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Abstract
We consider the challenge of efficiently detecting changes within a network of sensors, where we also need to minimise
communication between sensors and the cloud.We propose an online, communication-efficientmethod to detect such changes.
The procedureworks by performing likelihood ratio tests at each time point, and two thresholds are chosen to filter unimportant
test statistics andmake decisions based on the aggregated test statistics respectively.We provide asymptotic theory concerning
consistency and the asymptotic distribution if there are no changes. Simulation results suggest that our method can achieve
similar performance to the idealised setting,wherewehave no constraints on communication between sensors, but substantially
reduce the transmission costs.
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1 Introduction

During the last decade, there has been a significant focus
on the important challenge of efficient and accurate detec-
tion of changes in both univariate and multivariate data
sequences (Cho and Fryzlewicz 2014; Fisch et al. 2022;
Kovács et al. 2023; Truong et al. 2020; Tveten et al. 2022;
Wang and Samworth 2018). More recently, focus has turned
to translating the efficiency of such approaches to the online
setting, typically motivated by an applied challenge such as
how to deal with limited computational power (e.g. Ward
et al. 2024). Recent major contributions to the online set-
ting include Adams and MacKay (2007), Tartakovsky et al.
(2014), Yu et al. (2023), Chen et al. (2022), and Romano
et al. (2023). In this paper we consider a less studied sce-
nario, monitoring edge-behaviour within distributed sensor
networks, which are common architectures within the Inter-
net of Things framework (IoT). The importance of efficiently
detecting changes at the edge efficiently, whilst minimising
communicationbetween sensors and the cloud is perhaps best
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appreciated by considering two key applications: detecting
cyber-attacks on smart cities (Alrashdi et al. 2019) and opti-
mising the performance of base stations (Wu et al. 2019).

Consider, by way of example, Fig. 1 which shows a
schematic representation of real-time monitoring within a
distributed network. Here we assume that d data streams are
monitored, each by its own sensor. Communication between
the sensors and the centre is possible as shown by the dashed
lines. An unusual event happens at time τ , and we want
to detect this event as quickly as possible. However, in
modern sensor networks that deploy IoT devices the compu-
tational resources of the sensors canbe substantial.Moreover,
communication between the sensors and the cloud can be
problematic due to the heavy energy usage involved with
transmitting data (Varghese et al. 2016; Pinto and Castor
2017). As such, we need algorithms that can identify the
time when it is important for information to be shared with
the cloud.More specifically, in this article,we seek to develop
a newmethod to detect changes within such a network in real
time with high statistical power and as little communication
and computation as possible.

Changepoint methods which can be applied in the fully
centralised problem, when the data from the sensors is pro-
cessed and transmitted to the centre (cloud) at every time
step, are well studied. Approaches typically seek to calcu-
late the maximum or the sum of all the test statistics (see,
e.g., Mei 2010; Xie and Siegmund 2013; Chan 2017; Chen
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Fig. 1 Schematic representation of a sensor network made up of d
sensors, where Si is the index for sensor i , Xi,t is the data observed at
sensor i , and Mi,t is the message transmitted from sensor i to centre at
time t

et al. 2022; Gösmann et al. 2022). The rationale behind these
methods is to set thresholds and raise the alarm if the aggre-
gated test statistics frommultiple streams exceed pre-defined
thresholds. Numerical experiments Mei (2010) indicate that
taking the maximum is the optimal method when there are
only a few affected data streams—what we will term a sparse
change. Conversely, taking the sum is optimal when most
data streams are affected, also known as a dense change.

Recent contributions to this distributed problem include
(Rago et al. 1996; Veeravalli 2001; Appadwedula et al. 2005;
Mei 2005, 2011; Tartakovsky and Kim 2006; Banerjee and
Veeravalli 2015). Among them, two recent papers of par-
ticular interest develop communication efficient schemes for
monitoring a large number of data streams (Zhang and Mei
2018; Liu et al. 2019). The key idea is that each sensor
computes a local monitoring statistic and then employs a
thresholding step, only sending the statistic to the centre
if there is some evidence of a change. The information
from multiple sensors is then combined at the centre. This
approach reduces unnecessary transmission by ignoring
streamswith little evidence for a change, while only focusing
on data streams that show signs of change.

Althoughcomputationally feasible, existingworks assume
that the pre- and post-changemean are known. In practice, the
pre-change mean can be estimated based on historical data.
However assuming a known post-change mean is typically
unrealistic in practice, with an incorrect value potentially
leading to a failure to detect, or poor detection power. Liu
et al. (2019) approximate the post-change mean recursively
but, as a consequence, somewhat sacrifice statistical power
of the algorithm.

Our approach builds on recent work developing the mov-
ing sum (MOSUM) as awindow-based changepointmethods
(see, e.g., Aue et al. 2012; Kirch and Kamgaing 2015;
Kirch and Weber 2018). Specifically, we propose an online
communication-efficient changepoint detection algorithm
(distributed MOSUM) to detect changes in real-time within
the distributed network setting. A local threshold is chosen
to filter out unimportant information and only transmit the
statistically important test statistic to the centre. The change
will be alarmed when the aggregated test statistic exceeds
the pre-defined global threshold in the central cloud. The
low time complexity and communication efficient scheme of
our proposed method makes it suitable for online monitor-
ing. We also establish that the proposed method can achieve
similar statistical power as the idealistic setting, where there
is no communication constraint, at detecting large changes
whilst substantially reducing the transmission cost. More-
over, we also show how to make the detection performance
of distributed MOSUM close to that of the idealised setting
by increasing the window size, which will only sacrifice the
storage cost and a little transmission cost.

