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Abstract
Methodology is described for fitting a fuzzy partition and a parsimonious consensus hierarchy (ultrametric matrix) to a set of
hierarchies of the same set of objects. A model defining a fuzzy partition of a set of hierarchical classifications, with every
class of the partition synthesized by a parsimonious consensus hierarchy is described. Each consensus includes an optimal
consensus hard partition of objects and all the hierarchical agglomerative aggregations among the clusters of the consensus
partition. The performances of the methodology are illustrated by an extended simulation study and applications to real data.
A discussion is provided on the new methodology and some interesting future developments are described.
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1 Introduction

The analysis of the relationship within a set of objects, char-
acterised by a set of features, can be described by achieving
a hard partition of the objects into disjoint classes, with the
property that objects in the same class are perceived as sim-
ilar to one another. Such partitions can be attained from the
application of clustering algorithms (Hartigan 1975; Gordon
1999; Bouveyron et al. 2019), or can be provided directly by
observers (judges) in the field of marketing, (e.g., for defin-
ing customer types), or in psychology (e.g., for identifying
"personas", i.e., personality types). It can also be enlighten-
ing to obtain "fuzzy partitions", in which an object need not
be associated with a single class, but has a set of member-
ship functions that specify the extent to which it is regarded
as belonging to each of the classes. Relevant methodology
for obtaining fuzzy partitions is described in several seminal
papers (Dunn 1973, 1974; Bezdek 1981, 1987).
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Often, several different hierarchies of the same set of
objects are available and it is useful to consider obtaining
a single ’consensus’ which summarizes the information con-
tained in the separate hierarchies. Some reasons for doing
this are given below. First, hierarchical classifications may
be obtained by application of an agglomerative or divisive
algorithm separately to the same set of multivariate objects
observed on different occasions using a set of variables form-
ing a three-way data set, or panel data; or be provided by
direct assessment of a set of judges, as can occur in psy-
chometric studies (e.g., Rosenberg and Park 1975) or in
marketing, where together with a partition also the aggrega-
tion of the clusters are given to form a hierarchy. A consensus
hierarchy provides a way of simplifying this information
and obtaining an overall view of the relationships within
the set of objects. In line with the concept of synthesiz-
ing data by defining a central value, the consensus can be
defined to be the ’closest’ hierarchy to the given set of hier-
archies. Second, the results of a cluster analysis are known to
depend on various decisions of the researcher made during
the course of the investigation, such as the type of measure
of pairwise dissimilarity between objects and clusters and
the clustering criterion that is used (e.g. agglomerative or
divisive). In effect, each decision that is taken involves a
model for the clusters that may bias the results of an anal-
ysis towards the assumptions of the model. For this reason,
investigators often carry out several different analyses of the
same set of objects, each implicitly incorporating a differ-
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ent set of assumptions that are considered to be reasonable.
A consensus classification may be considered an ’ensem-
ble’ classification estimating the ’true classification’, that is,
the classification less likely to be biased towards the mod-
els corresponding to the separate analyses and more likely
to reflect the underlying structure of the data. Nevertheless,
there are several situations in which obtaining a single con-
sensus hierarchy is too simplistic and naı̈ve because several
differences may be observed among the set given hierarchies
and consequently, more than one consensus hierarchy could
be required to synthesize the initial hierarchies. This paper
addresses the problem of obtaining partitions of the set of
hierarchical classification of objects. These will be referred
to as primary hierarchies with associated primary ultrametric
matrices, knowing that there is a bijection between hier-
archies and ultrametric matrices (Johnson 1967). A fuzzy
partition of a set of primary hierarchies will be referred to
as a secondary fuzzy partition. The aim of the methodol-
ogy described in this paper is to obtain a secondary fuzzy
partition of the set of primary hierarchies into classes with
the property that primary hierarchies with a relevant mem-
bership degree for the same class are perceived as similar
to one another. Each of the classes will have an associated
parsimonious consensus hierarchy, which serves as a sum-
mary of the set of primary hierarchies belonging to the class.
The secondary partition is fuzzy because it can describe some
“uncertainties” that occur in the observed set of primary hier-
archies and it provides further information: the membership
degrees can show for each class which primary hierarchies
are more strongly associated with it and which hierarchies
have only a loose association. Therefore, each hierarchy con-
tributes to the definition of all classes according to different
membership degrees. The consensus hierarchy (tree) is par-
simonious, because it limits its internal nodes to a reduced
number G (where G is much smaller than the number N of
objects). Thus, the parsimonious trees has the property that
clusters appearing in excess of K are viewed as very close
to each other and perceived as almost indistinguishable and
irrelevant in the hierarchy. In addition, the consensus includes
the optimal partition into K clusters. Frequently investiga-
tors wish to identify this optimal partition in the hierarchy to
detect the most relevant classification of its nested partitions.

The remainder of this paper is organized as follows. Sec-
tion2 is fully dedicated to the review of the literature; Sect. 3
describes the proposed methodology and its estimation. The
performance of the newmethodology is tested in an extended
simulation study included in Sects. 4 and 5 includes the appli-
cations to real datasets. Finally, Sect. 6 gives remarks and
considerations on future developments.

2 Notation and theoretical background

The notation and the theoretical background necessary for
the reader to follow the new methodology are reported here.
First, the notation is given, followed by some background
information on parsimonious hierarchy. The theoretical data
structure for multivariate objects and dissimilarities exam-
ined on different occasions used in this paper is the three-way
array.

2.1 Notation

N , J , H , K ,G number of observations (units), variables, occasions,
clusters of occasions, clusters of units, respectively;

I ≡ 1, . . . , N the set of indices identifying units;
J ≡ 1, . . . , J the set of indices identifying variables;
H ≡ 1, . . . , H the set of indices identifying occasions;
X = [xi jh ] (N × J × H ) three-way data array (matrix), where

value xi jh is the observation on the i-th unit (row),
on the j-th variable (column) on the h-th occasion
(layer);

μhk membership of h-th occasion in the k-th cluster, for
k = 1, . . . , K , for h = 1, . . . , H . For a given
occasion, the sum of the membership values for all
clusters is one; moreover, memberships can be
hard, i.e. μhk ∈ {0, 1}, or fuzzy i.e. μhk ∈ [0, 1];

m the fuzziness parameter or fuzzifier that controls how
fuzzy the classes of the partition tend to be;

U = [uilh] (N × N × H ) three-way ultrametric matrix formed
by H ultrametric matrices. Formally,
U = [U1, . . . ,UH ], where Uh is a N × N
ultrametric matrix, for h ∈ H;

U∗ = [u∗
ilk ] (N × N × K ) three-way consensus matrix formed

by (2G − 1)-ultrametric matrices. Formally,
U∗ = [U∗

1, . . . ,U
∗
K ], where U∗

k is a N × N
(2G − 1)-ultrametric matrix, for k = 1, . . . , K .

As described in the introduction H primary hierarchies
are supposed observed with associated ultrametric matrices
U1,U2, . . . ,UH .

