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Abstract The applicability of popular and efficient

B3LYP hybrid density functional and medium-size Pople-

type basis set in combination with computationally ex-

pensive anharmonic model to obtain more accurate theo-

retical structure, vibrational frequencies and GIAO NMR

parameters of cytosine was tested. We report on prediction

of cytosine equilibrium (Re) and rovibrationally averaged

(Rv) structures and vibrational frequencies in the gas phase

and DMSO solution using density functional theory com-

bined with 6-311??G** basis set. The harmonic and an-

harmonic vibrational frequencies (using second-order

vibrational perturbation theory, VPT2) were critically dis-

cussed. In comparison with initial harmonic data, a sig-

nificantly better agreement between scaled and anharmonic

frequencies and experiment was observed. Proton and

carbon nuclear magnetic shieldings were calculated at Re

and Rv structures of cytosine in the gas phase and DMSO

solution using BHandH and B3LYP density functionals

combined with 6-311??G**, aug-cc-pVTZ-J and STO-

3Gmag basis sets. The obtained NMR results were com-

pared with available experimental data and discussed at

length.

Keywords Cytosine � Structure � Harmonic versus

anharmonic frequencies � DFT � GIAO NMR

Introduction

DNA molecule is one of the most important biologically

active compounds. It encodes the genetic instructions

used in the development and functioning of all known

living organisms. The information in DNA is stored as a

code made up of four nitrogen bases. The formation of

DNA base pairs plays a crucial role in the realization of

the main role of DNA, which is the storage and repli-

cation of genetic information [1]. Therefore, a detailed

knowledge about structure and properties of single

building blocks of DNA is of great importance. One of

the DNA bases is cytosine. Its atom numbering is shown

in Fig. 1.

Despite the fact that cytosine may exist in various tau-

tomeric forms, we will focus on keto-amino structure (see

Fig. 2), which is presumably the most stable one in the gas

phase [2].

The question of cytosine tautomeric stability in the gas

phase, low-temperature matrices and polar solution is not

clear [2]. Several theoretical calculations at density func-

tional theory (DFT) and second-order perturbation Moller–

Plesset theory (MP2) level, using a relatively incomplete

basis sets (like 6-311G(2d,2p) or 6-311??G** and with

simplified inclusion of solvent in Ref. [2], suggest the keto-

amino form being the most stable form in the gas phase and

solution. On the other hand, the recent MP2/6-311??G**

work by Alonso and coworkers [3] proposes the trans enol-

amino form as the most stable form in the gas phase (lower

by only about 1.19 kcal/mol from the corresponding keto-

amino form). However, the detailed earlier theoretical

work by Zeegers-Huyskens et al. [4] clearly indicates the

amino-oxo tautomer as the most stable form in the gas

phase. In addition, they stressed its predominance (by a

factor of ten) in water.
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Vibrational (IR/Raman) and NMR spectroscopic tech-

niques, additionally supported by computational methods,

have been used as very efficient tools for characterization

of biological molecules [5]. On the other hand, current

theoretical methods support interpretation of complex

NMR, Raman and IR spectra, and combined experimental

and computational studies are in routine use [6–8]. Un-

fortunately, the use of harmonic approximation for pre-

diction of vibrational frequencies suffers from neglecting

the effect of anharmonicity [6, 9]. The simplest remedy to

bring theoretical harmonic frequencies (often overesti-

mating experiment by 5–10 %) close to measured values is

by using a uniform scaling factor [9]. However, the value

of a proper scaling factor depends on the method of cal-

culation and basis set quality. Several optimal scaling

factors have been reported [9–12].

A more theoretically sound approach involves the in-

clusion of an anharmonic potential. Several methods in-

cluding anharmonicity, for example, the second-order

vibrational perturbational theory (VPT2) [13, 14], vibra-

tional self-consistent field (VSCF) [15–17] and vibrational

configuration interaction (VCI) [18–20] are available.

Unfortunately, these approaches are significantly more

computationally demanding and therefore are practically

limited to small- and medium-size molecules.

Similarly, accurate modeling of 13C and 1H NMR

spectra relays primarily on the selected theory level and

completeness and flexibility of the basis set used [21–23].

Besides, the inclusion of zero-point vibration corrections

and solvent effects should further improve the agreement

between theory and experiment [24–28].