The key differences between our work and previous dis-
tributed changepoint detection contributions (e.g., Liu et al.
2019) are: Firstly, a moving window-based test statistic
MOSUM is chosen to avoid the requirement of knowledge
of the post-change mean. Secondly, earlier works have been
based on the framework that controls the average run length
(ARL)—the average amount of time until incorrectly detect
a change. However, such a metric gives a somewhat limited
amount of information since the distribution of run length is
usually unknown. For instance, if multiple procedures end
quickly while a few replications stop significantly longer,
the ARL would be the same if all the replications terminated
around the same time. Conversely, in this work, we present
methods in terms of controlling the error rate under the null at
a specific level, and with asymptotic power 1 under alterna-
tives. Furthermore, our ideas generalise trivially to methods
controlling the average run length.

The structure of this paper is as follows. In Sect. 2, the
problem setting is outlined, before introducing the distributed
MOSUM methodology in Sect. 3. Several theoretical results
for this new approach are given in Sect. 4. Simulation studies
are carried out in Sect. 5, before endingwith some concluding
remarks (Sect. 6).

2 Problem setting

We begin by assuming that we have d sensors, each of which
is observed as follows: Xt = (X1,t , X2,t , X3,t , . . . , Xd,t ) at
every time point t ∈ N. Here Xt could be raw data or the
residuals after pre-processing the data. These observations
are assumed to be identically distributed and independent
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across series. Such assumptions are common in the prob-
lem of detecting changes within a distributed system setting
(e.g., Tartakovsky and Veeravalli 2002; Mei 2010; Xie and
Siegmund 2013; Liu et al. 2019). We do not strictly assume
time independence here, but our method is optimal when this
assumption holds. Moreover, the impact of time dependence
will be numerically studied in Sect. 5.3.

We begin by assuming that at some unknown time, τ ,
the distribution of some unknown subsets of d sensors will
change. For simplicity, we only consider change in mean,
but the ideas below are easily extended to other changepoint
settings. Therefore, in this illustrative change inmean setting,
the model for the data is expressed as follows:

Xi,t = μi + δi1{t>τ } + εi,t , t ∈ N, 1 ≤ i ≤ d, (2.1)

whereμi is the known pre-change mean, δi is the mean shift,
and {εi,t : t ∈ N} are strictly stationary error sequences.
After time τ , the mean of the i-th data stream changes imme-
diately from μi to μi + δi . Here it is useful to note that our
setting also permits some δi = 0, which means that only
a subset of data streams are affected by the change. With-
out loss of generality, we assume μi = 0. Under the null
hypothesis, the model for the data can be rewritten as

Xi,t = εi,t , t ∈ N, 1 ≤ i ≤ d. (2.2)

Moreover under the alternative hypothesis, the model is
Xi,t = δi + εi,t , t ∈ N, 1 ≤ i ≤ d. Our aim is to mon-
itor such a system and raise the alarm as soon as possible
following the event at time τ . One way of achieving this is to
perform hypothesis testing sequentially, i.e., evaluate the null
hypothesis of no change in mean at each time point t ∈ N.
The algorithm will stop and declare a change when we can
reject the null hypothesis.

In the classical sequential changepoint detection problem,
we evaluate the performance of an algorithm subject to a con-
straint on its false alarm rate. First, consider an open-ended
stopping rule where the algorithm never we have an infinite
time-window of measurements and the algorithm never halts
until it detects a change. The false alarm rate can be evalu-
ated in two ways. Assume there is no change, and let τ̂ be
the time at which we detect a change, with the convention
that τ̂ = ∞ if we detect no change. One approach is to con-
trol the average run length, E∞(̂τ ), the expected time of to a
false alarm. This makes sense for procedures with a constant
threshold for detection, for which we are certain to detect
a change under the Null if we monitor for an infinite time
period. Alternatively, one can control the false alarm rate,
P∞(̂τ < ∞), the probability of a false alarm. To control this
over an infinite time horizon requires increasing the thresh-
old for detecting a change over time. Equivalently, this can
be achieved by multiplying the test statistic with a weight

function w(·) < 1. See Leisch et al. (2000); Zeileis et al.
(2005); Horváth et al. (2008); Aue et al. (2012); Kirch and
Kamgaing (2015); Weber (2017); Yau et al. (2017); Kirch
andWeber (2018); Kengne and Ngongo (2022) for examples
of how to choose an appropriate weight function.

In our paper, we focus on controlling the false alarm rate.
However Aue et al. (2012) states that “applying open-ended
procedures built from the asymptotic critical values have a
tendency to be too conservative infinite samples”. There-
fore, our paper considers a close-ended stopping rule. In this
approach, the algorithm will stop either upon detecting a
change or upon reaching the predefined monitoring time T .
We thus control the false alarm rate over a time time win-
dow of length T . However, the ideas we present can easily
be adapted to the open-ended setting, and also to methods
which control the average run length.

Under the context of distributed changepoint detection
problem, we additionally evaluate the index—the average
transmission cost �̄. This is the average number of transmis-
sions at each time step for d sensors, and should be smaller
than the pre-specified transmission cost �.