When hierarchies are not directly observed the data array
X = [xi jh : i ∈ I, j ∈ J , h ∈ H] is supposed given.
Note that the three-way array is the data structure used
to organize multidimensional phenomena, with J variables
measured on the same set of N individuals, in H differ-
ent occasions. X = [xi jh] has three modes: units (rows),
variables (columns), and occasions (times, layers). The term
’way’ refers to a dimensionof the data,while theword ’mode’
is reserved for the methods or models used to analyze the
data (Kroonenberg 2008). Then, a fixed hierarchical cluster-
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ing algorithm (Gordon 1999) is applied to each dissimilarity
matrix Dh related to the data matrix Xh, h = 1, ..., H ,
by choosing a dissimilarity measure between multivariate
objects.

Each hierarchical classification applied on the data matrix
Xh has associated:

(i) N -tree T h = {{i}, (i ∈ I), I1,h, I2,h, . . . , IN−1,h, I} is
a set of subsets ofI, with Il,h the generic l-th subset ofI
taken in the h-th occasion: I ∈ T h ; ∅ /∈ T h ; {i} ∈ T h ;
if Ii,h, Il,h ∈ T h ⇒ (Ii,h ∩ Il,h) ∈ (Ii,h, Il,h,∅). Thus,
the N -tree, for theh-th occasion, is givenby the N trivial
clusters (leaves) {i}, (i ∈ I) and the N − 1 clusters of
units (internal nodes), obtained by the N − 1 steps of
fusion performed by a hierarchical algorithm (hence,
the last cluster is I or the root). Generally, the N -trees
are binary, i.e. they have exactly N − 1 internal nodes
and each node has at most two descendants.

(ii) Hierarchy (Dendrogram) δh = {δ(I1,h), δ(I2,h), . . . ,
δ(IN−1,h)} and δ(Il,h) is the value of fusion determining
Il,h , such that if δ(Il,h) ≤ δ(Ii,h), implies: Il,h ⊆ Ii,h
if Il,h ∩ Ii,h 
= ∅; otherwise l ≤ i if Il,h ∩ Ii,h = ∅.

(iii) UltrametricmatrixUh = [uilh], uiph ≤ max(uilh, u plh)

∀ (i, l, p) ∈ I, h ∈ H.

From the H given ultrametricmatrices, K parsimonious con-
sensus dendrograms, i.e. K (2G − 1)-ultrametric matrices,
summarizing the original H hierarchies will be identified.
Each (2G−1)-ultrametric matrix, is a square N dimensional
matrix with elements satisfying ultrametric inequalities and
with off-diagonal elements that can assume one of at most
(2G − 1) positive different values.

It is now necessary to introduce the model used to obtain
a parsimonious tree, associated to a (2G − 1)-ultrametric
matrix.

2.2 Well-structured partition (WSP)

A partition of objects into G clusters has two main charac-
teristics: the isolation between clusters and the heterogeneity
within clusters. Vichi (2008) proposed to model a dissimilar-
ity matrix by three matrices: the diagonal matrix WDk =
[Wdkgg > 0 : Wdkgt = 0, g, t = 1, . . . ,G, (g 
= t)],
the squared matrix BDk = [Bdkgt > 0 : Bdkgg =
0, t, g = 1, . . . ,G, (t 
= g)] and the membership matrix
Mk = [mk

ig : mk
ig ∈ {0, 1} for i = 1, . . . , N , g =

1, . . . ,G, and
∑G

g=1 mig = 1 ∀ i = 1, . . . , N ], modelling
heterogeneity within clusters, isolation between clusters and
the partition into G classes, respectively. Thus, the classifi-
cation matrix identifying a partition is

U∗
k = Mk(BDk)M

′
k + Mk(WDk)M

′
k − diag(Mk(WDk)M

′
k),

(1)

In order to obtain a Well-Structured Partion (Rubin 1967),
Equation (1) is subject to the constraint

max{Wdkgg : g = 1, . . . ,G} ≤ min{Bdkgt : t, g = 1, . . . ,G, (g 
= t)}
(2)

In otherwords, dissimilaritieswithin clustersmust be smaller
than the dissimilarities between clusters. For the sake of
brevity, the matrix form of constraint (2) will be used in the
rest of the paper, i.e.

BDk > WDk . (3)

2.3 Parsimonious hierarchies

When matrix BDk is an ultrametric matrix of order G, then
U∗
k is a square (2G − 1)-ultrametric matrix of order N , with

off-diagonal elements that can assumeoneof atmost (2G−1)
different values: 0 < Wdkgg ≤ Bdkgt (g, t = 1, . . . ,G; g 
=
t).

More formally: U∗
k = [uk∗il ], uk∗i i = 0, uk∗il ≥ 0, uk∗il =

uk∗li , uk∗il ≤ max(uk∗ir , uk∗lr ) ∀ (i, l, r); furthermore uk∗il ∈
{0, Wdkgg, Bdkgt }, with 0 < Wdkgg ≤ Bdkgt ∀(g, t : g 
= t).

There exists a bijection between ultrametric matrices Uh

and dendrograms (hierarchies), which has been proved by
Johnson (1967). Thus, H ultrametric matrices are associated
with a set of H dendrograms representing the primary hier-
archies � = [δ1, δ2, . . . , δH ].

To clearly showwhat is meant by parsimonious hierarchy,
in the following we consider a (2G − 1) dendrogram when
G = 5 and also its corresponding BD and WD matrices.

Clearly, the parsimonious dendrogram (PD) displayed in
Fig. 1 is associated with a parsimonious hierarchy.Moreover,
it is worth noting that the associated isolation and hetero-
geneity matrices displayed in Table 1 have the following
characteristics: matrix WD is a diagonal matrix with positive
entries on the main diagonal, the matrix BD is an ultrametric
matrix, and the WSP constraint (2 or 3) holds, with the max-
imum value of WD, i.e. 5 being smaller than the minimum
value of matrix BD, i.e. 8.5.

3 Fuzzy partition of hierarchies and their
parsimonious consensus dendrograms

The methodology proposed in this paper aims to find a
fuzzy partition in K classes of the primary hierarchies with
(2G − 1)-ultrametric consensuses (parsimonious trees) for
each class of the partition.

In order to achieve this goal the following optimization
problem has to be solved w.r.t.Mk, BDk, WDk , and μm

hk ,
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Constraints C1 and C2 guarantee that the set of ultramet-
ric matrices U1,U2, . . . ,UH is partitioned in a fuzzy way,
i.e., into K classes: each ultrametric matrix belongs to the
k-th class with the h-th membership μhk . Constraints C3,
C4 and C5 are needed to guarantee that the partition is
well-structured. Finally, the last triplet of constraints, i.e.
constraints C6, C7 and C8, guarantees that the matrix BD

is ultrametric. The whole set of constraints in P1 allows us
to obtain a fuzzy partition of the primary hierarchies into
K classes, by identifying K parsimonious ultrametric matri-
cesU∗

k : in this way, each consensus is a (2G−1)-ultrametric
matrix, and therefore has a parsimonious tree associated with
it. The reader can see that if the last triplet of constraints, i.e.

