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Abstract
Generalised hyperbolic (GH) processes are a class of stochastic processes that are used to model the dynamics of a wide
range of complex systems that exhibit heavy-tailed behavior, including systems in finance, economics, biology, and physics.
In this paper, we present novel simulation methods based on subordination with a generalised inverse Gaussian (GIG)
process and using a generalised shot-noise representation that involves random thinning of infinite series of decreasing jump
sizes. Compared with our previous work on GIG processes, we provide tighter bounds for the construction of rejection
sampling ratios, leading to improved acceptance probabilities in simulation. Furthermore, we derive methods for the adaptive
determination of the number of points required in the associated random series using concentration inequalities. Residual
small jumps are then approximated using an appropriately scaled Brownian motion term with drift. Finally the rejection
sampling steps are made significantly more computationally efficient through the use of squeezing functions based on lower
and upper bounds on the Lévy density. Experimental results are presented illustrating the strong performance under various
parameter settings and comparing the marginal distribution of the GH paths with exact simulations of GH random variates.
The new simulation methodology is made available to researchers through the publication of a Python code repository.

Keywords Generalised inverse Gaussian process · Lévy process · Series representations · Monte Carlo methods · Stochastic
differential equations

1 Introduction

The statistical properties of randomly evolving phenomena in
many real-world applications can be studied using stochastic
differential equations. The randombehaviour in such systems
are typically characterised through a Brownian motion term
which implicitly assumes that some version of the Central-
limit theorem is valid for the observed random behaviour.
However, numerous dynamical systems exhibit more heavy-
tailed characteristics than the Gaussian, see for example
applications in financial modelling (Mandelbrot 1963; Fama
1965; Cont and Tankov 2003), communications (Azzaoui
and Clavier 2010; Fahs et al. 2012; de Freitas et al. 2017;
Liebeherr et al. 2012; Shevlyakov andKim 2006;Warren and
Thomas 1991), signal processing (Nikias and Shao 1995),
image analysis (Achim et al. 2001, 2006), audio process-
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ing (Godsill and Rayner 1998; Lombardi and Godsill 2006),
climatological sciences (Katz and Brown 1992; Katz et al.
2002), in the medical sciences (Chen et al. 2010) and for
the understanding of sparse modelling/compressive sensing
(Unser et al. 2014a, b;Unser andTafti 2014;Amini andUnser
2014; Carrillo et al. 2016; Lopes 2016; Zhou and Yu 2017;
Tzagkarakis 2009; Achim et al. 2010). In such cases the
stochastic driving term can be characterised by a Lévy pro-
cess which generalises the sample paths and the marginal
distributions of the term to include other parametric families
such as the Poisson process and the α-stable process.

In general a continuous-time randomly evolving system
may possess a continuous random Brownian motion compo-
nent as well as sudden discrete random changes at random
times (‘jumps’). General Lévy processes encompass both of
these classes of random evolution such that the increments
of the process are independent and stationary (Bertoin 1997;
Ken-Iti 1999). Here we focus on a broad class of such pro-
cesses that are composed purely of jumps.

While there is substantial theoretical and applied inter-
est in simulation of Lévy processes per se, in our work
we are ultimately concerned with modelling and inference
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for systems driven by non-Gaussian Lévy processes, such
as the linear stochastic differential equation (SDE) model
(Øksendal 2014)

dX(t) = AX(t)dt + hdW (t)

where the more standard Brownian motion is replaced
by a non-Gaussian Lévy process {W (t)} (the so-called
Background-DrivingLévyprocess (BDLP)Barndorff-Nielsen
and Halgreen 1977), see for example our earlier work with
Stable law Lévy processes (Lemke et al. 2015; Godsill et al.
2019; Riabiz et al. 2017). The work presented here though
is focussed purely on the generation of the underlying Lévy
processes, with the extension of our point process methods to
the SDE case being in principle straightforward, as demon-
strated in Lemke et al. (2015), Godsill et al. (2019) for the
Stable law case. The convergence results from extending this
paper to the linear SDE case are presented in Costa et al.
(2023).

In this paper,we study simulationmethods for a very broad
class of Lévy processes, the generalised hyperbolic (GH)
process (Barndorff-Nielsen et al. 2001; Eberlein and Ham-
merstein 2004) [also known as generalised hyperbolic Lévy
motion (Eberlein 2001)], which captures various degrees of
semi-heavy- or heavy-tailed behaviour such that the tails
may be designed to be lighter than non-Gaussian Stable laws
(which possess infinite variance (Samorodnitsky and Taqqu
1994), but heavier than a Gaussian (Borak et al. 2011. Some
important special cases include the hyperbolic process (Eber-
lein and Keller 1995), the normal inverse-Gaussian process
(NIG) (Barndorff-Nielsen 1978) and the variance-gamma
process (Madan and Seneta 1990), which were introduced
in the context of modelling empirical financial returns, and
the Student-t process (see also Shah et al. 2014; Solin and
Särkkä 2015 which was introduced as an extension to Gaus-
sian processes inMachine Learning, although such processes
are not equivalent to the Student-t Lévy processes simulated
here). The GH distribution is defined as a normal variance-
mean mixture where the required mixing distribution is the
generalised inverse-Gaussian (GIG) distribution. Our cur-
rent work improves a point process simulation framework
for GIG processes (Godsill and Kındap 2021), extending it
to the variance-mean mixture representation of the GH pro-
cess, and in addition providing substantial modifications and
improvements to the original methods.

