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Abstract
The concepts of sparsity, and regularised estimation, have proven useful in many high-dimensional statistical applications.
Dynamic factor models (DFMs) provide a parsimonious approach to modelling high-dimensional time series, however, it
is often hard to interpret the meaning of the latent factors. This paper formally introduces a class of sparse DFMs whereby
the loading matrices are constrained to have few non-zero entries, thus increasing interpretability of factors. We present a
regularised M-estimator for the model parameters, and construct an efficient expectation maximisation algorithm to enable
estimation. Synthetic experiments demonstrate consistency in terms of estimating the loading structure, and superior predictive
performance where a low-rank factor structure may be appropriate. The utility of the method is further illustrated in an
application forecasting electricity consumption across a large set of smart meters.

Keywords Sparsity · Dynamic factor model · Time series · High-dimensional · Energy

1 Introduction

Originally formalised by Geweke (1977), the premise of the
dynamic factor model (DFM) is to assume that the com-
mon dynamics of a large number of stationary zero-mean
time series X t = (X1,t , . . . , X p,t )

� stem from a rela-
tively small number of unobserved (latent) factors Ft =
(F1,t , . . . , Fr ,t )� where r � p through the linear system

X t = �Ft + εt , (1)

for observations t = 1, . . . , n. The matrix � provides a
direct link between each factor in Ft and each variable in
X t . The larger the loading |�i, j | for variable i and factor
j , the more correlated this variable is with the factor. The
common component χ t = �Ft captures the variability in
the time series variables that is due to the common factors,
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while the idiosyncratic errors εt = (ε1,t , . . . , εp,t )
� capture

the features that are specific to individual series, such asmea-
surement error.Whatmakes the factormodel in (1) a dynamic
factor model is the assumption that the factors, and possibly
the idiosyncratic errors may be temporally dependent, i.e.,
are time series themselves.

Arguably, it was the application of Sargent and Sims
(1977) showing how just two dynamic factors were able
to explain the majority of variance in headline US macroe-
conomic variables that initiated the DFMs popularity. The
DFM is nowadays ubiquitous within the economic statis-
tics community, with applications in nowcasting/forecasting
(Giannone et al. 2008; Banbura et al. 2010; Foroni and Mar-
cellino 2014), constructing economic indicators (Mariano
and Murasawa 2010; Grassi et al. 2015), and counterfactual
analysis (Harvey 1996; Luciani 2015). Examples in other
domains include psychology (Molenaar 1985; Fisher 2015),
the energy sector (Wu et al. 2013; Lee and Baldick 2016) and
many more, see Stock and Watson (2011) and Poncela et al.
(2021) for detailed surveys of the literature.

The DFM can be used in both an exploratory (inferen-
tial) setting, as well as a predictive (forecasting) mode.When
dealing with the former its use is analogous to how onemight
apply principal component analysis (PCA) to understand the
directions of maximum variation in a dataset, of course, the
DFM does not just describe the cross-correlation structure,
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like PCA, but also the autocovariance. The loadings matrix
� is usually used to assess how one should interpret a given
(estimated) factor. Unfortunately, as in PCA, the interpre-
tation of the factors in a traditional DFM is blurred as all
variables are loaded onto all factors.

1.1 Our contributions

This paper seeks to bringmodern tools from sparsemodelling
and regularised estimation to bear on the DFM. Specifically,
we formalise a class of sparse factor models whereby only a
subset of the factors will be active for a given variable—we
assume thematrix� is sparse.Unlike regular sparse principal
component analysis (SPCA) approaches, we take a penalised
likelihood estimation approach, andnoting that the likelihood
is incomplete, we suggest a novel expectation-maximisation
(EM) algorithm to perform estimation. The algorithms devel-
oped are computationally efficient, and give users a new
method for imposing weakly informative (sparse) structural
priors on the factor model. The data-driven estimation of the
loadings support contrasts with the hard constraints that are
more traditional in the use of DFMs.

The analysis within this paper is empirical in nature, we
consider three aspects: i) how our EM algorithm performs
in recovering the true sparsity pattern in the factor load-
ings; ii) how the model contrasts with alternative models
in a predictive setting, e.g. where we want to forecast either
all the p time series, or just a subset of these; and iii) how
the model and estimation routine can be used in practice to
extract insights from complex real-world datasets. The first
two points are illustrated through extensive synthetic exper-
iments, whilst for the latter, we give an example application
to a set of smart meter data from across our university cam-
pus. To our knowledge this is the first time a DFM has been
used to study building level energy data, and illustrates some
of the benefits that come from imposing sparsity in terms of
increasing the interpretability of the model.

2 Background and related work

Canonically, the dynamics of the latent factors in the DFM
are specified as a stationary process. Here we focus on the
popular VAR(1) model:

Ft = AFt−1 + ut , (2)

where ut is a zero-mean series of disturbances with covari-
ance matrix �u . Furthermore, the idiosyncratic errors εt
in (1) are commonly assumed to be zero-mean and cross-
sectionally uncorrelated, meaning their covariance matrix,
which we denote�ε , is diagonal. Models with these assump-
tions are termed exact. Even if we relax the assumptions

to allow for cross-correlated idiosyncratic errors (called an
approximate DFM), consistent estimation of the factors is
still possible as (n, p) → ∞ (Doz et al. 2011). Therefore,
the ‘curse of dimensionality’, often a burden for analysing
time series models, can actually be beneficial in DFMs.

2.1 Estimation

The measurement Eq. (1) along with the state Eq. (2) form
a state space model. A simple approach to estimate factor
loadings is to consider the first r eigenvectors of the sample
covariance matrix of X , essentially applying PCA to the time
series. This has been extensively reviewed in the literature
(Stock and Watson 2002; Bai 2003; Doz and Fuleky 2020).
When mild conditions are placed on the correlation structure
of idiosyncratic errors, the PCA estimator is the optimal non-
parametric1 estimator for a large approximate DFM. With
even tighter conditions of spherical idiosyncratic compo-
nents, i.e. they are i.i.d. Gaussian, then the PCA estimator
is equivalent to the maximum likelihood estimator (Doz and
Fuleky 2020). The problem with using non-parametric PCA
methods to estimate the loading structure is that there is no
consideration of the dynamics of the factors or idiosyncratic
components. In particular, there is no feedback from the esti-
mation of the state Eq. (2) to the measurement Eq. (1). For
this reason, it is preferable to use parametric methods that
are able to account for temporal dependencies in the system.

An alternative approach is proposed in Giannone et al.
(2008) whereby the initial estimates of the factors and load-
ings are derived from PCA, the VAR(1) parameters are
estimated from these preliminary factors, before updating
the factor estimates usingKalman smoothing. This two-stage
approach has been theoretically analysed in Doz et al. (2011)
and successfully applied to the field of nowcasting in many
national statistical institutes and central banks. The Kalman
smoothing step in particular is very helpful for handlingmiss-
ing data, whether it be backcasting missing at the start of the
sample, forecasting missing data at the end of the sample2

or interpolating arbitrary patterns of missing data throughout
the sample.

Bańbura and Modugno (2014) build on the DFM rep-
resentation of Watson and Engle (1983) and adopt an EM
algorithm to estimate the system (1)–(2) with a quasi max-
imum likelihood estimation (QMLE) approach. Doz et al.
(2012), Bai and Li (2016), and Barigozzi and Luciani (2022)
provide theoretical results whereby, as (n, p) → ∞, the

1 In the sense that temporal dependence is not restricted to that encoded
via a parametric model.
2 Missing data at the end of the sample, commonly referred to as the
‘ragged edge’ problem, is very common in macroeconomic nowcasting
applications. It is caused by time series used in the model having differ-
ing publication delays, and hence forming a ragged edge of missingness
at the end of sample.
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QMLE estimates (based on an exact Gaussian DFM) are
consistent under milder assumptions allowing for correlated
idiosyncratic errors. The EM approach to estimation is ben-
eficial as it allows feedback between the estimation of the
factors and the loadings, and thus accomodate missing data.