Fig. 1 Representation of a
(2G − 1)-dendrogram when
G = 5. A 9-dendrogram is
shown; the first five clusters
(C1, . . . ,C5) form a partition;
clusters C6 = {C1,C3},C7 =
{C2,C4},C8 = {C6,C7},C9 =
{C5,C8}, specify the
hierarchical structure of the
partition
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Table 1 Matrices of isolation
between clusters (BD) and
heterogeneity with clusters
(WD) BD =

⎡

⎢
⎢
⎢
⎣

0 Bd12 Bd13 Bd14 Bd15
Bd21 0 Bd23 Bd24 Bd25
Bd31 Bd32 0 Bd34 Bd35
Bd41 Bd42 Bd43 0 Bd45
Bd51 Bd52 Bd53 Bd54 0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0 10.5 11.375 11.375 12.25
10.5 0 11.375 11.375 12.25
11.375 11.375 0 8.5 12.25
11.375 11.375 8.5 0 12.25
12.25 12.25 12.25 12.25 0

⎤

⎥
⎥
⎥
⎦

WD =

⎡

⎢
⎢
⎢
⎣

Wd11 0 0 0 0
0 Wd22 0 0 0
0 0 Wd33 0 0
0 0 0 Wd44 0
0 0 0 0 Wd55

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

5 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 4 0
0 0 0 0 5

⎤

⎥
⎥
⎥
⎦

constraints C6, C7 and C8, is ignored, then the K consen-
sus matrices are matrices that identify just a well-structured
partition and not a parsimonious hierarchy. Finally, the fuzzi-
ness of the partition is controlled by the parameterm, named
fuzzifier. In particular, when m −→ 1 the partition tends to
become hard, i.e. the membership degrees tend to be either 0
or 1; for m −→ ∞ membership tend to be constant and equal
to 1/K .

Therefore, problem (P1) can be used in order to solve the
following sub-problems:

(P1.a) Given H primary hierarchies, obtain a fuzzy sec-
ondary partition of the primary hierarchies, and
for each class of the secondary partition identify
a consensus well-structured partition. This problem
consists of solving P1 subject to constraints C1–C5.

(P1.b) Given H primary hierarchies, obtain a fuzzy sec-
ondary partition of the primary hierarchies and for
each class of the secondary partition identify a
consensus hierarchy with a parsimonious structure.
This problem consists of solving P1 subject to con-
straints C1–C8.

(P1.c) Given a single hierarchy (dendrogram), find the clos-
est well-structured partition. If the hierarchy is not

initially given, i.e. if a dissimilarity matrix is given,
then its corresponding hierarchy or ultrametricmatrix
can be obtained by applying UPGMA, or any other
hierarchical clustering algorithm, to the dissimilarity
matrix. This problem consists of solving P1 subject
to constraints C1–C5 when H = 1 and K = 1.

(P1.d) Given a single hierarchy (dendrogram), find the clos-
est parsimonious dendrogram. If the hierarchy is not
initially given, i.e. if a dissimilarity matrix is given,
then its corresponding hierarchy or ultrametricmatrix
can be obtained by applying UPGMA, or any other
hierarchical clustering algorithm, to the dissimilarity
matrix. This problem consists of solving P1 subject
to constraints C1–C8 when H = 1 and K = 1.

3.1 Least-squares estimation

In order to implement (P1), it is worth noting that it
can be decomposed into two alternating minimization sub-
problems:

(A) the partialminimization of the objective function of (P1)
with respect to centroid matrices when these are the
parsimonious hierarchies (1). i.e.,U∗

k , and μ̂hk is given.
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The solution of this sub-probem (A) can be found by
using the Sequential Quadratic Programming (SQP)
algorithm (Powell 1983).
It is worth noting that the unconstrained least square
solution of (P2) is given by Ūk , for k = 1, . . . , K , where

Ūk = 1
∑H

h=1 μ̂m
hk

H∑

h=1

μ̂m
hkUh (4)

is the weighted arithmetic mean matrix of Uh , for h =
1, . . . , H , weighted by μ̂m

hk .
Typically, matrices Ūk are not (2G-1)-ultrametrics.
However, only a few iterations are needed for the SQP
algorithm to run, if the problem () takes as initial values
the matrices Ūk . For this reason, the following problem
is minimized with respect to U∗

k :
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by using SQP. An alternative way to optimize (P3) is to
solve problem (P3), by using a coordinate descent algo-
rithm where in the step of computing BDk the UPGMA
algorithm is applied on the matrix BDk , since UPGMA
is known to find an optimal LS ultrametric transforma-
tion of BDk . In this way, the WSP model (model 1)
is solved subject to the ultrametricity constraint of the
matrix BD (i.e. constraints C6, C7, C8) on matrices
Ūk, for k = 1, . . . , K to obtain the corresponding parsi-
monious ultrametricmatrix. In practice, (P3) transforms
the dissimilarity matrix Ūk into the closest (2G − 1)-
ultrametric matrix.

(B) the partialminimization of the objective function of (P2)
with respect to the fuzzy partition [μhk] when Û∗

k is
given

The minimization of this sub-problem (B) is obtained
by solving it by means of the first-order conditions for
stationarity. In fact, the stationary point can be found by
considering the Lagrangian function

H∑

h=1

K∑

k=1

∥
∥Uh − U∗

k

∥
∥2 μm

hk +
n∑

i=1

λk[
K∑

k=1

μhk − 1], (5)

where the solution with respect to μhk is

μhk = 1
∑K

j=1

(
chk/chj

) 2
m−1

, for, h = 1, . . . , H , k = 1, . . . , K .

(6)

where clp = tr [(Ul − Û∗
p)

′(Ul − Û∗
p)].

After the solution of the two sub-problems (A) and (B) the
objective function generally reduces w.r.t. the previous iter-
ation, or at least does not increase. Since it is bounded below
by zero, after some iterations the algorithm stops to a station-
ary point that is not guaranteed to be the global minimum of
the problem. For this reason, the algorithm is recommended
to be run from several initial starting points to improve the
chance of identifying the global optimal solution. The steps
of the algorithm can now be formally presented.
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ALGORITHM for (P1):

0. Initialization
Set t = 0; ε > 0 convergence constant; and randomly
generate the membership degree matrix [μhk], with k =
1, . . . , K , h = 1, . . . H from a uniform distribution and
make it row-stochastic.

1. Do t = t + 1
2. Given [μ̂hk], solve sub-problem(A)with SQP algorithm

or considering the following steps:

(a) Compute Ūk, for k = 1, . . . , K as follows:

Ūk = 1
∑H

h=1 μ̂∗
hk

H∑

h=1

μ̂∗
hkUh (7)

(b) Solve problem (P3) as follows. For sake of simplicity,
we let F be the objective function of problem (P3),
namely:

F(BDk,W Dk,M) =
K∑

k=1

‖Ūk − Mk(BDk)M
′
k

+ Mk(WDk)M
′
k+ (8)

− diag(Mk(WDk)M
′
k)‖2

H∑

h=1

μ̂m
hk

It is worth noting that when minimizing (8) w.r.t.

