed by similar spectroscopic data [4]. This difference in
Si–H–B bonding effect was attributed to stronger repulsion
between silyl groups in both 1-silacyclohex-2-enes forc-
ing the exocyclic relevant silyl group to approach closer
to the 9-borabicyclo[3.3.1]nonane group (9-BBN) and, as a
consequence, considerably reducing the H· · · B distance.

Bonding properties of the Si–H· · · Y bridge are well
known [5–9]. For example, in case of Y being a transi-
tion metal, this interaction is called an agostic bond [10–13]
or a σ interaction [12–17] depending on a specific situ-
ation, whereas if Y is an electron-deficient element (as,
for example, boron), this type of interaction was called a
“charge-inverted hydrogen bond” (CIHB) [11–13, 18–25].
Therefore, the electron-deficient Si–H–B bridge (this term
was being used by Wrackmeyer et al. [1–4]) in investi-
gated systems in fact represents one of the examples of
intramolecular charge-inverted hydrogen bonds (IMCIHB).

Taking the above into account, it is really a tempting
challenge to assess strengths of H· · · B interactions in 3 and
4, and particularly in 1 and 2. It can be done by comput-
ing values of the interaction energy of H· · · B. Although
this energetical parameter is not accessible to experimental
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Fig. 1 Structural formulas of
1-silacyclopent-2-enes and 1-
silacyclohex-2-enes investigated
by Wrackmeyer et al. [4]

measurements, it is relatively easily accessible to theoreti-
cal methods of molecular modeling. As widely believed, the
interaction energy directly describes the strength of a (local)
intramolecular interaction. Taking into account the NMR
spectroscopic data obtained by Wrackmeyer et al. [4], one
should expect clearly negative, i.e. showing stabilizing char-
acter of H· · · B, values of interaction energies obtained for
both 1-silacyclohex-2-enes, i.e. 3 and 4, whereas for both
1-silacyclopent-2-enes (1 and 2), they should be either posi-
tive or only slightly negative. In the former case, our results
would suggest repulsive character of the H· · · B contact,
whereas in the latter, this contact would be weakly bond-
ing. In addition to these four molecules investigated earlier
by Wrackmeyer et al. [4] (Fig. 1), we also have performed
similar computations for their simplified derivatives (see the
’Investigated systems’ section). This approach allows us to
discuss influence of both electronic and steric effects orig-
inating from the presence of specific substituents on the
strength of investigated Si–H· · · B bridges.

The other purpose of this article is to shed light on some
problems relating to the definition of the interaction energy
(of an intramolecular H· · · Y contact) itself. In particular,
an importance of the choice of a reasonable reference open
system will be discussed in detail, showing that this is not
so easily-done task as it might at first seem. In our opinion,
this issue is not raised often enough [19, 26–31].

Computational methodology

Geometry optimizations and frequency calculations to ana-
lyze characters of obtained stationary points have been
performed using Gaussian 09 program [32]. Lack of imag-
inary frequencies has confirmed that obtained geometries
correspond to local minima on the potential energy hyper-
surface. For some reference systems, also, partial geometry
optimizations have been performed as indicated in the text.
Analysis of the topology of the electron density distribu-
tion has been made by means of quantum theory of atoms
in molecules (QTAIM) [33–35] using the AIMAll pack-
age [36]. All calculations have been performed utilizing the

PBE0 [37–39] exchange-correlation functional of density
functional theory and the 6-311G(d,p) basis set [40, 41]. It
was shown that PBE0 gives reasonable molecular structures
[12, 42] as well as electronic densities [43, 44]. On the other
hand, the 6-311G(d,p) basis set is of valence triple zeta quality
and, additionally, includes polarization functions for all atoms.

Energy of an intramolecular interaction

In contrast to the energy of an intermolecular interaction
(e.g. a hydrogen bond), the energy of an intramolecular
interaction is not a definable quantity due to the fact that
any attempt of extracting the energy of the interaction of
interest from the total energy of a system hosting this inter-
action introduces high degree of discretion for the choice of
a reference system [27–31]. Nevertheless, in spite of this,
some additive schemes leading to numbers understood as
interaction energies have been proposed. Among them, the
so-called open-closed method [45, 46] seems to be both the
most popular [26–29, 45–58] and straightforward. Accord-
ing to this method, the interaction energy is just a difference
between total energies of the closed form of a molecule,
i.e. the form hosting the relevant interaction, and the open
one obtained by a proper rotation of either the donor or the
acceptor group and, as a consequence, characterized by a
cleavage of the relevant interaction (see Fig. 2).

