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Abstract
A Bayesian method is proposed for variable selection in high-dimensional matrix autoregressive models which reflects and
exploits the original matrix structure of data to (a) reduce dimensionality and (b) foster interpretability of multidimensional
relationship structures. A compact form of the model is derived which facilitates the estimation procedure and two com-
putational methods for the estimation are proposed: a Markov chain Monte Carlo algorithm and a scalable Bayesian EM
algorithm. Being based on the spike-and-slab framework for fast posterior mode identification, the latter enables Bayesian
data analysis of matrix-valued time series at large scales. The theoretical properties, comparative performance, and computa-
tional efficiency of the proposed model is investigated through simulated examples and an application to a panel of country
economic indicators.

Keywords Autoregressive models · Bayesian estimation · Matrix-valued time series · Maximum a posteriori probability ·
Stochastic search

1 Introduction

The emergence of high-dimensional time series observed in
matrix form gives birth to new modeling challenges in eco-
nomics, finance, and related fields. The existing approaches
to dimension reduction in high-dimensional multivariate
time series analysis can be organized in two major classes:
(a) factor models (Bai and Ng 2002; Forni et al. 2005; Lam
et al. 2011), and (b) modeling with frequentist regularization
or Bayesian methods (Rothman et al. 2010; Song and Bickel
2011;Kock andCallot 2015; Park andCasella 2008; Bańbura
et al. 2010; Gefang 2014; Ahelegbey et al. 2016; Korobilis
2021).
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While most of the extant modelling paradigms are
designed to encourage parsimony by treating observations
as time series vectors, in economics, finance and other fields,
observations inmatrix or tensor formare often generated over
time. For instance, the collection of panel data forms matrix-
valued time series observations, whose rows might represent
indicators and columns countries—see Fig. 1. In this context,
univariate time series analysis focuses on one element of the
matrix at a time. Vector and panel time series analysis deal
with the co-movement of one row in the matrix. Modeling
each dimension separately annihilates the multidimensional
structure of data, and can therefore lead to a significant loss
of information or efficiency.

A strand of literature has therefore developed and stud-
ied multidimensional time series models, including matrix-
valued ones (Hoff 2015, 2011; Chen and Yang 2021; Wang
et al. 2019; Billio et al. 2022). However, when the matrix
observation has large dimensions, the matrix autoregressive
(MAR) model involves a large number of parameters, which
requires further dimension reduction techniques to produce
accurate estimation. So far, this has been primarily tackled
through the introduction of factor autoregressive models for
multidimensional time series (Wang et al. 2019; Chen and
Fan 2021; Gao and Tsay 2021; Chen et al. 2022). Although
factor approaches can cope well with the dimensionality
problem, the resulting parameters lack a clear interpretation.
As in the vector case, the factor approach in a matrix-valued
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dataset involves replacing the original matrix of dependent
variables with an estimatedmatrix of factors, featuring a sen-
sibly lower number of rows and/or columns. Nevertheless,
each coefficient refers to a factor, and not to an observed
variable, thus hampering interpretation. In addition, factor
models require choosing the number of factors, which is not
a parameter that can be estimated. In light of this, dimension-
ality problems that preserve the original problem structure,
such as the one performing variable selection and regulariza-
tion, are preferred.

In parallel, research on high-dimensional statistics has
widely studied sparse recovery in the context of normal linear
regressionmodels (George andMcCulloch 1993; Barrett and
Gray 1994; George and McCulloch 1997; Chen and Huang
2016;Wang et al. 2018; Samanta et al. 2022). In the Bayesian
literature, the treatment of high-dimensional linear regres-
sionmodelsmostly stems from the seminal papers onvariable
selection via Gibbs sampling (George and McCulloch 1993,
1997), hereafter identified as stochastic search variable selec-
tion (SSVS). More recently, a deterministic alternative to
stochastic search was proposed based on an EM variable
selection (EMVS) algorithm to find maximum a posteriori
probability (MAP) estimates (Ročková and George 2014).
As in SSVS, the EMVS method combines a spike-and-slab
regularization procedure for the discovery of active predictor
sets with subsequent evaluation of posterior model probabil-
ities. However, EMVS provides an appealing alternative to
SVSS in terms of computational efficiency.

Fully Bayesian variable selection has attracted attention in
themultivariate time series context, starting from a stochastic
search approach to selecting restrictions for vector autore-
gressive (VAR) models (George et al. 2008). However, the
EMVS framework has yet to be exploited inmultivariate time
series.Moreover, variable selection has only been considered
in vector-valued time series models to date, highlighting the
need of identifying restrictions in multidimensional autore-
gressivemodels. The absence of restrictions on the regression
coefficients results in a potentially large number of parame-
ters relative to the available data andwith a limited number of
observations, over-parameterization can affect the precision
of inference.

We propose a novel matrix autoregressive model where
sparsity is induced naturally. By deriving a compact form
for MAR models borrowed from the tensor linear regres-
sion framework, we design an estimation strategy using
MCMC,which allows a full range of Bayesian inference, and
a Bayesian EMVS procedure, which allows for fast posterior
mode identification. That is, the latter substantially reduces
the computational time required for the MCMC procedure,
making it feasiblewhen dealingwith large-scalemultidimen-
sional time series.

The properties of the proposed model are demonstrated
through simulations and examples in an application to

macroeconomic data. The simulation experiments show: (a)
the gain in small sample efficiency of the proposed estimators
relative to maximum likelihood (ML) in high-dimensional
sparse settings; and (b) that the proposed estimators perform
generally better than standard VARs and several competing
alternatives suited for longitudinal data, while limiting com-
putational intensity in the EMVS formulation. The empirical
application to macroeconomic data confirms that the model
is able to: (a) handle high-dimensional longitudinal data; (b)
outperform competing alternatives in high-dimensional set-
tings; and (c) yield enhanced interpretability given by the
autoregressive model in matrix form.

The proposed model can be readily extended to the tensor
autoregressive (TAR) framework. In contrast to other work
(e.g. Billio et al. 2022), it encompasses a Tucker structure
in the matrix coefficient rather than a PARAFAC decompo-
sition. The PARAFAC decomposition arises in the general
context of tensor decomposition and is applicable to matri-
ces in the bi-dimensional case. In particular, it achieves
dimension reduction by factorizing a tensor in the outer
(element-wise) product of vectors. The resulting tensor is
of rank one, featuring a large reduction in the number of
coefficients.1 Thus, the PARAFAC decomposition has the
advantage of being highly parsimonious but it can be restric-
tive for empirical purposes. This is magnified in economic
and financial applications where the relationship among vari-
ables exhibits complex and highly interconnected behaviors.
Conversely, the Tucker structure admits an arbitrary number
of factor components in each mode. This allows modeling
dimension asymmetric tensors and benefits from enhanced
interpretability of mode-specific interrelationships.

The remainder proceeds as follows. Section2 outlines the
proposed sparse MAR model, while Sect. 3 discusses the
shrinkage priors and Sect. 4 describes theMCMCand EMVS
estimation procedures. Section5 describes the dynamic
analysis via Kronecker generalized forecast error variance
decomposition (GFEVD). Section6 evaluates the model per-
formance and computational times, compared to some key
competitors, through a simulation study. Section7 considers
an empirical application to macroeconomic data. Section8
contains some concluding remarks.

2 Model and prior structure

2.1 Thematrix autoregressive model

The MAR model takes advantage of the original structure
of the data by modeling matrix autoregressive dynamics in a
bilinear form. This is of paramount importance, for instance,

1 A thorough exposition of tensor decomposition is available in Kolda
and Bader (2009).
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Fig. 1 Time series of three
economic indicators: GDP
growth, Consumer Price Index,
and Short-term Interest Rate for
five countries

in panel data applications where each observation at time
t can be conceived as a matrix and whose rows represent
indicators and columns represent countries.