2.2 Relation to current work

In the literature, the idea of a sparse DFM is not new. A
classic approach is to use factor rotations that aim to min-
imise the complexity in the factor loadings to make the
structure simpler to interpret. See Kaiser (1958) for the
well-established varimax rotation and see Carroll (1953)
and Jennrich and Sampson (1966) for the well-established
quartimin rotation. Rotations utilising �1 and �p norms are
considered in Freyaldenhoven (2023); Liu et al. (2023). For
a recent discussion paper on the varimax rotation see Rohe
and Zeng (2020). An alternative approach based on LASSO
regularisation is to use SPCA (Zou et al. 2006) in place of
regular PCA on the sample covariance matrix in the prelim-
inary estimation of factors and loadings, i.e. in stage one
of the two-stage approach by Giannone et al. (2008). For
factor modelling, it has been used by Croux and Exterkate
(2011) in a typical macroeconomic forecasting setting where
they consider a robustified version. Kristensen (2017) use
SPCA to estimate diffusion indexes with sparse loadings.
Despois and Doz (2022) prove that SPCA consistently esti-
mates the factors in an approximate factor model if the �1
penalty is of O(p−1/2). They also compare SPCA with fac-
tor rotation methods and show an improved performance
when the true loadings structure is sparse. Recently, Uematsu
and Yamagata (2022) demonstrated consistency of a related
SPCA approach in the weak-factor model setting, linking
the sparsity of the loadings with the growth rate (in p) of
the eigenvalues of the covariance. Finally, the work of Bai
and Ng (2008) looks at selecting predictors within a factor
model framework using methods such as lasso, and hard-
thresholding.

Unlike previous research, our methodology implements
regularisation within an EM algorithm framework, allowing
us to robustly handle arbitrary patterns ofmissing data,model
temporal dependence in the processes, and impose weakly
informative (sparse) prior knowledge on the factor loadings.
We argue that in settings where autocorrelation is moderately
persistent, that the feedback provided through our EM pro-
cedure is important in aiding recovery of the factor loadings,
as well as producing accurate forecasts.

The rest of the paper is structured as follows. In Sect. 3
we formalise our DFM model and the sparsity assump-
tions placed on the loading matrices. Section 4 presents a
regularised likelihood estimator for the model parameters,
introduces an EM algorithm to enable finding feasible esti-
mates, and discusses how we implement the method using

the R package sparseDFM (Mosley et al. 2023). Numerical
results, including simulation studies and real data analysis,
are presented in Sects. 5 and 6, respectively. The paper con-
cludes with a discussion of the results, and how the models
and estimators can be further generalised to provide flexibil-
ity to users.

3 The sparse DFM

Consider the p-variate time series {X t } and r factors {Ft }
related according to the model

X t = �0Ft + εt (3)

Ft = AFt−1 + ut ,

where {εt } and {ut } are multivariate white noise processes.
For simplicity we assume E[εtε�

t ] = �ε = diag(σ 2
ε)

and σ 2
ε ∈ R

p
+ is a vector of idiosyncratic variances. Simi-

larly, let E[utu�
t ] = �u and assume the eigenvalues of the

VAR matrix are bounded ‖A‖ < 1, thus the latent process
is assumed stationary. This model corresponds to an exact
DFM, where all the temporal dependence is modelled via
the latent factors.

In this context, our notion of sparsity relates to the assump-
tion that many of the entries in �0 will be zero. For instance,
let the support of the kth column of the loading matrix be
denoted

Sk := supp(�0;·,k) ⊆ {1, . . . , p},

such that sk = |Sk |. We refer to a DFM as being sparse
if sk < p for some or all of the k = 1, . . . , r factors. In
practice, this is an assumption that many of the observed
series are driven by only a few (r ) latent factors, and that for
many series only a subset of the factors will be relevant.

3.1 Consistency and pervasiveness

In the sparse situation, whereby sk < p, we will be able
to model only a subset of the observations with each factor.
To enable us to model all p variables and gain information
relating to the r factors as n, p increase we assume a couple
of conditions on the specification. First, that the support of
the observations, and the union of factor supports is equal,
i.e. ∪r

k=1Sk = {1, . . . , p}, thus all observations are related
to at least one of the factors. Second, that the support for
each factor grows with the number of observed variables,
in that {sk} is a non-decreasing sequence in p for each of
the k factors. Assumptions of this form would allow us, in
principle, to assess the consistency of factor estimation as p
grows.
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This asymptotic analysis in p (and n) contrasts with the
traditional setting with a fixed p—for which the factors
cannot be consistently recovered and can only be approxi-
mated, with error that depends on the signal-to-noise ratio
‖�0�F��

0 ]‖/‖�ε‖, where �F = E[Ft F�
t ] (Bai and Li

2016). Intuitively, this is due to the fact that if p is fixed,
then we cannot learn anything more about the factor at a spe-
cific time t , as we do not get more information on the factors
as n increases, instead we just get more samples (at differ-
ent time points) relating to the series {Ft }. When we go to
the doubly asymptotic, or just p → ∞ setting, then if the
number of factors r is fixed or restricted to slowly grow in
n then we can not only recover structures relating to {Ft },
e.g. the specification of A, but we can also get more infor-
mation relating to the factor at the specific time t (Bai and Li
2016; Barigozzi and Luciani 2022). One way to ensure this
growing information about the factors is to assume that they
are in some sense pervasive—the more variables p we sam-
ple, the more this tells us about the r factors. We note, that
for a more formal analysis of the DFM, a usual pervasive-
ness assumption placed on the loading conditions is given by
Doz et al. (2011), whereby limp→∞ p−1λmin(�

�
0 �0) > 0,

i.e. the average loading onto the least-influential factor is
bounded away from zero.

In this paper, we choose to focus on the empirical perfor-
mance of our estimator, thus we do not formalise the sparsity
assumptions further. However, it is worth noting our empiri-
cal studies meet the pervasiveness assumptions regarding the
support of the factor loadings.

3.2 Identifiability

In the following section, we will consider a QMLE estimator
for the factor model based on assuming Gaussian errors εt
and ut , it is thus of interest to consider how the associated
likelihood relates to the factors and their loadings. Adopting
a Gaussian error structure and taking expectations over the
factors, the likelihood for (3) is given by

L(�) ∝ log det(���F� + �ε)

− 1

2
tr

[
(���F� + �ε)

−1 1

n

n∑
t=1

X tX�
t

]
.

An obvious identifiability issue arises here, such that if
�̃ = �Q, F̃t = QFt , for any unitary matrix Q� = Q−1,
we haveL(�̃) = L(�). Nowconsider the case of �̃0, i.e. per-
forming a rotation on the true loadings, denote the set of all
possible equivalent loading as

E := {�0Q | Q� = Q−1, Q ∈ R
r×r }. (4)

The invariance of the likelihood to elements of this set
mandates that theoretical analysis of the DFM is typically
constructed in a specific frame of reference, cf. Doz et al.
(2011, 2012); Bai and Li (2016); Barigozzi and Luciani
(2022).

Interestingly, our sparsity assumptions restrict the nature
of this equivalence class considerably, in that only loading
matrices with sparse structure are permitted. In general, there
will still be multiple sparse representations that are allowed,
and the issue of the scale invariance remains, however, the
latter can be fixed by imposing a further constraint on the
norms of the loading matrices. In this work, we demonstrate
empirically that it is possible to construct estimators that are
consistent up to rotations that maintain an optimal level of
sparsity, in the sense that the true loading matrix is given by

�0 ∈ argmin
�∈E

r∑
k=1

‖�·,k‖0 , (5)

where ‖�·,k‖0 := |supp(�·,k)| counts the number of
non-zero loadings. More generally (see Fig. 1) we could
consider selecting on the basis of the �q norm, ‖�‖q :=
(
∑

ik �
q
i,k)

1/q , the �1 norm may still provide selection, how-
ever, the �2 norm provides no selection as it maintains the
rotational invariance of the likelihood. In this paper, we
restrict our equivalence set on the basis of the �0 norm, as
above, that is, we specify the true loading matrices as those
that maintain the highest number of zero values after consid-
eration for all unitary linear transformations.

