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Abstract
Models with random effects, such as generalised linear mixed models (GLMMs), are often used for analysing clustered data.
Parameter inference with these models is difficult because of the presence of cluster-specific random effects, which must be
integrated out when evaluating the likelihood function. Here, we propose a sequential variational Bayes algorithm, called
Recursive Variational Gaussian Approximation for Latent variable models (R-VGAL), for estimating parameters in GLMMs.
The R-VGAL algorithm operates on the data sequentially, requires only a single pass through the data, and can provide
parameter updates as new data are collected without the need of re-processing the previous data. At each update, the R-VGAL
algorithm requires the gradient and Hessian of a “partial” log-likelihood function evaluated at the new observation, which are
generally not available in closed form for GLMMs. To circumvent this issue, we propose using an importance-sampling-based
approach for estimating the gradient and Hessian via Fisher’s and Louis’ identities. We find that R-VGAL can be unstable
when traversing the first few data points, but that this issue can be mitigated by introducing a damping factor in the initial
steps of the algorithm. Through illustrations on both simulated and real datasets, we show that R-VGAL provides good
approximations to posterior distributions, that it can be made robust through damping, and that it is computationally efficient.

Keywords Fisher’s identity · Intractable gradient · Latent variable model · Louis’ identity · Damped Newton’s method

1 Introduction

Mixed models are useful for analysing clustered data,
wherein observations that come from the same cluster/group
are likely to be correlated. Example datasets include records
of students clustered within schools, and repeated measure-
ments of biomarkers on patients. Mixed models account
for intra-group dependencies by incorporating cluster/group-
specific “random effects”. Inference with these models is
made challenging by the fact that the likelihood function
involves integrals over the random effects that are not usually
tractable except for the few cases where the distribution of
the random effects is conjugate to the distribution of the data,
such as in the linear mixed model (Verbeke et al. 1997), the
beta-binomial model (Crowder 1979), and Rasch’s Poisson
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count model (Jansen 1994). Notably, there is no closed-form
expression for the likelihood function in the case of the ubiq-
uitous logistic mixed model.

Maximum-likelihood-based approaches are often used
for parameter inference in mixed models. In the case of
linear mixed models, parameter inference via maximum
likelihood estimation is straightforward (e.g., Wakefield
2013). For mixed models with an intractable likelihood,
integrals over random effects need to be numerically approx-
imated, for example by using Gaussian quadrature (Naylor
and Smith 1982) or the Laplace approximation (Tierney
and Kadane 1986). The likelihood may also be indirectly
maximised using an expectation-maximisation type algo-
rithm (Dempster et al. 1977), which treats the random
effects as missing, and iteratively maximises the “expected
complete-data log-likelihood” of the data and the random
effects.Quasi-likelihood approaches such as penalised quasi-
likelihood (PQL, Breslow and Clayton 1993) and marginal
quasi-likelihood (MQL, Goldstein 1991) approximate non-
linear mixed models with linear mixed models, so that
well-developed estimation routines for linear mixed models
can be applied; see Tuerlinckx et al. (2006) for a detailed dis-
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cussion of these methods. These maximum-likelihood-based
methods provide point estimates and not full posterior distri-
butions over the parameters.

Full posterior distributions can be obtained using Markov
chain Monte Carlo (MCMC, e.g., Zhao et al. 2006; Fong
et al. 2010). MCMC provides exact, sample-based poste-
rior distributions, but at a higher computational cost than
maximum-likelihood-based methods. Alternatively, varia-
tional Bayes (VB) methods (e.g., Ong et al. 2018; Tan and
Nott 2018) are becoming increasingly popular for estimat-
ing parameters in complex statistical models. These methods
approximate the exact posterior distribution with a mem-
ber from a simple and tractable family of distributions; this
family is usually chosen to balance the accuracy of the
approximation against the computational cost required to
obtain the approximation. VBmethods are usually computa-
tionally cheaper than MCMC methods. VB approaches can
either batch-process the data (e.g., Tran et al. 2016; Ong
et al. 2018; Tan and Nott 2018) or sequentially process data
points (e.g., Broderick et al. 2013; Gunawan et al. 2021;
Lambert et al. 2022). For settings with large amounts of data,
a method that targets the posterior distribution via sequen-
tial processing of the data offers several advantages. The
so-calledRecursiveVariational GaussianApproximation (R-
VGA, Lambert et al. 2022) algorithm is a recently-developed
sequential variational Bayes method that provides a fast and
accurate approximation to the posterior distributionwith only
one pass through the data,making it computationally efficient
when compared to MCMC or batch variational Bayes. Lam-
bert et al. (2022) apply the R-VGA algorithm to linear and
logistic regression models without random effects.

In this paper,we build on theR-VGAalgorithmbypropos-
ing a novel recursive variational Gaussian approximation,
called Recursive Variational Gaussian Approximation for
Latent variablemodels (R-VGAL), for estimating the param-
eters in GLMMs. At each update, R-VGAL requires the
gradient and Hessian of the “partial” log-likelihood evalu-
ated at the new observation, which are often not available
in closed form. To circumvent this issue, we propose an
importance-sampling-based approach for estimating the gra-
dient and Hessian that uses Fisher’s and Louis’ identities
(Cappé et al. 2005). This approach was inspired by the work
of Nemeth et al. (2016), who used Fisher’s and Louis’ iden-
tities to approximate the gradient and Hessian in a sequential
Monte Carlo context. The efficacy of R-VGAL is illustrated
using linear, logistic andPoissonmixed effectmodels on sim-
ulated and real datasets. The examples show that R-VGAL
provides good approximations to the exact posterior distribu-
tions estimated using HamiltonianMonte Carlo (HMC, Neal
2011; Betancourt and Girolami 2015) and at a low computa-
tional cost.

The paper is organised as follows. Section2 provides
some background on the sequential variational Bayes frame-

work and presents the R-VGAL algorithm. Section3 applies
the R-VGAL algorithm to simulated and real datasets. Sec-
tion4 concludes with a discussion of our results and an
overview of future research directions. This article has an
online supplement containing additional technical details,
and the code to reproduce results from the simulation and
real-data experiments is available on https://github.com/bao-
anh-vu/R-VGAL.