BDk , WDk andMk , μ̂hk is fixed (constant) and there-
fore only

F(BDk,W Dk,M) =
K∑

k=1

‖Ūk − Mk(BDk)M
′
k

+ Mk(WDk)M
′
k+ (9)

− diag(Mk(WDk)M
′
k)‖2

will be minimized w.r.t. BDk , WDk and Mk .
(i) Fixing M̂k , differentiate the objective function

of (P3) (Eq.9) w.r.t. WDk and equate to zero.
The solution W D̂k will have as generic element
on the main diagonal:

ˆ
Wdkgg =

∑n
i=1

∑n
l=1,i 
=l Ū

k
il m̂

k
igm̂

k
lg

∑n
i=1

∑n
l=1,i 
=l m̂

k
igm̂

k
lg

(g = 1, . . . ,G);
(10)

(ii) Fixing M̂k , differentiate the objective function
of (P3) (Eq.9) w.r.t. BDk and equate to zero.
The solution BD̂k will have as generic element:

ˆ
Bdkg f =

∑n
i=1

∑n
l=1,i 
=l Ū

k
il m̂

k
igm̂

k
l f

∑n
i=1

∑n
l=1 m̂

k
igm̂

k
l f

(g, f = 1, . . . ,G);

(11)

Table 2 Local minima occurrences (%)

RndStarts 1 5 10 20 30 40

% 20 5 0 0 0 0

(iii) Fixing W D̂k and BD̂k , minimize the objec-
tive function of (P3) (Eq.9) w.r.t. Mk . The
minimization is done row by row, namelymini-
mizing the objective function w.r.t. row i ofMk

(mk
i ), fixing the other rows ofMk ; formally the

minimization will be done considering Mk =
[m̂k

1, m̂
k
2, . . . ,m

k
i , . . . , m̂

k
n]′. Therefore, unit i

belongs to the gth class, mk
ig = 1, if the

objective function of (P3) reaches its mini-
mum compared to the situations where unit i is
assigned to any other class v = 1, . . . ,G, v 
=
g. Otherwise, unit i does not belong to class g,
i.e. mk

ig = 0. Formally, for each i = 1, . . . , n:

m̂k
ig = 1, if F(BDk,W Dk, [m̂k

1, m̂
k
2, . . . ,

mk
i = ig, . . . , m̂k

n]′) =
= min{F(BDk,W Dk, [m̂k

1, m̂
k
2, . . . ,

mk
i = i f , . . . , m̂k

n]′) :
f = 1, . . . ,G ( f 
= g)},
m̂k

ig = 0, otherwise,

where i f is the f th row of the identity matrix
of order G.

The proofs of the aforementioned estimates are given
by Vichi (2008).

3. Given Û, solve sub-problem (B)

The solution of (P4) is given by:

μhk = 1
∑K

j=1

(
chk/chj

) 2
m−1

, for, h

= 1, . . . , H , k = 1, . . . , K . (12)

where clp = tr [(Ul − Û(t)
p )′(Ul − Û(t)

p )].
4. Stopping Rule

Repeat steps 1–3 until the difference between the objec-
tive function at iteration t and the objective function at
iteration t − 1 is greater than ε.

4 Simulation study

To assess the performance of the proposed methodology,
an extended simulation study has been developed. It con-
sists mainly of two experiments. The former aims to assess

123



Statistics and Computing           (2024) 34:114 Page 9 of 19   114 

whether the proposed methodology is able to recognize the
underlying generated hard partition; the latter studies the
performance of the proposed methodology in recognizing
the underlying generated fuzzy partition. The simulation is
organized in the two above briefly described experiments
by considering two levels of errors in the data generation
process. For each experiment and error level 200 three-way
ultrametric matrices have been generated for a total of 800
samples. Details are provided in the corresponding Sects. 4.1
and 4.2. In addition, 200 three-way ultrametric matrices have
been generated to study how to avoid localminima in the final
solution of the algorithm.

Clearly, since the partitioning problem of a set of mul-
tivariate objects is an NP-hard problem (Křivánek and
Morávek 1986), there is no guarantee that the new method-
ology finds a global optimum; indeed, it is possible that
the obtained minimum is just a local one. For this reason,
the algorithm for each data set is run by using several ran-
domly generated partitions (briefly, "random starts") and the
best solution is retained in order to increase the chance of
identifying the global minimum solution. More specifically,
the correct choice of the number of random starts has been
decided by running an experiment, using a high level of error
in the generated ultrametric matrices (see Sect. 4.1). The new
algorithm was run by letting the number of random starts be
1, 5, 10, 20, 30, and 40. Then, the percentage of the final
solutions ending in a local minimum has been computed.
Table 2 reports the local minima occurrence (percentage), as
the number of random starts increases. It has to be noted that
when the number of random starts is set equal to 10, local
minima do not occur. Thus, the number of random starts for
the whole simulation study was set RndStarts = 10.

From Table 2 it can be observed that even with only 1
random start the performance of the algorithm is good, with
only 20% local minima occurrences. When 5 random starts

are used, the percentage of local minima strongly decreases
(5%), thus identifying the global minimum in 95% of cases.

The results of the simulation studies are analyzed by
considering several external validity indices to compare the
obtained partition with the true one. Adjusted Rand Index
(ARI, by Hubert and Arabie (1985)), fuzzy Adjusted Rand
Index (FuzzyARI, byCampello (2007) and fuzzyRand Index
(Fuzzy RI, by Campello (2007)) have been used. In addition,
the Normalized RootMean Square Error (NRMSE) has been
used to compare the obtained consensus matrices with the
true ones. Finally, the Mean Membership Matrices are com-
puted to assess whether the methodology is able to recognize
the fuzzy or hard assignment: these matrices are obtained by
averaging all the membership matrices resulting from each
run of the algorithm after optimally permuting their columns
in order to avoid the label switching problem.

4.1 First simulation: hard assignment experiment

The first simulation has been developed by considering four
(2G − 1)-ultrametric matrices, with G = 4. Each of these
matrices is associated with a parsimonious dendrogram, as
shown in Fig. 2, where the 4 clusters (c1 − c4) are clearly
visible.

Those four (2G − 1)-ultrametric matrices (U∗
k , k =

1 . . . , 4) are used to generate the H = 12 starting ultramet-
ric matrices (primary hierarchies) (Uh, h = 1, . . . , 12). In
fact, from eachU∗

k , k = 1, . . . , 4, three different ultrametric
matrices are generated by adding a symmetric error matrix
to U∗

k and forcing the resulting dissimilarity matrix to be
ultrametric, by using an average linkage method (UPGMA).
Thus, a total of H = 12 ultrametricmatrices are obtained and
given as input to the algorithm to recognize the hard assign-
ment, since each of the H ultrametric matrices is associated
with the single consensus matrix. The algorithm returns as

Fig. 2 Consensus parsimonious
dendrograms (hard assignment
experiment)
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Table 3 Summary statistics (Experiment under a hard assignment with low and high errors)

Level of error Statistics Local minimum (%) ARI Fuzzy ARI Fuzzy RI Mean NRMSE Median NRMSE max NRMSE