Cytosine has been the subject of numerous experimental

and theoretical studies. Its structural parameters of single

molecule were investigated by ab initio methods both in the

gas phase [29–32] and in solution [31, 33–35]. Several

studies focused on cytosine and other nucleobase tautomers

[36–39]. In addition, hydrated complexes of cytosine were

studied theoretically [29, 40]. IR studies of cytosine have

been carried out in the gas phase [41, 42], argon [43] and

N2 [44] matrixes, aqueous solutions [45, 46] and in the

solid state [47]. Calculated harmonic [31, 48–50] and

anharmonic [30] vibrations were also reported. Most

vibrational studies were conducted using a simple har-

monic model combined with DFT and MP2 calculations.

Rasheed et al. [30] reported on HF, B3LYP and MP2

calculated anharmonic vibrational spectra of cytosine

using the VSCF and CC-VSCF methods. The authors

observed a good agreement between DFT and MP2

anharmonic wavenumbers and experiment. 1H [51], 13C

[51, 52], 15N [52] and 17O [53] NMR chemical shifts of

cytosine measured in DMSO solution have been reported.

However, we are not aware of high-level theoretical pre-

diction of the corresponding NMR parameters. The only

available report published the B3LYP/6-311G(2d,2p) cal-

culated proton and carbon chemical shifts in the gas phase

and solution using TMS as theoretical Ref. [2]. Besides,

the authors did not verify the accuracy of their predictions

with experiment.

The aim of this work was to discuss the impact of time-

consuming anharmonic model on the accuracy of the pre-

dicted structural and spectroscopic properties of isolated

cytosine molecule (shown in Fig. 2b as keto-enol tautomer)

in vacuum and DMSO solution using DFT calculations.

Cytosine is selected as an example of well-characterized

experimentally and theoretically real-size biomolecule

containing 10–15 atoms. Obviously, a molecule of this size

could be a subject of benchmark calculations, for example,

at the coupled cluster level and very large basis sets.

However, such calculations are extremely expensive, and

the calculation cost could scale very steep (N7 or N8 of

number of basis sets) with the size of atomic system. An

example of such anharmonic studies on structure and an-

harmonic vibrations of uracil was reported [54, 55].

Thus, we want to see whether there is an improvement

in prediction of cytosine structure, vibrational parameters

and also NMR chemical shifts using a popular and efficient

B3LYP density functional [56, 57] and a medium-size

Pople-type basis set 6-311??G** in the gas phase by re-

placing a standard harmonic model with anharmonic one.

Finally, we want to test the advantage of including solvent

effects within harmonic and anharmonic models on the

Fig. 1 Atom numbering in cytosine

Fig. 2 Selected resonance forms of cytosine for the most stable keto-

amino structure
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accuracy of the selected cytosine structural and spectro-

scopic parameters. A simple polarized continuum model

(PCM [58, 59]) will be used to account for DMSO solvent.

Theoretical approach

The unconstrained cytosine geometry optimization, vibra-

tional analysis and NMR calculations were performed using

Gaussian 09 [60] software. B3LYP hybrid density functional

[56, 57] combined with 6-311??G** basis set was used to

fully optimize free cytosine equilibrium geometry (Re) in the

gas phase and in DMSO solution. In order to include an impact

of solvent on selected properties of dissolved cytosine, the

self-consistent reaction field (SCRF) calculations within the

polarized continuum model (PCM) [58, 59] were selected.

The harmonic and anharmonic vibration calculations

(yielding rovibrationally averaged Rv structure) were car-

ried out in vacuum and in DMSO at B3LYP/6-311??G**

level of theory using the VPT2 method [13, 14]. All vi-

brational calculations yielded only positive vibrations en-

suring minimum energy structures.

In our studies, we preferred to use PCM as a simple

model of solvent impact on the structure and spectroscopic

properties of cytosine. This very rough approach works

well for solvents of low polarity and nonpolar solute

molecules. We are aware about the limitations of PCM

model, but the use of a super molecule model with explicit

DMSO molecules, in particular for the VPT2 calculations,

is very expensive computationally.