The simulation of the sample paths of Lévy processes is a
key area of research that enables the use of Lévy processes in
inference and decision-making. In Rosiński (2001), Rosiński
surveys generalised shot-noise series representations of Lévy
processes and their relation with point processes, and this is
the general framework adopted for the current paper (see
Godsill and Kındap 2021; Lemke and Godsill 2015; Riabiz
et al. 2020; Godsill et al. 2019 and references therein, for

our previous studies using this methodology). Other rele-
vant developments include (Barndorff-Nielsen 1997a) which
present the theory of NIG processes, Rydberg (1997) which
present approximate samplingmethods for theNIG case, and
Barndorff-Nielsen and Shephard (2001) which give applica-
tions of shot-noise series based methods for non-Gaussian
Ornstein-Uhlenbeck (OU) processes. Exact simulationmeth-
ods for the class of tempered stable (TS) processes are studied
in Zhang (2011), Qu et al. (2021), Grabchak (2019), Sabino
(2022). In addition, approximate simulation methods for GH
Lévy fields, which are infinite-dimensional GH Lévy pro-
cesses, are studied in Barth and Stein (2017).

It is shown in Barndorff-Nielsen and Halgreen (1977) that
the GH distribution is infinitely divisible and hence can be
the distribution of a Lévy process at time t = 1. The GH
distribution possesses a five parameter probability density
function defined for random variables on the real line as fol-
lows (Eberlein 2001; Eberlein and Hammerstein 2004)

fGH (x) = a(λ, α, β, δ)
(
δ2 + (x − μ)2

)(λ− 1
2 )/2

× Kλ− 1
2

(
α
√

δ2 + (x − μ)2
)
exp(β(x − μ))

(1)

where

a(λ, α, β, δ) = (α2 − β2)λ/2

√
2παλ− 1

2 δλKλ(δ
√

α2 − β2)

Kν(·) is the modified Bessel function of the second kind
with index ν. The parameter λ ∈ R characterises the tail
behaviour,α > 0 determines the shape, 0 ≤ |β| < α controls
the skewness, μ ∈ R is a location parameter and δ > 0
is the scale parameter. Alternative parametrisations of the
probability density function in the limiting parameter settings
are discussed in Eberlein and Hammerstein (2004).

The three parameter probability density function
fG IG(λ, δ, γ ) of the GIG distribution may be linked to
Eq. (1) via a variance-mean mixture of Gaussians Eber-
lein (2001). Using the parameterisation γ = √

α2 − β2,
the variance-mean mixture for the GH distribution may be
expressed as

fGH (x) =
∫ ∞

0
N (x;μ + βu, u) fG IG

(
u; λ, δ,

√
α2 − β2

)
du

(2)

where u is a GIG distributed random variable. Random
variate generation algorithms for a GIG variable are stud-
ied in Devroye (2014); Hörmann and Leydold (2013), and
their extension to GH distributed random variables are then
obtained through the normal variance-mean construction
shown in Eq. (2).
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GH processes are generally intractable for simulation
since the Lévy density associated with the GIG process is
expressed as an integral involving certain Bessel functions.
Simulation methods based on generalised shot-noise repre-
sentation of the GIG Lévy process are given in Godsill and
Kındap (2021). These methods rely on the construction of
dominating point processes that are tractable for simulation,
followed by thinning methods derived from upper bounds on
the intractable integrand. In the earlier work the series gen-
erated must be truncated to a finite number of terms which
needs to be tuned by the user, and hence may be inefficient
in some parameter regimes.

