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Abstract The first report on crystal and molecular

structure of 3,6-diiodo-9-ethyl-9H-carbazole is presented.

Experimental room-temperature X-ray and 13C chemical

shift studies were supported by advanced theoretical cal-

culations using density functional theory. The 13C nuclear

magnetic shieldings were predicted at the non-relativistic

and relativistic level of theory using the zeroth-order reg-

ular approximation. Theoretical relativistic calculations of

chemical shifts of carbons C3 and C6, directly bonded to

iodine atoms, produced a reasonable agreement with

experiment (initial deviation from experiment of 44.3

dropped to 4.25 ppm). The changes in ring aromatic

character were estimated via a simple harmonic oscillator

model of aromaticity and nucleus-independent chemical

shift index calculations. A good linear correlation between

experimental and theoretically predicted structural and

NMR parameters was observed.

Keywords 3,6-diiodo-9-ethyl-9H-carbazole � X-ray

structure � 13C NMR spectra � ZORA GIAO NMR

calculations

Introduction

Carbazoles are very interesting heterocyclic derivatives of

the aromatic hydrocarbon phenanthrene. Since decades

they are used in industrial applications of polyvinylcar-

bazole (PVCZ) in electrophotographic materials [1]. In

addition, carbazole derivatives are precursors of materials

used in electronics and photonics [2–5]. This field is par-

ticularly important as a remedy for the emerging world

energy crisis due to population growth and technological

development of rapidly growing countries in Asia, e.g.,

China and India. The most widely studied materials are

3,6-substituted and 2,7-substituted carbazole derivatives

[6–9]. Carbazole derivatives have very interesting photo-

conductivity [10] and optical [11] properties. Due to their

fluorescent ability, carbazoles are used for the production

of light emitting diodes (OLEDs) [12, 13] and sensors [14–

17]. For these reasons, there is a constant search for new

carbazole derivatives as potential substrates for new

materials with promising optoelectronic properties.

Nuclear magnetic resonance (NMR) is a useful method

for molecular structure determination [18]. Molecular

modeling of NMR parameters is widely used to support

assignments of experimental spectra [19–21]. Satisfactory

chemical shifts for several different nuclei including 13C,
17O, 15N and 19F [19, 22–25] can be obtained by density

functional theory calculations in combination with gauge

including atomic orbitals (GIAO) [26, 27] and employing

the Becke, three-parameter, Lee–Yang–Parr (B3LYP) [27,

28] or BHandHLYP hybrid half-and-half functional [29].

In particular the latter was used to predict accurate NMR

parameters. Several reports on NMR studies of the simplest

carbazoles are available [30–33]. In most theoretical

works, the predicted (non-relativistic) chemical shifts of

atoms adjacent to a heavy atom are not accurate due to
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omitting of relativistic effects in typical GIAO NMR cal-

culations. The heavy nucleus (here iodine) effect can be

observed for light nuclei (1H, 13C, 15N) in the proximity of

heavy atoms and it was described by Pyykkö et al. [34] as

the heavy-atom-on-light-atom (HALA) effect. Early rela-

tivistic calculations of NMR shieldings were reported by

Malkin, Ziegler and Autschbach [35–40]. The importance

of the HALA effect of mercury on the isotropic shielding of

carbon atoms was reported by Wodyński et al. [41]. They

obtained significant HALA effects in halogen-substituted

compounds, which were well reproduced using the zeroth-

order regular approximation with spin–orbit coupling (SO

ZORA) [42–44]. This effect could not be recovered by

using relativistic effective core potentials (ECP) [45] on the

halogen atoms. The work of Wodyński and Pecul [46]

described the influence of the presence of a heavy atom on

the spin–spin coupling constants between two light nuclei in

organometallic compounds and halogen derivatives.

The structural and electronic parameters of carbazoles

have been analyzed by means of different aromaticity cri-

teria. This chemical property can be carried out through the

use of structurally (HOMA), electronically (PDI—para-de-

localization index) and magnetically (NICS) based indices.