Before introducing our proposed method, we first review
relevant work. At time t , the local monitoring statistic, Ti is
calculated for the i th stream. Then all the local statistics Ti
can be combined into a global monitoring statistic T at the
fusion centre. There are two common choices of message
combinations for monitoring changes within the distributed
system.One of these two types, the SUMscheme (Mei 2010),
declares a change when the sum of all the local monitoring
statistics exceeds a pre-defined threshold, that is:

τ̂sum(cGlobal) = inf {t ≥ 1 : T ≥ cGlobal}

= inf

{

t ≥ 1 :
d

∑

i=1

Ti ≥ cGlobal

}

,

where cGlobal is global threshold. This way of combining
statistics across streams is known to be good if the series
are independent and the changes are dense. However, imple-
menting this method on the distributed system requires
sending every Ti to the fusion centre, which is expensive. A
sum-shrinkagemethod (Liu et al. 2019) is proposed to reduce
the communication cost by thresholding the test statistics
before summing them:

τ̂sum(cLocal, cGlobal) = inf {t ≥ 1 : T ≥ cGlobal}

= inf

{

t ≥ 1 :
d

∑

i=1

TiI(Ti ≥ cLocal) ≥ cGlobal

}

.

Empirically the sum-shrinkage method could achieve simi-
lar performance as the SUM scheme in the dense case and
surprisingly performs better in the sparse case.
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When the change is sparse, it has been shown both the-
oretically and empirically (Mei 2010; Liu et al. 2019; Chen
et al. 2022) thatmonitoring themaximumof the test-statistics
across series is best. In such a setting, the MAX procedure
(Tartakovsky and Veeravalli 2002) monitors the maximum
of test statistics and raises the alarm when the maximum of
the local test statistics exceeds the thresholds, that is:

τ̂max(cGlobal) = inf {t ≥ 1 : T ≥ cGlobal}
= inf

{

t ≥ 1 : max
1≤i≤d

Ti ≥ cGlobal

}

.

The best choice of different schemes depends on the sparsity
of changes which is based on the number of affected data
streams p. This can bemade precise if we consider an asymp-
totic setting where p → ∞ (Enikeeva and Harchaoui 2019),
and define a change to be sparse if the number of affected
streams is p = o(

√
d), and it to be a dense change other-

wise. A recent paper (Chen et al. 2022) combines both SUM
procedure andMAX procedure to achieve good performance
regardless of the sparsity. In the context of distributed moni-
toring, the MAX procedure is trivially implemented without
any communication. Specifically, each sensor has the thresh-
old for the max-statistic and flags a change if their local
statistic is above this threshold. Therefore, within this paper,
we only focus on developing a communication-efficient ver-
sion of the SUM scheme. Our aim is a method that performs
well for dense changes, but limits the communication cost.
We will use the SUM scheme as the ideal method to compare
against since it has no restrictions on communication.

3 Distributed change point detection
method

Our proposed methodology is summarized in Algorithm 1,
and described in detail below. The method essentially com-
prises of three steps. The first step involves the parallel local
monitoring of each data stream by the sensors. As the mon-
itoring unfolds, messages are occasionally sent from the
sensors to the centre to indicate the presence of a potential
change. Finally, at the centre these messages are aggregated
to find changes that occur across a number of data streams.

3.1 Local monitoring

3.1.1 Estimating the baseline parameters

Our sequential testing approach requires a historic data set
of length m to estimate the baseline parameters. Theoretical
results are obtained later in the paper when m → ∞. The
parameters of interest are the mean of each data stream μi

Algorithm 1: Centralized and distributed MOSUM
input : historic data xi,t for i = 1, 2, ..., d, and 1 ≤ t ≤ m

Estimating the baseline parameters // can be done
offline
for i = 1 to d do

estimate μ̂i and σ̂i
end

Data: xi,t for i = 1, 2, ..., d at time t

while change is detected or reached the maximum monitoring
time T do

Local monitoring // parallel computing
for i = 1 to d do

Ti (m, k, h) = 1
σ̂i

∣

∣

∣

∑m+k
t=m+k−h+1

(

Xi,t − μ̂i
)

∣

∣

∣ .

end
Message passing
if w(k, h)Ti (m, k, h) > cLocal then

Mi,t = Ti (m, k, h) // centralized scheme:set
cLocal = 0
else Mi,t = 0

end
Global monitoring

if w(k, h)

√

∑d
i Mi,t > cGlobal then

stop the algorithm
output: τ̂ = t

end
t ←− t + 1

end

and the variance of the errors σ 2
i . For the i th data stream

these estimates are,

μ̂i = 1

m

m
∑

t=1

Xi,t ,

σ̂ 2
i = 1

m

m
∑

t=1

(

Xi,t − μ̂i
)2

.

(3.1)

If the errors cannot be assumed to be independent we can
estimate the long run variance. This requires specifying a
kernel function K (·):

σ̂ 2
i = 1

m

m
∑

t=1

(

Xi,t − μ̂i
)2 + 2

m−1
∑

j=1

K

(

j

l

)

γ̂
(i)
j , (3.2)

where γ̂
(i)
j = 1

m − j

m− j
∑

t=1

(

Xi,t − μ̂i
) (

Xi,t+ j − μ̂i
)

. (3.3)

In this setting, the Kernel function can be seen as a weight-
ing function for sample covariance γ̂

(i)
j . The kernel function

must be symmetric and such that K (0) = 1. Various kernel
functions are proposed. Standard kernel functions include
Truncated (White and Domowitz 1984), Bartlett (Newey
and West 1986) and Parzen (Gallant 2009) amongst others.
Among them, the Bartlett kernel is frequently used in Econo-
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metrics. This kernel takes the form:

KBartlett

(

j

l

)

=
{

1 − j
l , for 0 ≤ j ≤ l − 1,

0, otherwise.