Low Median 0.000 1.000 0.835 0.947 0.006 0.006 0.007

Low Mean 0.000 1.000 0.835 0.947 0.005 0.005 0.007

High Median 0.000 1.000 0.59 0.504 0.427 0.444 0.469

High Mean 0.000 0.869 0.61 0.505 0.415 0.423 0.468

Table 4 Mean membership matrices. Experiment under a hard assign-
ment with low and high error

(a) Low error (b) High error

Cluster 1 Cluster 2 Cluster 3 Cluster 4

0.875 0.042 0.540 0.155

0.874 0.042 0.537 0.156

0.875 0.042 0.540 0.155

0.041 0.857 0.147 0.469

0.041 0.857 0.147 0.470

0.041 0.856 0.146 0.473

0.040 0.049 0.144 0.189

0.040 0.049 0.144 0.189

0.040 0.049 0.144 0.189

0.042 0.053 0.149 0.195

0.042 0.053 0.149 0.195

0.042 0.053 0.149 0.195

0.040 0.043 0.149 0.156

0.040 0.043 0.150 0.157

0.040 0.043 0.149 0.156

0.049 0.053 0.188 0.196

0.049 0.053 0.187 0.196

0.049 0.053 0.186 0.195

0.863 0.048 0.483 0.184

0.863 0.048 0.484 0.183

0.863 0.048 0.484 0.183

0.048 0.857 0.182 0.474

0.048 0.857 0.181 0.475

0.047 0.857 0.181 0.475

Bold values are the highest values in each row

output not only the obtained secondary partition, but also
the parsimonious hierarchy associated with each class of the
partition.

It has to be noted that two levels of errors are consid-
ered. A low error should guarantee that the algorithm works
in optimal conditions and it should always be able to find
the global optimum solution with an ARI always equal to 1.
In other words, the algorithm always detects the true (sec-
ondary) partition. The high error should identify a strongly
biased situation, where the algorithm is able to recognize the
true (secondary) partition in the majority of cases.

Table 3 reports the corresponding summary statistics of the
performance aforementioned indicators. Particularly, both
the mean and the median of the indices regarding 200 itera-
tions are shown. The NRMSE is reported with three different
statistics: indeed, in each iteration K NRMSE are computed,
each of those measuring the difference between the k-th
resulting ultrametric and the k-th original true one; then, the
mean, the median and the maximum values are computed.
When using low error, the algorithm performed very well.
Indeed, values of ARI, fuzzy ARI and fuzzy RI are close to
1, while values of NRMSE are quite low (Table 3). When
using high error, the methodology detects only few times the
true partition and low values of ARI, Fuzzy ARI and Fuzzy
RI are shown in Table 3. The percentage of ARI equal to one,
is 62%, as hypothesised froma high level of error. In addition,
the values of the NRMSE are significantly larger than zero,
meaning that the true parsimonious consensus dendrograms
are not perfectly detected.

Moreover, themethodology is able to recognize the under-
lying hard secondary partition of the ultrametric matrices
(primary hiearchies). Indeed, the membership value of each
ultrametric matrix to the corresponding cluster is frequently
close to 1. The mean membership matrix obtained averaging
the 200 obtained matrices is reported in Table 4. Results
confirm that when using low error the membership is always
larger than 0.8 as expected (Table 4(a)). When using high
error, the true partition is still detected, but the highest value
(indicating the strongest membership) is about 0.5 (Table
4(b)).

4.2 Second simulation: fuzzy assignment
experiment

The second simulation has been developed by considering
two (2G − 1)-ultrametric matrices, with G = 5. The associ-
ated parsimonious dendrograms are shown in Fig. 3.

Those K = 2 (2G − 1)-ultrametric matrices (U∗
k , k =

1 . . . , 2) are used to generate the H = 9 starting ultra-
metric matrices (primary hierarchies) (Uh, h = 1, . . . , 9)
under a fuzzy assignment scenario. Specifically, from each
U∗
k , k = 1, . . . , K , three different ultrametric matrices are

generated by adding a symmetric error matrix to U∗
k and

forcing the resulting dissimilarity matrix to be ultrametric,
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Fig. 3 Consensus parsimonious
dendrograms (fuzzy assignment
experiment)

Table 5 Summary statistics (Experiment under a fuzzy assignment with low and high errors)

Level of error Statistics Local minimum (%) ARI Fuzzy ARI Fuzzy RI Mean NRMSE Median NRMSE Max NRMSE Fuzzyness detection

Low Median 0.000 1.000 0.490 0.760 0.229 0.229 0.326 1.000

Low Mean 0.000 1.000 0.450 0.720 0.219 0.219 0.316 1.000

High Median 0.000 1.000 0.480 0.740 0.252 0.252 0.286 1.000

High Mean 0.000 0.620 0.429 0.715 0.252 0.252 0.286 1.000

Table 6 Mean membership matrices: experiment under a fuzzy assign-
ment with high error

(a) Low error (b) High error

Cluster 1 Cluster 2 Cluster 1 Cluster 2

0.987 0.013 0.985 0.015

0.987 0.013 0.985 0.015

0.987 0.013 0.985 0.015

0.010 0.990 0.016 0.984

0.010 0.990 0.016 0.984

0.010 0.990 0.016 0.984

0.538 0.462 0.495 0.505

0.538 0.462 0.495 0.505

0.538 0.462 0.494 0.506

Bold values are the highest values in each row

by using an averaging linkage method (UPGMA). Thus, 6
ultrametric matrices are generated and expected to be hardly
associated to the corresponding cluster, being themselves
generated by one consensus matrix. Moreover, an additional
3 ultrametric matrices are generated by averaging the two
consensus matrices, and then adding a symmetric error term,
and forcing the resultingmatrix to beultrametric byUPGMA.
In this way, the last three ultrametric matrices are expected
to be softly associated with both clusters, being themselves

generated by a linear combination of the two consensus par-
simonious ultrametric matrices.

Therefore, a total of H = 9 ultrametric matrices are
obtained and given as input to the algorithm in order to rec-
ognize the fuzzy assignment. The algorithm returns as output
not only the obtained secondary partition but also the parsi-
monious hierarchy associatedwith each class of the partition.

It has to be noted that also in this case two levels of errors
are considered. A low error guarantees that the partition is
always detected and therefore all theARI are equal to 1,while
a high error masks the true partition, but still the algorithm
detects the partition in the majority of cases.

For the results, we expect that the algorithm almost hardly
assigns the first six ultrametricmatrices (primary hierarchies)
to the corresponding cluster and softly assigns the last three
ultrametric matrices (primary hierarchies) to both the clus-
ters. We ran the experiment with both low and high error
levels. The results are shown in Table 5, which reports the
main statistics of interest and also the percentage of fuzzi-
ness detection, i.e. the proportion of occurrences inwhich the
methodology is able to recognize that the last three ultramet-
ric matrices are generated by both the consensuses. When
using low error, the percentage of ARI equal to 1 is 100%.
When the level of error is high, the percentage of ARI exactly
equal to 1 is 62%.
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From Table 5, we notice that the methodology is able to
recognize the underlying partition. For both errors, the mean
values of Fuzzy ARI and Fuzzy RI are about 0.5. Clearly,
when low error is used, the performance is slightly better.
Moreover, the NRMSE are significantly larger than zero,
showing differences between generated and obtained con-
sensus parsimonious matrices. In addition, we notice that the
proportion of occurrences in which the methodology is able
to recognize the fuzzy nature of the last three ultrametric
matrices is 1, meaning that the methodology always softly
assigns those matrices to both the clusters, regardless the
level of error used.