To illustrate how the sparsity constraint (5) breaks the
more general invariance that regular DFMs suffer, we can
consider the quantity ‖�∗

0Qrot(θ)‖q , where Qrot(θ) ∈ R
2×2

is a rotation matrix with argument θ ∈ (−π, π), and �∗
0 ∈

R
10×2 has the first column half filled with ones, and the rest

zero, the second column is set to be one minus the first.
As we see from Fig. 1, without the additional restriction on
our specification of �0, via Eq. 5, we would not be able to
determine a preference for any particular element from the
set E := {�∗

0Qrot(θ) : | θ ∈ {−π, π}}.
Empirically, these identifiability issues mean we are

unable to recover the desired sign of the factor loadings in
our experiments, whilst columns in the loading matrix may
also be permuted, e.g. factor k can be swapped (under per-
mutation of the columns in the loading matrix) with factor l,
for any k, l ∈ {1, . . . , r}. These are the same identifiability
issues which we face in PCA, whereby the eigenvectors can
be exchanged in terms of order and direction.

On review, we were made aware that the idea of using
the �1 penalty to select from a range of rotations has previ-
ously been proposed in Freyaldenhoven (2023) where one
can see a plot similar to Fig 1, the use of more general �p
rotations of the loadings was considered in Liu et al. (2023).
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Fig. 1 The impact of rotation on the function L(�̃(θ)) + ‖�̃(θ)‖q , in
the case of q = 0, 1 the set of feasible �0 from (5) is restricted to the
points θ ∈ {0,± 1

2π,±π} corresponding to either swapping columns,
or flipping signs

Those authors suggest to rotate a preliminary estimate of the
loadings, based on say PCA, however, we propose to com-
bine the choice of which elements are sparse in conjunction
with the estimation of the loadings (and other parameters).As
such, unlike the two-stage estimate and rotate approaches e.g.
Kaiser (1958), we are able to achieve exact sparsity (loadings
are set exactly to zero) in our estimates.

It is important to note, thatwhilstwe can obtain sparse esti-
mates, and these are restricted relative to the regular (dense)
DFM, pitfalls in terms of identification are still present. In
particular, if the columns of the true loading matrix are not
orthogonal, then the initialisation of our procedure (based on
PCA) may lead the estimator to fall into a local maxima that
will not reflect the non-orthogonal nature of the true load-
ings. To ensure identifiability in a more general setting we
require at least r2 restrictions on the model. For example Bai
and Ng (2013) consider a variety of identifiability assump-
tions for PC estimators, and Barigozzi and Luciani (2022) for
a discussion on identifiability with QMLE. Whilst our con-
straint on the �0 norm places constraints on the loadings, the
specific position of the non-zero elements remains flexible
and the relation to identifiability constraints is complex. In
terms of specification of the true loadings, (Freyaldenhoven
2023, Section 4.) provides discussion of a variety of sparsity
patterns which would enable identification (in population).
However, we leave more detailed theoretical analysis of this
aspect to future work.

4 Estimation

Under the Gaussian error assumption, and collecting all
parameters of the DFM (3) in θ = (�, A,�ε,�u), we are
able to write the joint log-likelihood of the data X t and the

factors Ft as:

logL(X, F; θ) (6)

= −1

2
log |P0| − 1

2
(F0 − α0)

�P−1
0 (F0 − α0)

− n

2
log |�u| − 1

2

n∑
t=1

u�
t �−1

u ut

− n

2
log |�ε | − 1

2

n∑
t=1

ε�
t �−1

ε εt

where εt = X t − �0Ft , ut = Ft − AFt−1, and we have
assumed an initial distribution at t = 0 of the factors as
F0 ∼ N (α0, P0).

We propose to induce sparsity in our estimates using
the familiar �1 penalty, with motivation similar to that of
the LASSO (Tibshirani 1996). Alternative penalty functions
are available, however, the convexity of the �1 penalty is
appealing. Even though the overall objective for the param-
eters is non-convex, due to the rotational invariance of the
log-likelihood, the convexity of the penalty ensures we can
quickly and reliably apply the sparsity constraints. We will
make use of this structure in the algorithms we construct
to find estimates in practice. It is worth noting that our
focus here is on the factor loadings, and thus this is the
object we regularise, possible extensions could consider
additional/alternative constraints, for instance on the latent
VAR matrix.

Our proposed estimator attempts to minimise a penalised
negative log-likelihood, as follows

θ̂ = argmin
θ

− logL(X, F; θ) + αR(�) , (7)

where α ≥ 0. A larger α corresponds to a higher degree of
shrinkage on the loadings, e.g. for a larger α wewould expect
more zero values in the loading matrices.

4.1 A regularised expectationmaximisation
algorithm

The regularised likelihood (7) is incomplete, as whilst we
have observations,wedonot observe the factors. To solve this
problem, we propose to construct an EM framework where
we take expectations over the factors (fixing the parameters),
then conditional on the expected factorswemaximise the log-
likelihood with respect to the parameters θ , we iterate this
process until our estimates converge.

The EM algorithm involves calculating and maximising
the expected log-likelihood of the DFM conditional on the
available information	n . Given the log-likelihood in (6), the
conditional expected log-likelihood is
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E
[
logL(X, F; θ)|	n

] = −1

2
log |P0| (8)

− tr
{
P−1
0 E

[
(F0 − α0)(F0 − α0)

�|	n

]}

− n

2
log |�u| − 1

2

n∑
t=1

tr
{
�−1

u E

[
u�
t ut |	n

]}

− n

2
log |�ε | − 1

2

n∑
t=1

tr
{
�−1

ε E

[
ε�
t εt |	n

]}
.

Ultimately, we wish to impose our regularisation on the
expected log-likelihood, our feasible estimator being given
by

θ̂ = argmin
θ

[−E
[
logL(X, F; θ)|	n

] + α‖�‖1
]

. (9)

4.1.1 The maximisation step

We use the following notation for the conditional mean and
covariances of the state:

at |s = E[Ft |	s] ,

P t |s = Cov[Ft |	s] ,

P t,t−1|s = Cov[Ft , Ft−1|	s] .

conditional on all information we have observed up to a time
s, denoted by 	s .

As shown in Bańbura and Modugno (2014), the max-
imisation of (8) results in the following expressions for the
parameter estimates:

α̂0 = a0|n ; P̂0 = P0|n (10)

and letting St |n = at |na�
t |n + P t |n , and St,t−1|n =

at |na�
t−1|n + P t,t−1|n we have

Â =
(

n∑
t=1

St−1|n

)−1 (
n∑

t=1

St,t−1|n

)
, (11)

�̂u = 1

n

n∑
t=1

[
St |n − Â

(
St−1,t |n

)]
. (12)

To minimise (9) for parameters � and �ε , we should also
consider there might be missing data in X t . Let us define a
selection matrix W t to be a diagonal matrix such that

Wt,i i =
{
1 if Xi,t observed

0 if Xi,t missing

and note that X t = W tX t + (I −W t )X t . The update for the
idiosyncratic error covariance is then given by

�̂ε =1

n

n∑
t=1

diag

[
W t

(
X tX�

t − 2X t a�
t |n�̂

�

+ �̂St |n�̂
�
)

+ (I − W t )�̂
∗
ε (I − W t )

]
, (13)

where �̂
∗
ε is obtained from the previous EM iteration. As

noted in Algorithm 1, in practice we update �̂ε after esti-
mating �̂, as the former is based on the difference between
the observations and the estimated common component. The
following section details precisely how we practically obtain
sparse estimates for the factor loadings, the estimates can
then be used in (13) and thus complete the M-step of the
algorithm.