For more details, see Horváth and Hušková (2012); Kiefer
and Vogelsang (2002a); Kiefer and Vogelsang (2002b).

3.1.2 Starting local monitoring

Once the baseline parameters have been estimated, begin-
ning at time m + 1 data Xi,m+1, Xi,m+2, . . . are observed
sequentially and monitored for a change. This is achieved
using a MOSUM statistic which at monitoring time, k, takes
a window containing the most recent h observations:

Ti (m, k, h) = 1

σ̂i

∣

∣

∣

∣

∣

m+k
∑

t=m+k−h+1

(

Xi,t − μ̂i
)

∣

∣

∣

∣

∣

. (3.4)

Following Aue et al. (2012), the MOSUM statistic will
declare a change at time k when the weighted local MOSUM
statistic w(k, h)Ti (m, k, h) exceeds a pre-defined thresh-
old. A weight function w(·, ·) is introduced to control the
asymptotic size of the detection procedure. Typically w(·, ·)
depends on the monitoring time k, and the window size h,

w(k, h) = 1√
h

ρ

(

k

h

)

, (3.5)

for some appropriate ρ(·). The choice of the weight function
controls the sensitivity of the test. A wide range of weight
functions can be used as long as they are continuous functions
that satisfy inf0≤t≤T ρ(t) > 0. In this paper, we use the
weight function proposed in Leisch et al. (2000) and Zeileis
et al. (2005):

ρ(t) = max(1, log (1 + t))−1/2.

Intuitively, if there is no change the weighted MOSUM will
remain small, but it will be large if there is a change. Figure2
gives the behavior of weighted MOSUM statistic under the
null and the alternative assumptions for one data stream.

3.2 Message passing

The local monitoring described in the previous section is
applied to each sensor independently. In order to make
global decisions about the state of the system,messages from
the sensors must be passed to the central hub (see Fig. 1).
However, since there are constraints on communication in
the system, the message passing process must be carefully
designed.

At time t = m+k, wherem is the historic period of length
m, and k is themonitoring time, each sensormakes a decision
as to whether or not to transmit a message to the centre. This
message vector is denoted as Mt = (M1,t , M2,t , . . . , Md,t ).
We consider two different messaging regimes:

• Centralized messaging regime: Mt = Ti (m, k, h).
• Distributed messaging regime:

Mi,t =
{

Ti (m, k, h) if w(k, h)Ti (m, k, h) > cLocal,

NULL otherwise.

(3.6)

The centralized massaging regime is one where there is no
constraint on the communication between the sensors and
the centre, so all sensors send a message to the centre at each
time instant. This is similar to the “SUM” scheme change-
point detection method proposed by Mei (2010). However,
when communication is expensive, a “distributed” messag-
ing regime can be used where each of the sensors only send
local monitoring statistics that exceed a chosen threshold.
The NULL means no message is sent. The threshold cLocal
can be chosen to control the fraction of transmitting sen-
sors when there is no change. It is worth noting that when
cLocal = 0, the “distributed” messaging regime is equivalent
to “centralized” messaging regime.

3.3 Global monitoring

In our paper, we assume that there is no communication delay
between sensors and the central hub, so the message could
be immediately received by the centre at time t . Based on
the messages received, the centre will make the decision as
to whether or not to flag a change.

3.3.1 Combining messages

Depending on different messaging regimes, the global
MOSUM statistics are constructed as follows:

• Centralized global MOSUM statistic:

T (m, k, h) =
√

√

√

√

d
∑

i=1

M2
i,t , (3.7)

This is similar to the SUM scheme mentioned in Sect. 2.
By using such a scheme, Formula 3.7 is the idealistic
scheme under dense change.
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Fig. 2 Example time series with no change (a) and a single change (b) in the top row. The bottom row shows the weighted MOSUM statistic with
a historic period of length m = 100 and a window size of h = 50

• Distributed global MOSUM statistic:

T (m, k, h) =
√

√

√

√

d
∑

i=1

M2
i,t1Ti (m,k,h)>cLocal , (3.8)

where NULL values in Formula 3.6 are taken to be zeros
in the sum. The form of Eq. (3.8) is taken from the mul-
tivariate MOSUM (Kirch and Kamgaing 2015; Weber
2017; Kirch and Weber 2018).

3.3.2 Declaring the change

Similar to the local monitoring procedure, a change is
declared as soon as the weighted global MOSUM exceeds
a threshold. A closed-end stopping rule can be used when
the aim is to monitor changes within a fixed time. This can
be formalised as

τm,T̃=min
{

1 ≤ k ≤ 	mT̃ 
 : w(k, h)T (m, k, h)>cGlobal
}

,

(3.9)

where min{∅} = ∞ and the total length of the data T = mT̃ .
If no change is detected by this stopping rule prior to 	mT̃ 
,
the monitoring procedure is terminated. The parameter T̃ >

0 governing the length of the monitoring period is chosen in
advance (Horváth et al. 2008; Aue et al. 2012).
Figure3 shows the weighted global MOSUM statistic for
the distributed and centralized messaging regimes on the
same dataset.Whenever theweighted globalMOSUMof dis-
tributed regime hits zero, there is no communication between
the edges and the centre at that time.

In the next section, we will show the theoretical properties
of our proposed method under H0 and HA.