It is understood that in general different interaction
energy values are obtained as a result of different reference
open systems used [28].

What is more, having one of these open systems already
chosen, one encounters a new question, namely whether
or not the geometry of the open system should be fully
optimized [28, 58]. Unfortunately, only in a small piece
of articles where the open-closed method is utilized, this
question is addressed [19, 28, 29, 45, 46, 58]. Most likely,
Schuster was the first who suggested [45] to use the open
form having ’the least changes in molecular geometry
besides a cleavage of the H-bond‘ pointing out that the
open reference system ’need not be a local minimum of the
energy surface‘ [46]. In his opinion, performing single-point
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Fig. 2 Scheme presenting a method for receiving open reference forms in the open-closed method defining the energy of intramolecular
interaction (indicated by dashed line) in the closed form

calculations for the open form ’seems to be more appro-
priate‘ than the full geometry optimization of the open
reference form ’in cases where it can be applied, because
it does not mix a large energy of isomerization into the H-
bond energy‘ [46]. Schuster underlined, however, that any
splitting of the change in total energy into pure isomeriza-
tion and H-bond energy is artificial in fact [46]. As already
mentioned, acceptance of this approach leads to single-point
energy calculations for the open form, for which all geome-
try parameters (but a rotation angle of course) are taken from
the closed form and then kept constant (i.e. frozen). This sit-
uation is depicted on the left hand side of Fig. 3, where Ec,
E

f,c
o and Ef

c mean total energies of closed, fictitious open
and fictitious closed forms, respectively. It should be noted
that this approach is in line with the definition of the inter-
molecular interaction energy, �Eint = E(AB) − E(A) −
E(B), where individual monomers A and B have geometries
from the complex AB.

On the contrary, the other approach, which nowadays
seems to be a standard procedure [57], in the open-closed
method arises if the full geometry optimization (rather than
single-point calculations) of the open form is performed
(leading to Eo; Fig. 3). This approach takes into account
the fact that the geometry (structure) change that takes place

Fig. 3 Scheme showing two models of the partition of the total energy
of the interaction-hosting molecule (Ec) to the energy of the interaction
and the total energy of a fictitious molecule obtained by ’exclusion‘ of
this interaction

upon the open form → closed form transformation is a con-
sequence of the relevant interaction. In other words, the
geometry of the interaction-hosting system is marked by the
presence of this interaction. In the picture of intermolecu-
lar interactions, this approach corresponds to fully isolated
monomers A and B possessing their own geometries. In this
case, �Eint would include deformation energies as well.
More precisely, both these �Eint values in fact correspond
to different energy parameters—interaction and binding
energies, respectively. Similarly, in the case of intramolecu-
lar interactions, both approaches introduce in fact different
definitions of the interaction energy—parameter that—to
remind—is in fact not strictly defined by quantum chem-
istry [29–31]. Both these definitions of the (intramolecular)
interaction energy correspond to different partition schemes
of the total energy of the closed form as shown in Fig. 3.
Of course, |Eo| > |Ef,c

o | and hence, one should observe that
�EOPT

int < �ESP
int .

At this point, one encounters a new problem. Quite often
reference open systems have new important interactions
(either attractive or repulsive) [27–31, 51–53]. As a conse-
quence, one obtains either under- (�EOPT

int,a ) or overestimated

(�EOPT
int,r ) values of interaction energies, respectively, as

shown in Fig. 4. Some examples will be discussed later.
Moreover, in many instances, the structure of the fully