4.1.2 Incorporating sparsity

In this work, we propose to update �̂ by constructing an
Alternative Directed Method of Moments (ADMM) algo-
rithm (Boyd et al. 2011) to solve (9) with the parameters
( Â, �̂u, α̂0, P̂0) fixed. The algorithm proceeds by sequen-
tially minimising the augmented Lagrangian

C(�, Z,U) := −E
[
logL(X, F; θ)|	n

]
(14)

+ α‖Z‖1 + ν

2
‖� − Z + U‖2F ,

where Z ∈ R
p×r is an auxiliary variable, U ∈ R

p×r are the
(scaled)Lagrangemultipliers and ν is the scaling term.Under
equality conditions relating the auxilary (Z) to the primal (�)
variables, this is equivalent to minimising (9), e.g.

arg min
Z=�

max
U

C(�, Z,U)

= argmin
�

[−E
[
logL(X, F; θ)|	n

] + α‖�‖1
]

as (9) is convex in the argument � with all other parameters
fixed, this argument holds for any ν > 0 (Boyd et al. 2011;
Lin et al. 2015).

The augmented Lagrangian (14) can be sequentially min-
imised via the following updates3

�(k+1) = argmin
�

C(�, Z(k),U (k))

Z(k+1) = argmin
Z

C(�(k+1), Z,U (k))

= soft(�(k+1) + U (k);α/ν)

3 For the full derivation of Z and U refer to Boyd et al. (2011). For
the full derivation of � refer to the software paper implementing this
algorithm of Mosley et al. (2023).
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U (k+1) = U (k) + �(k+1) − Z(k+1) .

for k = 0, 1, 2, . . . , until convergence. The first (primal)
update is simply a least-squares type problem, whereby on
vectorising � one finds

vec(�(k+1)) =
(

n∑
t=1

St |n ⊗ W t�
−1
ε W t + ν I pr

)−1

vec

[ n∑
t=1

W t�
−1
ε W tX t a�

t |n

+ ν(Z(k) − U (k))

]
. (15)

Remark 1 (Exploiting dimensionality reduction) For the
�(k+1) update, the dimensionality of the problem is quite
large, leading to a naïve per-iteration cost of orderO(r3 p3).
A more efficient method for this step can be sought
by looking at the specific structure of the matrix to be
inverted. Define At = St |n , Bt = W t�

−1
ε W t , and C =∑n

t=1 W t�
−1
ε W tX t a�

t |n + ν(Z(k) −U (k)), then the solution
(15) can be written as

vec(�) =
(

n∑
t=1

At ⊗ Bt + ν I pr

)−1

vec(C)

= D−1vec(C) .

Since �ε is diagonal in an exact DFM, Bt is also diagonal
and thus D is made up of r2 blocks such that each (i, j)th

block is a diagonal matrix of length p for i, j = 1, . . . , r .
To speed up the computation, we note that ν I pr = ν Ir ⊗ I p
and use the properties of commutationmatrices (Magnus and
Neudecker 2019, p. 54), denoted by K rp, to write

(
n∑

t=1

At ⊗ Bt + ν Ir ⊗ I p

)−1

=
[

n∑
t=1

K rp(Bt ⊗ At )K pr + K rp(I p ⊗ ν Ir )K pr

]−1

= K rp

(
n∑

t=1

(Bt ⊗ At ) + (I p ⊗ ν Ir )

)−1

K pr . (16)

The matrix needing to be inverted in the final line of Eq.
(16) is now a block diagonal matrix. We can extract each of
the 1, . . . , p blocks separately and invert them one-by-one.
The final result from (16) has the expected block structure
with a diagonal matrix in each block but we can stack them
into a cube to save storage. Overall, the operations can be
completed with cost O(r3 p). Given that this needs to be

performed for every iteration of the EM algorithm, our com-
mutation trick results in significant computational gains.

Whilst other optimisation routines could be used to esti-
mate the sparse loadings, the ADMM approach is appealing
as it allows us to split (9) into sub-problems that can easily be
solved. If one wished to incorporate more specific/structured
prior knowledge, this approach can easily be altered to
impose these assumptions, for instance, future work could
consider group-structured regularisation allowing for more
informative prior knowledge on the factor loadings to be
incorporated. Hard constraints, e.g. where we require a load-
ing to be exactly zero can also be incorporated at the Z update
stage by explicitly setting some entries to be zero.

4.1.3 The expectation step

So far, we have discussed how to update the parameters
conditional on the quantities E[Ft |	n] Cov[Ft |	n], and
Cov[Ft , Ft−1|	n]. In our application, under the Gaussian
error assumption, these expectations can be easily calculated
via the Kalman smoother. For completeness, we detail this
step in the context of the DFM model, as well as discussing
some methods to speed up the computation which make use
of the exact DFM structure.

The classicalmultivariateKalman smoother equations can
be slow when p is large. However, since we assume �ε is
diagonal, we can equivalently filter the observations X t one
element at a time, as opposed to updating all p of them
together as in the classic approach (Durbin and Koopman
2012). As matrix inversion becomes scalar divisions, huge
speedups are possible. This approach, sometimes referred
to as the univariate treatment, sequentially updates across
both time and variable index when filtering/smoothing. Let
us define the individual elements X t = (Xt,1, . . . , Xt,p)

�,
� = (��

1 , . . . ,��
p )�, �ε = diag(σ 2

ε1, . . . , σ
2
ε p). Follow-

ing Koopman and Durbin (2000) we expand the conditional
expectations according to

at,i = E[Ft |	t−1, Xt,1, . . . , Xt,i−1] ,

at,1 = E[Ft |	t−1] ,

P t,i = Var[Ft |	t−1, Xt,1, . . . , Xt,i−1] ,

P t,1 = Var[Ft |	t−1] ,

for i = 1, . . . , p and t = 1, . . . , n. The univariate treatment
now filters this series over indices i and t . This is equivalent
in form to the multivariate updates of the classic (Shumway
and Stoffer 1982) approach, except that the t subscript now
becomes a t, i subscript, and the t |t subscript now becomes
t, i + 1.

vt,i = Xt,i − �i at,i ,
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Ct,i = �i P t,i�
�
i + σ 2

ε,i ,

K t,i = P t,i�
�
i C

−1
t,i ,

at,i+1 = at,i + K t,ivt,i ,

P t,i+1 = P t,i − K t,iCt,i K�
t,i ,

for i = 1, . . . , p and t = 1, . . . , n. If Xt,i is missing or Ct,i

is zero, we omit the term containing K t,i . The transition to
t + 1 is given by the following prediction equations:

at+1,1 = Aat,p+1,

P t+1,1 = AP t,p+1A� + �u.

These prediction equations are exactly the same as the mul-
tivariate ones (i.e., predictions are not treated sequentially
but all at once). From our perspective, this univariate treat-
ment may be more appropriately referred to as performing
univariate updates plus multivariate predictions.

Unlike Shumway and Stoffer (1982), the measurement
update comes before the transition; however, we can revert to
doing the transition first if our initial state means and covari-
ances start from t = 0 instead of t = 1. Likewise, univariate
smoothing is defined by:

Lt,i = Im − K t,i�i ,

bt,i−1 = ��
i C

−1
t,i vt,i + L�

t,i bt,i ,

J t,i−1 = ��
i C

−1
t,i �i + L�

t,i J t,i Lt,i ,

bt−1,p = A�bt,0,
J t−1,p = A� J t,0A,

for i = p, . . . , 1 and t = n, . . . , 1, with bn,p and Jn,p

initialised to 0. Again, if Xt,i is missing or Ct,i is zero, drop
the terms containing K t,i . Finally, the equations for at |n and
P t |n are:

at |n = at,1 + P t,1bt,0,

P t |n = P t,1 − P t,1 J t,0P t,1.