2 The R-VGAL algorithm

This section reviews GLMMs (e.g. Demidenko 2013; Far-
away 2016) and provides some background on the R-VGA
algorithm of Lambert et al. (2022), and then introduces the
R-VGAL algorithm for making parameter inference with
GLMMs.

2.1 Generalised linear mixedmodels

GLMMs are statistical models that contain both fixed effects
and random effects. Typically, the fixed effects are common
across groups, while the random effects are group-specific,
and this is the setting we focus on. We briefly discuss the
potential application of R-VGAL to models with more com-
plicated random effect structures, such as crossed or nested
random effects, in Section S7 of the online supplement.

Denote by yi j the j th response in the i th group, for i =
1, . . . , N groups and j = 1, . . . , ni , where ni is the number
of responses in group i . Let y ≡ (y�

1 , . . . , y�
N )� be a vector of

observations, where yi ≡ (yi1, . . . , yini )
� are the responses

from the i th group. TheGLMMswe consider are constructed
byfirst assigning each yi j a distribution yi j | β,αi , φ ∼ p(·),
where p(·) is a member of the exponential family with a
dispersion parameter φ that is usually related to the variance
of the datum, β are the fixed effect parameters, and αi are the
group-specific random effects for i = 1, . . . , N . Then, the
mean of the responses, μi j ≡ E(yi j | β,αi , φ), is modelled
as

g(μi j ) = x�
i jβ + z�

i jαi , i = 1, . . . , N , j = 1, . . . , ni ,

(1)

where xi j is a vector of fixed effect covariates corresponding
to the j th response in the i th group; zi j is a vector of pre-
dictor variables corresponding to the j th response and the
i th random effect; and g(·) is a link function that links the
response mean μi j to the linear predictor x�

i jβ + z�
i jαi . We

further assume that αi ⊥⊥ αi ′ for i �= i ′. The random effects
αi , for i = 1, . . . , N , are assumed to follow a normal distri-
bution with mean 0 and covariance matrix �α , that is, each
αi | �α ∼ N (0,�α). In practice, some structure is often
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assumed for the random effects covariance matrix so that it
is parameterised in terms of a smaller number of parame-
ters τ , that is, �α = �α(τ ). Inference is then made on the
parameters θ = (β�, τ�, φ)�.

The main objective of Bayesian inference is to obtain
the posterior distribution of the model parameters θ given
the observations y and the prior distribution p(θ). Through
Bayes’ rule, the posterior distribution of θ is

p(θ | y) = p(β, τ , φ | y) ∝ p(y | β, τ , φ)p(β, τ , φ). (2)

The likelihood function,

p(y | β, τ , φ) =
N∏

i=1

∫
p(yi | αi ,β, φ)p(αi | τ ) dαi , (3)

involves integrals over the random effects αi , i = 1, . . . , N .
The likelihood function can be calculated exactly for the lin-
ear mixed model with normally distributed random effects,
for which

yi j = x�
i jβ + z�

i jαi + εi j ,

αi ∼ N (0,�α(τ )), εi j ∼ N (0, σ 2
ε ), (4)

for i = 1, . . . , N and j = 1, . . . , ni , where εi j is a zero-
mean, independent, normally distributed error term with
variance σ 2

ε that is associated with the j th response from
the i th group. At the group level, this model can be written
as

yi = Xiβ + Ziαi + εi , αi ∼ N (0,�α(τ )),

εi ∼ N (0, σ 2
ε Ini ),

where Xi = (xi1, . . . , xini )
�, and Zi = (zi1, . . . , zini )

�,
εi = (εi1, . . . , εini )

�, with ni being the number of observa-
tions in the i th group, for i = 1, . . . , N , and Im denotes an
identity matrix of size m × m. The likelihood function for
this linear mixed model is

p(y | β, τ , σ 2
ε ) =

N∏

i=1

p(yi | β, τ , σ 2
ε )

=
N∏

i=1

N (Xiβ,Zi�α(τ )Z�
i + σ 2

ε Ini ). (5)

The gradient and Hessian of the log-likelihood for the linear
mixed model are also available in closed form. However, the
likelihood p(yi | αi ,β, φ) in (3) cannot be computed exactly
for general random effects models. One important case is the
logistic mixed model given by

yi j ∼ Bernoulli(πi j ), logit(πi j ) = x�
i jβ + z�

i jαi ,

i = 1, . . . , N , j = 1, . . . , ni , (6)

where logit(πi j ) = log
(

πi j
1−πi j

)
. The gradient and Hessian

of the log-likelihood function for this model can, however, be
estimated unbiasedly, as we show in Sects. 2.3.1 and 2.3.2.

2.2 Sequential VB and R-VGA

We begin this section with a review of VB and the sequential
VB framework. We then present the main steps in the deriva-
tions of the R-VGA algorithm of Lambert et al. (2022), on
which our algorithm is based.

2.2.1 Sequential VB

VB is usually used for posterior inference in complex sta-
tistical models when inference using asymptotically exact
methods such as MCMC is too costly; for a review see, for
example, Blei et al. (2017). Let θ be a vector ofmodel param-
eters. Here, we consider the class of VB methods where the
posterior distribution p(θ | y) is approximated by a tractable
density q(θ;λ) parameterised by λ. The variational param-
eters λ are optimised by minimising the Kullback–Leibler
(KL) divergence between the variational distribution and the
posterior distribution, that is, by minimising

KL(q(θ;λ) ‖ p(θ | y)) ≡
∫

q(θ;λ) log
q(θ;λ)

p(θ | y) dθ . (7)

Many VB algorithms require processing the data as a batch;
see, for example, Ong et al. (2018) and Tan and Nott (2018).
The variational parameters λ are typically updated in an
iterative manner using stochastic gradient descent (SGD,
Hoffman et al. 2013; Kingma and Welling 2013). In settings
with large amounts of data or continuously-arriving data, it
is often more practical to use online or sequential variational
Bayes algorithms that update the approximation to the pos-
terior distribution sequentially as new observations become
available. These online/sequential algorithms are designed to
handle data that are too large to fit in memory or that arrive
in a continuous stream.