The work of Poater et al. [47] showed a clear divergence

between the structural, electronic and magnetic measures, so

it is important to use different aromaticity indices to quantify

this property. The structurally based measure is described as

an harmonic oscillator model of aromaticity (HOMA) and

defined by Kruszewski and Krygowski as [48, 49]:

HOMA ¼ 1 � a
n

Xn

i¼1

ðRopt � RiÞ2 ð1Þ

where n is the number of included bonds with bond lengths

Ri, and a is an empirical constant chosen in such a way that

HOMA = 0 for a model nonaromatic system, and

HOMA = 1 for a system with all bonds equal to an opti-

mal value Ropt, assumed to be achieved for fully aromatic

systems. The HOMA index has been found to be among the

most effective structural indicators of aromaticity [50].

Another aromaticity criterion based on the electron ring

current is the widely employed nucleus-independent

chemical shift (NICS). This index was proposed by

Schleyer et al. [51]. NICS is defined as the negative value

of the absolute shielding computed at the ring center or at

some other interesting geometrical point above the ring

system. In common use are three variants: NICS(0) cal-

culated at the ring plane, NICS(1) calculated 1 Å above the

plane and its zz tensor component, NICS(1)zz, where the

z-axis is normal to the plane. Rings with large negative

NICS values are considered to be aromatic, and the more

negative the NICS value is, the more aromatic the rings are.

The work of Chen et al. [52] shows that NICS calculations

are relatively insensitive to the employed level of theory.

On the other hand, NICS indexes are sensitive to the

number of p-electrons in the systems. Thus, the 10 p-

electron systems show higher NICS values than the 6 p-

electron systems [52].

Molecular modeling of structural and spectroscopic

parameters has been a relatively inexpensive and fast way

leading to practical application of numerous compounds.

Surprisingly, no systematic theoretical and experimental

studies on structure of diiodo derivatives of carbazoles are

available. As part of detailed studies on carbazole, we

undertook theoretical characterization of 3,6-diiodo-9-

ethyl-9H-carbazole supported by room-temperature X-ray

determination of previously unknown crystal structure.

The aim of our study was to determine the structural

parameters of diiodocarbazole derivative molecules

using DFT calculations with efficient B3LYP hybrid

density functional and mixed 6-311??G(3df,2pd) and

6-311??G** basis sets. Moreover, we estimated the

changes in ring aromatic character via simple HOMA and

NICS calculations. The theoretical structural parameters

were additionally supported by crystal structure studies of

the corresponding N9-ethyl derivative.

Experimental

Synthesis

3,6-Diiodo-9H-carbazole was obtained according to the

procedure described by Chuang et al. [53]. A solution

containing 16.7 g (0.1 mol) of 9H-carbazole, 21.6 g

(0.13 mol) of KI, 21.4 g (0.1 mol) of KIO3, 150 cm3 of

acetic acid and 15 cm3 of water was heated for 48 h on a

water bath at 80 �C. After cooling to the room temperature,

the precipitate was filtered off and washed with water,

saturated Na2CO3 solution and methanol. The crude pro-

duct was crystallized from toluene. The yield was 25 g of

3,6-diiodo-9H-carbazole (mp. 206–207 �C; Ed. 60 %).

The preparation of 3,6-diiodo-9-ethyl-9H-carbazole is

shown in scheme 1.

To the intensively stirred solution of 2 g (4.77 mmol) of

3,6-diiodo-9H-carbazole in DMSO (30 ml) and tetrabuty-

lammonium iodide (0.2 g) was added 50 % aqueous KOH

solution (2 ml) and treated dropwise with 1.2 ml

N

I I

H
N

I I

CH2CH3

CH3CH2Br

DMSO

447.04 g/mol419.00 g/mol

Scheme 1 Synthesis of 3,6-diiodo-9-ethyl-9H-carbazole
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(16 mmol) of ethyl bromide in DMSO (10 ml). After 2 h

the mixture was poured into water (100 ml). The precipi-

tate was dissolved in methylene chloride (30 ml) and dried

with anhydrous MgSO4. After evaporation of the solvent,

the residue (2.0 g) was crystallized from 30 ml of n-hep-

tane. The yield was 1.9 g of 3,6-diiodo-9-ethyl-9H-car-

bazole (mp. = 154–155 �C; Ed. 90.0 %).