It is worth observing that the new methodology is able
to recognize the fuzzy nature of the last three ultrametric
matrices (primary hierarchies) and also that the first six are
generated by just one consensus matrix. Table 6 shows the
mean membership matrix, highlighting that for the first 6
ultrametric matrices the highest membership value is close to
0.9; instead, for the last three ultrametricmatrices, bothmem-
berships are approximately close to 0.5, meaning that those
matrices are softly assigned to both clusters, as expected.

5 Real applications

In the following, two applications to real data are analyzed.
The former consists of applying the methodology to the zoo
dataset (UCI repository) and refers to problem (P1.d): given
a dendrogram, find the closest Least-Square parsimonious
dendrogram. The latter consists of applying themethodology
to the girls’ growth curves dataset (Sempé and Médico-
Sociale 1987) and refers to problem (P1.b): given a set of
primary hierarchies, find a fuzzy secondary partition of them,
and within each class of the secondary partition, identify a
consensus parsimonious dendrogram. Details on the dataset
descriptions and on the results of the analyses are provided
below.

5.1 Zoo data

For the zoological dataset (dowloaded from theUCIMachine
Learning Repository and donated by Richard Forsyth’s) the
problem will be reduced in finding the closest parsimonious
dendrogram to a given one.

The dataset consists of 101 observations (animals) and 18
variables;more in detail, 15 variables are binary, highlighting
in each animal the presence/absence of hair, feathers, eggs,
milk, airbone, aquatic, predator, toothed, backbone, breathes,
venomous, fins, tail, domestic, catsize; one variable is cate-
gorical and refers to the number of legs of each animal; one
variable refers to the animal name; finally, the last variable is
a class attribute, providing the animals’ taxonomy in seven
classes:mammals, birds, reptiles, fishes, amphibians, insects,

and invertebrates. The whole dataset does not contain any
missing value.

For the application, we used the 15 binary variables only.
From the units-by-variables data matrix, the dissimilarity
matrix D1 of dimension 101 × 101 was obtained by com-
puting the squared Euclidean distance between each pair of
units. Then, given D1, its closest ultrametric matrix U1 was
found by applying the UPGMA algorithm on D1. Finally,
the proposed algorithm, applied on U1 by setting G = 7 and
using 100 random starts, found a unique (K = 1) consen-
sus parsimonious dendrogram. In Fig. 4a and b, the starting
ultrametric matrix and the closest parsimonious dendrogram
are shown, respectively. As it is shown in Fig. 4a, the parti-
tion of the animals in G = 7 clusters with cutoff level 1.94 is
not clearly identifiable, because by moving the cutoff level
slightly up (level 1.95) or down (level 1.91) the number of
clusters of the partition varies from 6 to 8. Thus, there is
an uncertainty in the identification of the cutting level. In
practice, the visual inspection of the dendrogram does not
show a clear distinction between the partitions on 6, 7, or
8 clusters. This situation does not occur in Fig. 4b, where
the G = 7 classes are clearly visible and identifiable by the
investigator. In this case, the taxonomyof animals (mammals,
birds, reptiles, fishes, amphibians, insects, and invertebrates)
is clearly identified and their clustering aggregations (such
as oviparous vs mammals, non-toothed vs toothed and non-
aquatic vs aquatic) can be appreciated.

In order to understandwhether the classification taxonomy
is recognized, we compared it with the partition of the ani-
mals in G = 7 classes derived from the complete (UPGMA)
dendrogram in Fig. 4a andwith the partition corresponding to
the consensus parsimonious dendrogram in Fig. 4b. The ARI
values are equal to 0.796 and 0.853, respectively. Thus, the
taxonomy in 7 classes is better recovered by the PD. There-
fore, in terms of classification tasks, our proposal performs
better than the standard methodology. The confusion matrix
between true partition in 7 classes and the one of PD is dis-
played in Table 7. We observe that most of the animals are
correctly classified (bold on the diagonal) and only 13% of
animals are misclassified (13 animals out of n = 101 ani-
mals) and are highlighted in italic in the Table 7.

It is worthy to observe that the hierarchical aggregations
in PD (in Fig. 4b) have a very clear meaning. For G = 7,
we have: mollusks (aquatic animals of the class ’inverte-
brates’) (C1), bugs and worm, slug, scorpion (terrestrial
animals of the class ’invertebrates’) (C2), birds and tortoile
(one animal of class ’reptiles’) (C3), fishes (C4), amphib-
ians and reptiles (all but tortoile) (C5), terrestrial mammals
(C6) andfinally aquaticmammals (e.g. "dolphin", "platypus",
"sealion", "porpoise" and "seal") (C7). Moreover, the parsi-
monious dendrogram allows the study of all the aggregations
of those clusters into wider ones: the first aggregations into
wider clusters occur by grouping terrestrial mammals and
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Fig. 4 Original (a) and
parsimonious (b) dendrograms
(zoo dataset)

acquatic mammals (C6 and C7) in the ’mammals’ cluster
(C6+C7) thanks to the variable ’acquatic’ and by group-
ing fishes and amphibians+reptiles (C4 and C5) thanks to
the variables related to the presence/absence of ’breath’ and
’fins’; moreover, the partition into 4 clusters is obtained by
grouping mollusks and insects (C1 and C2); then, birds (C3)
join the cluster withmollusks and bugs (C1+C2) thanks to the
variable related to the presence/absence of ’feathers’, ’tails’
and ’backbone’ and thus creating a partition with G = 3
clusters. Finally, in order to obtain a partition with G = 2
clusters, thanks to the variable ’toothed’, this new cluster
(C1+C2+C3), characterized by all non-toothed and mostly
terrestrial animals and with no fins and no hair, is aggregated
with the cluster including fishes, amphibians and reptiles
(C4+C5), characterized by all toothed animals with no feath-

ers, no hair, mostly aquatic and vertebrates. The obtained
cluster (C1 + C2 + C3 + C4 + C5) referring to ’oviperous’
animals and the cluster (C7+C8) referring to the ’mammals’
make up the partition in only two clusters, where the dis-
criminant variable is the one referring to presence/absence
of ’milk’.

5.2 Girls’ growth curves

For the second application we use the girls’ growth curves
dataset (Sempé andMédico-Sociale 1987), downloaded from
the webpage of Prof. P.M Kroonenberg and donated by Prof.
M. Sempé. The dataset includes 8 physical measurements of
30 girls collected from 1953 until 1975 during a French aux-
iological study: particularly, the biometric variables related
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Table 7 Confusion matrix: true
partition compared to obtained
partition of animals of the PD
(zoo dataset)

36 0 0 0 5 0 0

0 20 0 0 0 0 0

0 1 4 0 0 0 0

0 0 0 13 0 0 0

0 0 4 0 0 0 0

0 0 0 0 0 8 0

0 0 0 0 0 3 7

In bold the correctly classified
animals, in italic the misclassi-
fied animals

to physical growth (weight, length, crown-rum length, head
circumference, chest circumference, arm, calf, pelvis) are
measured yearly in the selected girls, who started the exper-
iment at age 4 and ended the experiment at age 15. The data
set is therefore a three-way data array with three modes: the
first refers to 30 girls, the second to 8 variables, and the third
to 12 years.