Finally, the B3LYP/6-31??G** calculated cytosine Re

andRvgeometries in the gas phase and in DMSO were used for

all subsequent prediction of nuclear shieldings using the

gauge-independent atomic orbital (GIAO) [61, 62] approach.

For calculation of nuclear magnetic shieldings, we selected

two density functionals—B3LYP and BHandH. The latter

functional was selected because our earlier studies indicated

its good performance in predicting proton, carbon and fluorine

NMR parameters [63]. Since the GIAO NMR parameters are

very sensitive to the completeness and quality of the used basis

set [6, 24, 64], we selected three basis sets. Initially, we used

the same basis set as for geometry optimization (Pople-type

6-311??G**). Next, we selected aug-cc-pVTZ-J basis set,

tailored by Sauer et al. [65, 66] for accurate calculations of

indirect spin–spin coupling constants. However, this basis

set also enabled prediction of carbon nuclear shieldings in a set

of small molecules close to complete basis set limit [24, 67–

70]. This basis set was downloaded from Environmental

Molecular Sciences Laboratory (EMSL) exchange basis set

library [71, 72]. Finally, we selected somehow smaller and

more compact STO-3Gmag basis set, designed by Leszczyński

and coworkers [73] for efficient prediction of carbon shield-

ings in larger molecular systems. The latter basis sets was

taken directly from their article [73].

Theoretical carbon and proton chemical shifts were ref-

erenced to benzene, calculated at the same level of theory,

and the corresponding parameters were calculated as follows:

dðCiÞ ¼ r benzeneð Þ � r Cið Þ þ 128:5 ð1Þ
dðHiÞ ¼ r benzeneð Þ � r Hið Þ þ 7:21 ð2Þ

Besides, we used magnetic shielding of water [74], calcu-

lated at the same level of theory (B3LYP/6-311??G**) in

the gas phase and DMSO, as reference for 17O chemical

shifts. Thus, the corresponding 17O shieldings were 296.366

and 328.791 ppm. Taking into account magnetic shielding

of liquid water (-36.1 ppm [75]) used as reference in ex-

perimental studies, the theoretical reference values were

260.266 and 292.691 ppm, respectively. Similarly, liquid

nitromethane (shielding of -112.56 ppm or chemical shift

of 380.2 ppm relative to neat ammonia [76]) is used as

reference in 15N NMR spectroscopy. Our calculated 15N

shieldings for nitromethane in the gas phase and DMSO

were -152.622 and -166.051 ppm, respectively.

Besides, as suggested by the reviewer, we applied em-

pirically derived linear correlations [77] between theoretical

nuclear shieldings (B3LYP/6-311??G** results) and ex-

perimental carbon and nitrogen chemical shifts to derive the-

oretical chemical shifts. This approach does not involve a

theoretical reference molecule and takes advantage of ‘‘aver-

aging’’ about 395 and 56 chemical shifts for 13C and 15N,

respectively.

The accuracy of theoretical predictions is often ex-

pressed by the root-mean-square (RMS) deviation from

experimental values. In this work, we applied the following

formula for RMS calculation:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðxi � xiexp
Þ2 þ . . .ðxn � xnexp

Þ2�
n

s

ð3Þ

In case of cytosine frequency modes and selected structural

parameters, xi corresponds to 33 vibrations and eight bond

lengths between non-hydrogen atoms. However, only four

carbon and two proton chemical shifts are available for

statistics. So, from statistical point of view, the NMR data

should be discussed in terms of averaged deviations of

calculated values from experiment. However, for consis-

tency, we decided to use RMS as a rough measure of

prediction quality in the current study.

Results and discussion

Structure in the gas phase and DMSO solution

As mentioned in Introduction, we decided to study the trans

keto-amino cytosine tautomer (Fig. 2b). The MP2/

6-311??G** results in Ref. [3] indicate the possible
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existence of three forms, differing by only 1–2.5 kcal/mol,

and the remaining two forms are significantly less stable

(by 3.67 and 5.36 kcal/mol). Thus, the relatively low level

of theory does not warrant conclusive information about

the most stable form of cytosine in vacuum.