In a sequential VB framework, such as that proposed
by Broderick et al. (2013), the observations y1, . . . , yN are
incorporated sequentially so that at iteration i , i = 1, . . . , N ,
one targets an approximation qi (θ) ≡ q(θ;λi ) that is closest
in aKL sense to the “pseudo-posterior” p(yi | θ)qi−1(θ)/Zi ,
where

Zi ≡
∫

p(yi | θ)qi−1(θ) dθ . (8)

In this framework, qi−1(θ) is treated as the “prior” for the
next iteration i , and the KL divergence between qi (θ) and
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the “pseudo-posterior” is minimised at each iteration. Brod-
erick et al. (2013) use a mean field VB approach (e.g.,
Ormerod and Wand 2010), which assumes no posterior
dependence between the elements of θ . The R-VGA algo-
rithm proposed by Lambert et al. (2022) follows closely
that of Broderick et al. (2013), but uses a variational dis-
tribution of the form qi (θ) = N (μi ,�i ), where �i is a
full covariance matrix, and seeks closed-form updates for
λi ≡ {μi ,�i } that minimise the KL divergence between
qi (θ) and p(yi | θ)qi−1(θ)/Zi for i = 1, . . . , N . Another
sequential VB algorithm that is similar to that of Broder-
ick et al. (2013) is the Updating Variational Bayes (UVB,
Tomasetti et al. 2022) algorithm, which uses SGD (Bot-
tou 2010) at every iteration, i = 1, . . . , N , to minimise the
KL divergence between qi (θ) and p(yi | θ)qi−1(θ)/Zi . One
advantage of UVB compared to R-VGA is that it does not
have to assume that the prior and variational distributions are
Gaussian; see Section 5.2 of Tomasetti et al. (2022) for an
example of UVB where a beta prior is used for one of the
parameters and the variational distribution is a mixture of
multivariate normal distributions. However, due to the lack of
restrictions on the form of the variational distribution, UVB
requires running a full optimisation algorithm at each iter-
ation, whereas the R-VGA updates are available in closed
form.

Detailed derivations for the R-VGA algorithm can be
found in Lambert et al. (2022). We provide below a sketch
of the derivations to aid the exposition of the methodology
in subsequent sections.

2.2.2 The R-VGA algorithm

Denote by y1:i ≡ (y�
1 , . . . , y�

i )� a collection of observations
from groups 1 to i , i = 1, . . . , N . By assumption of condi-
tional independence between observations y1, . . . , yi given
the parameters θ , the KL divergence between the variational
distribution qi (θ) and the posterior distribution p(θ | y1:i )
can be expressed as

KL(qi (θ) ‖ p(θ | y1:i )) ≡
∫

qi (θ) log
qi (θ)

p(θ | y1:i ) dθ
= Eqi (log qi (θ) − log p(θ | y1:i−1)

− log p(yi | θ)) + log p(y1:i )
− log p(y1:i−1).

The posterior distribution after incorporating the first i − 1
groups of observations, p(θ | y1:i−1), is approximated by the
variational distribution qi−1(θ) to give

KL(qi (θ) ‖ p(θ | y1:i )) ≈ Eqi (log qi (θ) − log qi−1(θ)

− log p(yi | θ)) + log p(y1:i ) − log p(y1:i−1). (9)

The R-VGA algorithm assumes a variational distribution of
the form qi (θ) = N (μi ,�i ) and seeks parameters μi and
�i that minimise (9). As the last two terms in the right hand
side of (9) do not depend on θ , the optimisation problem is
equivalent to finding

argmin
μi ,�i

Eqi (log qi (θ) − log qi−1(θ) − log p(yi | θ)). (10)

Differentiating the expectation (10) with respect to μi and
�i , setting the derivatives to zero, and rearranging the result-
ing equations, yields the following recursive updates for the
variational mean μi and precision matrix �−1

i :

μi = μi−1 + �i−1∇μi Eqi (log p(yi | θ)), (11)

�−1
i = �−1

i−1 − 2∇�i Eqi (log p(yi | θ)). (12)

Then, using Bonnet’s Theorem (Bonnet 1964) on (11) and
Price’s Theorem (Price 1958) on (12), we rewrite the gradient
terms as

∇μi Eqi (log p(yi | θ)) = Eqi (∇θ log p(yi | θ)), (13)

∇�i Eqi (log p(yi | θ)) = 1

2
Eqi (∇2

θ log p(yi | θ)). (14)

Thus the updates (11) and (12) become

μi = μi−1 + �i−1Eqi (∇θ log p(yi | θ)), (15)

�−1
i = �−1

i−1 − Eqi (∇2
θ log p(yi | θ)). (16)

These updates are implicit as they require the evaluation of
expectations with respect to qi (θ). Under the assumption
that qi (θ) is close to qi−1(θ), Lambert et al. (2022) propose
replacing qi (θ) with qi−1(θ) in (15) and (16), and replac-
ing �i−1 with �i on the right hand side of (15), to yield an
explicit scheme

μi = μi−1 + �iEqi−1(∇θ log p(yi | θ)), (17)

�−1
i = �−1

i−1 − Eqi−1(∇2
θ log p(yi | θ)). (18)

Equations (17) and (18) form the so-calledR-VGAalgorithm
of Lambert et al. (2022).

We note that an “order 1 form” of the R-VGA algorithm
exists, which allows the variational precision matrix to be
updated using the first order derivatives of the log-likelihood
without the need for the Hessian matrix. However, these
updates are implicit and not directly implementable. Corol-
lary 1 of Lambert et al. (2022) provides more details on this
Hessian-free form.
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Algorithm 1 R-VGAL
Input: observations y1, . . . , yN , initial values μ0 and �0.
Output: variational parameters μi and �i , for i =
1, . . . , N .
Set q0(θ) = Gau(μ0,�0).
for i = 1, . . . , N do

μi = μi−1 + �iEqi−1 (̂∇θ log p(yi | θ))

�−1
i = �−1

i−1 − Eqi−1(
̂∇2

θ log p(yi | θ))

end for

2.3 R-VGAL

The R-VGA updates in (17) and (18) require the gradi-
ent ∇θ log p(yi | θ) and Hessian ∇2

θ log p(yi | θ) of the
“partial” log-likelihood for the i th observation. However,
for the GLMMs discussed in Sect. 2.1, there are usually
no closed-form expressions for said quantities, as evalu-
ation of the partial log-likelihood involves an intractable
integral over the random effects αi . Our R-VGAL algo-
rithm circumvents this issue by replacing ∇θ log p(yi | θ)

and ∇2
θ log p(yi | θ) with their unbiased estimates,

∇̂θ log p(yi | θ) and̂∇2
θ log p(yi | θ), respectively. These

unbiased estimates are obtained by using an importance-
sampling-based approach applied to Fisher’s and Louis’
identities (Cappé et al. 2005), which we discuss in more
detail in Sects. 2.3.1 and 2.3.2. We summarise the R-VGAL
algorithm in Algorithm 1.