We introduce a well-known formulation of the MAR
model (Chen and Yang 2021) and then propose a parsimo-
nious alternative model. The alternative can be useful in the
estimation required for a model with several lag orders rela-
tive to the number of time series observations. Then, given the
multidimensional structure, we cast the model into the tensor
linear regression framework which will allow easier estima-
tion. Finally, we consider the estimation of high-dimensional
MARmodels via variable selection in aBayesian framework.

we observe g = 1, ...,G indicators for a number of coun-
tries g = 1, ...,G, across t = 1, ..., T , t = 1 . . . , T time
points. Let yn,t be the,G dimensional vector that collects the
domestic indicators for each country. n = 1, . . . , N More-
over, we define Yt = [y1,t , ..., yN ,t ] to be the [G × N ]
matrix of endogenous variables, obtained by horizontally
stacking all the country specific vectors. The conditional
mean of the matrix observation is expressed as the product
of P lagged observations, each one multiplied by two left
and right autoregressive coefficient matrices A1, ...,AP and
B1, ...,BP , of dimension [G×G] and [N ×N ], repsectively.
Specifically, t (Chen and Yang 2021, Section 2)

Yt =
P∑

i=1

AiYt−iB
′
i + Et ,

Et ∼ MN (0, �1, �2),

(1)

whereEt ∈ R
G×N is awhite noisematrix of the same dimen-

sion as Yt with two symmetric positive definite covariance
matrices �1 and �2 of dimensions G × G and N × N ,
respectively. We use MN to denote the multilinear normal
distribution (Gupta and N 1999; Ohlson et al. 2013).

Let vec(·) be the usual vectorization of a matrix by stack-
ing its columns and ⊗ the usual Kronecker product. Let
yt−i = vec(Yt−i ) for i = 0, . . . , P and et = vec(Et ). The
vectorized form of the MAR model in Eq. (1) is

yt =
P∑

i=1

(Bi ⊗ Ai )yt−i + et ,

et ∼ N (0, �2 ⊗ �1).

(2)

The representation in Eq. (2) shows that the MAR(P)
model can be regarded as a special case of a VAR(P) model,
with an autoregressive coefficient matrix given by a Kro-
necker product of the twomode-specificmatrices. As a direct
consequence of the equivalence, theMAR(P) in Eq. (1) is sta-
tionary if all the roots of |IGN − (B1 ⊗A1)z + · · · + (BP ⊗
AP )zP | = 0 fall outside the unit circle. Under this assump-
tion, the model in Eq. (1) can be rewritten as the infinite
moving average representation

yt = et + �1et−1 + · · · + �∞et−∞,
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where theGN×GN coefficient matrices�k can be obtained
via the following recursion

�k = (B1 ⊗ A1)�k−1 + · · · + (BP ⊗ AP )�k−P , k = 1, 2, . . .

the model is thenwhere �k = 0 for k < 0 and �0 = IGN .

2.2 Model interpretation

To ease the exposition, consider the case P = 1. In order to
interpret the model parameters, it is helpful to highlight that,
ifYt follows aMAR(1), then for a specific pair g = 1, . . . ,G
and n = 1, . . . , N , the conditional expected value of each
entry ygn,t of Yt is

E(ygn,t |yt−1) =
G∑

i=1

N∑

j=1

ag,i bn, j yi j,t−1,

whereag,i ∈ A andan, j ∈ B. Roughly speaking,ag,i embeds
the impact of the rows of Yt−1 on the gth row of Yt . Analo-
gously, bn, j describes the influence of the columns of Yt−1

on the nth column of Yt . This model could be referred to
as a bilinear multiplicative model, given that the temporal
effect on each observation is weighted by the product of two
coefficients. Such restriction holds as long as the structure
of the matrix dataset embeds two distinct dynamics, one for
each dimension, which can be separately identified.

Consider the example shown in Fig. 1, where columns
represent countries and rows macroeconomic indicators.
Conceiving the model as a hierarchical structure, the con-
ditional expectation of an economic indicator of one country
is a linear combination of all the indicators of the other coun-
tries (globally adjusted combination):

ỹn,t = [bn,1yi j,t−1, . . . , bn,N yiN ,t−1]′
,

each one weighted for indicator-specific coefficients:

E(ygn,t |yt−1) = [ag,1, . . . , ag,G ] × ỹn,t .

This hierarchical structure, naturally induced by the matrix
structure, is coherent with several restriction approaches
proposed in the literature for Panel data in the vectorized
framework (Pesaran et al. 2004; Canova and Ciccarelli 2009;
Korobilis 2016; Camehl 2022). Analogous interpretations
follow for the contemporaneous relationship captured by the
left and right coefficient matrices �1 and �2. For a more
detailed explanation of the model interpretation see Chen
and Yang (2021).

The model can be made more parsimonious, if more
restrictive, by assuming that the row and column effects
matrices are time invariant (Ai = A, Bi = B), while

embedding the effects of lagged observations in a row vector
c ∈ R

1×P . The conditional mean of Yt is a linear combina-
tion of its P lagged values, pre and post multiplied by A and
B as in a MAR(1). If ci ∈ c, the model is then

Yt = A
( P∑

i=1

ciYt−i

)
B

′ + Et (3)

Although it can be expressed as a MAR, the model arises
naturally as a special case of tensor autoregression (TAR),
as will be shown in the following subsection. We therefore
denote the model in Eq. (3) as MAR∗(P).

It is clear that the MAR∗ formulation is quite restrictive
and might not be a feasible specification for several types of
applications, given that the dependence is expressed by the
sole ci coefficients, while A and B remain fixed. However,
this formulation might be seen as a parsimonious alternative
in particularly high-dimensional contexts. It is not uncom-
mon to find empirical applications to macroeconomic data
where the length of the time series requires the use of dimen-
sion reduction techniques to estimate model parameters.
Despite being restrictive, the fixed-parameter formulation
can be useful in modeling the impacts of a large number
of lags relative to the available number of time series obser-
vations.

An unrestricted VAR(P) estimates (GN )2P ∈ O(n5)
parameters, but due to the Kronecker structure imposed on
its coefficient matrices, the MAR(P) model estimates only
(G2 + N 2)P ∈ O(n3) parameters, where O(·) denotes
the order of parameter complexity. The further restriction
imposed that yields the MAR∗(P) results in G2 + N 2 + P ∈
O(n2) parameters to estimate. As a result, the number of
parameters grows as a linear function of the lag order. This
is clear from Fig. 2, in which a graphical comparison of the
three models is depicted.

2.3 Compact form

Vector and matrix operations can be readily generalized to
the tensor case, but notions of tensor algebra are necessary to
proceed. See Appendix A.1 for some basics of tensor nota-
tion and calculus and Cichocki (2018) and Kolda and Bader
(2009) for more details.

Although an estimation procedure for the MAR(1) model
is readily available (Chen and Yang 2021), a compact form
of the model is instrumental for developing a more gen-
eral and coherent estimation procedure for the MAR(P). We
therefore derive a comprehensive compact form for any gen-
eral K -dimensional TAR(P), which admits theMAR(P) and
MAR∗(P) as special cases, by establishing a connectionwith
the general Tensor Linear Regression (TLR) model. Indeed,
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Fig. 2 Logarithm of the number of parameters in a Panel VAR (a),
MAR (b) and MAR∗ (c) with G = 5, N = 2, . . . , 10 (y axis) and lags
P = 1, . . . , 5 (x axis). TheMAR is much less sensitive than the VAR to

the increase in G, but it suffers from over-parameterization compared
to the MAR∗, for which this effect is negligible

as theVARemerges as amultivariate linear regression (MLR)
model in its compact form, the analogous counterpart for the
MAR is a TLR model.

The compact form of the VAR can be easily derived via
the matrix of dependent variablesY obtained by horizontally
stacking each yt for t = 1, . . . , T . However, for each point
in time, the variables in aMAR are already matrix shaped, so
that its related compact form consists of a third order tensor.

Let us consider a K way (order) tensor Y ∈ R
J1,...,JK

which is a K -dimensional array with entries Y j1,..., jK with
jk = 1, . . . , Jk for k = 1, . . . , K . We define the response
and explanatory tensor for the MAR in Eq. (1). Let Y be a
K = 3 way response tensor of dimension [G × N × T − P]
with Y:,:,t = Yt . Then, define the explanatory tensorX to be
of dimension [GP × N P × T − P]. When fixing the third
dimension j3 = t = 1, . . . , T − P , we obtain tensor slices
of dimensions [GP × N P], which we fill with the lagged
values of Yt and zeros otherwise:

X:,:,t =

⎡

⎢⎢⎢⎣

Yt−1 0 · · · 0
0 Yt−2 · · · 0
...

...
. . .

...

0 0 · · · Yt−P

⎤

⎥⎥⎥⎦ .

In the case of the the MAR∗(P) in (3), the response and
explanatory objects of interest need to be slightly modified.
We define X to be a K = 4 order tensor of dimensions
[G × N × P × T − P] such that X:,:,i,t = Yt−i and, for the
sake of coherence, we modify Y to be a four-dimensional
tensor Y ∈ R

G×N×1×T−P as well.
We may now write a unique compact form which

encompasses both MAR(P) and MAR∗(P). Let B =
{[A1, . . . ,AP ], [B1, . . . ,BP ], IT−P } and� = {�1, �2, IT−P }

in case of MAR(P), B = {A,B, c, IT−P } and � =
{�1, �2, �3, IT−P }2 in case of MAR∗(P). Denoting ×̄ as
the Tucker product and U the tensor white noise, then we
have

Y = X ×̄B + E
E = U×̄�1/2

U ∼ MN (0, IJ1 , . . . , IJK ).