In Table 1 are compared the selected equilibrium (Re)

and rovibrationally averaged (Rv) cytosine interatomic

distances calculated at the B3LYP/6-311??G** level of

theory in the gas phase and DMSO solution with the

available experimental X-ray values [78]. The total per-

formance of theory is given by RMS deviations from ex-

periment (see Table 1). We are aware that the comparison

between theoretical numbers in the gas phase or solution

with experimental data measured in the solid state is

somehow artificial (H-bonding and crystal packing forces

are not considered in single molecule calculations), but

unfortunately, there are no other available experimental

studies in the literature. The agreement between theory and

experiment for the selected CC, CN and CO is better vi-

sualized using a graphical presentation of bond length de-

viations from experiment (see Fig. 3).

One could expect that DMSO solvent, due to its strong

tendency to H-bonding, should produce geometry more re-

sembling than that for crystalline cytosine. In particular, in

comparison with the gas phase data, the C=O and N–H bonds

should be more elongated in both the DMSO solution and in

the crystalline state. This is in agreement with our results

showing that the RMS values in the gas phase increase from

0.020 to 0.030 Å and are about 50 % larger than in DMSO

(RMS raises from 0.010 to 0.015 Å, see Table 1; Fig. 3).

It is apparent from Fig. 3 that the C5–C6 and C6–N1

bond lengths are predicted very accurately, and the worse

results are produced for C4–N8 and C2–N1 bonds. It is

known that the Rv structures should generally show more

elongated bonds. Interestingly, both in the gas phase and

DMSO solution, the overall Rv structures are in worse

agreement with experimental data (RMS is higher by about

50 %) than the initial Re structures.

The observed accuracy of predicted bond lengths in

DMSO is somehow related to the relative higher ‘‘content’’

of resonance structures A and C in comparison with the

neutral form B (see Fig. 2). The C5–C6 and C6–N1 bonds

do not take part in the resonance structures and therefore

are predicted very accurately both in the gas phase and

DMSO, using harmonic and anharmonic modeling. In

contrast, the C2=O7 bond is very sensitive to the solvent

presence and anharmonicity corrections. Similarly, the

shortening of C2–N1, C2–N3 and C4–N8 is consistent with

the effect of resonance.

Harmonic and anharmonic frequencies

In the next step, we will discuss the quality of theoretically

predicted cytosine frequencies (Table S1) in comparison

with experimental values, measured in low-temperature

argon matrix [43]. Besides, we will compare our results

with recent theoretical data [30], obtained at significantly

lower level of theory (B3LYP/6-31G**). Thus, we will

compare our B3LYP/6-311??G** calculated cytosine

harmonic, scaled (with a single scaling factor of 0.9688)

and anharmonic frequencies in vacuum and DMSO solu-

tion with recent harmonic, anharmonic VSCF, VCI [30]

and experimental results [30, 43]. Instead of discussing all

individual modes, we will concentrate here on the overall

Table 1 Comparison of selected equilibrium and rovibrationally

averaged B3LYP/6-311??G** calculated cytosine bond lengths (in

Å) in vacuum and DMSO

Bond Re Rv

Vacuum DMSO Vacuum DMSO Exp.a

C2–O7 1.216 1.235 1.233 1.235 1.237

C2–N3 1.369 1.361 1.385 1.366 1.356

C4–N3 1.317 1.331 1.328 1.333 1.334

C4–N8 1.361 1.348 1.367 1.360 1.337

C4–C5 1.440 1.435 1.449 1.439 1.426

C5–C6 1.356 1.356 1.363 1.360 1.337

C6–N1 1.354 1.358 1.367 1.362 1.354

C2–N1 1.428 1.406 1.460 1.414 1.392

C5–H 1.080 1.080 1.083 1.081 –

C6–H 1.083 1.082 1.089 1.086 –

N1–H 1.010 1.011 1.017 1.009 –

N8–H 1.007 1.007 1.007 0.989 –

RMS 0.020 0.010 0.031 0.015

RMS values are given in bold
a X-ray data from Ref. [78]

Fig. 3 Deviations of selected equilibrium (Re) and rovibrationally

averaged (Rv) cytosine bonds, calculated at the B3LYP/6-311??G**

level of theory, in the gas phase and DMSO solution from the

experimental X-ray values
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picture only. Thus, we will concentrate on RMS deviations

between theoretical wavenumbers predicted in the gas

phase and fifteen highest frequency experiment performed

in low-temperature noble gas matrix (e.g., for an ex-

perimental setup resembling gas phase). Thus, going from

raw frequencies in the gas phase to scaled and VPT2 an-

harmonic frequencies, a consistent improvement of results

is visible from Table 2 (RMS drops from about 86 to 29

and 20 cm-1). It is also worth mentioning larger RMS

values obtained for Rasheed and Ahmad [30] results: The

corresponding RMS values for harmonic and anharmonic

VSCF and CC-VSCF frequencies are 96, 53 and 39 cm-1.