To approximate the expectations with respect to qi−1(θ)

in the updates of the variational mean and precision matrix in
Algorithm1,wegenerateMonteCarlo samples, θ (l) ∼ qi−1(θ),
l = 1, . . . , S, and compute:

Eqi−1 (̂∇θ log p(yi | θ)) ≈ 1

S

S∑

l=1

̂∇θ log p(yi | θ (l)),

Eqi−1
̂
(∇2

θ log p(yi | θ)) ≈ 1

S

S∑

l=1

̂∇2
θ log p(yi | θ (l)),

for i = 1, . . . , N .
The following sections discuss approaches to obtain

unbiased estimates of the gradient and the Hessian of the
log-likelihood with respect to the parameters.

2.3.1 Approximation of the gradient with Fisher’s identity

Consider the i th iteration. Fisher’s identity (Cappé et al.
2005) for the gradient of log p(yi | θ) is

∇θ log p(yi | θ) =
∫

p(αi | yi , θ)∇θ log p(yi ,αi | θ) dαi .

(19)

If it is possible to sample directly from p(αi | yi , θ) (e.g.,
as it is with the linear random effects model in Sect. 3.1), the
above identity can be approximated by

∇θ log p(yi | θ) ≈ 1

Sα

Sα∑

s=1

∇θ log p(yi ,α
(s)
i | θ),

α
(s)
i ∼ p(αi | yi , θ). (20)

In the case where direct sampling from p(αi | yi , θ) is dif-
ficult, we use importance sampling (e.g., Tokdar and Kass
2010) to estimate the gradient of the log-likelihood in (19).
Specifically, we draw samples {α(s)

i : s = 1, . . . , Sα} from
an importance distribution r(αi | yi , θ), and then compute
the weights

w
(s)
i = p(yi | α

(s)
i , θ)p(α(s)

i | θ)

r(α(s)
i | yi , θ)

, s = 1, . . . , Sα.

The gradient of the log-likelihood is then approximated as

∇θ log p(yi | θ) ≈
Sα∑

s=1

w̄
(s)
i ∇θ log p(yi ,α

(s)
i | θ), (21)

where Wi ≡ {w̄(s)
i : s = 1, . . . , Sα} are the normalised

weights given by

w̄
(s)
i = w

(s)
i∑Sα

q=1 w
(q)
i

, s = 1, . . . , Sα.

One possible choice for the importance distribution is the
distribution of the random effects, that is, p(αi | θ). In this
case, the weights Wi reduce to

w
(s)
i = p(yi | α

(s)
i , θ), s = 1, . . . , Sα.

We use this importance distribution in all of the case studies
illustrated in Sect. 3.

2.3.2 Approximation of the Hessian with Louis’ identity

Consider again the i th iteration. Louis’ identity (Cappé et al.
2005) for the Hessian ∇2

θ log p(yi | θ) is

− ∇2
θ log p(yi | θ) = ∇θ log p(yi | θ)∇θ log p(yi | θ)�

−∇2
θ p(yi | θ)

p(yi | θ)
, (22)

where

∇2
θ p(yi | θ)

p(yi | θ)
=

∫
p(αi | yi , θ)∇θ log p
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(yi ,αi | θ)∇θ log p(yi ,αi | θ)� dαi

+
∫

p(αi | yi , θ)∇2
θ log p(yi ,αi | θ) dαi .

(23)

The first term on the right-hand side of (22) is obtained
usingFisher’s identity, as discussed in Sect. 2.3.1. The second
term consists of two integrals (see (23)), which can also be
approximated using samples. Specifically,

∇2
θ p(yi | θ)

p(yi | θ)

≈ 1

Sα

Sα∑

s=1

(
∇θ log p(yi ,α

(s)
i | θ)∇θ log p(yi ,α

(s)
i | θ)�

+∇2
θ log p(yi ,α

(s)
i | θ)

)
,

where α
(s)
i ∼ p(αi | yi , θ) for s = 1, . . . , Sα . If obtain-

ing samples from p(αi | yi , θ) is not straightforward,
importance sampling (as in Sect. 2.3.1) can be used instead.
FollowingNemeth et al. (2016), for computational efficiency,
we use the same samples {α(s)

i : s = 1, . . . , Sα} that were
used to approximate the score usingFisher’s identity and their
corresponding normalisedweightsWi to obtain the estimates
of the second term in Louis’ identity. Then

∇2
θ p(yi | θ)

p(yi | θ)

≈
Sα∑

s=1

w̄
(s)
i

(
∇θ log p(yi ,α

(s)
i | θ)∇θ log p(yi ,α

(s)
i | θ)�

+∇2
θ log p(yi ,α

(s)
i | θ)

)
.

2.4 Damped R-VGAL

A possible problemwith R-VGAL is its instability in the first
few observations, making it sensitive to the ordering of the
observations. In Section S3 of the online supplement, we run
the R-VGAL algorithm on a dataset in its original order, and
also on a random reordering of the observations, and find
that the R-VGAL parameter estimates from these two runs
differ. Figures S13 and S14 in Section S3 show that the first
few observations can heavily influence the trajectory of the
variational mean. Here, we propose a damping approach to
stabilise the R-VGAL algorithm during the initial few steps.

In damped R-VGAL, the updates of the mean and preci-
sion matrix for each observation are split into K steps, where
K is selected on a case by case basis. In each step, we multi-
ply the gradient and the Hessian of log p(yi | θ) by a factor
a = 1

K (which acts as a “step size”), and then update the
variational parameters K times during the i th iteration. Intu-

itively, in this way, one observation is split into K “parts”
and incorporated into the updates one part at a time. Using
a smaller step size helps stabilise the R-VGAL algorithm,
particularly for the first few observations. Section S3 of the
online supplement shows that damping the first few itera-
tions makes the R-VGAL algorithm more robust to different
orderings of the data.