The crystals suitable for X-ray analysis of 3,6-diiodo-9-

ethyl-9H-carbazole were obtained by slow evaporation of a

saturated solution in chloroform.

Characterization

The single crystals of 3,6-diiodo-9-ethyl-9H-carbazole

were used for data collection at 293(2)K on a four-circle

Oxford Diffraction Xcalibur diffractometer equipped with

a two-dimensional area CCD detector with the graphite

monochromatized MoKa radiation (k = 0.71073 Å) and

the x-scan technique. Integration of the intensities and

correction for Lorenz and polarization effects were per-

formed using the CrysAlis RED software [54]. Crystal

structures were solved by direct methods and refined by a

full-matrix least-squares method on F2 using the SHELXL-

97 program [55]. Complete crystallographic details are

available as a supplementary material and have been

deposited at the Cambridge Crystallographic Data Centre

(CCDC 1051894) CCDC [56]. The 13C NMR spectra in

CDCl3 solution were measured using Bruker Ultrashield

400 MHz NMR spectrometer operating at 100.623 MHz

for carbon nuclei at ambient temperature and referenced to

benzene and tetramethylsilane (TMS).

Theoretical calculations

The molecular geometry of the isolated molecule was

obtained from an unconstrained optimization of all geo-

metrical parameters using the B3LYP functional and a

flexible 6-311??G(3df,2pd) basis set for all atoms with

the exception of iodine, for which the smaller basis set (6-

311G**) was used. No imaginary frequencies were found,

which indicated the true energy minimum. These non-rel-

ativistic (NR) calculations were carried out using GAUS-

SIAN 09 [57]. In our previous work [58], we reported on

the structural parameters for 9-benzyl-3,6-diiodo-9H-car-

bazole obtained at the relativistic (R) SO ZORA (B3LYP/

DZP/TZP) level of theory. These results were of similar

accuracy to the results of the non-relativistic calculations.

Besides, it was significantly faster to get non-relativistic

results. Next, the non-relativistic geometry has been used

for both the relativistic zeroth-order regular approximation

Hamiltonian including the spin–orbit coupling term (SO

ZORA) [59] and non-relativistic shielding calculations

with the half-and-half hybrid BHandHLYP functional and

STO type DZP basis set. All NMR parameters were

obtained with Amsterdam density functional (ADF) pro-

gram [60]. Theoretical chemical shifts (in ppm) were ref-

erenced to benzene and tetramethylsilane (TMS) calculated

at the same level of theory.

Both HOMA and NICS are non-local parameters (av-

eraged over the total molecular structure) and should be

‘‘the same’’ using NR and R approaches. Thus, in the

current study we applied the cheaper non-relativistic

approach. HOMA and NICS indexes of aromaticity were

calculated at B3LYP/6-311??G(3df,2pd) level of theory

using Gaussian 09.

Results and discussion

Crystal structure

The molecular structure of 3,6-diiodo-9-ethyl-9H-car-

bazole, the atomic numbering and ring labeling schemes

are presented in Fig. 1. The packing arrangement in the

crystal state is presented in Fig. 2. 3,6-Diiodo-9-ethyl-9H-

carbazole crystallizes in the monoclinic space group P21.

The bond lengths within carbazole skeleton of this mole-

cule are in a good agreement with the corresponding dis-

tances in the unsubstituted carbazole [61]. The ethyl group

forms a dihedral angle of 179.86� with the carbazole

skeleton. In the crystal structure, the ethyl group (C10–

C11–H11A) forms an angle of 86.48� with the C1–C9A

ring. The angle between the second ring (C5–C8A) and

ethyl group is nearly identical (84.42�). The intermolecular

interactions [C(5)–H(5)���I(1)] in the crystal lattice are

shown in Fig. 2.

Fig. 1 Molecular structure of 3,6-diiodo-9-ethyl-9H-carbazole,

showing the atom numbering scheme and the ring labeling.