(4)

Notice that Eq. (4) can be seen as the multilinear general-
ization of the compact form of VARmodels—see Lütkepohl
(2005).We refer the reader to Appendix A.1 which describes
the matricization and the Tucker product, the fundamental
operators that are used to create and then manipulate B and
�, and Kolda and Bader (2009); Bader and Kolda (2006) for
further reference.3

It is convenient to derive the MLR representation of the
models. To simplify the notation, let �1 = [A1, . . . ,AP ]
and �2 = [B1, . . . ,BP ] for the MAR(P), �1 = A, �2 = B
and�3 = c for theMAR∗(P). Then, let Ỹk = matk(Y)�−k ,
X̃k = matk(X )�−k and Ẽk = matk(E)�−k , where �−k =
�K ⊗· · ·⊗�k+1⊗�k−1, . . . , �1, wherematk(·) denotes the
k-mode matricization operator as defined in Appendix A.1.
By matricizing both sides of Eq. (4) for each k, one can
easily derive a MLR model which highlights the kth way

2 �3 represents the third-way covariance matrix. Notice that, being the
third dimension of Y of order 1, �3 collapses to a scalar, i.e. �3 = σ 2

3 .
3 The multilinear Normal distribution represents the generalization in
higher dimension of the multivariate Normal, and the Matrix Normal.
It has K + 1 parameters: a K th order tensor of means, and K separate
p.d. covariance matrices.
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conditional mean and variance matrices {�k, �k}:

Ỹk = �kX̃k + Ẽk

Ẽk ∼ MN (0, �k, IJ−k ).
(5)

The latter formulation allows the estimation to be carried
out for each of the K modes separately. Notice that in the
case of vector-valued time series, the compact form in Eq. (4)
reduces to the formulation in Eq. (5).

3 Shrinkage priors

Consider the compact form in Eq. (4). Let J−k = ∏
l �=k Jl so

that the likelihood can be written as:

L(Y|B,�) ∝
K∏

k=1

|�k |−
J−k
2

exp

(
−1

2
||(Y − X ×̄B)×̄�− 1

2 ||22
)

. (6)

Also, notice that the likelihood for the MAR model in terms
of {�k, �k}, given the other parameters, is proportional to
the likelihood in Eq. (6):

L(Y|�k, �k) ∝ L(Y|�, �).

This implies that both ML and Bayesian estimation can
be carried for each dimension separately (see, e.g., Hoff
2015). As a consequence, sparsity can be induced in the two
modes independently, easing the introduction of regulariza-
tion methods for MAR models.

We will consider a spike-and-slab framework for the prior
to induce sparsity in the two mode-specific coefficients of
the MAR; a related approach is available for VAR models
(George et al. 2008).

The proposedmodel is amulti-dimensional generalization
of the uni-dimensional linear regression framework. There-
fore, the variable selection for theMARhasmuch in common
with the variable selection for the VAR in the bi-dimensional
setting (George et al. 2008). The key feature of the vari-
able selection approach is to construct a hierarchical prior
for each lagged coefficient φi,k ∈ φk = vec (�k). Each
coefficient is endowed with a prior in the form of a mixture
of two normal distributions, whose mixing coefficient is a
latent variable γi,k = {0, 1}. The two normal distributions
share the same mean, but have different variances. One has
a large variance so that it mimics a uniform prior, whereas
the other is tightly spiked around the shared mean. When
γi,k = 1 (with probability θi,k), the coefficient is said to be
active, and governed by the normal distribution with large
variance. When γi,k = 0 (with probability γi,k = 1 − θi,k),

the coefficient is said to be inactive, and thus drawn from
the spiked normal. In this framework, variable selection can
be performed through MCMC integration by evaluating the
posterior of each γi,k . The indices i, k such that the posterior
median of P(γi,k = 1) > 0.5 indicate the selected variables,
that is, the relevant subset of the predictors.

For each coefficient φi,k ∈ φk = vec (�k), we have a
binary indicator γi,k ∈ {0, 1}, which encodes the state of
φi,k (the “spike” inactive state for γi,k = 0 and the “slab”
active state for γi,k = 1). Given γi,k , the conditional mixture
prior for each φi,k can be expressed as

φi,k |γi,k ∼ (1 − γi,k)N (0, τ0) + γi,kN (0, τ1),

which is controlled by the two hyperparameters τ0 and τ1. By
selecting the two such that former approaches 0 whereas the
latter is arbitrarily large, γi,k is able to identify restrictions on
φi,k . The prior for the kth mode conditional mean parameters
can be rewritten compactly as

φk |γ k ∼ N (0,Vk),

where Vk = diag(v1,k, . . . , vnk ,k) and vi,k = (1 − γi,k)τ0 +
γi,kτ1, being nk the cardinality of φk . We assume each γi,k
is independent Bernoulli, i.e.:

γi,k |θk ∼ Ber(θk).

With a priori information on the level of sparsity in the
coefficients, one can set θk accordingly. Therefore, we endow
each indicator with a Beta-Bernoulli hierarchical prior:

π(γ k |θk) = θ
|γk |
k (1 − θk)

nk−|γk |

θk ∼ Beta(αk, βk),

where |γk | = ∑
i γi,k .

Notice that the two covariance matrices of the MAR enter
the likelihood in a multiplicative way, meaning their scales
are not separately identifiable.Without imposing restrictions,
such quantities would be determined completely by the prior
covariance matrices. Further restrictions on the scales are
therefore required without any additional a priori informa-
tion.

As in Hoff (2011, 2015), we introduce dependence
between the Inverse Wishart prior distribution of each �k

by adding a level of hierarchy through a hyperparameter ξ

ξ ∼ Ga(η1, η2)

�k |ξ ∼ W−1(ξk, νk),
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where Ga(η1, η2) is the Gamma distribution with shape and
scale parameters η1, η2 respectively. By settingk = IJk/Jk
and νk = Jk + 2 the total variance is controlled only by a
K th power of ξ :

E
[∏

k

tr(�k)
]

= ξ K .

Thus, if we let �k be the collection of all the kth mode
parameters except for γ k , the joint prior distribution takes
the form

π(�1, . . . ,�K , γ 1, . . . , γ K )

=
∏

k

π(φk |γ k)π(γ k |θk)π(θk)π(�k |ξ)π(ξ).

4 Bayesian estimation

We develop two computational methods for fitting the
proposed Bayesian model (i) a Gibbs sampler and (ii) a max-
imum a posteriori (MAP) estimation procedure via EMVS.
The Gibbs sampling algorithm will produce more accurate
estimates and allow estimation of the full posterior. However,
it is expected to be slower than the EMVS procedure, which
aims only at identification of posterior modes by iteratively
maximizing the conditional expectation of the log posterior.

An outline of the proposed Gibbs sampling procedure is
given in Algorithm 1 in Appendix B along with the details on
the full conditional posterior distributions. Notice that while
wedefer the description of howweobtain theMAPestimates,
these are the ones we propose to use as starting values for the
Gibbs sampler. As a matter of fact, posterior modes are often
good starting values to use inMCMCsimulation experiments
(Geyer 2010; Jones and Qin 2022; Vats et al. 2021).

4.1 MAP estimation

A global optimization procedure to find the posterior mode
can be set separately for each dimension K . However, given
the mixture of prior for each φk , the direct optimization of
the log conditional posterior logπ(�k |Y) has no analytical
solution. The presence of the sum prevents the logarithm
from acting directly on the joint conditional posterior, which
results in complicated expressions for the MAP solution.