Besides, when we look at the diagnostic and typically most

intense C=O stretch band in the IR spectrum (see Table 2),

we observe a large improvement and the corresponding

deviations from experiment are 49, -6 and 16 cm-1. In-

terestingly, the 33 calculated raw harmonic frequencies for

cytosine in DMSO (see Table S1 in supplementary mate-

rial) are of identical accuracy to those in the gas phase

(RMS of 76 and 75 cm-1) and are improved by a similar

amount using a single scaling factor (RMS of 60 and

58 cm-1). However, inclusion of anharmonicity and sol-

vent significantly worsens the results (RMS increases from

50 to 90 cm-1).

It is apparent from Fig. 4 that the selected high-fre-

quency anharmonic modes of cytosine in the gas phase are

closer to experimental data measured in the low-tem-

perature argon matrix than the theoretical results obtained

from the DMSO solution. This tendency is particularly

pronounced for C=O stretch.

1H and 13C NMR results

Finally, we will concentrate on the predicted proton and

carbon chemical shifts using B3LYP and BHandH density

functionals and their comparison with the reported ex-

perimental values [51, 52] in DMSO-d6. In this case, we

will look at the impact of basis set quality, inclusion of

rovibration effects and solvent effect. Here we will only

consider the accuracy of the calculated chemical shift of

four different carbon atoms (C2, C4, C5 and C6) and two

protons (C5H and C6H). Obviously, our simplified PCM

model cannot account for specific H-bonding, shifting the –

NH and –NH2 signals by 3–5 ppm, and observed in ex-

perimental spectra, recorded in DMSO at room tem-

perature. Thus, we will initially exclude from the

discussion all nitrogen and oxygen data, as well as ex-

changeable protons, involved in strong hydrogen bonds.

In Fig. 5 are shown deviations of B3LYP and BHandH

predicted carbon and proton chemical shifts, calculated for

the gas phase structures, from experiment performed in

solution. The use of Rv geometry improves the agreement

for B3LYP calculated C2, C4, C5, C5H and C6H chemical

shifts and does not influence the accuracy for C6 (however,

the reverse sign of deviation is observed). However, there

is no clear dependence for BHandH calculated chemical

shifts obtained for Rv structure.

The importance of solvent inclusion for prediction of

cytosine chemical shifts is apparent from Fig. 6. First, the

B3LYP calculated C2, C4, C5, C5H and C6H chemical

shifts at Re geometry in DMSO are closer to experiment

Table 2 B3LYP/6-311??G**

calculated harmonic, scaleda

and anharmonic frequencies (in

cm-1) of cytosine in vacuum.

For comparison are included

recent theoreticalb and

experimentalc results

RMS values are given in bold
a Scaling factor of 0.9688 used

[10]
b Anharmonic data reported by

Rasheed et al. [30]
c Experimental data in argon

matrix [43]
d Raman data from [30]

Mode This work Litb. Exp.c

Harm. Scaled Anharm. Harm. VSCF CC-VSCF

1 3.731 3.615 3.610 3.742 3.492 3.483 3.565

2 3.618 3.505 3.460 3.633 3.360 3.414 3.471

3 3.600 3.487 3.477 3.605 3.409 3.410 3.441

4 3.218 3.118 3.092 3.234 3.047 3.050 3.117d

5 3.193 3.093 3.037 3.206 3.014 3.020 3.059d

6 1.769 1.714 1.736 1.817 1.791 1.788 1.720

7 1.683 1.630 1.647 1.704 1.676 1.676 1.656

8 1.632 1.581 1.588 1.639 1.614 1.615 1.595

9 1.564 1.515 1.521 1.576 1.554 1.548 1.539

10 1.499 1.452 1.472 1.516 1.497 1.494 1.475

11 1.442 1.397 1.408 1.445 1.423 1.418 1.422

12 1.354 1.312 1.335 1.361 1.348 1.345 1.337

13 1.254 1.215 1.227 1.261 1.244 1.239 1.244

14 1.214 1.176 1.193 1.215 1.212 1.208 1.192

15 1.125 1.090 1.106 1.128 1.024 1.119 1.124

RMS 86 29 20 96 53 39 –
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than the corresponding gas phase values (see also Fig. 5).