optimized open form may also be considerably different
than that of the closed form. This case can be manifested by
significantly different values of bond lengths and of plane
or dihedral angles. For example, Buemi et al. [28] rebuked
the use of the most extended enol and enethiol tautomers of
thiomalondialdehyde as reference structures [27] since the
trans configuration of double bonds seems to be too differ-
ent than the cis one in the closed form. It is easy to imagine
other examples. The amino group is usually somewhat pyra-
midal, whereas it becomes flat in closed form featuring
conjugated system of double bonds as, e.g. in 3-aminoprop-
2-enal. Boryl −BH2 group may be perpendicular (or nearly
so) to the molecular chain in closed form, whereas, on the
contrary, it may be in plane in the open one. It will be shown
that the latter happens if the 9-BNN group is substituted by -
BH2. It is seen from Fig. 4 that too attractive interaction(s) in
the open reference form or its significantly extended structure
can even lead to changed sign of the interaction energy [19].
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Fig. 4 Unreliable estimates of the interaction energy in the open-
closed method obtained due to additional repulsive or attractive
interactions or extended structure of the reference open form

Taking the above into account, we proposed [19] per-
forming partial (i.e. constrained) geometry optimization in
such cases, where one freezes only those geometric param-
eters whose optimization would lead to either some new
important interactions or to considerably different struc-
tures. Although in most cases, it is sufficiently to freeze one
or two dihedral angles that determine positions of donor and
acceptor groups, sometimes, it is necessary to freeze other
geometrical parameters as well. Of course, the full geom-
etry optimization of the open form may still be performed
if only it will not lead to any new important interactions
or considerable structural changes in at least some parts of
the molecule. The idea of performing constrained geometry
optimization of the open reference form [19] is also utilized
in our estimates of interaction energies of H· · · B.

Investigated systems

Initial calculations have been performed for
9-(2-(dimethylsilyl)-1,1-diphenyl-1-silacyclopenta-2-en-3-
yl)-9-borabicyclo(3.3.1)nonane (1 in Fig. 1) utilizing its
experimental structure determined from X-ray crystalo-
graphic measurements [4] and available via Cambridge
Structural Database [59] as MEDSUK (1Aexp). Also, its
analogue with −SiMe2H rotated about the Si–C bond has
been used as a reference molecule (1aexp). Their fully opti-
mized analogues are labelled as 1A and 1a, respectively.

Since experimental structures of 2, 3 and 4 have not been
determined, fully optimized geometries of both open and
closed forms of these molecules have been obtained (2A,
3A, 4A and 2a, 3a, 4a, respectively). Although used for
computing νSiH frequency shifts, 1a, 2a, 3a and 4a have,
however, been found as being not fully correct references
for interaction energies. Instead, reference open systems
obtained after partial (see further text) geometry optimiza-
tions have been used (symbols with prime). Eventually,
similar calculations for some derivatives of all these sys-
tems have also been performed. Letter ’B’ (or ’b’) has been
used if the −SiMe2H group has been substituted by −SiH3,
’C’ (or ’c’) if 9−BBN has been substituted by −BMe2, and
’D’ (or ’d’) if 9−BBN has been substituted by −BH2 (see
Fig. 5).

Similar as for 1A, 2A, 3A and 4A, partially rather than
fully optimized open forms have been used for estima-
tions of interaction energies of H· · · B contacts in the closed
forms. For the reasoning of their use, see the ’Energy of an
intramolecular interaction’ section and discussion of results.
Structures of fully optimized forms of all investigated sys-
tems as well as their open forms used as references for the
interaction energy estimates are shown in Fig. 6.

Results and discussion

Discussed values of most important geometric parameters
relating to the HSiCCB quasi-ring in open and closed forms
of investigated systems are gathered in Table 1.

Local deformations of structure are determined by
parameters P, θdef

HSiCC, θdef
HSiCSi and θSiCCB, where P, that can

be called as pyramidalization parameter [25] of the trigonal
boryl subunit, is just a difference between the round angle
and the sum of all E1-B-E2 (where E1 and E2 is C or H)
angles in this subunit, θdef

HSiCC and θdef
HSiCSi are deformation

angles showing positional deviation of the H atom from the
plane (for closed forms: θdef

HSiCC = θHSiCC and θdef
HSiCSi =

Fig. 5 Symbols introduced for the considered molecules
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Fig. 6 Fully optimized closed and partially optimized open forms of investigated molecules

180◦ − θHSiCSi, for open forms: θdef
HSiCC = 180◦ − |θHSiCC|

and θdef
HSiCSi = |θHSiCSi|), and θSiCCB is just the Si–C–C–B

dihedral angle. Since in all primed systems, the θHSiCC angle
has been taken as 180◦ and then kept constant, the value of
0◦ for θdef

HSiCC for all these systems is a direct consequence
of partial geometry optimization.