These results will be equivalent to at |n and P t |n from the
classic multivariate approach, yet obtained with substantial
improvement in computational efficiency. In order to calcu-
late the cross-covariance matrix P t,t−1|n , we use De Jong
and Mackinnon (1988)’s theorem:

P t,t−1|n = P t |n(P t |t−1)
−1AP t−1|t−1. (17)

4.2 Parameter tuning

There are two key parameters that need to be set for the
DFM model. The first is to select the number of factors, and
the second is to select an appropriate level of sparsity. One

may argue that these quantities should be selected jointly,
however, in the interests of computational feasibility, we here
propose to use heuristics, first selecting the number of factors,
and then deciding on the level of sparsity. This mirrors how
practitioners would typically apply the DFM model, where
there is often a prior for the number of relevant factors (or
more usually an upper bound). Both the number of factors,
and the structure of the factor loadings impact the practical
interpretation of the estimated factors.

4.2.1 Choosing the number of factors

To calculate the number of factors to use in the model we
opt to take the information criteria approach of Bai and Ng
(2002). There are several criteria that are discussed in the
literature, for example, the paper of Bai and Ng (2002) sug-
gests three forms.4 For this paper, we use the criteria of the
following form:

IC(r) = log Vr (F̄, �̄) + r

(
n + p

np

)
logmin(n, p), (18)

where

Vr (F̄, �̄) = 1

np

p∑
i=1

n∑
t=1

ε̄2i,t

and ε̄i,t = Xt,i −�̄i,· F̄t is found using PCAwhen applied to
the standardized data. The preliminary factors F̄ correspond
to the principal components, and the estimated loadings �̄

corresponding to the eigenvectors. Should the data contain
missing values, we first interpolate the missing values using
the median of the series and then smooth these with a simple
moving window.

Remark 2 Wenote that ideally onemaywish to apply the EM
procedure to get more refined estimates of both the factors
and loadings, however, in the interests of computational cost
and in-line with current practice we propose to use the quick
(preliminary) estimates above, denoted with �̄ rather than
�̂.

4.2.2 Tuning the regulariser

Once a number of factors r has been decided, we tune α

by performing a simple search over a logarithmically spaced
grid and minimise a Bayesian Information Criteria defined
as

4 In our experiments and applications, we compared all criteria and they
typically give similar resultswithin±1of each other, for simplicity, only
one IC is presented here.
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BIC(α) = log
(
Vα(F̂, �̂)

)
+ log(np)

np

r∑
k=1

ŝk , (19)

where ŝk is the number of non-zero entries in the kth col-
umn of the estimated loading matrix. In this case, we run the
EM algorithm until convergence (usually after a dozen or so
iterations) and then evaluate the BIC using the resulting F̂
and �̂, this procedure is repeated for each α in the grid. An
example of the resulting curve can be seen in the empirical
application of Sect. 6. To limit searching over non-optimal
values, an upper limit for α is set whereby, if the loadings for
a particular factor are all set to zero, then we terminate the
search.

Remark 3 Tuning both the number of factors, and the reg-
ulariser for these models is a topic of open research and
discussion. Indeed, whilst the criteria of Bai and Ng (2002)
are well used, there is still lively debate about what is an
appropriate number of factors, and this usually determined
by a mix of domain (prior) knowledge and heuristics such as
those presented above. The heuristics provided here seem
reasonable in the applications and experiments we con-
sider, however, we do not claim they are optimal for all
scenarios.

4.3 Implementation

We have implemented the estimation routine as part of the R
package sparseDFM available via CRAN. The EM rou-
tine and ADMM updates are implemented in C++ using
the Armadillo library. Initialisation of the ADMM iterates
utilises a warm start procedure whereby the solution at the
previous iteration of the EM algorithm initialises the next
solution. Furthermore, warm-starts are utilised when search-
ing over an α tuning grid. As noted in other applications
(Hu et al. 2016) starting the ADMM procedure can lead
to considerable speed-ups. With regards to the augmenta-
tion parameter ν in the ADMM algorithm, we simply keep
this set to 1 for the experiments run here, however, it is
possible that tuning this parameter could lead to further
speedups.

On the first iteration of the algorithm, the EM procedure is
initialised by a simple application of PCA to the standardised
data, analagously to how the preliminary factors and loadings
�̄ were found in Sect. 4.2. A summary of the EM algorithm
as a whole is given in Algorithm 1.

Algorithm 1 EM algorithm for SDFM
Input: X , α
Output: �, A, �ε , �u
1: Initialize θ = (�, A,�ε ,�u) via cubic spline fitting (for missing

value imputation) followed by PCA and a VAR fit
2: repeat
3: Obtain at |n and P t |n via univariate Kalman filtering and smooth-

ing �
E-step

4: Calculate P t,t−1|n via Eq. (17) � M-step
5: Update A and �u via Eqs. (11) and (12)
6: Initialize �(0) = Z(0) = U (0) = 0
7: for k = 0, ..., until convergence do
8: �(k+1) = argmin� C(�, Z(k),U (k)) via Eqs. (15) and (16)
9: Z(k+1) = soft(�(k+1) + U (k); α/ν)

10: U (k+1) = U (k) + �(k+1) − Z(k+1)

11: end for
12: Update �ε via Eq. (13)
13: until convergence

5 Synthetic experiments

We provide a Monte-Carlo numerical study to show the per-
formance of our QMLE estimator in terms of recovery of
sparse loadings and the ability of the sparse DFM to fore-
cast missing data at the end of the sample. In particular, we
simulate from a ground-truth model according to:

X t = �Ft + εt , εt ∼ N (0,�ε) ,

Ft = AFt−1 + ut , ut ∼ N (0,�u) ,

for t = 1, . . . , n and X t having p variables. We set the num-
ber of factors to be r = 2 and consider truemodel parameters
of the form:

� = I2 ⊗ 1p/2 =
[
1p/2 0p/2
0p/2 1p/2

]
,

�ε = I p ,

A =
[
a 0
ρ 0

]
,

�u =
[
1 − a2 0

0 1 − ρ2

]
. (20)

The loadingsmatrix� is a block-diagonalmatrixwhich is 1/2
sparse with p/2 ones in each block. We set up the VAR(1)
process of the factors in this way such that we can adjust
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Fig. 2 Median log-MAE score (top panel) and median F1 score (bot-
tom panel) for recovering factor loadings across 100 experiments with
a shaded confidence band of the 25th and 75th percentile. The plots rep-

resent a setting with a fixed n = 100 and varying number of variables
p and where the cross-correlation parameter in the VAR(1) process is
set to ρ = 0 (left plot), ρ = 0.6 (middle plot) and ρ = 0.9 (right plot)

the cross-correlation parameter ρ between the factors while
having factors that always have variance one. This allows
us to understand how important a cross-correlation at non-
zero lags structure is when assessingmodel performance.We
vary the ρ parameter between ρ = {0, 0.6, 0.9}, going from
no cross-correlation to strong cross-correlation between the
factors. We set the covariance of the idiosyncratic errors to
be I p in order to have a signal-to-noise ratio between the
common component �Ft and the errors εt equal to one.

5.1 Recovery of sparse loadings

We apply our sparse DFM (SDFM) estimator to simulated
data from the data generating process above to assess how
well we can recover the true loadings matrix �. We compare
our method to sparse principal component analysis5 (SPCA)
applied to X t to test which settings we are performing better
in. We tune for the best �1-norm parameter in both SDFM
and SPCA using the BIC function (19) by searching over a
large grid of logspaced values from 10−3 to 102. We also
make comparisons to the regular DFM approach of Bańbura

5 The SPCA algorithm is implemented using the elasticnet R package
available on CRAN.

and Modugno (2014) to test the importance of using regular-
isation when the true loading structure is sparse.