The damped R-VGAL approach we present here is
inspired by the so-called damped Newton’s method. In the
case where the model is linear and the likelihood is Gaus-
sian, the original R-VGA algorithm, upon which R-VGAL
is based, can be shown to be equivalent to an online version of
Newton’s method; see Appendix 8.2 of Lambert et al. (2022)
for a proof. Newton’s method seeks the minimiser of a con-
tinuously differentiable function f : R

d → R, d ∈ N, by
beginningwith some starting value u0 ∈ R

d and sequentially
minimising the quadratic approximation of the function f (·)
around the current value in order to find the next value:

uk+1 = argmin
u

f (uk) + ∇u f (uk)�(u − uk)

+1

2
(u − uk)�∇2

u f (uk)(u − uk), k = 0, 1, 2, . . . .

Provided that ∇2 f (uk) is positive definite, the minimiser of
f (·) is unique and can be computed iteratively as

uk+1 = uk − (∇2
u f (uk))−1∇u f (uk), k = 0, 1, 2, . . . .(24)

These iterations stop when ‖∇u f (uk+1)‖ ≤ ε0, where ε0 is
some small tolerance parameter. Often, in practice, Newton’s
method is modified to include a step size 0 < ρ ≤ 1 to
improve convergence:

uk+1 = uk − ρ(∇2
u f (uk))−1∇u f (uk), k = 0, 1, 2, . . . ,

(25)

resulting in the damped Newton’s method. This step size ρ is
similar to the multiplicative factor a in our damped R-VGAL
approach.

We also note that, in the case where the model is linear
or when the likelihood function comes from an exponential
family and the model is linearised, the R-VGA algorithm of
Lambert et al. (2022) is equivalent to an online natural gradi-
ent algorithmwith step size 1

1+t ,where t denotes the iteration.
A proof of this equivalence can be found in Appendix 8.3 of
Lambert et al. (2022). Viewed from the perspective of nat-
ural gradient optimisation, the damping factor a in damped
R-VGAL can be interpreted as a reduction of the step size in
natural gradient updates.

We summarise the damped R-VGAL algorithm in Algo-
rithm 2.
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Algorithm 2 Damped R-VGAL
Input: observations y1, . . . , yN , initial values μ0 and �0,
number of observations to damp ndamp, number of damp-
ing steps K .
Output: variational parametersμi and�i , for i = 1, ..., N .
Set q0(θ) = N (μ0,�0).
for i = 1, . . . , N do

if i ≤ ndamp then
Set a = 1/K , μi,0 = μi−1,�i,0 = �i−1

for k = 1, . . . , K do
Set qi,k−1(θ) = N (μi,k−1,�i,k−1).

μi,k = μi,k−1 + a�i,kEqi,k−1 (̂∇θ log p(yi | θ))

�−1
i,k = �−1

i,k−1 − aEqi,k−1(
̂∇2

θ log p(yi | θ))

end for
Set μi = μi,K ,�i = �i,K , qi (θ) = N (μi ,�i ).

else
μi = μi−1 + �iEqi−1 (̂∇θ log p(yi | θ))

�−1
i = �−1

i−1 − Eqi−1(
̂∇2

θ log p(yi | θ))

end if
end for

3 Applications of R-VGAL

In this section, we apply R-VGAL to estimate parameters in
linear, logistic and Poisson mixed models using three simu-
lated datasets and two real datasets: the Six City dataset from
Fitzmaurice and Laird (1993), and the Polypharmacy dataset
from Hosmer et al. (2013). The linear and logistic models
have univariate random effects, while the Poisson model has
bivariate random effects. There are two additional examples
in Section S6 of the online supplement: a real data example
with the Poisson model applied to the Epilepsy dataset from
Thall and Vail (1990), and a synthetic data example with
a high number of observations simulated from the logistic
mixed model.

We validate R-VGAL against Hamiltonian Monte Carlo
(HMC, Neal 2011; Betancourt and Girolami 2015), which
is implemented using the Stan programming language (Stan
Development Team 2023) in R (Core 2022). In examples
with real data, the true parameters are unknown. We instead
compute the maximum likelihood estimates for the parame-
ters using the R package lme4 (Bates et al. 2015), and also
treat results from HMC as the “ground truth”, as HMC pro-
vides samples from the true posterior distributions. For all
examples, we run 2 HMC chains for 15,000 iterations each,
and discard the first 5000 from each chain as burn in.We find
that the effective sample sizes are high and the R̂ statistics are
close to 1 for all examples, indicating that the HMC chains
are well-mixed and have converged; see Section S5 of the
online supplement for further details. Reproducible R code

for all examples is available on https://github.com/bao-anh-
vu/R-VGAL.

For all applications in this paper, we use the damped
R-VGAL algorithm described in Sect. 2.4. We show that
damping makes the algorithm more robust to different
orderings of the observations in Section S3 of the online
supplement. The values of ndamp and K used in damping
observations should be kept as small as possible to limit
the extra computational overhead, while also be sufficiently
large to reduce the instability observed with the R-VGAL
algorithm in the initial stages. In our applications, we exper-
imented with a few different settings of ndamp and K and
plotted the trajectories of the variational mean under those
settings. We found that the trajectories were most unstable
during the first 10 observations, so we chose ndamp = 10
observations and the number of steps K = 4 to reduce the
initial instability at the expense of a small additional compu-
tational cost. These values are used throughout our examples.
Adaptive schemes for selecting the values of ndamp and K
are left as future research directions.

3.1 Linear mixed effect model

In this example, we generate data from a linear mixed model
with N = 200 groups and n = 10 responses per group. The
j th response from the i th group is modelled as

yi j = x�
i jβ + zi jαi + εi j , αi ∼ N (0, σ 2

α ),

εi j ∼ N (0, σ 2
ε ), (26)

for i = 1, . . . , N and j = 1, . . . , n, where xi j is drawn from
a N (0, I4) distribution and zi j is drawn from a N (0, 1) distri-
bution. For this example,wedid not include an intercept term,
but it can be added if necessary. The true parameter values
are β = (−1.5, 1.5, 0.5, 0.25)�, σα = 0.9, and σε = 0.7.
Since R-VGAL uses a multivariate normal distribution as the
variational approximation, we consider the log-transformed
variables φα ≡ log(σ 2

α ) and φε ≡ log(σ 2
ε ) so that φα and φε

are unconstrained.We thenmake inference on the parameters
θ = (β�, φα, φε)