General features of closed forms

We begin analysis of our results shown in Table 1 on
changes taking place upon the open form → closed form
transformation, i.e when the Si–H· · · B bridge is formed. It
is clearly seen that formation of this bridge leads to shorter
Si· · · B distances and longer Si–H bonds. Elongations of
Si–H are accompanied by red-shifts of νSiH. Moreover,
more significant pyramidalization of the boryl fragment is
observed as well. All these effects are geometrical evidences
of bonding character of H· · · B contacts in the closed forms.
This result is then confirmed by negative values of interac-
tion energies. Only in case of nB (n = 1–4) systems the
bonding character of H· · · B may be uncertain if one takes

into account that the error of the open-closed method may
be of the order of some 1–2 kcal/mol. Clearly, however,
the bonding character of the SiH· · · B bridge is consider-
ably weakened if the −SiMe2H group is substituted by the
−SiH3 one. Conversely, compared to −SiH3, the −SiMe2H
group leads to stronger H· · · B interaction. This most likely is
due to the electron-donating properties of the methyl group.

1-Silacyclopent-2-enes vs 1-silacyclohex-2-enes

The main purpose of this article is to assess the strength of
Si–H· · · B bridges in 1-silacyclopent-2-enes and to compare
them to those obtained for similar 1-silacyclohex-2-enes
(Fig. 1). As already mentioned in the ’Introduction’ section,
on the basis of NMR spectroscopic data, Wrackmeyer et al.
[4] have concluded that in the former group, the Si–H· · · B
bridges are either absent or extremely weak, whereas, in the
latter, Si–H· · · B bridges have been said to exist.

Our estimation of the interaction energy of the Si–H· · · B
bridge in 1Aexp gave −6.6 kcal/mol—quite large value con-
sidering, e.g. relatively long H· · · B distance (2.647 Å),
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Table 1 Values of most important geometric parameters relating to the HSiCCB quasi-ring (bond distances in Å, angles and P in degrees),
harmonic stretching vibration frequency of Si–H (in cm−1), estimated value of the interaction energy of the H· · · B contact (in kcal/mol)