The estimation accuracy is assessed with mean abso-
lute error (MAE) between the true loadings according to
(rp)−1‖�̂−�‖1.We also provide results for the F1 score for
the sparsity inducing methods of SDFM and SPCA to mea-
sure how well the methods capture the true sparse structure.
Due to invariance issues discussed, the estimated loadings
may not be on the same scale as the true loadings, we thus
first re-scale the estimated loadings such that their norm is
equal to that of the simulated loadings, i.e. ‖�̂‖2 = ‖�‖2.
The estimated loadings from each model are identified up to
column permutations and therefore we permute the columns
of �̂ to match the true order of �. We do this by measuring
the 2-norm distance between the columns of �̂ and � and
iteratively swapping to match the smallest distances.

Figure2 displays the results for the loadings recovery
where we have fixed the number of observations to be
n = 100 and vary the number of variables between p =
{18, 60, 120, 180} along the x-axis and the cross-correlation
parameter in the VAR(1) process between ρ = {0, 0.6, 0.9}
going from the left to middle to right plot respectively. The
top panel shows the median MAE score (in logarithms) over
100 experiments while the bottom panel shows the F1 scores.
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We provide confidence bands for both representing the 25th
and 75th percentiles. It is clear from the plots that the spar-
sity inducing methods of SDFM and SPCA are dominating
a regular DFM when the true loadings structure is in fact
sparse. It is also clear that SPCA performs poorly, compared
with SDFM, when the cross-section of the data increases
for a fixed n. This is even more noticeable from the F1
score when ρ increases. This highlights the importance of
the SDFM’s ability to capture correlations between factors
at non-zero lags. Unlike SPCA, the EM algorithm of SDFM
allows feedback from the estimated factors when updating
model parameters, allowing it to capture these factor depen-
dencies.We see improved scores inMAE as the cross-section
increases for SDFM. This follows the intuition of the EM
algorithm framework as we learn more about the factors as
the dimension p → ∞. We should remark that for most sce-
narios the F1 score for SDFM is almost one, however, when
p = 18 and ρ is high, the score does drop. In this setting a
low value for α minimises BIC, meaning almost no sparsity
is applied (a very similar result to a regular DFM fit). Here,
the two factors are highly correlated and there is not enough
cross-section to determine factor structure. In practice it is
likely that cross-section will be large and hence this result is
not too concerning.

5.2 Bias-variance tradeoff

In SDFM there is a potential trade-off whereby sparse load-
ing matrices lead the update for each factor at |i to rely on
a subset of the data-points. The mechanism for this reliance
can be seen in our univariate smoother, where the residual vt,i
is calculated from a subset of the factors when �i is sparse,
which then leads into the updates for conditional expecta-
tions. If this sparsity isn’t well calibrated (aligned to true
�) then we may expect to see an increase in the variance
of the estimated factors for a very sparse �̂. To examine the
impact of sparsity in more detail, we run a set of experi-
ments where the solution path of SDFM is evaluated across a
range of α ≥ 0. For each value, we calculate the (empirical)
mean-square error, bias, and variance for both the loadings,
and the estimated factors given by the Kalman smoother, i.e.,
F̂t = at |n . We examine the behaviour of our estimator on
both a sparse and non-sparse DFM model. Specifically, we
assume a true loading given by

� =
[
a p/2 −bp/2
bp/2 a p/2

]

where a p/2 is the p/2 dimensional vector with each entry
set to a. Assuming sparsity we set a = 5, b = 0, and thus
half the elements are equal to zero, in the dense case, we set
b = −a. The idiosyncratic errors are assumed to have unit

variance, whilst the factors are assumed to be independent
white noises (again with unit variance).

The results of this experiment, with expectations approx-
imated by averaging over nsim = 500 simulations are given
in Figures 3, 4. Tomake comparisonsmoremeaningful when
comparing across dimensionalities, the estimates (and true)
loadings have been scaled such that ‖�·,k‖2 = 1 for each
k = 1, 2. It should also be noted that the results (in the fig-
ures) do not extend beyond αmax, which is defined as the
smallest α over the nsim experiments such that one estimated
column of the loading matrix was set entirely to zero. On
the other hand, when α = 0 we recover the standard (dense)
QMLE estimates for the DFM.

In the sparse case (Fig. 3), we repeat the experiment for
two settings of p = 10 and p = 50. For each α, we addi-
tionally track the average sparsity of the solution, with the
lambda which achieves the true level of sparsity (on aver-
age) given by the vertical lines. We see that the sparsity aids
estimation reducing both bias and variance in the loadings
until the optimal level of sparsity is attained. This is as one
may expect, since the shrinkage imposed by the �1 penalty
aligns with an appropriate (sparse) prior in this setting. We
remark that the variance is the dominant term in the MSE
for the loadings. When examining the bias of the factors
(middle-bottom panel), the empirical expectation is taken by
looking at the difference between the simulated and estimated
factors, where we should remember that the simulated fac-
tors are themselves random as opposed to a constant for the
loading matrix. An interesting observation for the factors, is
that as the level of sparsity approaches the optimal level (for
p = 50), we see that the variance of the factor estimates
increases slightly. This aligns with the discussion earlier,
whereby the factor estimates may be seen to be obtained
by putting more weight on a subset of data-points. However,
when the level of sparsity is optimal (and the estimated load-
ings experience low error), estimation of the factors is still
improved relative to the dense model.

The dense case compliments the above analysis, as our
prior is not aligned with the true loading matrix, which is
dense. The results for this setting are given in Fig. 4, for p =
50, n = 50. In this case, the bias-variance trade-off is more
visible, e.g., the bias of the loadings increases (as one may
expect) as the regulariser gets stronger, and the solution gets
sparser (the average sparsity of the solution is given on the
top axis). Interestingly, we see that the overall benefit of the
regulariser is still present, in that theMSE and variance of the
loadings are reduced when a sparse representation is adopted
(estimated). Again, in contrast to the sparse case (Fig. 3), we
see that the ‘’bias” of the factors is increased relative to the
sparse case, however, the MSE of the factors is still reduced
when using the regularised estimator, as compared to the
regular DFM (where α = 0).
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Fig. 3 Bias and variance for estimated loading matrices and factors (using SDFM) as a function of regularisation α in the case where the true � is
sparse (s = p). Vertical lines indicate points in the regularisation path where the average estimated sparsity matches the true level of sparsity

Fig. 4 Bias and variance for estimated loading matrices and factors as a function of regularisation α in the case where the true � is dense
(p = 50, n = 50). The average level of sparsity in the estimates for a given α is plotted on the top axes
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Fig. 5 Average MAE score
forecasting, as a function of the
level of missing data in the last
sample. From left-right: ρ = 0,
ρ = 0.6, ρ = 0.9. Plot indicates
the 50th percentile of
performance across 100
experiments with n = 100,
p = 64

5.3 Forecasting performance

An important motivation for the EM approach is that our
framework can readily handle patterns of missing data. To
examine this in more detail, we examine the ability of SDFM
to forecast missing data at the end of the sample.We simulate
data according to the generating process above (Eq.20) with
n = 200, p = 64 and consider ρ = {0, 0.6, 0.9}, and assume
different patterns ofmissing data at the end of the sample.We
consider a 1-step ahead forecast casewherewe set 25%, 50%,
75% and then 100% of variables to be missing in the final
row of X . When allocating variables to be missing we split
the data up into the two loading blocks and set the first 25%,
50%, 75% and 100% of each loading block to be missing.
For example, the variables 1 to 8 and 33 to 40 are missing in
the 25% missing scenario. We are interested in forecasting
the missing data in the final row of X and we calculate the
average MAE over 100 experiments.