We employ an Expectation Conditional Maximization
(ECM) algorithm (Meng and Rubin 1993), which indi-
rectlymaximizes logπ(�k, γ k |Y) by iterativelymaximizing
its expected value under the posterior distribution of the
latent variable. At iteration j , this expectation, denoted by
Q(�k |�[ j−1]

k ), is given by

Q(�
[ j]
k |�[ j−1]

k ) = E
γ k |�[ j−1]

k

[
logπ(�k, γ k |Y)|�[ j−1]

k

]
,(7)

which constitutes the E-step of the algorithm. In the M-step,
we derive the revised estimate of all the other parameters by
maximizing the function:

�
[ j]
k = argmax

�k

Q(�k |�[ j−1]
k )

where Q(�k |�[ j−1]
k ) can be decomposed as:

Q1,k(φ
[ j]
k |−) = −1

2

[
(φk − φ̂k)

′
(X̃

k′
X̃
k

⊗ �−1
k )(φk − φ̂k) + φ

′
kV−1

k φ
′
k

]

Q2,k(�
[ j]
k |−) = −(Jk + J−k + νk + 1) log |�k |

− tr
{
�−1

k

[
ξk + (Ỹ

k

− �kX̃
k
)(Ỹ

k − �kX̃
k
)
′]}

Q3,k(θ
[ j]
k |−) = (|γ k | + αk − 1) log(θk)

+ (nk − |γ k | + βk − 1) log(1 − θk)

Q4(ξ
[ j]|−) = 1

2

∑

k

Jkνk log(ξ)

− 1

2

∑

k

tr (k�
−1
k )ξ + (η1 − 1)

log(ξ) − η2ξ

Notice that there is an identifiability issue arising from the
structure of the MAR. Given the properties of the Kronecker
product, if �1, . . . ,�K are a solution of the problem, so are
f1�1, . . . , fK�K , with the condition

∏
k fk = 1. To keep

iterations of both the Gibbs and the EMVS stable, we choose
fk such that the magnitude between the various parameter
matrices remains as stable as possible in the following way
(see Hoff 2015):

fk =
∏

l �=k ||�l || 1
K

||�k || K−1
K

(8)

The same applies for the covariance matrices. We illustrate
the complete EMVS estimation procedure in Algorithm 2 in
Appendix C.

5 Kronecker GFEVD

Dynamic analysis via Generalized Impulse Response Func-
tions (GIRF) and Generalized Forecast Error Variance
Decomposition (GFEVD) can be carried out easily on a
variable-by-variable basis. In this context, a modification
of the GFEVD (Lanne and Nyberg 2016) obtained from a
GIRF (Koop et al. 1996) is appealing, as it has the desired
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property of unit row sum. Let � = diag(�−1), where
� = σ3⊗�2⊗�1. TheGFEVD for the vectorizedMAR*(P)
has the standard form

θ
i j
H =

∑H
h=0 e

′
i�h��

1/2
j j e j∑H

h=0 e
′
j�h����

′
he j

, (9)

where ei is a selection vector. The collection of θ
i j
H ∈ �H is

referred to the GFEVD matrix.
Although the MAR estimates interpretable lower dimen-

sional coefficients via the Tucker product, dynamic analysis
can be performed through the vectorized form of the model
(Chen and Yang 2021). Nevertheless, this leads to a sig-
nificant loss of information on mode-specific interactions
that is masked via the computation of the Kronecker prod-
uct of the objects of interest. Rather than studying solely
variable-by-variable impacts, it is convenient to exploit the
enhanced interpretability given by the bi-dimensional struc-
ture of the model and decompose the GFEVD into two
lower-dimensional matrices representing the K -mode spe-
cific GFEVD. Among all possible decompositions of a
GFEVDmatrix into its mode-specific counterparts, the most
reasonable approach given the form of the model is via a
Kronecker decomposition

�C
H ⊗ �I

H ≈ �H ,

where �I
H ∈ R

G×G and �C
H ∈ R

N×N will be, respectively,
the country and indicator GFEVD.

We now describe the Kronecker decomposition problem
for the GFEVD derived from the MAR model. Recall that,
for each forecast horizon, �H is a stochastic matrix, having
�H ≥ 0 and �H1GN = 1GN , where 1J is a J -dimensional
vector of ones. A simple approach to decompose �H into
�C

H ⊗ �I
H , so to reflect the indicator and country GFEVD

structure is to project �H onto the space of Kronecker prod-
ucts under the squared Frobenius norm

min
�V

H ,�C
H

||�H − �C
H ⊗ �I

H ||2F ,

which represents a Nearest Kronecker Product (NKP) prob-
lem in matrix computation (Van Loan and Pitsianis 1993;
Van Loan 2000). This approach is also at the basis of the pro-
jection method for MAR estimation (Chen and Yang 2021),
which can be used to find the starting values of the ML pro-
cedure given a VAR estimate.

However, the two resultingmatricesminimizing this prob-
lem are not guaranteed to be stochastic as well, a necessary
condition to constitute GFEVD. Thus, in order to get the best
stochastic Kronecker Product (SKP) approximation �C

H and
�I

H , the following constrained nonlinear least squares must

be solved:

min
�I

H ,�C
H

||�H − �C
H ⊗ �I

H ||2F
s.t. �I

H ≥ 0, �I
H1G = 1G

�C
H ≥ 0, �C

H1N = 1N .

(10)

Notice that all the entries in �C
H ⊗ �I

H are the same

as all the entries in θ I
H θC

′
H , where θ I

H = vec(�I
H ) and

θCH = vec(�C
H ), i.e. the matrices have the same set of

elements, which only differ in their positions. By employ-
ing a rearrangement operator G(·) such that G(X ⊗ Y) =
vec(Y)vec(X)

′
, we can rewrite Eq. (10) as:

min
θ I
H ,θCH

||G(�H ) − θ I
H θC

′
H ||2F

s.t. θ I
H ≥ 0, RI θ

I
H = 1G

θCH ≥ 0, RCθCH = 1N

(11)

where RI = [IG, . . . , IG ] and RC = [IN , . . . , IN ] are lin-
ear equality constraint matrices of dimension [G × G2] and
[N × N 2]. As it is expressed, the problem in Eq. (11) can
be solved for θ I

H and θCH iteratively via standard constrained
minimization routines.

6 Simulations

Wedesign two simulation experiments. The first one is aimed
at studying the small sample efficiency of the proposed
method. The second one evaluates the estimation error, fore-
castingperformance, and computational timeof our proposed
approach, relative tomultiple existing estimationmethods for
longitudinal data. We further perform a comparative conver-
gence analysis of the MCMC in Sect. 6.3.

We set our hyperparameters as follows:

• τ0 = 0.01, τ1 = 4. This choice is motivated by the fact
that all the parameters we consider in our specifications
are strictly lower than 1 in terms of magnitude. Thus, it
is reasonable to consider a variance of 0.01 as “small”,
and a variance of 4 as “big”.

• k = IJk/Jk , νk = Jk + 2. This is standard in the VAR
literature (Bańbura et al. 2010), being a combination that
ensures minimal assumptions, but at the same time the
existence of the expected value of the Inverse Wishart.

• αk = 1,βk = Jk−1, ν1 = 1. This choice has been recom-
mended to obtain optimal posterior concentration rates in
sparse settings (Ročková and George 2014; Castillo and
van der Vaart 2012).
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In the second experiment, we run all the Gibbs samplers
for 1000 iterations. Given a confidence level of 0.05, this
number is bigger than the minimum effective sample size
(mESS) at a tolerance of 0.05, in the largest scenario, i.e. the
one where (G, N ) = (8, 10) (Vats et al. 2019). Details on
the convergence of the sampler of our proposed model can
be found in Appendix D.4.

6.1 Small sample efficiency

We compare the small sample efficiency of ML and MAP
estimators by letting the length of the time series T and
the level of sparsity in the autoregressive coefficients vary.
The main purpose of this experiment is to obtain qualitative
understanding of the small sample covariances of the two
estimators under different sparsity settings. We compare the
MAP against the ML estimator for two main reasons, other
than its computational convenience. Firstly, given that the
MAP can be also seen as s frequentist regularized procedure,
it is allegedly a fair competitor to theMLestimator. Secondly,
in the comparisonwe focus on point estimates. In this setting,
MAP and median or mean of the posterior distribution of the
Gibbs sampler would give pretty similar results.

To this aim, we simulate our synthetic data as follows.
We generate matrix-valued time series observations from
a MAR(1) with dimensions G, N = 8, with different
lengths of the time series T = 50, . . . , 1000. We place
true nonzero loadings in the left and right model coefficient
matrices according to four different settings. For each set-
ting i = 1, . . . , 4, we place SPi non-zero coefficients for
each row of A and B, respectively. In particular, we consider
SP1 = 1, SP2 = 2, SP3 = 4, and SP4 = 8. Our data gen-
erating process (DGP) is such that the main diagonal blocks
of A and B are [SPi × SPi ] matrices whose elements are
drawn from aN (0, 1), and zero otherwise. Notice that when
i = 1 and i = 4 the two coefficient matrices are diagonal
(1 out of 8 nonzero coefficient in each row) and full (8 out
of 8 nonzero coefficient in each row), respectively. In the
two intermediate cases, we have, respectively, 2 out of 8 (for
i = 2) and 4 out of 8 (for i = 3) non-zero coefficient in each
town of the coefficient matrices. The covariance matrices are
set to �1 = IG and �2 = IN . In setting our priors, we fix
αk = 1, and choose βk = Jk − 1 so to reflect a prior belief
of a sparse DGP as the one in setting 1. Estimation errors are
measured by the mean squared error (MSE):

MSE(�̂) = tr
[
(� − �̂)

′
(� − �̂)

]

G × N
(12)

where for the MAR model � = B ⊗ A and �̂ = B̂ ⊗ Â.
Figure3 illustrates a comparison of the small sample effi-

ciencies of the ML and MAP estimators, as measured by the
average estimation errors over 50 repetitions of MSE(�̂).