In this paper we show for the first time a practical method
for simulation of paths of the GH process, based on sub-
ordination with a GIG process. The paper provides several
significant contributions. The first contribution is to provide
improved simulationmethods for the underlyingGIGprocess
based on tighter bounds for the construction of dominat-
ing processes and the corresponding thinning method, and
a proof of convergence is provided for the first time, based
on an earlier result by Rosiński (2001). Secondly, we derive
adaptive truncation methods for approximating the infinite
series involved in our representation which allow for the
first time an automatic choice of the truncation level for the
jumps of the GIG process. Once truncation has occurred we
then approximate the residual error committed by adding an
appropriately scaled Brownian motion term with drift, moti-
vated by Central-limit theorem-style results for the residual
error. Furthermore, the thinning (rejection sampling) meth-
ods are made significantly more computationally efficient
through the introduction of ‘squeezing’ functions that both
upper- and lower-bound the acceptance probabilities. Finally,
acceptance probability bounds are derived and convergence
properties of the novel simulation methods are compared
against themethods introduced inGodsill andKındap (2021).
The simulationmethodology ismade available to researchers
through the publication of a Python code repository.1

The paper is organised as follows. Section2 presents the
necessary preliminaries for simulation of Lévy processes and
their corresponding point processes, using a generalised shot-
noise approach. Section3 introduces the specific form of the
GIG Lévy density and derives various bounds on these den-
sities as well as constructing dominating Lévy densities from
the related bounds. Section 4 gives simulation algorithms for
the GH Lévy process based on the simulation of the previ-
ously discussed dominating Lévy processes and associated
thinning methods. Section5, presents an adaptive truncation
method for the infinite series involved in generalised shot-
noise representations and a method of approximating the
residual series. Section6 gives a practical sampling algorithm
based on squeezing functions for increasing the efficiency

1 https://github.com/yamankindap/gh-levy-simulation.

of simulation. Section7 presents example simulations, com-
paring the distribution of the paths generated with exact
simulations of GH random variates.

2 Generalised shot-noise representations

In this section series representations of Lévy processes given
in Rosiński (2001), Kallenberg (2002) that enable their sim-
ulation are reviewed. Let W (t) be a Lévy process on some
time interval of interest t ∈ [0, T ] having no drift or Brown-
ian motion part, and hence containing purely jumps; then the
characteristic function (CF) is given by Kallenberg (2002,
Corollary 13.8), as

E
[
exp(iuW (t))

]

= exp

(
t

[∫

R\{0}
(eiuw − 1 − iwI(|w| < 1))Q(dw)

])

where Q is a Lévy measure on R0 := R\{0} satisfying∫
R0

min(1, w2)Q(dw) < ∞. Under this definition W (T ) is
a random variable whose distribution is infinitely divisible.

We will also require a more restricted class of non-
negative, non-decreasing Lévy processes X(t), the subor-
dinator process, whose CF is given by:

E
[
exp(iuX(t))

] = exp

(
t

[∫ ∞

0
(eiux − 1)QX (dx)

])

and which has the more restrictive requirement that

∫ ∞

0
min(1, x)QX (dx) < ∞ (3)

QX (dx) defines the density of jumps for {X(t)} such that
the expected number of jumps of size x ∈ [a, b] is μ[a,b] =∫ b
a QX (dx) and the number of jumps is a Poisson random
variable with mean μ[a,b]. We will be dealing with infinite
activity processes for which

∫ ∞
0 QX (dx) = ∞ and hence

there are almost surely an infinite number of jumps in time
interval [0, T ].

In order to generate sample paths from theGHprocess, we
will use the so-called variance-mean mixture representation
of its Lévy measure,

QGH (dw) =
∫ ∞

0
N (dw;μ + βx, x)QGIG(dx) (4)

which is the normal mixture representation of the GH Lévy
measure, analogous to the normal mixture representation of
its probability density (2), and where QGIG is the Lévy mea-
sure of a Generalised inverse Gaussian (GIG) subordinator
process (see Barndorff-Nielsen 1997b; Wolpert and Ickstadt
1998b and the following section for further detail). Hence
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through standard subordination techniques the GH process
can be expressed as W (t) = μW X(t) + σW B(X(t)) where
B is a standard Brownian motion (Simon 1999; Veraart and
Winkel 2010; Barndorff-Nielsen and Shephard 2012).

It is first required to simulate a realisation {xi }∞i=1 of the
jumps from the underlying GIG subordinator process and to
use a generalised shot-noise representation (Rosiński 2001)
to simulate from QGH :

W (t) =
∞∑
i=1

Wi IVi≤t − tci (5)

where {Vi ∈ [0, T ]}∞i=1 are i.i.d. uniform random variables
representing the arrival time of jumps, and independent of
the jump sizes {Wi }∞i=1, which are independently distributed
as:

Wi ∼ N (μ + βxi , xi )

Note that Rosiński (2001) proves the almost sure conver-
gence of such series toW (t) for xi non-increasing, i.e. jumps
of X(t) are generated in order of decreasing size. The terms
ci are centering terms which we may take as zero for the GH
class of processes as a result of the condition in Eq. (3).