The objective of the analysis is to compute 12 dendro-
grams (primary hierarchies) and apply our methodology to
identify a fuzzy secondary partition of them and within
each class of the secondary partition, identify a consen-
sus parsimonious dendrogram. Before applying the new
methodology, a preliminary data manipulation is needed, by
normalizing the overall dataset with min-max normalization,
where the min and the max of variables are over the entire
period (4–15 years old). Then, the overall average trends of
the 8 observed variables among the 30 girls are shown in
Fig. 5. The trends are clearly increasing and it is possible to
observe a change in the slope of the growth around age 9–10.

The starting H = 12 dendrograms (H ultrametric matri-
ces or primary hierarchies) are obtained by considering the

Fig. 5 Average trends of the variables of interests from age 4 until age
15 (girls’ growth curves dataset)

H matricesXN
h , h = 1, . . . , 12, whereXN

h is the 30×8 nor-
malized data matrix referring to the physical measurements
at age h. Then, we obtained the H dissimilarity matrices
Dh, h = 1, . . . , 12 by computing the Euclidean distance
between each pair of units. Finally, in Fig. 6 the dendrograms
� = {δ1, . . . , δ12} of Ward’s method of hierarchical cluster-
ing, computed on matrices D1,D2, . . . ,D12 are from age 4
to age 15 years old.

Given the H = 12 primary hierarchies, the algo-
rithm is applied on the corresponding ultrametric matrices
U1, . . . ,U12, by using 100 random starts and setting G = 3
and K = 2, as suggested by Kroonenberg et al. (1987). The
algorithm finds a fuzzy partition of the primary hierarchies
into K = 2 clusters and within each class of the secondary
partition identifies a consensus parsimonious dendrogram,
i.e. a (2G − 1)-ultrametric matrix, where G = 3 identifies
the number of classes of the girls.

The obtained fuzzypartition is illustrated inTable 8,where
for each age of the girls the corresponding cluster and the
related membership degree are reported. In particular, we
observe that the chronological order is retained, as ages 4–
8 belong almost hardly to the first cluster, and ages 11–15
belong almost hardly to the second cluster. In addition, ages
9 and 10 are more softly associated to both clusters, having
membership degrees quite fuzzier and closer to one another.
This result is interesting and meaningful: indeed, at ages 9
and 10 we observed in Fig. 5 that several curves change their
slopes. More generally, it has been shown by many research
studies (Breehl and Caban 2021; Farello et al. 2019) that the
puberty period for girls starts around age 8 and therefore ages
9 and 10 are exactly when the puberty period is in progress.
For this reason, we can conclude that the proposed approach
allows us to detect the ages which can be considered as a
transitional period in these data.

In addition, the resulting parsimonious consensus den-
drograms are shown in Fig. 7, where we can clearly see the
aggregations of the girls into G = 3 clusters and the distinct
agglomerations of these clusters.

It is worthy to notice that clusters C1, C2 and C3 of girls,
identified in the two parsimonious dendrograms, have some
common individuals, but also show some differences due to
the fact that some girls have changed the pattern of growth
from the first period to the second, thus, moving from one
cluster to another. In order to better visualize and interpret the
results, the hard partition of ages was considered by apply-
ing MAP (maximum a posteriori) to the membership degree
matrix. This allowed us to have separate plots of the trends
of the variables for the two clusters of ages, and the three
clusters of girls. For the visualization task and to reduce the
amount of trends to be plotted it was decided to plot only the
three dimensions identified by Kroonenberg et al. (1987) and
named Skeletal Length, Skeletal Width and Stoutness: Skele-
tal Length is referred to variables length and crown-rump
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Fig. 6 Hierarchical clustering of the girls by 8 biometric variables from age 4 until age 15 (girls’ growth curves dataset)

Table 8 Cluster assignment of the original dendrograms to 2 clusters, with the highest membership degree

Age 4 5 6 7 8 9 10 11 12 13 14 15

Cluster 1 1 1 1 1 1,2 1,2 2 2 2 2 2

Membership degree 0.91 0.95 0.96 0.96 0.88 0.67,0.33 0.44, 0.56 0.82 0.90 0.91 0.87 0.78
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Fig. 7 Resulting consensus
dendrograms, representing
hierarchical clustering of girls
by 8 biometric variables (girls’
growth curves dataset)

Fig. 8 Solid lines: trends of the dimensions taken from the variables of interest separately per cluster of ages and class of girls. Dotted lines: average
trends of the dimensions in the entire period. Title of the subplots are colored with the color of the class of girls in Fig. 7 (girls’ growth curves
dataset)

length, Skeletal Width to variables head and pelvis, Stout-
ness to variables weight, chest, arm and calf. The trends of
these dimensions are shown in Fig. 8 (solid lines) separately
by cluster of ages and cluster of girls, as well as the average
trend of each dimension in that specific period (i.e. cluster of
ages) (dotted lines).

From Fig. 8, it is possible to comment on the clusters of
girls obtained separately for each cluster of ages.We observe
that the trends of the girls who belong to the first cluster
between ages 4 and 9 (C1 in the left dendrogram in Fig. 7)

are quite far below the average level, meaning that those
girls are below average stature, characterized by a less rapid
growth and low levels of biometric variables. Girls belong-
ing to the second cluster when they are between 4 and 9
years old (C2 in the left dendrogram in Fig. 7) grow on aver-
age: trends are very close to the corresponding average; they
can be considered a cluster of average stature girls. Finally,
those who belong to the third cluster of girls between ages
4 and 9 (C3 in the left dendrogram in Fig. 7) have trends far
above the average ones. This means that those girls are the
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most robust and tallest ones (above average stature girls). In
addition, focusing on the ages 10–15, girls who fall into the
first cluster are the ones in the first cluster between ages 4–9
except for unit 3 (as depicted inFig. 7, clusterC1): their trends
have similar behaviour as in the earlier ages, being far below
the average; therefore this cluster identifies the below aver-
age stature girls. The second cluster of girls being between
10 and 15 years old (C2 in the right dendrogram in Fig. 7)
have trends following the average, as happens in the earlier
ages, except for Skeletal Length, which is slightly above the
average. Therefore, the cluster groups together the average
stature girls; it is worth mentioning that unit 3, who falls in
the below average stature girls cluster between ages 4 and 9,
joins the average stature girls cluster in the next ages’ period,
meaning that her biometric variables’ trends returned to the
average level. Finally, the third cluster of girls between ages
10–15 (C3 in the right dendrogram in Fig. 7) have similar
trends as the earlier ages, thus identifying the above average
stature girls.