4 Theoretical properties for distributed
MOSUM

This section considers the theoretical properties of the closed-
end stopping rule, τm,T̃ defined in Eq. (3.9) as m → ∞.
Firstly, in Sect. 4.1 we find the limiting distribution under the
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Fig. 3 Example of the weighted global MOSUM statistic for the dis-
tributed (red dashed line) and centralized (black line) regime. The result
is obtained with T = 1000, d = 100,m = 100, h = 50, δ = 0.5 and
the number of affected sensors p = 50. A value of cLocal = 3.44 was
used in the distributed regime. (Color figure online)

null hypothesis for the different procedures. Then, appropri-
ate choices for the thresholds, cLocal and cGlobal are given in
Sect. 4.2 using these results. Finally, in Sect. 4.3 we prove
that the detection procedures we have studied are consistent
under alternatives.

Three key assumptions are made in order to derive asymp-
totic results, which are the same in Horváth et al. (2008), Aue
et al. (2012), and Weber (2017):

Assumption 1 (Clean historic data) h → ∞ as m → ∞
and the location of the changepoint τ > m for 1 ≤ i ≤ d.

This assumption is to guarantee we can get good estimators
based on the training dataset, and it can be easily achieved in
real applications.

Assumption 2 (Asymptotic regime) h → ∞ as m → ∞ and

lim
m→∞

h

m
→ β ∈ (0, 1].

This assumption quantifies the long run connection between
the length of the historical period m and the window size
h := h(m).

Assumption 3 (FCLT on errors)

lim
m→∞

1√
m
Si (mt)

D−→ σiWi (t)

where σi > 0, {Wi (t), 0 ≤ t < ∞} is a standard Brownian
motion when h → ∞, and Si (x) = ∑	x


t=1 εi,t . σi can be

estimated by σ̂i . Furthermore, σ̂i satisfying σ̂i
P−→ σi as

m → ∞.

This assumption is a functional central limit theorem on the
errors, ε, in the model for the data (2.1).

4.1 Asymptotics under the null

In this part, the asymptotic theories of our proposed method
will be given, which can help guide the choice of thresholds.

The local monitoring process of our proposed method
within each sensor is the same as univariate MOSUM detec-
tion process. Thus, Theorem 1 and Corollary 1 of the local
MOSUM can be directly cited from Horváth et al. (2008),
Aue et al. (2012) andWeber (2017). For simplicity,we denote

Zi (t) =
∣

∣

∣

∣

Wi

(

1

β
+ t

)

− Wi

(

1

β
+ t − 1

)

−βWi

(

1

β

)∣

∣

∣

∣

, 1 ≤ i ≤ d (4.1)

where {Wi (t), 0 ≤ t < ∞} are independent standard Brow-
nian motions.

Theorem 1 (Local MOSUM) If Assumption 1–3, and model
2.2 holds, then under H0, let k = ht for any t > 0

lim
m→∞ w(k, h)Ti (m, k, h)

D−→ ρ(t)Zi (t).

Corollary 1 (Local MOSUM - asymptotic type-I error)
Under H0, for any T̃ > 0 and ith data stream,

lim
m→∞ P

(

τ
(i)
m,T̃

< ∞
)

= P

(

sup
0≤t≤T̃ /β

ρ(t)Zi (t) > cLocal

)

.

Thus, the false alarm rate for one data stream is asymptoti-
cally equal to a pre-specified type-I-error ∈ (0, 1).

Following the results of local MOSUM, similar results for
global MOSUM follow readily. These can be used to choose
thresholds given the pre-defined Type-I-error. Below we
obtain two limiting distributions, for the centralized and dis-
tributed regime settings of Sect. 3 respectively.

Theorem 2 (Global MOSUM) Let k = ht for any t > 0,
then under H0,

lim
m→∞ w(k, h)T (m, k, h)

D−→ ρ(t)

⎧

⎨

⎩

√

∑d
i=1 Zi (t)

2 centralized case,
√

∑d
i=1 Zi (t)

21ρ(t)Zi (t)>cLocal distributed case.

Proof See Appendix A.1. �
Thus, their limiting distribution will be a function of Gaus-
sian process. Using the Theorem 2, the following may be
obtained:

Corollary 2 (Global MOSUM—asymptotic type-I error)
Under H0, for any T̃ > 0,
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Table 1 Critical values for the
centralized procedures, results
averaged over five thousand
replications

α cLocal cCentralizedGlobal (α)

0.10 0 14.1

0.05 0 14.4

0.01 0 15.0

Table 2 Critical values for the
distributed procedure with
different values for cLocal,
results averaged over five
thousand replications

α cLocal cDistributedGlobal (α)

0.10 3.15 7.48

3.44 6.70

4.05 5.20

0.05 3.15 7.89

3.44 7.16

4.05 6.02

0.01 3.15 8.74

3.44 8.01

4.05 6.59

lim
m→∞ P

(

τm,T̃ < ∞
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

P

(

sup0≤t≤T̃ /β
ρ(t)

√

∑d
i=1 Zi (t)2 > cGlobal

)

centralized case,

P

(

sup0≤t≤T̃ /β
ρ(t)

√

∑d
i=1 Zi (t)21ρ(t)Zi (t)>cLocal > cGlobal

)

distributed case.

This result can lead us to find the local and global thresholds
which can obtain the pre-defined type-I-error.