Displacement ellipsoids are drawn at the 50 % probability level
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The crystal data and refinement parameters are sum-

marized in Table 1. The intermolecular bonds between

hydrogen and iodine atoms in neighboring molecules are

given in Table 2. Selected bond lengths are given in

Table 3. For brevity, all experimental bond distances, bond

angles and torsion angles within this compound are given

in Tables S1, S2 and S3 in the Supporting Information. The

differences between theoretical and experimental C–C

bond lengths are in the range of 0.004–0.04 Å. For the C–N

bonds the error range is smaller (0.008–0.017 Å).

The largest differences were observed for C–I bonds

(0.027–0.034 Å). From the data in Table 3 it is apparent

that the accuracy of structure calculations is close to

experimental errors. In the gas phase the C–I bonds are the

same due to symmetry. In the crystal such long-range

interactions are very weak and the experimental difference

is within the measurement accuracy (0.007 ± 0.008 Å, see

Table 3).

All geometric parameters for the newly synthesized

diiodocarbazole derivative are in good agreement with

values found in the crystal structure of the nonhalogenated

9-ethyl-9H-carbazole [62] and the other halogenated (3,6-

diiodo-9H-carbazole) [63] (Table 3). The total root-mean-

square (RMS) between our non-relativistic results and

X-ray determinate geometry is 0.021 Å.

According to categorization of H bonds by Jeffrey [64],

the H���I bond is a moderate, electrostatic bond. The H���A
distance is shorter than the sum of the van der Waals radii

proposed by Bondi [65] (3.18 Å).

13C NMR chemical shift

The 13C chemical shifts (experimental and theoretically

predicted) of 3,6-diiodo-9-ethyl-9H-carbazole are collected

in Table 4. The very large HALA effect of about -44 ppm

is only present for the C3 and C6 carbons directly bond to

iodine atoms (Fig. 3). The significant errors with a root-

mean-square deviation (RMS) of 6.23 ppm (for SO ZORA

calculations RMS = 0.87 ppm) are visible for these two

carbon chemical shifts predicted using non-relativistic

calculations (Table 4). The RMS is smaller than for the

previously studied 9-benzyl-3,6-diiodo-9H-carbazole [58].

The observed HALA effects are very close to earlier results

for halogen-substituted carbon atoms [35, 41, 66] and for

our previous study of benzylcarbazole derivative (there the

HALA effect was -42 ppm) [58]. The other carbons,

especially atoms responsible for the rigidity and planarity

Fig. 2 A packing diagram for 3,6-diiodo-9-ethyl-9H-carbazole,

showing the weak C5–H5���I1i bonds as dashed lines. [Symmetry

code: i = -x - 1, y - 0.5, -z]

Table 1 Crystallographic data for 3,6-diiodo-9-ethyl-9H-carbazole

at room temperature

3,6-Diiodo-9-ethyl-9H-carbazole

Chemical formula C19 H13 I2 N

Mr 447.04

Cell setting, space group Monoclinic, P21

Temperature (K) 293(2)

a (Å), b (Å), c (Å) 4.4223(4), 11.1936(9), 13.8273(12)

b (�) 94.081(8)

V (Å3) 682.74(10)

Z 2

Dx (mg m-3) 2.175

Radiation type MoKa

l (mm-1) 4.584

Crystal size (mm) 0.20 9 0.18 9 0.16

No. of measured,

independent and

observed reflections

4268/2401/2294

Rint 0.0259

(sinh/k)max (Å-1) 0.595

R[F2[ 2r(F2)], wR(F2),

S

0.0448, 0.1106, 1.042

No. of reflections 2401

No. of parameters 154

No. of restrains 1

H- atom treatment All H atoms were generated in idealized

positions, no ref.

Weighting scheme w ¼ 1= r2 F2
o

� �
þ 0:0895Pð Þ2þ0:0000P

h i

where P ¼ F2
o þ 2F2

c

� �
=3

Dqmax, Dqmin (e Å-3) 1.918 -1.057

Table 2 Intermolecular bonds for 3,6-diiodo-9-ethyl-9H-carbazole

(Å and �)

D–H���A d(D–H) d(H���A) d(D���A) \(DHA)

C(5)–H(5)���I(1)i 0.93 3.15 4.033(8) 158.5

Symmetry transformations used to generate equivalent atoms

i = -x - 1, y - 0.5, -z

202 Struct Chem (2016) 27:199–207

123



of the structure (C1, C8, C4, C5, C4A, C5A and C8A,

C9A), also feel the presence of the heavy halogen atoms.