System dSi···B dSiH dH···B αSiHB P θdef
HSiCC θdef

HSiCSi θSiCCB νSiH �νSiH
a �Eint

1Aexp 3.224 1.325 2.647 103.4 1.1 9.7 8.1 0.7 2083 n/a −6.6

1A 3.276 1.504 2.712 97.8 1.1 9.9 7.2 3.6 2151 −34 −2.6

1a’ 3.502 1.496 n/a n/a 0.8 0.0b 4.1 8.6 n/a n/a n/a

1B 3.304 1.496 2.857 93.5 0.9 9.5 15.3 0.3 2199 n/cc −0.7

1b’ 3.354 1.490 n/a n/a 0.3 0.0b 1.2 6.9 n/a n/a n/a

1C 3.300 1.504 2.744 97.6 0.2 7.9 3.8 2.6 2147 −39 −2.6

1c’ 3.484 1.496 n/a n/a 0.1 0.0b 6.4 5.5 n/a n/a n/a

1D 2.526 1.599 1.405 114.4 9.9 1.8 6.2 1.7 1849 −334 −10.3

1d’ 3.354 1.495 n/a n/a 0.0b 0.0b 4.7 2.4 n/a n/a n/a

2A 3.253 1.503 2.672 98.4 1.1 6.0 8.5 1.3 2154 −12 −1.7

2a’ 3.491 1.499 n/a n/a 0.7 0.0b 1.7 6.3 n/a n/a n/a

2B 3.310 1.496 2.851 94.0 0.9 3.6 7.5 0.0 2195 n/cc −0.5

2b’ 3.331 1.493 n/a n/a 0.4 0.0b 2.8 5.7 n/a n/a n/a

2C 3.217 1.505 2.619 99.0 0.6 4.8 6.9 0.7 2141 −27 −2.1

2c’ 3.444 1.499 n/a n/a 0.3 0.0b 0.1 2.4 n/a n/a n/a

2D 2.518 1.598 1.403 114.0 9.9 0.3 2.5 0.1 1851 −318 −9.7

2d’ 3.352 1.498 n/a n/a 0.0b 0.0b 2.1 0.3 n/a n/a n/a

3A 2.656 1.552 1.547 118.0 7.8 0.0 8.7 2.1 1981 −218 −5.1

3a’ 3.409 1.495 n/a n/a 0.9 0.0b 7.7 6.8 n/a n/a n/a

3B 3.135 1.498 2.509 99.8 1.4 1.1 4.5 1.6 2193 n/cc −0.5

3b’ 3.227 1.489 n/a n/a 0.5 0.0b 5.0 6.4 n/a n/a n/a

3C 2.696 1.551 1.615 116.7 7.1 1.9 6.9 2.1 1950 −236 −4.1

3c’ 3.352 1.495 n/a n/a 0.6 0.0b 6.9 0.6 n/a n/a n/a

3D 2.508 1.598 1.392 113.9 10.9 1.0 8.6 1.7 1875 −317 −13.8

3d’ 3.275 1.494 n/a n/a 0.0b 0.0b 7.3 5.1 n/a n/a n/a

4A 2.660 1.548 1.567 117.1 7.5 1.3 4.2 0.1 1991 −184 −3.9

4a’ 3.411 1.498 n/a n/a 0.8 0.0b 2.3 8.8 n/a n/a n/a

4B 3.155 1.496 2.569 98.3 1.2 2.0 4.5 0.3 ∼ 2200d n/cc −0.6

4b’ 3.223 1.493 n/a n/a 0.4 0.0b 3.4 8.3 n/a n/a n/a

4C 2.701 1.547 1.637 116.1 6.7 0.3 3.3 0.3 1962 −212 −3.0

4c’ 3.368 1.499 n/a n/a 0.5 0.0b 1.1 4.7 n/a n/a n/a

4D 2.495 1.595 1.391 113.2 10.8 2.5 6.3 0.7 1878 −293 −12.6

4d’ 3.295 1.498 n/a n/a 0.0b 0.0b 1.1 1.7 n/a n/a n/a

aFully optimized open form taken as reference (note that this can be not fully reliable due to even a small rotation of the donor silyl group)
bDirect consequence of partial (constrained) geometry optimization
cNot computed since the −SiH3 group rotates back upon the full geometry optimization
dThree conjugated stretching modes in the 2200–2207-cm−1 range

acute αSiHB angle (103.4◦) and relatively high value of νSiH

(2083 cm−1) comparing to 3Aexp (1919 cm−1) where Si–
H· · · B was said to exist [4]. So high (absolute) value results,
however, from experimental values of geometric parameters
that do not correspond to fully optimized ones. Consider-
ably lower values of dSi···B (3.224 Å), dH···B (2.647 Å) and
dSiH (1.325 Å) in 1Aexp comparing to similar values in
fully optimized 1A (3.276, 2.712 and 1.504 Å, respectively;
Table 1) suggest significant packing forces in the former.

Importantly, the full geometry optimization of 1Aexp leads
to modest lowering of its total energy than of 1aexp. As a
consequence, the energy of the H· · · B contact in the fully
optimized 1A is much lower, amounting to −2.6 kcal/mol
only. This value is even lower in 2A and amounts to
−1.7 kcal/mol. Thus, if the H· · · B contacts in 1A and 2A
are binding, they are indeed very weak as noted by Wrack-
meyer et al. [4]. At this point, it is noteworthy that similar
estimates for 3A and 4A have given energies of −5.1 and
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−3.9 kcal/mol, respectively (Table 1). Thus, the stabiliz-
ing character of the H· · · B contacts in both these systems
is rather doubtless. This conclusion is in line with earlier
spectroscopic results and the fact that, as we have shown
in Fig. 7, the H· · · B interactions in both these systems are
traced by corresponding bond paths, whereas similar bond
paths are absent in case of the former two molecules, i.e. 1A
and 2A.