The task remaining is to generate ordered realisations of
the jumps in the subordinator, {xi }∞i=1. Here the Lévy-Itô
integral representation of X(t) may be invoked:

X(t) =
∫

(0,∞)

xN ([0, t], dx) (6)

where N is a bivariate point process with mean measure
Leb. × Q on [0, T ] × R0 which may be represented with
Dirac functions as

N =
∞∑
i=1

δVi ,Xi (7)

where again {Vi ∈ [0, T ]}∞i=1 are i.i.d. uniform random vari-
ables independent of {Xi }which represent the arrival time of
jumps, {Xi }∞i=1 are the jump sizes, and T is the duration of
the time interval considered. If we substitute N into Eq. (6)
we obtain a series representation of X(t) as:

X(t) =
∞∑
i=1

Xi IVi≤t (8)

The classical method to generate such a subordinator
process, with Lévy measure Q (Ferguson and Klass 1972;
Rosiński 2001; Wolpert and Ickstadt 1998a, b) simulates
jumps of decreasing size by an appropriate transformation
of the epochs of a unit rate Poisson process. Briefly, an
arbitrarily large number of epochs {
i }i=1,2,... is randomly

simulated from a unit rate Poisson process. These terms
may be transformed into the jump magnitudes of the corre-
sponding subordinator process by calculating the upper tail
probability of the Lévy measure Q+(x) = Q([x,∞)) < ∞.
A corresponding non-increasing function h(·) is then defined
as the inverse tail probability, h(γ ) = inf x {x; Q+(x) = γ }
which assigns a non-increasing jump value to each of the
ordered Poisson epochs, {Xi = h(
i )}. Thus, small
i values
correspond to large jumps h(
i ) and vice versa. It can be seen
from this definition that E[#{Xi ; Xi ≥ x}] = Q+(x): this
procedure is essentially following an analogous formulation
to the standard inverse CDF method for random variate gen-
eration, but applied here to a point process intensity function
instead of a probability distribution. Formally, the mapping
theorem (Kingman 1992) ensures that the resulting trans-
formed process is a Poisson process having the correct Lévy
density Q(x).

Since there is an infinite number of jumps in the series
representation (8), the simulation is in practice truncated at
a finite number of terms and the remaining small jumps are
ignored or approximated somehow (Asmussen and Rosiński
2001), a topic that is addressed in Sect. 5 of this paper.

The generic method reviewed here requires the explicit
evaluation of the inverse tail measure h(γ ) which is not
tractable for the GIG process. An alternative approach was
devised in Godsill and Kındap (2021), simulating from a
tractable dominating point process N0 having Lévy mea-
sure Q0 such that dQ0(x)/dQ(x) ≥ 1, ∀x ∈ (0,∞) for
which h0(γ ) is directly available. The resulting samples
from N0 are then thinned with probability dQ(x)/dQ0(x)
as in (Lewis and Shedler 1979; Rosiński 2001) to obtain the
desired jump magnitudes {xi } of the subordinator process.
The generic procedure is given in Algorithm 1 for a point
process Q(x) having dominating density Q0(x) ≥ Q(x)
and h0(γ ) = infx {x; Q+

0 (x) = γ }.

Algorithm 1 Generation of the jumps of a point process
having Lévy density Q(x) and dominating process Q0(x) ≥
Q(x).
1. Assign N = ∅,
2. Generate the epochs of a unit rate Poisson process, {
i ; i =

1, 2, 3...},
3. For i = 1, 2, 3...,

– Compute xi = h0(
i )

– With probability Q(xi )/Q0(xi ), accept xi and assign N =
N ∪ xi .

Note that our work here will later require partial simula-
tion of such point processes on measurable sets A on jump
magnitudes, i.e. QA(x) = IA(x)Q(x), and typically A will
simply be an interval (a, b], b ≤ ∞. This partial simulation
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is straightforwardly achieved by replacing Step 2) in Algo-
rithm 1 with the steps provided in Algorithm 2.

Algorithm 2 Generation of Poisson process epochs corre-
sponding to jump magnitudes xi ∈ (a, b] where a > b.

– i = 1, 
0 = Q+
0 (a)

– While 
i−1 < Q+
0 (b)

1. Ei ∼ Exp(1)
2. 
i = 
i−1 + Ei
3. i = i + 1

– Return {
 j }i−1
j=1

As before Q+
0 (x) = Q0([x,∞)) and Exp(1) is the unit

mean exponential distribution, and noting that theWhile loop
in Algorithm 2 may in practice be replaced with a draw from
M ∼ Poisson(Q+

0 (b)−Q+
0 (a)) followed by M i.i.d. draws

for the (unordered) 
i terms from a uniform distribution
U (Q+

0 (b) − Q+
0 (a)).