The figure shows a decreasing trend of the average error of
both estimators as T grows. As expected, given the imposed
prior beliefs, the more sparse the DGP, the more the MAP
estimator results in a higher efficiency in small samples.
This is magnified in setting 1 (DGP with diagonal coeffi-
cient matrices), while the difference in efficiency between
the two estimators gradually vanishes as the number of non-
zero coefficients grow. Notice however that, even in setting
4 (DGP with full coefficient matrices) the efficiency of the
two estimators is still comparable.

The efficiency of the MAP estimator depicted in Fig. 3
proves the capacity of our model to retrieve the true DGP
across different sparsity settings. The gain is evident in small
T and sparse scenarios, where the model outperforms the
plain vanilla ML, bearing in mind that the latter is a special
case of ourmodel with an apriori fixed γi,k = 1. This, in turn,
implies that the superior performance depends on the capac-
ity of the model to shrink towards the true zero coefficients,
as expected. Another way to look at this evidence is via θ1
and θ2, whose posterior distributions provide information on
the level of sparsity predicted by the model, as a function of
the prior and the data.

As for the efficiency factor, we now represent in Fig. 4 the
posterior median of θ1 and θ2, under four different settings.
Results are averaged over the 50 replications. The black lines
represent the true proportion of nonzero coefficients inA and
B, whereas the blue and red ones are the median of the pos-
terior distribution of θ1 and θ2, respectively. In all of the four
cases, the two coefficients are increasing for the lowest values
of T , and then tend to stabilize. This is in linewith the fact that
with small T , the noise is high, and thus the signal-to-noise
ratio drops, inducing themodel to consider as non-significant
more coefficients. What emerges is that two coefficients lie
above the true value in the first two settings. However, such
deviation is relatively small in terms of magnitude, being
lower than 5%. The third setting is the best captured by the
model, which very well replicates the features of the DGP. In
the last case, all the coefficients are nonzero, and the model
slightly underestimates the real sparsity pattern. However,
this is not a matter of concern.

A possible explanation is that the higher the number of
nonzero parameters, the lower is their overall magnitude,
imposed to ensure stationarity. Thus, it is reasonable that the
model might underestimate the true sparsity pattern in this
fully dense specification. It might tend to assign zeros where
a real 0 is not present, but the overall magnitude of these
coefficients is still minimal. This is confirmed by the forecast
performance presented above, which is in line with the ML.
Recall that the more rigid ML always implies θ1 = θ2 = 1,
even in highly sparse settings. Our model scales pretty well
with different levels of sparsity, thus emerging as a valid
alternative model to large MAR.
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Fig. 3 Comparison of the
efficiencies of ML (red) and
MAP (blue) estimators over 50
repetitions for
T = 50, . . . , 1000 under four
sparsity settings. The figure
shows the logarithm of the
MSFE(�̂) (y axis) over
different T (x axis). Gray
shaded areas represent the 1
standard deviation confidence
bounds

6.2 Comparative estimation, forecasting and
computational performances

We aim to compare the estimation error, forecasting perfor-
mance, and computation time of the illustrated estimators
with other relevant competing alternatives for panel data.
This is done for different choices of the matrix dimen-
sions (G, N ) = (2, 3), (4, 6), (8, 10), so setup a “small”, a
“medium” and a “large” setting, relative to a reference sample
size T = 100. We consider the three MAR estimators: ML,
MCMC (Bayes), and MAP. The alternatives considered are
the stacked VAR estimator (VAR), the country-block panel
VAR (CB), the cross-sectional Shrinkage (CC) approach
of Canova and Ciccarelli (2009, 2013), and the Stochastic
Search Specification Selection (SSSS) ofKoop andKorobilis
(2016). In particular, the stacked VAR and the country-block
PVAR are estimated with frequentist techniques, whereas
the others with a Bayesian approach. We briefly describe the
competing alternative models in Appendix D.1 along with
the hyperparameter specification for the Bayesian ones in
Appendix D.2.

We simulate a sparse VAR(1) able to reflect recurrent pat-
terns in multi-country and multi-variable applications. Let�
be the [GN ×GN ] matrix of autoregressive coefficients and

�i, j ∈ � be the [G × G] country j block of parameters in
the country i equations, and consider its entries related to the
indicators k, l:

�
k,l
i, j =

{
λλ

|i− j |
n λ

|k−l|
g if |i − j | ≤ r , |k − l| ≤ r

0 otherwise,

where λ = 0.95 is an overall constant term, λn and λg are a
country and an indicator penalty term, respectively, such that
λn = 0.5+U[−0.1,0.1] and λg = 0.5+U[−0.1,0.1], and r = 2.
TheDGP is able to reflect heterogeneities in both dimensions
such that coefficients are affected by a country penalty λn ,
an indicator penalty λg and both of them combined. Such
penalties act when the row and column distances |i − j | and
|k − l| of the elements of the matrix �

k,l
i, j do not exceed the

threshold level r .
Estimation errors of the models are measured by the MSE

as in Eq. (12), whereas the forecasting performance for any
fixed forecast horizon H is assessed by means of the Mean
Squared Forecast Error (MSFE):

MSFE(H) = 1

G × N × H
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Fig. 4 The figure shows the median posterior of θ1 (red lines), θ2 (blue lines), and the true proportion of non-zero coefficients (black lines) over 50
repetitions for T = 50, . . . , 1000 (x axis) under four sparsity settings

H∑

h=1

(ŷT+h|T − yT+h)
′
(ŷT+h|T − yT+h),

where ŷT+h|T is the H -step forecast obtained with informa-
tion up to the last sample size T .

We illustrate in Fig. 5 numerical results on themodelMSE
and MSFE related to H = 1. When the estimation of some
competitor model was infeasible, corresponding results are
omitted. We report results related to repeated experiments

with T = 500 and a sparsity setting generated by r = 3 in
Appendix D.3.

The proposed estimators, along with ML, tend to overper-
form all competing alternatives, both in terms of estimation
and forecasting performances. The difference in perfor-
mances becomes more substantial when considering the
“large” dimensional setting. Results with T = 500 and r = 3
are consistent with the expectations that as T grows and true
coefficient matrices are less sparse, performance gains com-
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Fig. 5 Average estimation error (MSE) (a–c) and 1 step ahead forecasting peformance (MSFE) (d–f) over 50 repetitions of each model for
(G, N ) = (2, 3), (4, 6), (8, 10) with T = 100

pared to a standard VAR diminish in the “small” dimensional
setting.

We now report the average computational time over 50
repetitions for the three different combination of G and N
and T = 100 in Table 1. Being the estimators of VAR and
CB closed form, their related execution times are naturally
the lowest.

As expected, the computational times of MAP are much
more favorable than those of the MCMC. The difference
between the two lies in the fact thatwhile theMCMCrequires
thousands of iterations to approximate the joint posterior dis-
tribution, the EMVS algorithm reaches convergence fairly
quickly, usually in fewer than 100 iterations. Despite this
difference, the two have exhibited comparable performances
in estimating the autoregressive coefficient and forecasting
performances.

In our settings, the MCMC is also generally slower than
CC, which exploits factors to reduce dimensionality, but is
much faster than SSSS in “medium” and “large” settings.
Further, given the dimensionality reduction achieved by the
MAR, computation times of the MCMC grow slower with
increasing model parameters than those related to the CC
and SSSS estimators. Notice that the computational times

of MAP are distinctly lower, not only than those of its full
Bayesian counterpart, but also than those related to the CC
and SSSS estimators. Notwithstanding this, estimation and
forecasting performances ofMAP (and, in general, of the two
proposed computational methods) are generally superior in
high-dimensional settings.