As Bader has stated, the presence of a bond path (on
a molecular graph) and a concomitant bond critical point
indicate stabilizing interaction [33, 34]. On the other hand,
however, a presumably binding interaction is not necessar-
ily traced by a bond path [60, 61]. As already discussed in
the earlier subsection, apart from negative values of inter-
action energies, changes of geometrical parameters also
indicate stabilizing character of H· · · B contacts in 1A
and 2A.

Electronic and steric effects

We have already shown that either clearly or presumably
binding character of H· · · B contacts in 3A and 4A or 1A and
2A, respectively, results from highly electrodonor properties
of methyl groups present in −SiMe2H. If they are substi-
tuted by hydrogens then the H· · · B contacts become hardly
binding (�Eint amounts to ca. −0.5 kcal/mol only for all
systems nB; n = 1−4). On the contrary, Si· · · B and H· · · B

distances become much longer and the Si–H bond becomes
much shorter. Also, the αSiHB angle becomes more acute
(and close to the right angle) indicating that Si–H and C–
B bonds are almost parallel to each other (see also Fig. 6).
Another evidence of much weaker interactions in nB com-
paring to nA are higher values of νSiH in the former. All
these effects are particularly evident in respective pairs of
1-silacyclohex-2-enes.

It should be mentioned that the bulky 9-BBN group in
nA and nB is not completely advantageous in our estima-
tions of �Eint in these systems because of possible H· · · H
repulsions in their na’ and nb’ open forms (Fig. 6). For
this reason, we suspect that values of �Eint obtained for
these systems may be somewhat overestimated (Fig. 4).
Nevertheless, both qualitative results as well as relations
among computed values should be proper since the same
structural changes, and thus, interatomic interactions occur
in all pairs of open and closed forms. Moreover, all (9-
BBN)H· · · H(SiMe2H) or (9-BBN)H· · · H(SiH3) distances
are longer than ca. 2.15 or 2.42 Å found in 4a’ and 4b’,
respectively, suggesting that repulsions are rather negligible
as being no larger than ca. 0.5 kcal/mol (MP2/aug-cc-
pVTZ) [31].

To eliminate the bulky 9-BBN group, we have consid-
ered nC systems possessing the −BMe2 group in place of
9-BBN (Fig. 5). Although this small group should reduce
H· · · H repulsions in open nc’ forms (the shortest H· · · H

Fig. 7 Molecular graphs of 1A, 2A, 3A and 4A. Note H· · · B bond paths (indicated by blue arrow) in the latter two molecules



1704 Struct Chem (2017) 28:1697–1706

distances are ca. 2.4 Å in 1c’ and 4c’ and ca. 2.5 Å in 2c’
and 3c’), on the other hand, it should lead to weaker Si–
H· · · B bridges due to certain electron density shift from
both methyl groups of −BMe2 to the formally empty 2p

orbital on B. Indeed, in the case of both 1-silacyclohex-2-
enes, the interaction energy decreases from −5.1 kcal/mol
in 3A to −4.1 kcal/mol in 3C and from −3.9 kcal/mol in
4A to −3.0 kcal/mol in 4C (Table 1). Weakening of the rel-
evant H· · · B interactions is also reflected in lower values
of electron density at bond critical points of these interac-
tions (ρb). They amount to 0.063 and 0.055 au in 3A and
3C, respectively, whereas 0.060 and 0.053 au in 4A and 4C,
respectively. In addition to the electron density, also, the
delocalization index [62, 63] of H and B atoms (which is
a measure of the number of electron pairs shared by these
two atomic basins), DI(H,B), decreases as expected (from
0.206 au in 3A to 0.183 au in 3C and from 0.198 au in 4A
to 0.175 au in 4C). Larger values of both ρb and DI(H,B) in
the former pair of molecules also indicate that H· · · B inter-
actions should be stronger in 3A and 3C than in 4A and 4C.
This suggestion is in line with our estimates of �Eint. Sim-
ilar decreases of �Eint are, however, not observed for both
1-silacyclopent-2-enes, for which �Eint is either the same
(1A→1C; �Eint = −2.6 kcal/mol) or slightly increases
(from −1.7 kcal/mol in 2A to −2.1 kcal/mol in 2C). This
indicates that our estimates of �Eint are more reliable for
1-silacyclohex-2-enes than those for 1-silacyclopent-2-enes
and may most likely result from considerably higher values
of �Eint for the former group of systems.