HOMA and NICS indexes

The calculated HOMA and NICS values are gathered in

Table 5. HOMA indexes were calculated from Eq. (1)

using a = 257.7 and Ropt (CC) = 1.388 Å, a = 93.52 and

Ropt (CN) = 1.344 Å [67] and bond lengths from B3LYP/

6-311??G(3df,2pd) optimized geometries. For compar-

ison, the corresponding HOMA values for benzene and

pyrrole calculated at the same level of theory are 0.998 and

0.881, respectively. The calculated DFT HOMA indexes

for pure 9H-carbazole are 0.958 for rings A and C and

0.690 for the five-membered B ring in carbazole molecule.

The HOMA indexes are also compared with the 9H-car-

bazole values calculated by other authors. The most aro-

matic rings within the studied molecule are the two

benzene rings labeled as A and C. For these rings the

HOMA values are the same (0.944). The aromaticity of

these rings is smaller than in the unsubstituted 9H-car-

bazole molecule (HOMA = 0.958) calculated at the same

level of theory. The least aromatic, both in our synthesized

Table 3 Comparison of selected geometric data (in Å) for 3,6-diiodo-9-ethyl-9H-carbazole (this work), 9-ethyl-9H-carbazole [62] and 3,6-diiodo-

9H-carbazole [63] obtained from X-ray measurements at 293 K and non-relativistic calculations (NR B3LYP/6-311??G(3df,2pd)/6-311G**)

Bond Our results Literature

X-ray NR DFT 9-Ethyl-9H-carbazole (X-ray)a 3,6-Diiodo-9H-carbazole (X-ray)b

I(1)–C(3) 2.101(8) 2.135 – 2.096 (4)

I(2)–C(6) 2.108(8) 2.135 – 2.104 (3)

C(1)–C(9A) 1.367(13) 1.396 1.391(6) 1.389 (5)

C(1)–C(2) 1.377(13) 1.391 1.365(6) 1.366 (5)

C(2)–C(3) 1.378(13) 1.403 1.367(8) 1.415 (5)

C(3)–C(4) 1.379(12) 1.389 1.374(6) 1.376 (5)

C(4)–C(4A) 1.393(12) 1.398 1.385(6) 1.391 (5)

C(4A)–C(9A) 1.430(11) 1.418 1.386(4) 1.409 (5)

C(4A)–C(5A) 1.442(11) 1.446 1.437(9) 1.445 (4)

C(5A)–C(8A) 1.376(11) 1.418 – 1.418 (5)

C(5A)–C(5) 1.416(11) 1.398 – 1.400 (4)

C(5)–C(6) 1.365(12) 1.389 – 1.373 (4)

C(6)–C(7) 1.385(12) 1.403 – 1.400 (5)

C(7)–C(8) 1.395(13) 1.391 – 1.378 (5)

C(8)–C(8A) 1.372(12) 1.396 – 1.387 (5)

C(8A)–N(9) 1.405(10) 1.388 – 1.375 (4)

N(9)–C(9A) 1.380(11) 1.388 1.372(8) 1.378 (5)

N(9)–C(10) 1.467(11) 1.457 – –

C(10)–C(11) 1.511(13) 1.532 – –

RMS

C–C 0.021 0.020

C–N 0.012 0.021

C–I 0.031 0.005

Total 0.021 0.019

a Values taken from Ref. [62]
b Values taken from Ref. [63]

Table 4 Comparison of experimental and theoretically predicted

(non-relativistic and relativistic BHandHLYP/DZP) 13C NMR data

for 3,6-diiodo-9-ethyl-9H-carbazole (in ppm)