In conclusion, the analysis allowed us to identify two dis-
tinct clusters of ages (one for ages 4–8, one for ages 11–15),
except for ages 9–10which are in themiddle of the two, char-
acterizing a transitional period in the girls’ physical growth.
In addition, for each cluster of ages a consensus parsimonon-
ious dendrogram has been identified. Both of the consensus
dendrograms identify three distinct clusters of girls. By ana-
lyzing these separately per cluster of ages, we noticed that
they correspond to below average stature girls (C1 in Fig. 7),
average stature girls (C2 in Fig. 7) and above average stature
girls (C3 in Fig. 7); more specifically, considering the entire
period, very few girls are always under the average (see clus-
ters C1 of Fig. 7), some girls who were on average during
ages 4–9 became above the average in the following ages
(see for example unit 7 and 28 move fromC2 toC3 in Fig. 7),
and some girls who were above the average during ages 4–9
became on average during the next years (see for example
unit 5 moves from C3 to C2 in Fig. 7).

6 Conclusion

The new methodology proposed in this paper makes it pos-
sible to solve several problems:

(i) Given H primary hierarchies, obtain a fuzzy secondary
partition of the primary hierarchies, and for each class
of the secondary partition identify a consensus well-
structured partition (where within-cluster distances
are all smaller than between-cluster distances). This
problem consists of solving simultaneously a fuzzy
partitioning problem to identify the secondary partition
and K least-squares optimal differences between ultra-
metric matrices of a cluster of the secondary partition

and a consensus well-structured partition that should
identify the partition closest to the hierarchies (see the
problem (P1.a) in Sect. 3);

(ii) Given H primary hierarchies, obtain a fuzzy secondary
partition of the primary hierarchies, and for each class
of the secondary partition identify a consensus parsi-
monious dendrogram. This problem consists of solving
simultaneously a fuzzy partitioning problem to identify
the secondary partition and K least-squares optimal
differences between a subset of ultrametric matrices
and a consensus parsimonious dendrogram (see the
problem (P1.b) in Sect. 3);

(iii) Given a single hierarchy (dendrogram), find the closest
well-structured partition. This is a problem frequently
considered in hierarchical clustering, where the inves-
tigator has to find an optimal partition by the visual
inspection of the dendrogram or by means of a spe-
cific methodology. This problem consists of solving
the problem (i) above when a single dendrogram is
observed or computed, and it is necessary to find a sin-
gle well-structured partition (see the problem (P1.a)
with H = 1 and K = 1, in Sect. 3).

(iv) Given a single hierarchy (dendrogram), find the closest
parsimonious dendrogram. This is an evolution of the
previous problem (iii) where the investigator wishes to
find an optimal partition in G classes in the ultrametric
matrix (dendrogram) and the corresponding optimal
aggregations from G to 1. This problem consists of
solving the problem (ii), when a single dendrogram is
observed or computed and it is necessary to find a single
consensus parsimonious dendrogram (see the problem
(P1.b) with H = 1 and K = 1, in Sect. 3).

For problems (iii) and (iv) if the hierarchy is not initially
given, i.e. if a dissimilarity matrix is given, then its corre-
sponding hierarchy or ultrametric matrix can be obtained by
applying UPGMA, or any other hierarchical clustering algo-
rithm, to the dissimilarity matrix.

For problems (i) and (ii) a secondary fuzzy partition that
allows each dendrogram of the primary partition to belong
to all clusters of the secondary partition according to differ-
ent membership degrees is required. This guarantees great
flexibility in the results and their interpretation.

For each class of the fuzzy partition, a consensus hier-
archy (dendrogram) is identified. However, several authors
have noted that the complete sets of partitions and clusters
of the dendrogram are not all used by investigators, even
hindering interpretation (Gordon 1999). One approach for
resolving this difficulty has involved the construction of a
parsimonious dendrogram that contains a limited number of
internal nodes. Some information is lost here, but the main
features of the data are represented more clearly (Gordon
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1999). For this reason, the consensus hierarchy in this paper
has a parsimonious structure.

The proposedmethodology has been tested in an extended
simulation study, where 1000 three-way arrays of ultrametric
matrices have been generated. Two scenarios of hard assign-
ment and fuzzy assignment of the primary hierarchies to
the consensus hierarchies have been considered. The study
showed good results, not only in recovering the underlying
true secondary partition but also in identifying consensus
parsimonious dendrograms very similar to the original ones.

The methodology has also been applied to real datasets;
the results of the analyses show that the proposed method-
ology is helpful in partitioning the primary hierarchies in a
fuzzy manner, by identifying correctly the hierarchies which
share characteristics with more than one cluster of the sec-
ondary partition: for example, in the application to girls’
growth curves dataset, two periods of contiguous ages are
identified and the hierarchies corresponding to two transi-
tional years from one period to the following are reasonably
softly assigned to both periods. In addition, for each class
(period) of the fuzzy partition, the methodology identifies a
consensus parsimonious dendrogram,which really facilitates
the interpretation of the aggregation of the girls.

This researchwork introduces a newmethodology inmul-
tidimensional data analysis and opens up the possibility to
new applications and further developments. For instance, let
us consider a scenario where units (or objects) represent a set
of countries whose macroeconomic performance is assessed
across several years. This assessment involves creating a
hierarchy of classes (a dendrogram) for each year, where
countries within the same class are seen as similar to one
another. Consequently, consensus hierarchies would recog-
nize similar clusters and cluster groupings across different
years.

Alternatively, such data might arise from various data-
collection methods, like data cards in psychometric studies,
or products in marketing analyses. Here, individuals (cus-
tomers) categorize similar items into clusters they perceive
as alike and then combine these clusters to form a hierar-
chy. Therefore, consensus hierarchy derived from customer-
defined hierarchies would identify the closest hierarchy to
the ones observed.

However, differences can emerge among the given hier-
archies, necessitating more than one consensus hierarchy
to summarize the initial hierarchies. For instance, macroe-
conomic performances of different countries might change
following an economic shock after a period of stability. Con-
sequently, the relationships between countries may shift,
requiring a different consensus hierarchy for each stable
period. In data gathering, individuals might use multiple cri-
teria to categorize items, resulting in different hierarchical
relations.

Additionally, our proposal enables the identification of a
fuzzy partition of the initial hierarchies and for each class of
the fuzzy partition a consensus parsimonious dendrogram.
The practical value of this proposal is evident in real datasets,
such as hierarchies describing themacroeconomic outlook of
countries over several years.

Consider, for example, a scenario where macroeconomic
outlook hierarchies for different countries remain relatively
stable during a period of stability. In the event of an eco-
nomic shock, drastic changes occur in the macroeconomic
outlook and hierarchical relations among countries. After a
subsequent period of stability, new hierarchical relationsmay
emerge among countries. A fuzzy partition can indicate the
uncertainty during the shock years by specifying member-
ship degrees for each class.

Moreover, parsimonious consensus hierarchies help high-
light relevant groups of countries and their hierarchical
aggregations. In marketing product applications, a fuzzy par-
tition allows each customer to belong to multiple clusters,
crucial for dealing with diverse personal opinions. Addi-
tionally, the parsimonious structure of consensus hierarchies
facilitates the identification of key customer groups and their
hierarchical arrangements.
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