In turn, to eliminate the electron donating properties of
methyl groups in −BMe2, we have also investigated sys-
tems nD (and nd’) possessing −BH2 in place of −BMe2

(Fig. 5). Moreover, this substitution further reduces H· · · H
interactions in open reference forms. On the other hand,
however, the −BH2 group is prone to rotate around the
C–B bond (going in plane) so as to possibly form dihy-
drogen bond and to conjugate with the C=C bond of
the ring. For this reason, the open reference nd’ sys-
tems have been obtained by freezing not only θHSiCC (at
180◦) but θHBCC as well (at ±90◦). Thus, −BH2 in nd’
was kept perpendicularly to the BCC plane. Since the nD
systems feature rather significant pyramidalization of the
−BH2 fragment (P amounts to ca. 10◦ in 1D and 2D
and ca. 11◦ in 3D and 4D; Table 1), the pyramidaliza-
tion energy, i.e. the energy that is needed to deform flat
−BH2 group in nd’ to its somewhat pyramidal shape in
nD, is included in our estimates of �Eint. As discussed
in the ’Energy of an intramolecular interaction’ section,
this and other (small) deformations are, however, conse-
quences of the H· · · B interactions in the nD closed forms.
As expected, one obtains considerably high values of �Eint.

In 1D and 2D 1-silacyclopent-2-enes, they have been esti-
mated as ca. −10 kcal/mol, whereas in both 1-silacyclohex-
2-enes, �Eint are higher amounting to −13.8 kcal/mol in
3D and −12.6 kcal/mol in 4D. So high values of �Eint are
in line with relatively large values of ρb (ca. 0.08 au for
all nD systems). It is noteworthy that among all 1L and 2L
(L = A−D) only 1D and 2D feature a H· · · B bond path.
Moreover, also, DI(H,B) values are rather high (0.291 au for
1D and 2D and 0.297 au for 3D and 4D). The characteris-
tic feature of these systems is that dSiH > dH···B (Table 1),
indicating a highly advanced transfer of H toward B. Sim-
ilar effect has also been reported [18] in H3SiH· · · BH3

(better written as H3Si· · · H2 · BH2). Interestingly, reported
binding energy of this dimer amounts to −11.7 kcal/mol
(MP2/aug-cc-pVTZ) [18]—closely to our estimates for nD.

Conclusions

The main purpose of this article is to assess strengths
of H· · · B contacts in some 1-silacyclopent-2-enes and
1-silacyclohex-2-enes investigated earlier by Wrackmeyer
et al. [4]. For this purpose, we have computed interac-
tion energies of these contacts utilizing so-called open-
closed method. In full agreement with previous conclusions
based on NMR spectroscopic data [4], we have shown that
the H· · · B contacts in investigated 1-silacyclohex-2-enes
are indeed strong, whereas those in 1-silacyclopent-2-enes
are much weaker. This result is supported by appropriate
changes of geometrical parameters that take place upon the
open form → closed form transformation and by reported
values of some QTAIM-based parameters.

Influence of both the electronic and steric effects orig-
inating from the presence of specific substituents on the
strength of relevant H· · · B contacts is discussed in detail.
We have shown that relatively strong H· · · B interactions
found in both 1-silacyclopent-2-enes and 1-silacyclohex-
2-enes result from the presence of two methyl groups in
−SiMe2H. If they are substituted by hydrogens, then H· · · B
interactions become hardly bonding. On the other hand, if
the 9-BBN group is subsituted by −BH2, then the investi-
gated Si–H· · · B bridges feature many of the characteristic
effects attesting to their considerable strength as also shown
by high values of interaction energies and QTAIM-based
parameters.