� using R-VGAL.
At the group level, the linear mixed model is

yi = Xiβ + ziαi + εi , i = 1, . . . , N , (27)

where yi ≡ (yi1, . . . , yin)�, Xi ≡ (xi1, . . . , xin)�, zi ≡
(zi1, . . . , zin)�, and εi ≡ (εi1, . . . , εin)

�. At each itera-
tion, i = 1, . . . , N , the R-VGAL algorithm makes use of
the “partial” likelihood of the observations from the i th
group, p(yi | θ) = N (μy|θ ,�y|θ ), where μy|θ = Xiβ and
�y|θ = σ 2

αziz
�
i +σ 2

ε In . For thismodel, the gradient andHes-
sian of log p(yi | θ) with respect to each of the parameters
are available in closed form; see Section S1.1 of the online
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supplement. In this case, we are therefore able to compare
the accuracy of R-VGAL implemented using approximate
gradients and Hessians with that of R-VGAL implemented
using exact gradients and Hessians.

The prior distribution we use, which is also the “initial”
variational distribution, is

p(θ) = q0(θ) = N

⎛

⎝

⎡

⎣
0

log(0.52)
log(0.52)

⎤

⎦ ,

⎡

⎣
10I4 0 0
0� 1 0
0� 0 1

⎤

⎦

⎞

⎠ . (28)

A N (log(0.52), 1) prior distribution for φα and φε is equiv-
alent to a log-normal prior distribution with mean 0.41 and
variance 0.29 for both σ 2

α and σ 2
ε . Using this prior distribu-

tion, the 2.5th and 97.5th percentiles for both σ 2
α and σ 2

ε are
(0.035, 1.775).

At each iteration i = 1, . . . , 200, we use Sα = 100Monte
Carlo samples (of αi ) to approximate the gradient and Hes-
sian of log p(yi | θ) using Fisher’s and Louis’ identities. We
use S = 100 Monte Carlo samples (of θ ) to approximate the
expectations with respect to qi−1(θ) in the R-VGAL updates
of the mean and precision matrix. These values were chosen
based on an experimental study on the effect of S and Sα

on the posterior estimates of R-VGAL in Section S2 of the
online supplement.

We validate R-VGAL against HMC, which we imple-
mented in Stan. Figure1 shows the marginal posterior
distributions of the parameters, alongwith bivariate posterior
distributions as estimated using R-VGAL with approximate
gradients and Hessians, R-VGAL with exact gradients and
Hessians, and HMC. The posterior distributions obtained
using R-VGAL are clearly very similar to those obtained
using HMC, irrespective of whether exact or approximate
gradients and Hessians are used.

3.2 Logistic mixed effect model

In this example, we generate simulated data from a random
effects logistic regression model with N = 500 groups and
n = 10 responses per group. The random effect logistic
regression model we use is

yi j ∼ Bernoulli(πi j ),

πi j = p(yi j = 1 | β, τ 2)

= exp(x�
i jβ + αi )

1 + exp(x�
i jβ + αi )

,

αi ∼ N (0, τ 2), (29)

where xi j is drawn from a N (0, I4) distribution, for
i = 1, . . . , N and j = 1, . . . , n. For this example, we did not
include an intercept term, but it can be added if necessary.

The true parameter values are β = (−1.5, 1.5, 0.5, 0.25)�
and τ = 0.9.

As in the linear case, although the parameters of the
model are β and τ , we work with θ = (β�, φτ )

� where
φτ ≡ log(τ 2). The gradient and Hessian of the “partial” log-
likelihood log p(yi | θ) in this model are not analytically
tractable, but can be estimated unbiasedly using Fisher’s and
Louis’ identities as discussed in Sects. 2.3.1 and 2.3.2. These
identities require the expressions for∇θ log p(yi , αi | θ) and
∇2

θ log p(yi , αi | θ), which are provided in Section S1.2 of
the online supplement.

The prior distribution we use, which is also the “initial”
variational distribution, is

p(θ) = q0(θ) = N

([
0

log(0.52)

]
,

[
10I4 0
0� 1

])
. (30)

A N (log(0.52), 1) prior distribution for φτ is equivalent to
a log-normal prior distribution with mean 0.41 and variance
0.29 for τ 2. The prior 2.5th and 97.5th percentiles for τ 2

are (0.035, 1.775). At each iteration i = 1, . . . , 500, we
use Sα = 100 Monte Carlo samples (of αi ) to approximate
the gradient and Hessian of log p(yi | θ) during importance
sampling, and S = 100 samples (of θ) to approximate the
expectations with respect to qi−1(θ) in the R-VGAL updates
of the mean and precision matrix.

Figure 2 shows the marginal posterior distributions of the
parameters, along with bivariate posterior distributions as
estimated using R-VGAL and HMC. The posterior distribu-
tions obtained using R-VGAL are again very similar to those
obtained using HMC.

3.3 Poissonmixedmodel

We now apply R-VGAL to a model with bivariate random
effects. For this example, we simulate data with N = 200
groups and n = 10 responses per group from the following
Poisson mixed effect regression model:

yi j ∼ Poisson(λi j ),

λi j = exp(x�
i jβ + z�

i jαi ),

αi ∼ N (0,�α),

where xi j ≡ (1, xi j,1)�, with xi j,1 drawn from a N (0, 1)
distribution, and zi j ≡ (1, zi j,1)�, with zi j,1 drawn from a
N (0, 1) distribution, for i = 1, . . . , N and j = 1, . . . , n. We
denote the fixed and random effects as β ≡ (β0, β1)

� and
αi ≡ (αi,1, αi,2)

�, respectively. The true parameter values
are

β = (−1.5,−0.5)�, �α =
[
0.15 0.05
0.05 0.20

]
.
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Fig. 1 Exact posterior distributions (from HMC, in blue) and approx-
imate posterior distributions (from R-VGAL with estimated gradients
and Hessians in red, and from R-VGAL with exact gradients and Hes-
sians in yellow) for the linearmixedmodel experiment.Diagonal panels:

Marginal posterior distributionswith true parameters denoted using dot-
ted lines. Off-diagonal panels: Bivariate posterior distributionswith true
parameters denoted using the symbol ×. (Color figure online)

We parameterise �α = LL�, where L denotes the lower
Cholesky factor of �α and takes the form

L =
[
exp(ζ11) 0

ζ21 exp(ζ22)

]
.