A rejection sampling procedure such as Algorithm 1 may
be viewed within the generalised shot-noise framework of
Rosiński (2001) in which the process is expressed as a
random function of the underlying Poisson epochs {
i } as
follows

X(t) =
∑
i

H(
i , ei )I(Vi ≤ t)

where H(γ, .) is a non-increasing function of γ , and ei are
random variables or vectors drawn independently across i .
Rosiński (2001) Th. 4.1 proves the almost sure convergence
of such series under mild conditions. In particular the con-
ditions of Th. 4.1 (A) are satisfied. First the distribution of
H(·, ·) is expressed as a probability kernel σ(γ, A) for mea-
surable sets A:

P{H(γ, e) ∈ A} = σ(γ, A)

and it follows from the Marking Theorem (Kingman 1992)
that the resulting point process has Lévy measure

Q(A) =
∫ ∞

0
σ(γ, A)dγ

Applying this to verify Algorithm 1, take H(γ, e) =
h(γ )e and e ∈ {0, 1} binomial with P{e = 1} = Q(h0(γ ))/

Q0(h0(γ )).Wewill consider only non-zero jump sizes, since
jumps of size zero do not impact the point process, and indeed
Lévy measures Q(dx) are not defined for x = 0. Then it fol-
lows for measurable sets A0 = A\0 that

σ(γ, A0) = I(h0(γ ) ∈ A0)Q(h0(γ ))/Q0(h0(γ ))

and hence the resulting Lévy measure is

Q1(A0) =
∫ ∞

0
I(h0(γ ) ∈ A0)Q(h0(γ ))/Q0(h0(γ ))dγ

=
∫

x∈A0

Q(x)/Q0(x)(Q0(x)dx) =
∫

x∈A0

Q(x)dx,

as required. Here we have made the substitution x = h0(γ ),
so γ = Q+

0 (x) and dγ=Q0(x)dx . While the procedure of
Algorithm 1 is well known to be valid, see e.g. Rosiński
(2001), we include the sketch proof here since we will use
more sophisticated versions of it to prove validity of our own
algorithms for GIG andGHprocess simulation in subsequent
sections of the paper.

Simple and well known examples of the procedures in
Algorithms 1 and 2 are the tempered stable and gamma pro-
cesses,whichwewill require as part our sampling procedures
for the GIG process later in the paper. The corresponding
Lévy densities and thinning probabilities for these cases are
given in Godsill and Kındap (2021) (Section 2.1 and 2.2).
The associated sampling algorithms are repeated here for
reference purposes in Algorithms 3 and 4.

Algorithm 3 Generation of the jumps of a tempered stable
process with Lévy density QT S(x) = Cx−1−αe−βx (x ≥ 0)
where 0 < α < 1 is the tail parameter and β ≥ 0 is the
tempering parameter.
1. Assign NT S = ∅,
2. Generate the epochs of a unit rate Poisson process, {
i ; i =

1, 2, 3...},
3. For i = 1, 2, 3...,

– Compute xi =
(

α
i
C

)−1/α
,

– With probability e−βxi , accept xi and assign NT S = NT S ∪ xi .

Algorithm 4 Generation of the jumps of a gamma process
with Lévy density QGa(x) = Cx−1e−βx (x ≥ 0) where
C > 0 is the shape parameter andβ > 0 is the rate parameter.
1. Assign NGa = ∅,
2. Generate the epochs of a unit rate Poisson process, {
i ; i =

1, 2, 3...},
3. For i = 1, 2, 3...,

– Compute xi = 1
β(exp(
i /C)−1) ,

– With probability (1 + βx) exp(−βxi ), accept xi and assign
NGa = NGa ∪ xi .
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3 The generalised inverse Gaussian Lévy
process

In this section, the GIG Lévy process and its Lévy mea-
sure are defined. Tractable bounds on this Lévy measure are
required in order to simulate the GIG (and hence the GH)
process, and in this section we provide improved bounds
compared with those in Godsill and Kındap (2021). These
improved bounds are proven in the following section to have
higher acceptance rates for the rejection sampling procedures
that underlie the algorithms.

The density of the Lévy measure of a GIG process (Eber-
lein and Hammerstein 2004, Eq. 74), following a change of
variables as in Godsill and Kındap (2021), is given by

e−xγ 2/2

x

⎡
⎣ 2

π2

∫ ∞

0

e− z2x
2δ2

z|H|λ|(z)|2 dz + max(0, λ)

⎤
⎦ , x > 0

where Hλ(z) = Jλ(z) + iYλ(z) is the Bessel function of the
third kind, also known as theHankel function of the first kind,
which is defined in terms of Jλ(z), the Bessel function of the
first kind, and Yλ(z), the Bessel function of the second kind.
The presence of an integral involving the Bessel function
makes the simulation of such processes intractable except
for certain edge cases.