6.3 MCMC output analysis

Here we assess and compare the competing models’ MCMC
algorithms based on effective sample size criteria (Vats et al.
2019; Gong and Flegal 2016). This criteria allows us to deter-
mine when should sampling stop in order to get reliable
parameter estimates. Given a level of confidence α and tol-
erance ε, one simple strategy is to run the Markov Chain
at least for a number of iterations larger than the minimum
Effective Sample Size (mESS) (Vats et al. 2019). The multi-
variate mESS satisfies

mESS ≥ 22/pπ

[p�(p/2)]2/p
χ2
1−α,p

ε2
, (13)
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Table 1 Average computational
times (in seconds) over 50
repetitions for
(G, N ) = (2, 3), (4, 6) and
(8, 10), with T = 100

G=2, N=3 G=4, N=6 G=8, N=10

VAR 8.7 × 10−5 (1.2 × 10−4) 1.1 × 10−4 (3.8 × 10−4) 4.7 × 10−4 (2.1 × 10−4)

CB 8.2 × 10−5 (1.5 × 10−4) 1.6 × 10−4 (7.3 × 10−4) 3.1 × 10−4 (2.1 × 10−4)

ML 4.6 × 10−4 (8.7 × 10−3) 0.01 (4.5 × 10−3) 0.01 (0.01)

Bayes 9.98 (0.51) 30.9 (10.1) 85.72 (23.24)

MAP 0.01 (7.2 × 10−3) 0.03 (0.02) 0.07 (0.02)

CC 0.26 (0.02) 1.82 (0.55) 25.67 (3.78)

SSSS 5.18 (0.24) 368.52 (76.58) –

Standard deviations are shown in parentheses

where p is the number of parameters to be estimated. It should
be noticed that mESS is a function of p, α and ε and is
therefore independent of theMarkov chain or the underneath
process. This paves the way for model comparison in terms
of this quantity.

Notice that the threeGibbs samplers employed are charac-
terized by a different number of parameters p. In particular,
for each combination of [G, N ] of the simulation study,
the Gibbs sampler for the MAR produces, respectively,
two chains of dimensions [G2 × MC] ( MAR(B1) ) and
[N 2 ×MC] ( MAR(B2) ), where MC is the number of clean
post burn-in draws. The samplers for the CC and the SSSS
procedures produce two chains of dimensions [GNF×MC]
(with F < GN ) and [G2N 2 × MC]. Moreover, the CC
is a factor model, for which the number of factors can dif-
fer among datasets, and is sensitive to the statistical method
employed to extract the relevant factors. As a consequence,
it is not possible to choose a common number of simulations
such that the tolerance ε is kept constant among all settings
and models.

However, a possible strategy to overcome this issue is to
use Eq. (13) in another way. Instead of choosing a different
value of MC for each model and setting, one can set an arbi-
trarily large level so that it is guaranteed that in all settings
at least a minimum pre-determined ε is reached, and then
compare the samplers in terms of tolerance levels. We can
determine a model specific estimated ESS, calculated after
running theMCMC, and then get the corresponding tolerance
level ε via Eq. (13). Given MC iterations in a Markov chain,
the ESS measures the size of an i.i.d. sample with the same
standard error. In a multivariate setting, the ESS is given by

ESS = MC

( |�|
|�|

)1/p

,

where � is the sample covariance matrix and � is an esti-
mate of the variance of the asymptotic normal distribution.
Replacing mESS in Eq. (13) with ESS, we can express the
former in terms of the tolerance ε, which can be viewed as
a comparison in terms of convergence of the Gibbs sampler.
The smaller the minimum effective samples, the larger the

tolerance, and hence the smaller the number of simulations
required.

A visual comparison of the tolerance level ε for the three
models under the different setting is depicted in Fig. 6. The
figure shows that our sampler achieves generally greater tol-
erance than the analyzed competing alternatives, particularly
in high-dimensional settings.

7 Application: panel of country economic
indicators

We now conduct an empirical application of the proposed
model to a panel of G = 9 world countries, which cur-
rently represent approximately the 64% of the world total
Gross Domestic Product (GDP): Canada (CA), China (CH),
France (FR), Germany (GE), India (IN), Italy (IT), Japan
(JP), United Kingdom (UK) andUnited States (US).We con-
sider quarterly observations of N = 3 economic indicators:
GDP, Consumer Price Index (CPI) and Short-term Interest
Rates (S-IR), all expressed in log differences. The sample
ranges from 1980Q1 to 2019Q4 (T = 162). The data is
inherently multidimensional, as observations are generated
in matrix form, where rows represent indicators and columns
countries.

We estimate a fully Bayesian MAR*(3), which yields the
full conditional posterior distribution of the parameters of
interest. It is a standard procedure to fix an arbitrarily large
lag length and then let the algorithm shrink the coefficients
(George et al. 2008; Bańbura et al. 2010). By running the
modelwithwith several lag specifications (from1 to 10 lags),
we observed a progressively diminishing impact of lagged
variables. In particular, three is the shortest number of lags
such that the 95% credible interval for the lowest magnitude
coefficient (ĉ3 in our case) does not contain zero. Figure7 dis-
plays the posterior distribution of the lag order coefficients
ĉ and shows a diminishing pattern of lag impacts over time,
albeit still preserving a non negligible impact even for lag
three. It is clear how values of the posterior distribution of
ĉ decrease with the lag order itself, as one could expect. In
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Fig. 6 Tolerance ε over 50 repetitions of each model for (G, N ) = (2, 3), (4, 6), (8, 10) with T = 100

Fig. 7 Posterior distribution of ĉ1 (red), ĉ2 (blue), ĉ3 (green)

Fig. 17 in Appendix D.4 we illustrate the posterior distribu-
tion of the mixing proportion parameters θ̂ .

We illustrate in Fig. 8 the posterior median of the left
(Â) and right (B̂) coefficient matrices, along with the recon-
structed coefficient matrix B̂⊗ Â. Note that, given that only
the Kronecker product B̂ ⊗ Â is uniquely identified, only
magnitudes related to the left and right coefficient matrices
can be meaningfully interpreted, rather than signs.

The figure shows that, as intuition suggests, the diagonal
elements of the parameter matrices concur to a large portion

of the system’s autoregressive dynamics. This ismore evident
from the left coefficient matrix, indicating a strong autocor-
relation in the variable dimension. From the first order right
coefficientmatrix estimate notice that the two largest impacts
are those of China on itself and US on Canada. The former
can be explained through the relatively low impact of other
countries on the Chinese economy as a whole and the latter
seems reasonable given the geographical proximity and large
trade activity between the two.
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Fig. 8 Median of the posterior entries of the first order left coefficient matrix Â (a), of the right one B̂ (b), and of B̂ ⊗ Â (c)

We evaluate out-of-sample rolling forecasting perfor-
mances and computational times of the proposed methods
against the same competing models analyzed in Sect. 6.2.
In particular, starting from 1995Q1 (T=60) to 2019Q2
(T=120), we fit the corresponding models by means of
all available data at time t − 1 and compute the one step
ahead MSFE. Results are summarized in Table 2. Further
results related to the full set of estimations as well as the
mixing of the Gibbs sampler of our proposed model are in
Appendix D.4.

Notice that, on average, the MCMC outperforms all
competing alternatives in the forecasting exercise, closely
followed by the MAP and ML estimators. We then find the
SSSS, CB and CC estimators which perform better than
the stacked VAR. Despite its superior forecast accuracy,
the MCMC method is more than 140 times slower than
the EMVS. This might render the latter preferable in high-
dimensional empirical applications, given the relatively little
differences between the two in terms of performance.

A key advantage of the EMVS procedure relative to
standard MCMC is that its lower computational intensive-
ness allows for dynamic posterior exploration (Ročková and
George 2018). This consists of holding fixed at a high value
the slab hyperparameter, while letting the spike hyperparam-
eter gradually rise along a ladder of increasing values. In our
case, dynamic posterior exploration can also be conducted
on the “sparsity” parameters θk .

We therefore perform cross validation on a grid of ten val-
ues between 0.005 and 0.05 with a step of 0.005 for the spike
parameter τ0. Additionally, we let βk = J ζ

k vary on a grid
of ten values of ζ from 0.1 to 1 with step 0.1. By perform-
ing dynamic posterior exploration, the average MSFE of the
MAP estimator drops to 2.89 × 10−5 (std: 1.69 × 10−5),
while preserving a reasonable amount of computation time
of 16.81 s (std: 5.86).

We now illustrate the resulting Kronecker decomposition
of the estimated GFEVD in Fig. 9. We refer the reader to
Appendix D.4 for a graphical representation of the spectrum

of the companion matrix. For what concerns �̂
I
H , a contri-

bution of CPI and GDP to the GFEVD of S-IR is detected.
Moreover, the figure shows that a portion of GFEVD in GDP
is due to shocks inCPI andS-IR.Notice, however, that overall
magnitudes of such cross-variance shares are small if com-
pared to the country and full GFEVD matrices, meaning a
weak dependence structure within the indicator dimension.