In the algorithm, we consider the unconstrained parameters
θ = (β�, ζ�)�, where ζ ≡ (ζ11, ζ22, ζ21)

�. The gradient
∇θ log p(yi ,αi | θ) and Hessian ∇2

θ log p(yi ,αi | θ), which
are necessary in the computation of the gradient and Hes-
sian of the group-specific log likelihood log p(yi | θ), are
provided in Section S1.3 of the online supplement.

We use the following prior/initial variational distribution:

p(θ) = q0(θ) = N

([
0
0

]
,

[
I2 0
0� 0.1I3

])
.

A N (0, 0.1) prior distribution for ζ11, ζ22 and ζ21 leads to
having2.5th and97.5th percentiles of (0.290, 3.485) for�α11 ,
(0.342, 3.577) for �α22 , and (−0.713, 0.713) for the off-
diagonal entries �α21 and �α12 .

As with the linear and logistic examples, we use Sα = 100
for the importance sampling step and S = 100 samples for

approximating the expectations with respect to qi−1(θ) in
the R-VGAL updates. Figure3 shows the marginal posterior
distributions of the parameters, alongwith bivariate posterior
distributions as estimated using R-VGAL and HMC. For all
parameters, the R-VGAL and HMC posterior densities are
very similar, though the posterior densities of�α11 from both
methods appear a bit biased.

To assess the robustness of the results in these simulation
studies, we also include repeated simulation studies on the
linear, logistic and Poisson mixed models in Section S4 of
the online supplement. For each of thesemodels, we simulate
100 datasets using the same parameter settings, and compare
the posterior estimates from R-VGAL and HMC on these
simulated datasets. We find that the R-VGAL and HMC pos-
terior estimates are very similar across simulations for the
linear and logistic models, while for the Poisson model, the
estimates from the two methods are close for most simu-
lations, with only a few cases where estimates are slightly
different. We also find that the posterior standard deviations
from R-VGAL tend to be slightly smaller than those from
HMC.
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Fig. 2 Exact posterior distributions from HMC (in blue) and approx-
imate posterior distributions from R-VGAL with estimated gradients
andHessians (in red) for the logisticmixedmodel experiment. Diagonal
panels: Marginal posterior distributions with true parameters denoted

using dotted lines. Off-diagonal panels: Bivariate posterior distributions
with true parameters denoted using the symbol ×. (Color figure online)

3.4 Real data examples

We now apply R-VGAL to two real datasets: the Six City
dataset fromFitzmaurice andLaird (1993), and the Polyphar-
macy dataset from Hosmer et al. (2013).

For the Six City dataset, we follow Tran et al. (2017) and
consider the random intercept logistic regression model

log

(
πi j

1 − πi j

)
= β0 + βageAgei j + βsmokeSmokei j + αi ,

αi ∼ N (0, τ 2), (31)

whereπi j ≡ p(yi j = 1 | β, τ 2),withβ ≡ (β0, βage, βsmoke)
�,

for i = 1, . . . , 537 and j = 1, . . . , 4. The binary response
variable yi j = 1 if child i is wheezing at time point j , and 0
otherwise. The covariate Agei j is the age of child i at time
point j , centred at 9 years, while the covariate Smokei j = 1
if the mother of child i is smoking at time point j , and 0 oth-
erwise. Finally, αi is the random effect associated with the
i th child. The parameters of the model are θ = (β�, φτ )

�,
where φτ ≡ log(τ 2).

For the Polypharmacy dataset, we consider the random
intercept logistic regressionmodel fromTan andNott (2018):

log

(
πi j

1 − πi j

)
= β0 + βgenderGenderi + βraceRacei

+ βageAgei j + βM1MHV1i j + βM2MHV2i j

+ βM3MHV3i j + βI MINPTMHVi j + αi ,

αi ∼ N (0, τ 2), (32)

where πi j ≡ Pr(yi j = 1 | β, τ 2), β ≡ (β0, βgender , βrace,

βage, βM1, βM2, βM3, βI M )�, for i = 1, . . . , 500 and j =
1, . . . , 7. The response variable yi j is 1 if subject i in year j is
taking drugs from three or more different classes (of drugs),
and 0 otherwise. The covariate Genderi = 1 if subject i
is male, and 0 if female, while Racei = 0 if the race of
subject i is white, and 1 otherwise. The covariateAgei j is the
age (in years and months, to two decimal places) of subject
i in year j . The number of outpatient mental health visits
(MHV) for subject i in year j is split into three dummy
variables: MHV1i j = 1 if 1 ≤ MHVi j ≤ 5, and 0 otherwise;
MHV2i j = 1 if 6 ≤ MHVi j ≤ 14, and 0 otherwise; and
MHV3i j = 1 if MHVi j ≥ 15, and 0 otherwise. The covariate
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Fig. 3 Exact posterior distributions from HMC (in blue) and approxi-
mate posterior distributions fromR-VGALwith estimated gradients and
Hessians (in red) for the Poisson mixed model experiment. Diagonal
panels: Marginal posterior distributions with true parameters denoted

using dotted lines. Off-diagonal panels: Bivariate posterior distributions
with true parameters denoted using the symbol ×. (Color figure online)

INPTMHVi j = 0 if there were no inpatient mental health
visits for subject i in year j , and 1 otherwise. Finally, αi is a
subject-level random effect for subject i . The parameters of
the model are θ = (β�, φτ )

�, where φτ ≡ log(τ 2).
We use similar priors/initial variational distributions for

both examples. For the Six City dataset, the prior/initial vari-
ational distribution we use is

p(θ) = q0(θ) = N

([
0
1

]
,

[
10I3 0
0� 1

])
, (33)

and for the Polypharmacy dataset, we use

p(θ) = q0(θ) = N

([
0
1

]
,

[
10I8 0
0� 1

])
. (34)

A N (1, 1) prior distribution for φτ leads to a log-normal
prior distribution with mean 4.48 and variance 34.51 for τ 2.
Using this prior distribution, the 2.5th and 97.5th percentiles
for τ 2 are (0.383, 19.297), which cover most values of τ 2 in
practice.At eachR-VGAL iteration, the gradient andHessian
of log p(yi | θ) are approximated using Sα = 200 Monte
Carlo samples (of αi ), and the expectations with respect to

qi−1(θ) in the R-VGAL updates are approximated using S =
200 Monte Carlo samples (of θ ).