4.2 Obtaining critical values

Using the results of the previous section, appropriate critical
values can be found such that the asymptotic type-I error is
controlled for the different procedures. To achieve this the
stochastic processes {Zi (t), 0 ≤ t ≤ T̃ /β, 1 ≤ i ≤ d}
need to be approximated on a fine grid. This is done in the
same way as Aue et al. (2012), simulating the component
standard Brownianmotions using ten thousand i.i.d. standard
normal random variables. The parameters used were β =
1/2 and T̃ = 10. Tables 1 and 2 give critical values for
α ∈ {0.10, 0.05, 0.01}.
Since the critical values obtained above are valid asymptot-
ically (in m), an important question to consider is how they
perform in finite samples. Numerical results of empirical size
in the finite sample are shown in Table 3. Thse indicate that
the implementation in the finite sample setting can be con-
servative, as per Aue et al. (2012). However, approximately,
the type-I error is controlled at the correct level for both of
the global procedures in finite samples.

4.2.1 The choice of local threshold cLocal

The values for cLocal used in Table 2 are somewhat arbitrary.
The main influence of the value of local threshold is that
it controls the proportion of messages that the system can
pass (on average) per iteration. For d streams, the number of
sensors passing message at each time step is:

Corollary 3 (Transmission cost) For any t>0 and k=ht, the
expected fraction of transmitting sensors at each time step is

�̄t = dP (ρ(t)|Z | > cLocal) .

where Z is the standard normal distribution.

Therefore, the local threshold can be chosen based on the
restriction of the transmission cost. Combined with pre-
defined type-I-error, the global threshold will be given based
on Theorem 2.

4.3 Asymptotics under the alternative

Under the alternative it is assumed that there is a changepoint
at monitoring time k∗ and a subset S of the data streams have
an altered mean

HA : τ = m + k∗ & ∃S ⊂ {1, 2, . . . , d} : δi �= 0 for i ∈ S.

Deriving sharp asymptotic results on the detection delay of
the proposed method is challenging, and thus we focus only
on giving consistency results. A procedure is consistent if
it stops in finite time with probability approaching one as
m → ∞. In other words, the test statistic should tend to
infinity as m → ∞. In the asymptotic regime of interest,
we additionally assume that the changepoint k∗ grows at the
same order as h, that is k∗

h → γ ≥ 0, and the size of change
δi,t satisfies

√
h|δi,t | → ∞ as m → ∞ and h → ∞. These

assumptions are the same in Aue et al. (2012).

Theorem 3 (Global MOSUM: Consistency) If the assump-
tion above holds, under HA,

(i) the changepoint k∗ ≤ 	hν
 for some 0 < ν < T̃ m
h ,
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Table 3 Empirical size, results
averaged over one thousand
replications with
α = 0.05, T̃ = 10, and β = 1/2

Method cLocal cGlobal Proportion of false alarms

m = 200 (%) m = 400 (%) m = 500 (%)

Distributed 3.15 7.89 5.14 5.18 5.5

3.44 7.16 5.3 5.38 5.12

4.05 6.02 5.5 5.64 5.16

Centralized – 14.4 5.92 5.28 5.3

(ii) there exists a constant c > 0 such that ρ(x + 1) ≥ c
for all x ∈ (ν, T̃ m

h − 1).

Then, as m → ∞ and h → ∞

max
1≤k≤	mT̃ 


w(k, h)T (m, k, h)
P−→ ∞.

Proof See Appendix A.2. �

Thus, our proposed method is consistent.

5 Simulations

In this section, we will present the numeric performance of
our algorithm. Since the SUMprocedure that is optimalwhen
the change is dense, we will evaluate the performance in the
dense case, specifically when the affected data streams p =
d. Firstly, the different practical choices of thresholds at fixed
type-I-error will be investigated. Here the performance of our
proposed method was also compared against the idealistic
setting. Finally, the effect of parameters and the violation of
the independence assumption are investigated.
The set-up of the simulations is as follows. For simplicity, the
data generating process under the null is that Xi,t ∼ N (0, 1)
for 1 ≤ i ≤ d and 1 ≤ t ≤ T . To compare fairly, the type-
I-error of all procedures is controlled to be 0.05 under the
null.

The family of alternatives considered is that

Xi,t ∼ N (0, 1) for 1 ≤ i ≤ d, 1 ≤ t < τ and

Xi,t ∼ N (δi , 1) for 1 ≤ i ≤ d, τ ≤ t ≤ T .

We assume the change will affect all the sensors instanta-
neously. But the size of the change is unknown. We consider
two scenarios of mean shift: 1) Same size: δi = δ =
some constant values for 1 ≤ i ≤ d; 2) Random size:
δi = ηN (0, 1), where η is the scale factor controlling the
magnitude of size. The average detection delay (ADD) D̄
and average communication cost �̄ are then measured:

D̄ = E(τ̂ − τ |τ̂ > τ)

�̄ =
τ̂

∑

t=m+1

∑d
i=1 l(w(k, h)Ti (m, k, h) > cLocal)

τ̂ − m − 1
,

5.1 The numerical dependency on local thresholds

Our proposed method requires specifying two thresholds.
Usually, cGlobal can be given based on the Theorem 2 once
α and cLocal are confirmed. Therefore, it is crucial to pick
an appropriate local threshold. This section gives numeric
results with different values of local thresholds, which may
provide some guidance in choosing the local threshold.
Figure4 gives the average detection delay and transmis-
sion cost for different values of local thresholds. There is a
trade-off between communication savings and detection per-
formance when choosing the local threshold. Larger local
thresholds can reduce the transmission cost but will also lead
to longer delays, especially when the change is small. How-
ever, with the increase in the mean shift, the detecting power
of larger thresholds will close to that of small thresholds.

A centralized framework can be seen as an idealis-
tic setting, which is equivalent to distributed setting when
clocal = 0. Compared with the idealistic setting, the dis-
tributedMOSUM can achieve similar performance when the
size of the change is not small but also reduces massive trans-
mission costs. But we will lose power in detecting small
changes. We show the result below that distributed MOSUM
can approximate the performance of idealistic setting overall
by increasing the window size.