Wemake comparisonswith a sparse vector-autoregression
(SVAR) model6 as this is a very popular alternative forecast-
ing strategy for high-dimensional time series that is based
on sparse assumptions. As our factors are generated using a
VAR(1) process with a sparse auto-regression matrix, we are
interested to see whether SVAR will be able to capture the
cross-factor auto-correlation when producing forecasts. We
also apply a standard AR(1) process to each of the variables
needing to be forecasted as a benchmark comparison.

Figure5 displays the results of the simulations plotting
MAE for each of the 3 methods and each simulation setting.
In all settings we find SDFM to outperform both SVAR and
AR(1). When ρ is set to be 0.9, we find SVAR does improve
its forecasting performance as opposed to when ρ = 0 as the
VAR(1) process driving the factors becomesmore prominent.
The results confirm SDFM’s ability to make use of variables
that are present at the end of the sample when forecasting the
missing variables.We see this by the rise inMAEwhen 100%
of the variables are missing at the end of the sample and the

6 The SVAR algorithm is implemented using the BigVAR R package
available on CRAN. This has a built-in cross-validation mechanism to
tune for the best �1-penalty parameter which we use in our simulations.

model can no longer utilise available data in this final row.
The MAE remains fairly flat as the amount of missingness
rises from 25% to 75% showing SDFM’s ability to forecast
correctly even when there is small amount of data available
at the end of the sample.

5.4 Computational efficiency

To assess the computational scalability, we simulate from
a sparse DFM where � = Ir ⊗ 1p/r and �ε = I p, and
the factors are a VAR(1) with A = 0.8 × Ir and �u =
(1− 0.82) × Ir . We record the number of EM iterations and
the time they take for each �1-norm parameter α up to the
optimal �1-norm parameter α̂ and then take the average time
of a single EM iteration. We repeat the experiment ten times
for each experimental configuration.

The results are presented in Fig. 6, which demonstrates
scalability as a function of n, and p, under different assump-
tions on the number of factors r = 2, 4, 6, 8.As expected, the
cost is approximately linear inn and p,with increasing cost as
a function of the number of factors r . The results demonstrate
the utility of using the univariate smoothing approach as well
as thematrix decompositionwhen calculating required inver-
sions.

6 The dynamic factors of energy
consumption

This section details application of SDFM to a real-world
problem, namely the forecasting and interpretation of energy
consumption. Beyond forecasting consumption in the near-
term future, our aim here is to also characterise the usage in
terms of what may be considered typical consumption pro-
files. These are of specific interest to energy managers and
practitioners, as understanding how energy is consumed in
distinct buildings can help target interventions and strategy
to reduce waste. We also highlight how SDFM, and in partic-
ular our EM algorithm, can be used to impute missing data
and provide further insight.
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Fig. 6 Summary of
computational cost. Top: as a
function of n, with fixed
p = 24. Bottom: as a function
of p, with fixed n = 100.
Average performance across 10
experiments

Fig. 7 Example of time series readings for the 24 days under analysis. The figures present the square root of the consumption in each hour (
√
6kWh)

for different types of building, and illustrate the diverse nature of consumption

6.1 Data and preprocessing

In this application, the data consists of one month of elec-
tricity consumption data measured across p = 42 different
buildings on our universities campus. This data is constructed
based on a larger dataset, which monitors energy at differ-
ent points throughout a building, in our case, we choose to
aggregate the consumption so that one data stream represents
the consumption of a single building. The data is gathered at
10min intervals (measuring consumption in kWh over that
interval), resulting in n = 3, 456 data points spanning 24
days worth of consumption in November 2021, we further
hold out one day ntest = 144 data points to evaluate the
out-of-sample performance of the DFM model. An exam-
ple of time series from the dataset is presented in Fig. 7.
There are many alternative ways one may wish to model this
data, however, one of the key tasks for energy managers is
to understand how consumption in this diverse environment
is typically structured. This is our primary objective in this
study, i.e. we wish to extract typical patterns of consump-
tion that can well represent how energy is used across the
campus. To this end, we decide not to remove the relatively

clear seasonal (daily) patterns in consumption prior to fitting
the factor model, the hope being, that these patterns will be
captured in the derived factors.

Whilst we do have metadata associated with each of these
buildings for sensitivity purposes we choose to omit this in
our discussions here, the buildings are presented as being
approximately categorised under the following headings:

Accomodation Student residences, and buildings primarily
concerned with accomodation/student living.

Admin Office buildings, e.g. HR, administration, and central
university activities.

Misc Other student services, e.g. cinema, shopping, sports
facilities.

Mixed Buildings which mix teaching and accomodation. For
instance, seminar rooms on one floor with accomodation on
another.

Services Management buildings, porter/security offices.

Teaching Teaching spaces like lecture theatres, seminar
rooms.
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Fig. 8 Top: Proportion of variance explained, based on PCA applied to
the scaled andpre-processed (interpolated) dataset.Middle: Information
Criteria (18) as a function of number of retained factors r . Bottom: BIC
as a function of α, vertical line indicates minimiser and the α used in
the subsequent analysis

6.2 Factor estimates and interpretation

To estimate factors we first choose a number of factors
according to criterion (18), which leads to 4 factors being
specified as seen in Fig. 8. Next, we apply SDFM via the
EM procedure in Algorithm 1. We run the algorithm to scan
across a range of α parameters, and in this case, the BIC
criteria suggests to impose moderate sparsity corresponding
to α ≈ 0.01. One may note in Fig. 8 that there is a second
dip in the BIC criteria around α ≈ 0.03 after which the BIC
rapidly rises until the cutoff constraint, after which all �̂i j

are set to zero. In this case, the sparsity pattern of the two
above values of α appear very similar, and the loading of the
variables on the factors appears largely stable as a function
of α. To give some intuition, the loadings �̂ for α = 0.01
and α = 0 are visualised in Fig. 9, a visualisation for the
corresponding factors at |n are given in Fig. 10.

For brevity, we focus on analysing the results of the
SDFM model. Of particular interest for the energy manager
is the interpretation of consumption that the model provides,
where the impact of sparsity is most prominent for the third
and fourth factors in this case. A visualisation of the factor
behaviour on a typicalweekday is given inFig. 11where there
is a clear ordering in the variability of the factor behaviour,
e.g. Factor one has small confidence intervals,whereasFactor
4 has more uncertain behaviour, especially during the work-
ing day. Interestingly, the SDFM only really differs from the
regularDFM in these third and fourth factors, where the latter
exhibits slightly greater variation in behaviour. The SDFM
is able to isolate these further factors to specific buildings.
For example, the building identified by the circle in Fig. 9 is
known to be active primarily throughout the night, and we
see its factor loadings reflect this, e.g. the regular working
day cycles for Factor 1 are not present, however, the evening
and earlymorning features (Factors 3, and 4) are represented.
For the teaching buildings, we see that the loading on Factor
2, and 3, are negative, indicating a sharp drop-off in energy
consumption in the evening/overnight, again, this aligns with
our expectations based on the usage of the facilities.

6.3 Forecasting performance

The primary motivation for applying SDFM in the context of
this application is to aid in interpreting and understanding the
consumption across campus. However, it is still of interest to
examine how forecasts from theDFMcomparewith competi-
tor methods. For consistency, we here provide comparison to
the AR(1) and sparse VAR methods detailed earlier. These
models all harness a simple autoregressive structure tomodel
temporal dependence, specifically regressing only onto the
last set of observations (or factors), i.e. they are Markov
order 1. Our experiments asses performance of the mod-
els in forecasting out-of-sample data, either h = 6 steps
ahead (1h), or h = 36 steps ahead (6h). The forecasts are
updated in an expandingwindowmanner, whereby themodel
parameters are estimated on the 24days of data discussed pre-
viously, the forecasts are then generated sequentially based

Fig. 9 Estimated factor
loadings for the regular DFM
(top) and SDFM (bottom).
Series are categorised according
to one of six building types,
triangles indicate the example
series plotted in Fig. 7
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Fig. 10 Estimated factors (black) with original data (grey) as a function of time using the optimal α = 0.01 chosen according to BIC. When
multiplied by the factor loadings (top) gives the estimated common component

Fig. 11 Average factor profile as a function of time-of-day, t = 0
corresponding to midnight. The solid line is a pointwise average of the
factor ât |n across the 18 weekdays in the sample, confidence intervals
are constructed as ±1.96 the standard-deviation

on n + t = 1, . . . , ntest = 144 − h observations. An exam-
ple of the forecasts generated (and compared to the realised
consumption) is given in Fig. 12. A striking feature of the
DFM based model is its ability to (approximately) time the
increases/decreases in consumption associated with the daily
cycle. These features in the AR(1) and sparse VARmodel are
only highlighted after a period of h steps has passed, e.g. the
models cannot anticipate the increase in consumption.