Besides, a comparable agreement for C6 is observed.

However, the respective results predicted with BHandH do

not show a uniform improvement upon including solvent

effect. In addition, the use of Rv geometry and PCM model

does not improve consistently the theoretical results in

comparison with gas phase calculations. In particular, a

combination of BHandH density functional, solvent impact

and rovibrationally averaged geometry lowers the predic-

tive power of theory.

In order to get a general picture of the performance of

different models on the accuracy of NMR chemical shifts

in Table 3, we gathered the corresponding RMS values.

These results also show the performance of three selected

basis sets used in GIAO NMR calculations.

First, we notice an improvement of gas phase BHandH

and B3LYP results calculated at Rv structure of cytosine in

comparison with the corresponding proton and carbon

chemical shifts, predicted at Re geometry. An opposite si-

tuation is observed in DMSO solution. The best agreement

for proton chemical shifts is observed for aug-cc-pVTZ-J

(in DMSO) calculations at Re geometry (RMS of 0.262 and

0.253 ppm for BHandH and B3LYP). The best results for

carbon chemical shifts are predicted when using B3LYP/

6-311??G** calculations in DMSO (RMS of 1.530 ppm).

Somehow worse result is obtained from B3LYP/STO-

3Gmag calculations of 13C chemical shifts at Rv structure in

DMSO (RMS of 1.840 ppm). Thus, the improvement of

basis set quality does not produce better agreement with

experiment in case of proton and carbon chemical shifts of

cytosine. Unfortunately, this trend for BHandH and B3LYP

density functionals is opposite to coupled cluster calculated

GIAO NMR results (in case of CCSD(T), a continuous

improvement of predicting power is observed toward the

complete basis set limit [24, 27]). However, when we

consider typical chemical shift ranges observed for proton

and carbon spectra (10 and 200 ppm), the best RMS values

from Table 3 will correspond to 0.21 and 0.55 %, respec-

tively. Thus, the result for cytosine chemical shifts points

out very accurate predictions using DFT calculations.

Another way of looking at performance of theoretical

models is to analyze the quality of correlation between

calculated and experimental chemical shifts and the

Fig. 4 Deviation of selected harmonic, scaled and anharmonic

B3LYP/6-311??G** frequencies of cytosine in the gas phase and

DMSO solution from experimental data in argon matrix [43]

Fig. 5 Deviations of B3LYP and BHandH predicted carbon and

proton chemical shifts from experiment (DMSO-d6 solution at room

temperature). Theoretical values are calculated for Re and Rv

structures in the gas phase and referenced to benzene

Fig. 6 Deviations of B3LYP and BHandH predicted carbon and

proton chemical shifts from experiment (DMSO-d6 solution at room

temperature [51, 52]). Theoretical values are calculated for Re and Rv

structures in DMSO solution and referenced to benzene

1088 Struct Chem (2015) 26:1083–1093
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corresponding parameters of least square fit. For brevity,

such correlations including both proton and carbon results

are included in Figs. S1–S4 in the supplementary material.

Here we only shortly mention the general conclusions from

all these graphs: Very nice linear correlations, indicating

good reproduction of experimental NMR parameters by

theory, were obtained (y = ax ? b, with slope (a) close to

0.5 and r2 values close to 1). Besides, the parameter b in all

these graphs was close to zero.

In order to asses the total performance of GIAO B3LYP/

6-311??G** calculations in the gas phase and DMSO in

case of more theoretically difficult nuclei, e.g., 15N and
17O, we also gathered in Table 4 the corresponding nuclear

shieldings and chemical shifts for these isotopes (all nu-

clear shieldings were referenced to benzene, nitromethane

and water). Besides, we also included carbon and nitrogen

chemical shifts derived from empirical linear formulas

reported by Blanco and coworkers [77]. This approach

does not need to use a separate calculation for a reference

molecule.