Some problems and ideas associated with the use of the
open-closed method are discussed in detail. In particular,
we have paid attention to the correct choice of the reference
open system. It has been shown that utilization of the partial
geometry optimization of the reference open system leads
to reliable results.
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21. Jabłoński M (2012) Theoretical insight into the nature of the inter-
molecular charge-inverted hydrogen bond. Comput Theor Chem
998:39–45
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31. Jabłoński M, Monaco G (2013) Different Zeroes of Interaction
Energies As the Cause of Opposite Results on the Stabilizing

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1706 Struct Chem (2017) 28:1697–1706

Nature of C-H· · · O Intramolecular Interactions. J Chem Inf Model
53:1661–1675

32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,
Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson
GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF,
Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K,
Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao
O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE, Ogliaro
F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN,
Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A,
Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM,
Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo
J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R,
Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski
VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels
AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ
Gaussian 09, Gaussian, Inc., Wallingfor

33. Bader RFW (1990) Atoms in Molecules: A Quantum Theory.
Oxford University Press, New York

34. Popelier PLA (2000) Atoms in Molecules. An Introduction. Long-
man, Singapore

35. Matta CF, Boyd RJ (2007) The Quantum Theory of Atoms in
Molecules. Wiley-VCH, Weinheim

36. Keith TA (2015) AIMAll (Version 15.05.18), TK Gristmill Soft-
ware, Overland Park KS, USA, ¡aim.tkgristmill.com¿

37. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient
approximation made simple. Phys Rev Lett 77:3865–3868

38. Perdew JP, Burke K, Ernzerhof M (1997) Errata: general-
ized gradient approximation made simple. Phys Rev Lett 78:
1396

39. Adamo C, Barone V (1999) Toward reliable density functional
methods without adjustable parameters: the PBE0 model. J Chem
Phys 110:6158–6170

40. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent
molecular orbital methods. XX. A basis set for correlated wave
functions. J Chem Phys 72(1980):650-654

41. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets
for molecular calculations. I. Second row atoms, Z=11−18. J
Chem Phys 72:5639–5648

42. Zyder M, Kochel A, Handzlik J, Szymanska-Buzar T (2009) Pho-
tochemical reaction of Mo(CO)6 with Et2GeH2: NMR and DFT
studies of reaction products; crystal structure of a novel com-
plex [{Mo(μ-η2-H–GeEt2)(CO)4}2]. Organometallics 28:5857–
5865

43. Tognetti V, Joubert L (2011) On the influence of density func-
tional approximations on some local Bader’s atoms-in-molecules
properties. J Phys Chem A 115:5505–5515

44. Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA
(2017) Density functional theory is straying from the path toward
the exact functional. Science 355:49–52

45. Schuster P (1969) LCAO-MO-Beschreibung intramolekularer
Wasserstoffbrücken. Mh Chem 100:2084–2095

46. Schuster P, Schuster P, Zundel G, Sandorfy C (eds) (1976) The
Hydrogen Bond, vol I. North-Holland, Amsterdam

47. Emsley J (1984) The Composition, Structure and Hydrogen Bond-
ing of the β-Diketones. Struct Bond 57:147–191

48. Buemi G, Gandolfo C (1989) Malondialdehyde and Acetylace-
tone: An AM1 Study of their Molecular Structures and Keto-Enol
Tautomerism. J Chem Soc. Faraday Trans 85:215–227

49. Millefiori S, Di Bella S (1991) Hydrogen bonding and tau-
tomerism in 3-substituted β-thioxoketones: an ab initio molecular
orbital study. J Chem Soc. Faraday Trans 87:1297–1302

50. Luth K, Scheiner S (1994) Excited-State Energetics and Proton-
Transfer Barriers in Malonaldehyde. J Phys Chem 98:3582–3587

51. Scheiner S, Kar T, C̆uma M (1997) Excited State Intramolecular
Proton Transfer in Anionic Analogues of Malonaldehyde. J Phys
Chem A 101:5901–5909

52. Cuma M, Scheiner S, Kar T (1999) Effect of adjoining aromatic
ring upon excited state proton transfer, o-hydroxybenzaldehyde. J
Mol Struct (Theochem) 467:37–49

53. Chung G, Kwon O, Kwon Y (1997) Theoretical Study on
1,2-Dihydroxybenzene and 2-Hydroxythiophenol: Intramolecular
Hydrogen Bonding. J Phys Chem A 101:9415–9420

54. Rozas I, Alkorta I, Elguero J (2001) Intramolecular Hydrogen
Bonds in ortho-Substituted Hydroxybenzenes and in 8-Susbtituted
1-Hydroxynaphthalenes: Can a Methyl Group Be an Acceptor of
Hydrogen Bonds J Phys Chem A 105:10462–10467
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