Amore systematic evaluation of the forecast performance
is presented in Fig. 13, where the average error is calculated
for each building, for each of the different models. We see
that for the 1h ahead forecasts, allmethods perform similarly,
with the SDFMwinning marginally, and the AR(1) forecasts
demonstratingmore heterogeneity in the performance. There
is no clearwinner across all the buildings, formost (30) build-
ings the SDFM forecasts prove most accurate, with the AR
being best on 2, and the SVAR winning on the remaining
10. Moving to the 6h ahead forecasts, the dominance of the

SDFM becomes clear, winning across 39 of the buildings,
and the AR method winning on 3. Interestingly, the SVAR
fails to win on any building, falling behind the simpler AR
approach. This suggests, that in this application the activ-
ity of one building may not impact that of another across
longer time-frames, however, the behaviour of the latent fac-
tors (common component) does provide predictive power.

One could reasonably argue that we should not use these
competitor models in this way for forecasting, e.g. we
would likely look to add seasonal components correspond-
ing to previous days/times, and/or potentially a deterministic
(periodic) trend model. However, these extensions can also
potentially be added to the DFM construction. Instead of
absolutely providing the best forecasts possible, this case-
study aims instead to highlight the differences in behaviour
across the different classes of models (univariate, multivari-
ate sparseVAR, and sparseDFM), and the fact that the SDFM
can borrow information from across the series in a meaning-
ful way, not only to aide interpretation of the consumption,
but also to provide more accurate forecasts by harnessing the
common component.

7 Discussion

In this paper, we have presented a novel method for per-
forming estimation of sparse Dynamic Factor models via a
regularised Expectation Maximisation algorithm. Our anal-
ysis of the related QML estimator provides support for its
ability to recover structure in the factor loadings, up to per-
mutation of columns, and scaling. To our knowledge this is
the first time the QMLE approach has been studied for the
sparse DFM model, and our analysis extends recent investi-
gations by Despois and Doz (2022); Uematsu and Yamagata
(2022) using sparse PCAbased approaches.When factors are
thought to be dependent, e.g. as in our VAR(1) construction,
the QMLE approach appears particularly beneficial relative
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Fig. 12 Example of predicted consumption (
√
kWh) in one (accom-

modation) building on the campus. The top row represents 1h ahead
forecasts based on an expanding window, whilst the bottom represents

6h ahead forecasts. The SDFM and SVAR are tuned on the 24 days of
data prior to that presented in the figure. Confidence intervals for the

SDFM are based on 1.96 × [�̂P t |n�̂
� + �̂ε ]1/2i i

Fig. 13 Plots of the (smallest) forecast errors (MAE) for each building
for (top) 1h ahead forecast, and (bottom) 6h ahead forecast. Perfor-
mance evaluated on one hold out day (144 − h data points). Each bar
is colored according to which method performs best for that build-

ing. Blue: SDFM, red: AR(1), turquoise: SVAR. The solid black line
indicates average performance across all buildings, the grouping of
buildings is indicated via the dashed line under the plots

to SPCA. We also validate that simple BIC based hyper-
parameter tuning strategies appear to be able to provide
reasonable calibration of sparsity in the high-dimensional
setting.

There is much further work that can be considered for
the class of sparse DFM models proposed here, for example
looking at developing theoretical arguments on consistency,
of both factor loadings, and the factor estimates themselves.
In this paper, we opted for an empirical analysis of the EM
algorithm, which we believe is more immediately useful for
practitioners. Theoretical analysis of the proposed estimation
routine is challenging for several reasons. First, one would
need to decide whether to analyse the theoretical minimiser
(QMLE), or the feasible estimate provided by the EM algo-

rithm. Second, we need to consider the performance as a
function of both n and p. For example, Proposition 2 from
Barigozzi and Luciani (2022) gives theoretical results for the
consistency of factor loadings for the regular unregularised
QMLE and for a dense DFM model. A further line of work
would be to generalise these results to the SDFM setting, for
instance, can we show a result analogous to Theorem 1 in Bai
and Li (2016), that shows the QMLE estimator of the load-
ings is equivalent to the OLS estimator applied to the true
factors? These kind of approaches could potentially enable a
formal comparison of the sparse PCA based approaches and
our QMLE approach.

On a more methodological front, one could consider
extending the regularisation strategy presented here to look
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at different types of sparsity assumption, or indeed to encode
other forms of prior. Two potential extensions could be to
relax the assumption that the factor loadings remain constant
over time, or adopt a group-lasso type regularisation on the
loadings. The latter would enable users to associate factors
with pre-defined sub-sets of the observed series, but still in
a somewhat data-driven manner. For instance, in the energy
application we could consider grouping the series via type
of building and encouraging sparsity at this grouped level,
rather than at the building level. This could be particularly
useful if we consider the application to smart meters at the
sub-building, e.g. floor-by-floor, or room-by-room level. One
of the benefits of the ADMMoptimisation routine developed
here is that it easily extended to these settings. Further work
can also consider jointly tuning the level of sparsity along-
side the number of factors to be estimated, e.g., via a joint
BICmeasure. In general, we reflect that the optimal choice of
number of factors (or rank) is an open question, other infor-
mation criteria, or indeed rank regularisation methods (Bai
and Ng 2019) could be investigated here.

A final contribution of our work is to demonstrate the
application of SDFM on a real-world dataset, namely the
interpretation and prediction of smart meter data. Tradition-
ally, application of DFM based models has been within the
economic statistics community, however, there is no reason
they should not find much broader utility. The application
to modelling energy consumption in a heterogeneous envi-
ronment is novel in itself, and serves to raise awareness of
how the DFM can help provide an exploratory tool for com-
plex high-dimensional time series. In this case, not only is the
sparseDFMbeneficial for interpreting consumption patterns,
identifying distinctive profiles of buildings that qualitatively
align with our intuition, e.g. based on type of use, but also
in forecasting consumption ahead of time. With the latter,
the DFM can borrow from buildings with similar consump-
tion profiles to better predict consumption peaks/dips further
ahead in time. Further applications of our proposed SDFM
estimator can be found in our software paper (Mosley et al.
2023), that also provides guidance on how to implement
the methods in R. In particular, the paper demonstrates an
application of the DFM to predicting trade-in-goods flows
showing that assuming sparse factors can improve forecast
performance relative to the DFM, and that the structure of
the loadings can be substantially altered as a function of α.

To conclude, we remark that adding sparsity in the DFM
framework seems to be feasible in the sense that we can
construct estimators that can reliably recover this structure.
As shown in our experiments, the QMLE approach we pro-
pose here compares favourably with more simplistic sparse
PCA approaches, especially in the setting where there is
dependence between the factors and in the high-dimensional
setting. Overall the sparse DFM provides a useful alterna-
tive to other high-dimensional time series models, for both

predictive and inferential tasks. An additional benefit of the
EM approach is its ability to readily handle arbitrary pat-
terns of missing data, an issue often faced in the analysis of
high-dimensional time series.
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