Naturally, the GIG Lévy density can be divided into two
terms as

QGIG(x) = 2e−xγ 2/2

π2x

∫ ∞

0

e− z2x
2δ2

z|H|λ|(z)|2 dz

and a second term, present only for λ > 0 as

λe−xγ 2/2

x
, x > 0 (9)

which is the Lévy density of a gamma process with shape
parameter λ and rate γ 2/2. It is straightforward to simulate
from this second term using Algorithm 4, thus our attention
is directed towards simulation of the point process with Lévy
density QGIG(x).

In order to avoid any direct calculation of the inte-
gral in QGIG(x), the general approach proposed in Godsill
and Kındap (2021) is to consider a bivariate point process
QGIG(x, z) on (0,∞) × (0,∞) which has, by construc-
tion, the GIG Lévy density as its marginal, i.e. QGIG(x) =∫ ∞
0 QGIG(x, z)dz such that

QGIG(x, z) = 2e−xγ 2/2

π2x

e− z2x
2δ2

z|H|λ|(z)|2 (10)

Thus, joint samples {xi , zi } are simulated from the point
process with intensity function QGIG(x, z), from which the
samples {xi } are retained as samples from QGIG(x). How-
ever, simulation from QGIG(x, z) is still intractable because
of the presence of the Bessel function. This is overcome by
constructing tractable bivariate dominating point processes
with intensity function Q0

GIG(x, z) and thinning with prob-
ability QGIG(x, z)/Q0

GIG(x, z) to yield samples from the
desired process with Lévy density QGIG .

The generic approach proposed here will involve a
marginal-conditional factorisation of both point processes:

Q0
GIG(x, z) = Q0

GIG(x)Q0
GIG(z|x),

QGIG(x, z) = QGIG(x)QGIG(z|x),

where Q0
GIG(z|x) and QGIG(z|x) are proper probability

densities, i.e.
∫ ∞
0 Q0

GIG(z|x)dz = 1 and
∫ ∞
0 QGIG(z|x)dz

= 1. Thus z may be interpreted as a marking variable and
(x, z) ∈ (0,∞) × (0,∞) form a bivariate Poisson pro-
cess (Kingman 1992). The generic algorithm for sampling
QGIG(x) is then given below, followed by its proof of valid-
ity under the generalised shot noise approach.

Algorithm 5 Generation of the jumps of a point pro-
cess having Lévy density Q(x) = ∫ ∞

0 Q(x)Q(z|x)dz and
dominating process Q0(x, z) = Q0(x)Q0(z|x) such that
Q0(x, z) ≥ Q(x, z).
1. Assign N = ∅,
2. Generate Poisson epochs {
i } and corresponding ordered jump

sizes {xi = h0(
i )} from the marginal process Q0(x) using Algo-
rithm 1

3. For i = 1, 2, 3...,

– Simulate zi ∼ Q0(z|xi )
– With probability Q(xi , zi )/Q0(xi , zi ), accept xi and assign

N = N ∪ xi .

We now proceed to prove the convergence of Alg. 5 using
Rosiński (2001) Th. 4.1 (A). Note that the proof is here pre-
sented for the first time.

Lemma 1 The Generalised Shot noise process X(t) =∑
i H(
i , ei )I(Vi ≤ t) generated according to Algorithm 5

converges a.s. to the Poisson point process with Lévy density
Q(x).

Proof Algorithm 5 generates, for each point xi , an auxil-
iary marking variable zi ∼ Q0(zi |xi ), and an acceptance
variable ai ∈ {0, 1} that is binomial with P{ai = 1} =
Q(xi , zi )/Q0(xi , zi ). Thus set ei = (zi , ai ) ∈ (0,∞) ×
{0, 1} and hence

H(γ, (zi , ai )) = h0(γi )ai
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Fig. 1 Plot of Bessel function bounds, ν = 0.8. z0 set equal to z1 and

z1 =
(
21−2νπ

(ν)2

)1/(1−2ν)

with resulting probability kernel

σ(γ, A0) =
∫ ∞

0
I(h0(γ ) ∈ A0) (Q(h0(γ ), z)

/Q0(h0(γ ), z)) Q0(z|h0(γ ))dz

= I(h0(γ ) ∈ A0)Q(h0(γ ))/Q0(h0(γ ))

for all measurable sets A0 not containing 0. Hence the result-
ing Lévy measure is

Q1(A0) =
∫ ∞

0
I(h0(γ ) ∈ A0)Q(h0(γ ))/Q0(h0(γ ))dγ

=
∫

x∈A0

Q(x)dx

as required. The remaining conditions in Rosiński (2001) Th.
4.1 (A) are simply that Q(·) is a Lévy density, which is true
by construction (it is a subordinator and hence satisfies (3)),
and a second technical condition that is always satisfied by
subordinators, see Rosiński (2001) Remark 4.1. ��

A new set of bounds on z|Hν(z)|2 is now given in The-
orem 1 below, which will be used in bounding the overall
function (10). The bounds are graphically illustrated for the
two distinct parameter ranges in Figs. 1 and 2. The proof of
the theorem follows a similar scheme toTheorem2 inGodsill
and Kındap (2021) and is hence only briefly stated:

Theorem 1 Choose a point z0 ∈ (0,∞) and compute H0 =
z0|Hν(z0)|2. This will define the corner point on a piece-
wise lower or upper bound. Choose now any 0 ≤ z1 ≤(
21−2νπ

(ν)2

)1/(1−2ν)

and define the following functions:

A(z) =
⎧
⎨
⎩

2
π

(
z1
z

)2ν−1
, z < z1

2
π
, z ≥ z1

Fig. 2 Plot of Bessel function bounds, ν = 0.3. z0 set equal to z1 and

z1 =
(
21−2νπ

(ν)2

)1/(1−2ν)

and

B(z) =
⎧⎨
⎩
H0

(
z0
z

)2ν−1
, z < z0

H0, z ≥ z0

Then, for 0 < ν ≤ 0.5,

A(z) ≥ z|Hν(z)|2 ≥ B(z) (11)

and for ν ≥ 0.5,

A(z) ≤ z|Hν(z)|2 ≤ B(z) (12)

with all inequalities becoming equalities when ν = 0.5, and
both A(z) bounds (left side inequalities) becoming tight at
z = 0 and z = ∞.

Proof The proof is an obvious extension of Theorem 2 in
Godsill and Kındap (2021) where we now allow for a range

of values 0 ≤ z1 ≤
(
21−2νπ

(ν)2

)1/(1−2ν)

. This follows from

the fact that any value of z1 less than
(
21−2νπ

(ν)2

)1/(1−2ν)

, the

function A(z) is shifted to the left and lies below of those
plotted in Fig. 1 and above of those plotted in Fig. 2, hence
providing a valid but less tight bounding function. ��
Remark 1 Choice of any z1 <

(
21−2νπ

(ν)2

)1/(1−2ν)

leads to a

poorer (less tight) bound on the true function z|Hν(z)|2. In
particular, as z1 → 0 we obtain the crude and well known
(Watson 1944, Section 13.75) bound A(z) = 2

π
, which was

employed in a first version of our method for |λ| > 0.5 (God-
sill and Kındap 2021, Theorem 1). This asymptotic bound
forms the loosest bound A(z) and all other valid choices of
z1 yield increasingly tight bounds on the required Lévy den-
sity QGIG(x, z), which we employ in our new and improved
sampling algorithms for |λ| > 0.5.
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Corollary 1 For any positive z and fixed |λ|, the following
bounds are obtained by replacing z|Hν(z)|2 with A(z) and
B(z) in the definition of QGIG(x, z) (10). For the case |λ| ≥
0.5 we have:

QB
GIG(x, z) ≤ QGIG(x, z) ≤ QA

GIG(x, z) (13)

and for 0 < |λ| ≤ 0.5 we have:

QA
GIG(x, z) ≤ QGIG(x, z) ≤ QB

GIG(x, z) (14)

with equality being achieved in both cases for |λ| = 0.5.
Here QA

GIG(x, z) is defined as:

QA
GIG(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−xγ 2/2

πx

z2|λ|−1e− z2x
2δ2

z2|λ|−1
1

, z < z1

(15a)

e−xγ 2/2

πx
e− z2x

2δ2 , z ≥ z1 (15b)

and QB
GIG(x, z) defined as:

QB
GIG(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2e−xγ 2/2

π2x

z2|λ|−1e− z2x
2δ2

H0z
2|λ|−1
0

, z < z0

(16a)

2e−xγ 2/2

π2x

e− z2x
2δ2

H0
, z ≥ z0 (16b)

Remark 2 Setting z0 = z1, it can be clearly seen that the ratio
QA

GIG(x, z)/QB
GIG(x, z) = πH0/2, is a constant indepen-

dent of the value of x and z. This fact, which can be clearly
visualised in Figs. 1 and 2 (note the log-scale), is utilised later
in our development of a retrospective ‘squeezed’ sampler, see
Sect. 6.

Corollary 2 The bound in Eq. (15a) can be rewritten in fac-
torised form as

QA
N1

(x, z) = e−xγ 2/2

πx

z2|λ|−1e− z2x
2δ2

z2|λ|−1
1

I0<z<z1

= e−xγ 2/2

πx1+|λ|
(2δ2)|λ|γ (|λ|, z21x/(2δ2))

2z2|λ|−1
1


(|λ|)√Ga(z||λ|, x/(2δ2))
γ (|λ|, z21x/(2δ2))

I0<z<z1

= QA
N1

(x)QA
N1

(z|x)

where

QA
N1

(z|x) = 
(|λ|)√Ga(z||λ|, x/(2δ2))
γ (|λ|, z21x/(2δ2))