As there are no ground truths to these examples, we com-
pare the posterior density estimates from R-VGAL to those
fromHMC. In addition, we also compute the maximum like-
lihood estimates using the lme4 package in R. Figures4
and 5 show the marginal posterior distributions with max-
imum likelihood estimates of the parameters, along with
bivariate posterior distributions estimated using R-VGAL
and HMC for the Six City and Polypharmacy datasets,
respectively. In the Six City example, there is a slight dif-
ference in the marginal and bivariate posterior densities
from R-VGAL and HMC for the fixed effect βsmoke, but
the posterior densities for other parameters are very similar
between the twomethods. For the interceptβ0 and the random
effect standard deviation τ , the posterior modes of HMC are
closer to themaximum likelihood estimates than the posterior
modes ofR-VGAL, but for the other parameters, the posterior
modes from both R-VGAL and HMC are close to the max-
imum likelihood estimates. For the Polypharmacy example,
there are slight differences between the R-VGAL and HMC
marginal and bivariate posterior densities for the intercept β0
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Fig. 4 Exact posterior distributions from HMC (in blue) and approx-
imate posterior distributions from R-VGAL with estimated gradients
and Hessians (in red) for the experiment with the Six City dataset.
Diagonal panels: Marginal posterior distributions with the maximum

likelihood estimates marked using dotted lines. Off-diagonal panels:
Bivariate posterior distributionswith themaximum likelihood estimates
marked using the symbol ×. (Color figure online)

and the fixed effects βgender and βrace, but for other parame-
ters, the posterior densities are comparable between the two
methods. The posterior modes of both R-VGAL and HMC
are close to the maximum likelihood estimates for all param-
eters in this example.

3.5 Computing time

Table 1 compares the computing time (in minutes) of R-
VGAL and HMC for all simulated and real data examples
that we have discussed in Sect. 3 and Section S6 of the online
supplement, and includes the corresponding dataset size for
each example. The last column in the table shows the average
time taken (in seconds) for a single iteration of R-VGAL. For
the linear example, where we run R-VGALwith both the the-
oretical and estimated gradients/Hessians, the displayed time
is that of R-VGALwith the estimated gradients/Hessians. All
experiments were carried out on the High Performance Com-
puter system of the National Institute for Applied Statistics
ResearchAustralia, with anNVIDIATeslaV100 PCIe 32GB
graphics processing unit (GPU). The GPU was used to par-
allelise the computations in the importance sampling step,

so that the gradient and Hessian of the joint log-likelihood
log p(yi ,α

(s)
i | θ), s = 1, . . . , Sα , and their corresponding

weights Wi , are computed all at once. The GPU was also
used to parallelise over the Monte Carlo samples used in
the estimation of the expectations with respect to qi−1(·) in
Algorithm 1. We use the R interface to Tensorflow (Abadi
et al. 2015) to facilitate GPU computations.

The table shows that the R-VGAL algorithm is generally 3
to 8 times faster than HMC. This is substantial given that our
code is not as highly optimised as that in Stan. The difference
in computing times also becomes more notable with a bigger
dataset: in the logistic examplewith 50000 synthetic observa-
tions (see Section S6.2 of the online supplement), R-VGAL
takes only 17min to produce posterior estimates, while HMC
takesmore than 2h. Furthermore, sinceR-VGAL is a sequen-
tial algorithm, posterior approximations from R-VGAL can
be easily updated as new observations become available. To
incorporate an additional observation, R-VGALneeds to per-
form a single update, while an algorithm like HMC requires
rerunning the entire sampling procedure.
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Fig. 5 Exact posterior distributions from HMC (in blue) and approxi-
mate posterior distributions fromR-VGALwith estimated gradients and
Hessians (in red) for the experiment with the Polypharmacy dataset.
Diagonal panels: Marginal posterior distributions with the maximum

likelihood estimates marked using dotted lines. Off-diagonal panels:
Bivariate posterior distributionswith themaximum likelihood estimates
marked using the symbol ×. (Color figure online)

Table 1 Computing time (in minutes) for the R-VGAL and HMC methods for the simulated and real datasets, with accompanying dataset sizes

N n HMC (min) R-VGAL (min) One R-VGAL iteration (s)

Linear (simulated data) 200 10 2.5 0.6 0.17

Logistic (simulated data) 500 10 7.2 1.1 0.13

Poisson (simulated data) 200 10 11.3 3.1 1.05

Logistic (Six City) 537 4 3.4 1.2 0.13

Logistic (Polypharmacy) 500 7 18.5 2.4 0.29

Poisson (Epilepsy)* 59 4 3.3 1.2 1.25

Logistic (simulated data)* 5000 10 133.6 16.8 0.20

Timings for one R-VGAL update is shown (in seconds). Examples with the * symbol are in the online supplement

4 Conclusion

In this article, we propose a sequential variational Bayes
algorithm for estimating parameters in GLMMs based on an
extension of the R-VGA algorithm of Lambert et al. (2022).
TheoriginalR-VGAalgorithm requires the gradient andHes-
sian of the partial log-likelihood at each observation, which
are computationally intractable for most GLMMs. To over-
come this, we use Fisher’s and Louis’ identities to obtain

unbiased estimates of the gradient and Hessian, which can
be used in place of the closed form gradient and Hessian in
the R-VGAL algorithm.

We apply R-VGAL to the linear, logistic and Poisson
mixed effect models with simulated and real datasets. In
all examples, we compare the posterior distributions of the
parameters estimated using R-VGAL to those obtained using
HMC (Neal 2011; Betancourt and Girolami 2015). The
examples show that R-VGAL yields comparable posterior
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estimates to HMC while being substantially faster, and the
R-VGAL posterior modes are very close to the maximum
likelihood estimates for most parameters in the models we
consider. R-VGAL would be especially useful in situations
where new observations are being continuously collected.

In the current paper, we assume that the random effects
are independent and identically distributed between subjects
or groups. We discuss the potential application of R-VGAL
to models with more complicated random effect structures,
such as crossed or nested effects, in Section S7 of the online
supplement. Future work will attempt to extend R-VGAL to
cases where the random effects are temporally correlated.
This will expand the set of models on which R-VGAL can
be used to include time series and state space models.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10422-
8.
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