Conversely, we find stronger cross-variance shares in the

country dimension, as reflected by �̂
C
H . The largest pairwise

contributions are those to Canada arising from shocks in the
US economy, and vice versa, thoughwith lowermagnitude in
the latter case.While bothChina andUS are prone to transmit
large portions of GFEVD to the rest of the countries, the for-
mer is generally more resilient to shocks in other countries.
This with the exception of India, which is one of the largest
exporters of China. Results also highlight noticeable cross
variance shares across theEUcountries, i.e. France,Germany
and Italy. The full GFEVD matrix �̂H reflects instead vari-
able by variable interactions, which seem consistent with the
ones obtained through the Kronecker decomposition prob-
lem.

8 Concluding remarks

We developed a Bayesian method for variable selection
in high-dimensional matrix autoregressive models which
reflects and exploits the original matrix structure of data
to reduce dimensionality and foster interpretability of mul-
tidimensional dependency structures. We firstly derived a
compact form of the model stemming from the tensor linear
regression framework, which facilitates the model estima-
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Table 2 Average Logarithm of
the MSFE and average
computational time (in seconds)
over 50 repeated estimations of
three different MAR estimators
(ML, Bayes, MAP) against
competing alternatives

Av. log MSFE Av. computational time

VAR 4.41 × 10−5 (2.77 × 10−5) 1.91 × 10−4 (9.97 × 10−5)

CB 3.84 × 10−5 (1.96 × 10−5) 1.72 × 10−4 (7.44 × 10−5)

ML 3.21 × 10−5 (1.85 × 10−5) 1.83 × 10−2 (7.00 × 10−3)

Bayes 3.09 × 10−5 (1.79 × 10−5) 25.88 (5.10)

MAP 3.11 × 10−5 (1.79 × 10−5) 0.17 (0.07)

CC 4.40 × 10−5 (2.85 × 10−5) 1.9 (0.59)

SSSS 3.83 × 10−5 (1.75 × 10−5) 776.06 (51.82)

Standard deviations are shown in parentheses

Fig. 9 Kronecker decomposition of the estimated GFEVD: indicator GFEVD �̂
I
H (a), country GFEVD �̂

C
H (b) and full GFEVD �̂H (c). Diagonal

elements are omitted

tion. We then outlined two computational methods: a fully
Bayesian MCMC algorithm and an EMVS estimation pro-
cedure, which foresees the forthcoming need of modeling
matrix-valued time series at large scales, while allowing for
fast dynamic posterior exploration.

We have numerically investigated the small sample effi-
ciency of the proposed estimators, showing the gain with
respect to ML in sparse, high-dimensional settings. We have
also numerically explored the comparative estimation, fore-
casting and computational performances of the proposed
estimators relative to key competing alternative models for
longitudinal data. The experiment has shown that the estima-
tion and forecasting performances of the Bayesian and MAP
estimators are generally superior in sparse high-dimensional
settings, with the latter drastically reducing computational
intensiveness. The proposed methodology has been applied
to a panel of nine world countries’ economic indicators, for
which we derived a method to decompose the GFEVD into
its row and column dimensions, leading to country and indi-
cator GFEVDs.

Our proposed method can be extended in several direc-
tions. The model can be easily generalized to a tensor

autoregressive framework. Simultaneous sparsity both in the
autoregressive coefficients and innovation covariance matri-
ces can be introduced. Otherwise, the model can be equipped
with different types of priors, e.g. those belonging to the class
of global–local priors (Polson et al. 2011).

Furthermore, time variation can be embedded into the
model. This also paves the way to the introduction of
time varying parameter matrix autoregression with stochas-
tic volatility (see Nakajima 2011), dynamic sparse factor
matrix autoregressions (Rockova and McAlinn 2021), and
dynamic covariance matrix estimation and prediction (Bucci
et al. 2022).
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AppendixA:TensoroperationsandtheTucker
product

A tensor is a multidimensional array, whose order expresses
the number of dimensions, also known as ways or modes.4

More formally, an N th way tensor is an N dimensional array
X ∈ R

I1×···×IN with entries Xi1...iN with in = 1, . . . , In and
n = 1, . . . , N .

Vectors are tensors of order one (denoted by boldface low-
ercase letters, e.g., x) whereas matrices are tensors of order
two (denoted by boldface capital letters, e.g., X).

A.1 Tensor norm and inner product

The Frobenius norm of a tensor X is the square root of the
squared sum of all its elements, ie.

||X ||F =

√√√√√
I1∑

i1=1

. . .

IN∑

iN=1

x2i1...iN =
√
vec(X )

′vec(X )

which is analogous to the Frobenious norm of a matrix.
The inner-product of two tensors of the same dimension

X ,Y ∈ R
J1,...,JN is the sum of the product of their entries:

〈X ,Y〉 =
iN∑

i1=1

. . .

iN∑

iN=1

xi1...iN yi1...iN = vec(X )
′
vec(Y)

A.2 Matricization and Tucker product

The process of reordering the elements of an N -way tensor
into a matrix is called matricization. The nth way matriciza-
tion of X is denoted by Xn = matn(X ), and is obtained
by reshaping the elements of the original tensor so that the
resulting matrix is of dimension [In ×∏

j �=n I j ]. The special

4 To avoid confusion, we use the term way to express the dimension of
a tensor, given that mode is already used to express the maximum value
of a given distribution.

case of contemporaneous matricization along all the ways
of a tensor is called vectorization, which is analogous to the
vectorization of a matrix:

x = vec(X ) = mat1,...,N (X )

Given the matrices B1, . . . ,BN with Bn ∈ R
in× jn , a map

from the space of X to the space generated by the rows of
Bn (Ri1×···×iN ) is made by first obtaining x, then computing:

m = (BN ⊗ · · · ⊗ B1)x

and eventually forming an [i1 × · · · × iN ] dimensional array
M from m. This transformation between the tensor X and
the list B = {B1, . . . ,BN } is known as the Tucker product
(Tucker 1966), and can be written as:

M = X ×̄{B1, . . .BN } (A.1)

It is worth noting that the matricization operator connects
the multidimensional Tucker product to the well known
matrix multiplication, facilitating both understanding and
computation of the former. In fact, by applying the nth way
matricization to both sides of Eq. (A.1) we obtain the equiv-
alent formulation:

Mn = BnXnB
′
−n (A.2)

where B−n = (BN ⊗ · · · ⊗ Bn+1 ⊗ Bn−1 ⊗ · · · ⊗ B1). By
repeating the operation for n = 1, . . . , N , it emerges that
the Tucker product can be expressed as a series of N matrix
reshaping and multiplications. Matricization and vectoriza-
tion applied to the Tucker product give raise to the following
set of equivalences:

M = X ×̄{B1, . . . ,BN }
Mn = BnXnB

′
−n

m = (BN ⊗ · · · ⊗ B1)x

The VAR as well as the MAR equivalent form of a TAR can
be easily derived with the abovementioned tools.

Appendix B: Conditional posterior distribu-
tion

The conditional posterior of each γi,k is:

π(γi,k |−) ∼ Ber(θ̄i,k) (B3)

where

θ̄i,k = θkN (φi,k, τ1)

θkN (φi,k, τ1) + (1 − θk)N (φi,k, τ0)
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The conditional posterior of each φk is:

π(φk |−) ∼ N (μ̄k, ̄k) (B4)

where

̄k = (X̃kX̃k′ ⊗ �−1
k + V−1

k )−1

μ̄k = ̄k(X̃kX̃k′ ⊗ �−1
k φ̂k)

where �̂k = (ỸkX̃k′
)(X̃kX̃k′

)−1 and φ̂k = vec(�̂k).
The conditional posterior of each �k is:

π(�k |−) ∼ W−1(̄k, n2,k + νk) (B5)

where ̄k = (Ỹk − �̂kX̃k)(Ỹk − �̂kX̃k)
′ + ξk .

The conditional posterior of each θk is:

π(θk |−) ∼ Beta(ᾱk, β̄k) (B6)

where ᾱk = |γ k | + αk and β̄k = Nk + βk + αk .
The conditional posterior for ξ is:

π(ξ |−) ∼ Ga(ν̄1, ν̄2) (B7)

where ν̄1 = 1
2

∑
k dkνk + ν1 and ν̄2 = 1

2

∑
k k�

−1
k + ν2.