Atom numbering Theoretical calculations Experimental data

NR SO ZORA

C1=C8 121.41 110.12 110.65

C2=C7 130.88 136.90 134.52

C3=C6 125.97 85.92 81.67

C4=C5 143.04 131.70 129.42

C4A=C5A 109.97 126.18 124.08

C8A=C9A 136.64 142.60 138.98

C10 37.42 37.44 37.74

C11 12.61 12.60 13.68

RMS 6.23 0.87
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compound and in 9H-carbazole, is the pyrrolic unit (ring

B). In comparison with the pure pyrrole (HOMA = 0.881)

and unsubstituted 9H-carbazole (HOMA = 0.679), the

five-membered ring B is significantly less aromatic

(HOMA = 0.661).

Table 5 also shows the three variants of NICS parameter

[NICS(0), NICS(1) and NICS(1)zz] for the studied car-

bazole derivative and for several related compounds.

As a reference of aromaticity, the corresponding NICS

values for benzene were calculated at B3LYP/6-311??

G(3df,2pd) level of theory (-7.81, -10.21 and -29.88).

The NICS values for all rings give the same results as

HOMA indexes. The most aromatic rings are the benzene

units and less aromatic is the five-membered ring of 3,6-

diiodo-9-ethyl-9H-carbazole. Due to the presence of two

double bonds and nitrogen lone pair, the aromaticity of free

pyrrole ring changes upon condensation with two benzene

units. The fusion of aromatic rings affects the aromaticity

of all units, and so the five-membered ring in carbazole

molecule is less aromatic than in the free pyrrole. Ana-

lyzing the results, we observed that the most sensitive

aromaticity index is the zz component of NICS(1). The

data from Table 5 were recalculated and presented graph-

ically in Fig. 4. In this case benzene was used as an arbi-

trary NICS reference for both six- and five-membered rings

(NICSbenzene - NICSring). Figure 4 clearly shows that

NICS(0) for benzene is less aromatic than for pyrrole, 9H-

carbazole and our 3,6-diiodo-9-ethyl-9H-carbazole.

Conclusions

This paper reports on the crystal and molecular structure of

9-benzyl-3,6-diiodo-9H-carbazole. For the first time its

crystal structure was determined at room temperature. A

linear correlation between the experimental and the non-

relativistic DFT calculated structural parameters was

observed. We also reported on 13C NMR parameters of the

halogenated carbazole derivative. The 13C NMR spectrum

in CDCl3 solution was measured. To accurately assign the

observed 13C NMR spectra it was important to employ the

SO ZORA approach. Standard non-relativistic DFT cal-

culations of the chemical shifts of atoms C3 and C6 for 3,6-

diiodo-9-ethyl-9H-carbazole lead to significant errors

(about -44 ppm). Finally, in this work we observed a

linear correlation between theoretically predicted and
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Fig. 3 Deviations of calculated from experimental chemical shifts

(Dd) and the influence of relativistic effect on the accuracy of

theoretically predicted carbon chemical shift (d13C) for 3,6-diiodo-9-

ethyl-9H-carbazole

Table 5 Individual ring

aromaticity indexes in 3,6-

diiodo-9-ethyl-9H-carbazole,

9H-carbazole and in reference

molecules (benzene, pyrrole)

Compound Ring 3,6-Diiodo-9-ethyl-9H-carbazole 9H-carbazole Reference molecules

Calcul. Lit.a Benzene Pyrrole

HOMA A 0.944 0.958 0.919 0.998 0.881

B 0.661 0.690 0.679

C 0.944 0.958 0.919

Total 0.873 0.889 –

NICS(0) A -9.16 -12.95 -7.81 -13.47

B -9.10 -10.24

C -9.16 -12.95

NICS(1) A -8.83 – -10.21 -10.26

B -7.06 –

C -8.83 –

NICS(1)zz A -24.60 – – -29.88 -32.10

B -19.50 –

C -24.60 –

a Values taken from Ref. [47]
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experimental NMR parameters. Moreover, we estimated

the changes in ring aromatic character via simple HOMA

and NICS calculations. The most aromatic are the benzene

units and less aromatic is the five-membered ring of 3,6-

diiodo-9-ethyl-9H-carbazole.
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