It is apparent from Table 4 that the direct (and popular)

referencing of carbon data both in the gas phase and

DMSO solution leads to somehow better reproduction of

experiment (RMS of 4.46 vs. 5.20 ppm in the gas phase

and 1.53 vs. 1.90 ppm in DMSO) in comparison with

empirical relation [77]. On the other hand, the empirical

formula for nitrogen works significantly better (RMS of

19.77 vs. 15.12 in the gas phase and 25.20 vs. 7.81 ppm in

DMSO). Thus, the inclusion of DMSO solvent improves

prediction of carbon chemical shieldings but worsens ni-

trogen chemical shifts with respect to values measured in

DMSO. The advantage of including solvent is particularly

important in case of 17O NMR chemical shift (deviation of

42.58 in the gas phase vs. -13.69 ppm in DMSO).

However, we are aware that the experimental nitrogen

and oxygen chemical shifts are also recorded in different

conditions (solvent, temperature or solid state), but the

presence of hydrogen bonding is not taken into account in

our calculations. Thus, the absolute deviation between

theory and experiment in case of nitrogen and oxygen

chemical shifts could be significantly larger than in case of

carbon and proton data (15N and 17O appear at significantly

larger range of chemical shifts than 13C or 1H).

Conclusions

The use of affordable B3LYP/6-311??G** level of theory

enabled very fast and reliable prediction of equilibrium

structure of cytosine. The RMS deviations of Re bond

lengths between non-hydrogen atoms from experimental

values, measured using X-ray technique, were fairly small

(RMS of 0.010–0.020 Å). The VPT2 predicted rovibra-

tional structure in the gas phase, and DMSO solution

(within PCM solvent model) was significantly more ex-

pensive computationally. Besides, the agreement between

the Rv structure and X-ray experiment was slightly worse

(RMS of 0.015–0.030 Å). However, anharmonic frequen-

cies reproduced significantly better the fifteen highest fre-

quency experimental values, measured in low-temperature

argon matrices than the raw, harmonic data (RMS of 20 vs.

86 cm-1). Obviously, a simple uniform scaling also im-

proved the results significantly (RMS of about 30 cm-1).

Typical BHandH and B3LYP calculations with popular

6-311??G** basis set for cytosine Re structure in the gas

phase resulted in very inaccurate cytosine proton chemical

shifts (RMS of 0.854 and 0.708 ppm). The use of Rv in-

stead of Re cytosine structure in the gas phase generally

improved proton chemical shifts, and the only exception

was for BHandH/aug-cc-pVTZ-J. DFT-predicted proton

chemical shifts in DMSO were consistently more accurate

when using Rv instead of Re cytosine structure for the tested

Table 3 RMS deviation (in ppm) of theoretical BHandH and B3LYP carbon and proton chemical shiftsa of cytosine in vacuum and DMSO from

experimental data [51, 52] in DMSO-d6

BHandH B3LYP

H C H C

Re Rv Re Rv Re Rv Re Rv

6-311??G** 0.854 0.587 4.608 3.260 0.708 0.546 4.460 1.655

6-311??G** (in DMSO) 0.351 0.313 3.157 3.988 0.411 0.361 1.530 1.523

aug-cc-pVTZ-J 0.289 0.399 4.537 4.134 0.675 0.521 3.829 1.971

aug-cc-pVTZ-J (in DMSO) 0.262 0.225 3.819 4.664 0.253 0.206 1.568 2.581

STO-3Gmag 0.557 0.402 4.449 3.609 0.553 0.405 3.881 1.776

STO-3Gmag (in DMSO) 0.351 0.275 3.285 3.895 0.742 0.322 3.310 1.840

GIAO NMR data were calculated at equilibrium (Re) and rovibrationally averaged geometry (Rv) using several basis sets basis set (and in bold

are marked the best results)
a Referenced against benzene calculated at the same level of theory
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6-311??G**, aug-cc-pVTZ-J and STO-3Gmag basis sets.

Besides, addition of solvent using PCM model improves

the predicted cytosine proton shifts calculated for both Re

and Rv structures. Only in case of B3LYP/STO-3Gmag

calculations at Re geometry, it leads to worse agreement

with experiment. The overall best results for cytosine

protons are observed for both BHandH and B3LYP density

functionals combined with aug-cc-pVTZ-J basis set when

using Rv structure in DMSO (RMS of 0.225 and

0.206 ppm).