We report in Algorithm 1 the proposed Gibbs sampling
procedure.

Algorithm 1: MCMC
Starting values: MAP estimate �̂k , �̂k .
Hyperparameters: τ0, τ1, αk , βk , k , νk .

Initialize : �[0]
k = �̂k , �

[0]
k = �̂k , θ

[i t]
k = αk/βk ,

n. of iterations MC , size of Burn in BU .

for j = 1 to MC + BU do
for k = 1 to K do

for i = 1 to nk do

Draw γ
[ j]
i,k from the Bernoulli distribution (B3).

Compute Ỹk and X̃k with �
[ j−1]
k and �[ j−1] as in subsection 2.1.

Draw φ
[ j]
k from the multivariate Normal distribution (B4).

Draw �
[ j]
k from the Inverse Wishart distribution (B5).

Draw θ
[ j]
k from the Beta distribution (B6).

Draw ξ [ j] from the Gamma distribution (B7).

Compute B[ j] and �[ j] with �
[ j]
1 , . . . , �

[ j]
K and �

[ j]
1 , . . . , �

[ j]
k and

renormalize via (8).

Appendix C: E–M steps

For each k, the E-steps proceeds by computing the condi-
tional expectations of v−1

i,k ∈ V−1
k in Q1,k(·) and of γi,k for

|γ k | in Q3,k(·). Consider the latter first. At the j th step we
have:

Eγ k |·(γi,k) = P(γi,k = 1|φ[ j−1]
k , θ

[ j−1]
k )

= θ
[ j−1]
k N (φi,k |0, τ1)

θ
[ j−1]]
k N (φi,k |0, τ1) + (1 − θ

[ j−1]
k )N (φi,k |0, τ0)

(C8)

The E-step for the former is:

Eγ k |·(v
−1
i,k ) = Eγ k |·[τ0(1 − γi,k) + τ1γi,k]−1

= 1 − P(γi,k = 1|φ[ j−1]
k , θ

[ j−1]
k )

τ0

+ P(γi,k = 1|φ[ j−1]
k , θ

[ j−1]
k )

τ1

(C9)

The maximization steps are:

φk = [V−1 + (X̃k′
X̃k ⊗ �−1

k )]−1[(X̃k′
X̃k ⊗ �−1)φ̂k]

(C10)

�k = (Ỹk − �kX̃k)(Ỹk − �kX̃)′ + ξk

Jk + J−k + νk + 1
(C11)

θk = |γ k | + αk − 1

nk + αk + βk + −2
(C12)

ξ =
1
2

∑
k(Jkνk) + η1 − 1

1
2

∑
k tr(k�

−1
k ) + η2

(C13)

Algorithm 2: EMVS
Starting values: ML estimate �̂k , �̂k .
Hyperparameters: τ0, τ1, αk , βk ,k , νk .

Initialize : �[0]
k = �̂k , �

[0]
k = �̂k , θ

[i t]
k = αk/βk ,

j = 0, tolerance ε.

while Tol > ε do

j = j + 1.

for k = 1 to K do

for i = 1 to nk do

Compute Eγ k |·(γi,k ) from Eq. (C8).

Compute Eγ k |·(v−1
i,k ) from Eq. (C9).

Compute Ỹk and X̃k as in subsection 2.3.

Update φ
[ j]
k from Eq. (C10).

Update �
[ j]
k from Eq. (C11).

Update θ
[ j]
k from Eq. (C12).

Update ξ [ j] from Eq. (C13).

Compute B[ j] and �[ j] with �
[ j]
1 , . . . , �

[ j]
K and �

[ j]
1 , . . . , �

[ j]
k and

renormalize via (8).

Compute Tol = max||�[ j]
k − �

[ j−1]
k ||22.
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Appendix D: Additional simulation results

D.1 Competingmodels

In compact form, a PVAR mode can be rewritten as:

Y = BX + U,

or

y = (X
′ ⊗ IGN )β + u, (D14)

where Y = [yP+1, . . . , yT ] and the coefficient matrix
B = [�1, . . . ,�P ] is of dimension GN × GN P . X =
[XP , . . . ,XT−1], with Xt = [yt−1, . . . , yt−P ]. Equation
(D14) is the vectorized form,where y = vec(Y),u = vec(U)

and β = vec(B).
We consider the following competing models:

1. CC: Canova and Ciccarelli (2009, 2013) use a factor-
ization approach of the parameters such that they can
be divided into common, country-specific, and variable-
specific factors. They specify the model in a hierarchical
structure:

β|F ∼ N (�F, � ⊗ IGN ),

F ∼ N (0, cF),

where � is an GN × f matrix of loadings and F is an
f -dimensional vector of factors where f < GN . The
number of factors are, respectively, N for coefficients of
each country and G for coefficients of each variable, and
one common factor for all coefficients. There is only one
hyperparameter to set is c, related to the prior variance of
the factors.

2. SSVS: George et al. (2008) specify a prior whereby each
coefficient of B is drawn from a mixture of two normal
distributions: the former with a small variance aiming at
shrinking the coefficient towards 0 and the latter with a
relatively large one. The higher the magnitude of Bi j , the
higher is the probability that it will be drawn from the
second distribution, and viceversa.

βk |γk ∼ (1 − γk)N (0, τ 21) + γkN (0, τ 22),

γk ∼ Ber(πk),

with k = 1, . . . ,G2N 2P .
3. SSSS: This algorithm designed by Koop and Korobilis

(2016), who build on George et al. (2008) but taking in
into account for panel restrictions. They specify two types
of restrictions: dynamic interdependencies (DI) and cross-
sectional homogeneity (CSH).

The DI works on off-diagonal blocks. Let Bi j ∈ B be the
G×G block embodying the parameters of country j th on
country i th equations. The prior has the following form:

vec(Bi j )|γ DI
i j ∼ (1 − γ DI

i j )N (0, τ 21IG
2)

+ γ DI
i j N (0, τ 22IG

2),

γ DI
i j |πDI

i j ∼ Ber(πDI
i j ),∀ j �= i,

πDI
i j ∼ Beta(1, φ),

whereas the CSH prior works on the main block diagonal
of B. The prior reads as:

vec(Bi i )|γ CSH
i j ∼ (1 − γ CSH

i j )N (B j j , ξ
2
1I

2
G)

+ γ CSH
i j N (B j j , ξ

2
2I

2
G),

γ CSH
i j |πCSH

i j ∼ Ber(πCSH
i j ), ∀ j �= i,

πCSH
i j ∼ Beta(1, φ).

D.2 Hyper/regularization parameter tuning

• CC: We set c = 4.
• SSVS: We set τ 21 = 0.01, τ 22 = 4 and πk = 0.5.
• SSSS We set τ 21, ξ

2
1 = 0.01, τ 22, ξ

2
2 = 4, πDI

i j , πCSH
i j =

0.5 and πk = 1.

D.3 Simulation results

See Figs. 10, 11, 12, 13, 14, 15 and 16.
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Fig. 10 Average estimation error (MSE) (a–c) and 1 step ahead forecasting performance (MSFE) (d–f) over 50 repetitions of each model for
(G, N ) = (2, 3), (4, 6), (8, 10) with T = 500

Fig. 11 3 step ahead forecasting performance (MSFE) (d–f) over 50 repetitions of each model for (G, N ) = (2, 3), (4, 6), (8, 10) with T = 100
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Fig. 12 6 step ahead forecasting performance (MSFE) (d–f) over 50 repetitions of each model for (G, N ) = (2, 3), (4, 6), (8, 10) with T = 100

Fig. 13 3 step ahead forecasting performance (MSFE) (d–f) over 50 repetitions of each model for (G, N ) = (2, 3), (4, 6), (8, 10) with T = 500

Fig. 14 6 step ahead forecasting performance (MSFE) (d–f) over 50 repetitions of each model for (G, N ) = (2, 3), (4, 6), (8, 10) with T = 500
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Fig. 15 Overall autocorrelation function of the Markov Chain of our proposed model, averaged across the 50 repetitions, for all the coefficients of
the left-hand matrix A

Fig. 16 Overall autocorrelation function of the Markov Chain of our proposed model, averaged across the 50 repetitions, for all the coefficients of
the right-hand matrix B

D.4 Empirical application

See Figs. 17, 18 and 19.

Fig. 17 Posterior distribution of θ̂1 (red), θ̂2 (blue) and θ̂3 (green)
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Fig. 18 One step ahead MSFE
(a) and computational time (b)
of each model over different
rolling windows spanning from
1995Q1 (T=60) to 2019Q2
(T=120)

Fig. 19 Spectrum of the companion matrix
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