5.2 The numerical dependency on parameters

One advantage of using MOSUM statistics is that we do not
need to specify the post-change mean. Instead, our proposed
method requires specifying the window size h and the train-
ing size m. In this section, we will investigate the impact of
bandwidth and training size.

5.2.1 The impact of bandwidth

As shown in Fig. 5a, increasing the window size can increase
the power of detecting small changes while leading to a slight
delay in detecting large changes. Although increasing win-
dow sizewill increase the storage cost, it will not significantly
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Fig. 4 The average number of messages transmitted to the centre
(top) and average detection delay across varying mean shifts (bottom).
Results are obtained when m = 200, h = 100, T = 10,000, τ =
5000, α = 0.05. Each line corresponds to a different local threshold,

which is labelled on the top right. The colour changes from orange to
blue as the local thresholds increase from0 to 5.2.When the local thresh-
old is 5.2, the global threshold will be 0. So all possible combinations
of thresholds are covered. (Color figure online)

increase the transmission cost as shown in Fig. 5b. This drive
us to think about whether we can improve the ability of
distributed MOSUM with a large threshold to detect small
changes by increasing the window size. Ideally, we would
expect distributed MOSUM with increased window size can
achieve similar performance as the idealistic setting.

Recovering detectability
For simplicity, we denote that the default window size for

centralized MOSUM is h0, and h∗ is the smallest window
size that would allow distributed MOSUM to have similar
performance as the idealistic setting. It is difficult to develop
a neat theoretical formula between h∗ and h0. But we can
approximately find h∗ under alternatives by simulation. Our

idea can be summarized as follows, and Fig. 6 is the graphic
explanation:

• The behaviour of D̄ will decrease dramatically when the
mean shift iswithin a certain range (gray area). Therefore,
we can find the median or mean δ of this certain range,
denoted by δ0. Also, the corresponding ADD D̄0 can be
calculated.

• Fix δ0, calculate D̄cLocal(h) iteratively for distributed
MOSUM, where h ∈ [h0,m].

• The optimal window size h∗ = argmin
{

D̄cLocal(h)

−D̄0(h0)
}

. See blue arrow (h∗) is shorter than yellow
arrow (h).
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Fig. 5 The influence of window size. Results are obtained over 1000 replications and take m = 200, d = 100, T = 10,000, τ = 5000, α =
0.05, cLocal = 3.44

Fig. 6 An graphic explanation of our proposed idea. Black line is the
ADD for centralized MOSUMwith window size h. Yellow dashed line
is the ADD for distributed MOSUM with window size h; while blue
dashed is theADDfor distributedMOSUMwithwindowsize h∗. (Color
figure online)

Figure 7displays the simulation results that, for distributed
regime, we can recover the same detectability of the central-
ized statistic by inflating h.

5.2.2 The impact of the training dataset

Fix the bandwidth h, the impact of the size of the train-
ing dataset can be investigated. Table 4 gives the thresholds,
empirical size, and mean square errors (MSE) of estimated
baseline parameters in our simulation. As we expected, the
larger the training size is, the more accurate estimators are
Fig. 8 indicates that overall the detection powers of four
different sizes of training datasets are similar. A larger train-
ing size could slightly increase the detection power when

detecting small changes, which is attributed to more accu-
rate estimators. Thus, in the real application, it is beneficial
to choose a large-size training dataset because it is not expen-
sive that can be done offline.

5.3 The violation of the independence assumption

Before, we assume that there is temporal independence
among observations. However, it may not always hold in
the real application. This section will investigate the perfor-
mance when this assumption is violated. Here we measure
our algorithm under AR(1) noise process, that is

Xi,t = δi,t1 {t > τ } + εi,t ,

where εi,t = φεi,t−1 +vt with vt ∼ N (0, 1). |φ| < 1 is used
to measure the strength of the auto-correlation.

Auto-correlation will inflate the variance of data. There
are two possible ways to handle this problem. The first one is
to estimate the long-run variance as shown in Sect. 3.2. And
one can also inflate the thresholds. Wemeasure the false pos-
itives, average detection delay and the number of transmitted
messages with fixed type-I-error of these two solutions under
different scenarios. For better comparison, we also show the
result of MOSUM without any adjustment. This will give us
hints that to what extent our method fails to detect the change
if we ignore the auto-correlation.

As Table 5 shows, our proposed method without adjust-
ment can lose the ability to detect changes when introducing
auto-correlation, that it fails to detect the change and always
alarms. The performances of MOSUMwith inflating thresh-
olds are generally better than MOSUM with LRV since the
former can detect the change in most scenarios. However,
for those scenarios that the MOSUM with LRV can detect
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Fig. 7 An simple example showing that distributed MOSUM could
approximate the detection power of centralized MOSUM by inflating
window size. Results are obtained over 500 replications and take m =

200, d = 100, T = 1000, τ = 600, α = 0.05, and cLocal ∈ [0, 4.4].
When cLocal = 4.4, cGlobal = 0. So all possible local thresholds are
covered. For centralized setting, window size h0 = 50

Table 4 Empirical size, and MSE for estimated mean and standard
deviation, results averaged over one thousand replications with cLocal =
3.44, h = 50, T = 6000 and α = 0.05

m = 80 m = 100 m = 500 m = 1000

cGlobal 9.039 8.159 6.014 5.708

Empirical size 0.007 0.007 0.009 0.006

MSE for mean 0.0125 0.01 0.002 0.001

MSE for SD 0.006 0.005 0.0001 0.0001

(usually δ is not small and φ is not large), it always has
the lowest transmission cost and reasonable detection power.
For example, when p = 100, δ = 1, and φ = 0.25, both
solutions have similar false positive rates and average detec-
tion delay, while MOSUMwith LRV has lower transmission
cost. It is surprising that estimating LRV has the lowest false
positive rates and average detection delay when φ = 0 and
p = 100/50. This may be because it underestimates the
variance.