The use of Rv structure in the gas phase improves the ac-

curacy of carbon chemical shifts. This tendency was par-

ticularly pronounced for B3LYP density functional (RMS of

4.172 decreased to 1.655 ppm for B3LYP/6-311??G**).

Furthermore, the inclusion of solvent improves carbon

chemical shifts calculated for cytosine Re structure. The best

agreement with experiment (RMS of 1.530 ppm) was ob-

served for B3LYP/6-311??G** predicted 13C chemical

shifts using Re structure of cytosine in DMSO. Moreover, in

most cases, the combination of PCM calculations and anhar-

monic correction yielded worse agreement between predicted

carbon chemical shifts and the corresponding experimental

values. In case of cytosine carbon chemical shifts, the im-

provement of basis set quality did not produce better agree-

ment with experiment. Thus, probably due to cancelation of

different errors, the use of inexpensive Re structure with PCM

solvent model predicted by B3LYP/6-311??G** calcula-

tions produced the best carbon shieldings.

The obtained NMR results strongly suggest caution

when mixing different correction techniques in order to

Table 4 Comparison of

theoretically predicted chemical

shifts of cytosine in the gas

phase and DMSO with available

experimental data in the

condensed phases

RMS values are given in bold

Deviations and RMS values are

given with respect to available

experimental data
a This work
b Using linear regressions for
13C and 15N NMR chemical

shifts from Ref. [77]
c From DMSO solution [51, 52]
d From DMSO solution, Ref.

[52]
e From solid state NMR, Ref.

[52]
f From Ref. [53]
g From DMSO solution, Ref.

[51, 52]

r da Lit.b Exp. Deviation

This work Lit.b

Gas phase

C2 27.221 150.852 149.49 157c -6.15 -7.51

C4 14.927 163.146 161.33 166.7c -3.55 -5.37

C5 90.779 87.294 88.28 92.6c -5.31 -4.32

C6 36.304 141.769 140.74 142.8c -1.03 -2.06

RMS 4.46 5.20

N1 93.564 -246.186 -240.51 -238.6d -7.59 -1.91

N3 5.508 -158.129 -157.21 -174.4e 16.27 17.19

N8 164.237 -316.859 -307.37 -287.7d -29.16 -19.67

RMS 19.77 15.12

O7 -27.318 287.584 – 245f 42.58 –

H(C5) 24.890 6.713 – 7.3g -0.59 –

H(C6) 26.814 4.789 – 5.6g -0.81 –

RMS – 0.708

H(N8) 27.474 3.797 – 7.1g -3.30 –

H(N1) 25.371 6.233 – 10.6g -4.37 –

DMSO

C2 21.299 156.465 155.19 157c -0.54 -1.81

C4 12.582 165.182 163.58 166.7c -1.52 -3.12

C5 87.344 90.420 91.59 92.6c -2.18 -1.01

C6 33.545 144.218 143.40 142.8c 1.42 0.60

RMS 1.53 1.90

N1 93.919 -259.97 -240.85 -238.6d -21.37 -2.25

N3 21.463 -187.514 -172.30 -174.4e -13.11 2.10

N8 157.374 -323.424 -300.88 -287.7d -35.72 -13.18

RMS 25.20 7.81

O7 28.958 231.308 – 245f -13.69 –

H(C5) 24.539 6.898 – 7.3g -0.40 –

H(C6) 26.258 5.179 – 5.6g -0.42 –

RMS 0.41 –

H(N8) 27.036 4.401 – 7.1g -3.30 –

H(N1) 24.662 6.775 – 10.6g -4.37 –
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improve the predictive power of DFT. Thus, the semi-

empirical nature of the used density functionals seems to be

the source of limitations when using DFT as predicting tool

in calculation of GIAO NMR parameters.
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spectra, tautomeric stabilities, and scaled quantum mechanical

force fields of protonated cytosine. J Phys Chem 100:5578–5589

47. Susi H, Ard JS (1974) Planar valence force constants and as-

signments for pyrimidine derivatives. Spectrochim Acta A

30:1843–1853
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