However, when the auto-correlation is serious, it is not
appropriate to apply our method to the raw data. Instead, it
is more reasonable to apply our method after pre-processing
the data, such as the residuals of AR models.

6 Conclusion

Within this paper, we proposed an online communication-
efficient distributed changepoint detectionmethod, and it can
achieve similar performance as an idealistic setting but save
many transmission costs. Numerically, we show that the local

Fig. 8 D̄ versus δ when varing the size of training dataset. Result aver-
aged over 500 replications with α = 0.05, cLocal = 3.44, T = 6000,
τ = 3000 and h = 50. The corresponding global thresholds are shown
in Table 4

threshold and window size have an impact on the perfor-
mance of our algorithm, and there is a trade-off in choosing
a local threshold and window size. In application, we rec-
ommend choosing a large local threshold in general cases.
But when the change is extremely small, the choice of the
local threshold depends on the communication and storage
budgets. If the communication budget is much more limited,
choosing a large threshold with a large window size is sensi-
ble. If the storage cost is much more expensive, choosing a
small threshold with small window size will approximately
achieve the idealistic performance.

The violation of independent assumptions will nega-
tively affect the power of our proposed method. We tried
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to solve this problem by inflating thresholds or estimat-
ing the long-run variance. Both ways can, to some extent,
improve our algorithm when the auto-correlation problem is
not severe. However, both approaches fail to detect changes
in highly auto-correlated data. Therefore, one of the future
research directions is how to detect change within highly
auto-correlated data in real-time.
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A Proofs

A.1 Proof of Theorem 2

Squaring and expanding theweighted globalMOSUMstatis-
tic in Eq. (3.8) for the two different cases gives

(w(k, h)T (m, k, h))2

=
{

∑d
i=1 (w(k, h)Ti (m, k, h))2 dense case,

∑d
i=1

(

w(k, h)Ti (m, k, h)1{w(k,h)Ti (m,k,h)>cLocal}
)2 sparse case.

(A.1)

From Theorem 1 with k = ht , the weighted local MOSUM
and its hard-thresholded counterpart have limit

lim
m→∞ (w(k, h)Ti (m, k, h))2

D−→ ρ(t)2Zi (t)
2,

lim
m→∞

(

w(k, h)Ti (m, k, h)1{w(k,h)Ti (m,k,h)>cLocal}
)2

D−→ ρ(t)2Zi (t)
21{ρ(t)Zi (t)>cLocal}, (A.2)

where Zi (t) is defined in Eq. (4.1). Taking the limit of (A.1)
as m → ∞ gives the result.

A.2 Proof of Theorem 3

It is enough to show that

(

w(k̃, h)T (m, k̃, h)
)2 P−→ ∞,

for a time k̃ later than the change point k∗ but before the end
of the monitoring time 	mT̃ 
.

Since k∗ ≤ 	hν
, we can choose k̃ = 	x0h
 + h where
ν < x0 < T̃ m

h − 1 so that k∗ ≤ k̃ − h.
If data stream i is affected by the change, so that i ∈ S

and δi �= 0 then

1

h
Ti (m, k̃, h) = 1

hσ̂i

∣

∣

∣

∣

∣

∣

m+	x0h
+h
∑

t=m+	x0h
+1

(

Xi,t − μ̂i
)

∣

∣

∣

∣

∣

∣

= 1

hσ̂i

∣

∣

∣

∣

∣

∣

m+	x0h
+h
∑

t=m+	x0h
+1

(

μi + δi + εi,t − μ̂i
)

∣

∣

∣

∣

∣

∣

= 1

hσ̂i

∣

∣

∣

∣

∣

∣

h(μi − μ̂i ) + hδi +
m+	x0h
+h

∑

t=m+	x0h
+1

εi,t

∣

∣

∣

∣

∣

∣

= 1

σ̂i

∣

∣

∣

∣

∣

∣

μi − μ̂i + δi + 1

h

m+	x0h
+h
∑

t=m+	x0h
+1

εi,t

∣

∣

∣

∣

∣

∣

= 1

σ̂i
|δi + oP (1)| .

On the other hand if i /∈ S,

1

h
Ti (m, k̃, h) = 1

σ̂i
|oP (1)| .

For the global dense procedure

(

w(k̃, h)T (m, k̃, h)
)2 = w(k̃, h)2

d
∑

i=1

Ti (m, k̃, h)2

=
(

1√
h

ρ

(

k̃

h

))2

× h2 ×
d

∑

i=1

(

1

h
Ti (m, k̃, h)

)2

= hρ

(

k̃

h

)2 d
∑

i=1

(

1

h
Ti (m, k̃, h)

)2

= hρ (x0 + 1 + o(1))2
∑

i∈S

(

δi

σ̂i

)2

+ oP (1)
P−→ ∞,

as m, h → ∞.
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For the global sparse procedure the local MOSUM’s
w(k̃, h)T (m, k̃, h) are hard thresholded. Since these diverge
to infinity individually then the same argument used for the
dense procedure applies.
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