I0<z<z1

is a conditional right-truncated square-root gamma density2

with its associated normalising constant. The marginal term
QA

N1
(x) is a modified tempered |λ|-stable process.3

Corollary 3 The bound in Eq. (15b) can be rewritten in a
similar way as

QA
N2

(x, z) = e−xγ 2/2

πx
e− z2x

2δ2 Iz≥z1

= e−xγ 2/2

πx3/2
(2δ2)0.5
(0.5, z21x/(2δ

2))

2

(0.5)

√
Ga(z|0.5, x/(2δ2))


(0.5, z21x/(2δ
2))

Iz≥z1

= QA
N2

(x)QA
N2

(z|x)

where

QA
N2

(z|x) = 
(0.5)
√
Ga(z|0.5, x/(2δ2))


(0.5, z21x/(2δ
2))

Iz≥z1

is a conditional left-truncated square-root gamma density
with its associated normalising constant. The marginal term
QA

N2
(x) is a modified tempered 0.5-stable process.

In Corollaries 2 and 3, the point process intensities cor-
respond marginally to a (modified) tempered stable process
in x , and conditionally to a truncated

√
Ga density for z.

This feature enables sampling from the dominating bivariate
point process QA

GIG(x, z) by first sampling x and then, con-
ditional on the value of x , sampling a corresponding z value.
Here, for the parameter range |λ| ≥ 0.5, we are extend-
ing the approach previously derived only for the parameter
range 0 < |λ| < 0.5 (Godsill and Kındap 2021), (and here
summarised in Sect. 4.3). Notice that allowing z1 → 0, as
discussed in the Remark following Theorem 1, will result
in our previous crude bounding function for the parameter
range |λ| > 0.5 (Godsill and Kındap 2021, Corollary 1).

Since the functions QA
GIG(x, z) and QB

GIG(x, z) form
both upper and lower bounds on the target point process

2 The square-root gammadensity
√
Ga is the density of X0.5 when X ∼

Ga(x |α, β), which has the probability density function
√
Ga(x |α, β) =

2βα


(α)
x2α−1e−βx2 .

3 The lower/upper incomplete gamma functions are defined, for
Re(s) > 0, as:

γ (s, x) =
∫ x

0
t s−1e−t dt, 
(s, x) =

∫ ∞

x
t s−1e−t dt .
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QGIG(x, z), see (13) and (14), we are able to construct effec-
tive sampling algorithms for all parameter ranges |λ| > 0
based upon rejection sampling ideas, see Sects. 4.1 and
4.3. Furthermore, in Sect. 6 we use the corresponding lower
bounds to create efficient ‘squeezed’ versions of these algo-
rithms. In the case of 0 < |λ| ≤ 0.5, the new algorithm is a
direct development of that presented in Godsill and Kındap
(2021), while in the case |λ| > 0.5 the algorithm now fol-
lows the same structure as for the other parameter range, in
contrast with the previous approach fromGodsill andKındap
(2021) that uses a cruder bound. In all parameter ranges we
propose significant improvements over the previous work,
including better bounds for simulation of the marginal pro-
cess, adaptive truncation, simulation of a Gaussian residual
term and squeezed rejection sampling.

In the next sectionwe show how tomove from simulations
of the underlyingGIG process towards our ultimate aim here,
which is simulation of the GH process.

4 Simulating GH processes

In this section simulation algorithms for theGHLévy process
are presented. Our approach relies on the definition of a GH
process as a subordinated Brownian motion where the sub-
ordinator is a GIG process (Barndorff-Nielsen and Halgreen
1977; Barndorff-Nielsen 1978). In this approach, jumps sizes
{xi } are first generated from the underlying GIG process with
intensity QGIG , see previous sections for full details. Then,
jumps for the corresponding GH process are obtained as

wi = μ + βxi + σ
√
xiui , ui

iid∼ N (0, 1) (17)

for some β ∈ R and σ > 0.
The conditional simulation of the GH process is common

to all parameter regimes and is presented in Algorithm 6.
Given jump times and magnitudes (Vi ,Wi ) the correspond-
ing value of the GH Lévy process at t is given in Eq. (5).

We now detail the methods for generation of the underly-
ing GIG process.

4.1 The case for |�| ≥ 0.5

Here a new algorithm is presented for simulation in the
parameter range |λ| ≥ 0.5, based on the bound QA

GIG(x, z)
derived in previous sections, which is an improved bound
compared with that in Godsill and Kındap (2021) Algorithm
3. The process associated with the Lévy density QA

GIG(x, z)
can be considered as a marked point process split into two
independent point processes N1 and N2 having factorised
(marginal-conditional) intensity functions as given in Corol-
laries 2 and 3, respectively.

Algorithm 6 Simulation of GH process.
1. Generate a large number of points xi from the GIG Lévy process

with intensity QGIG , see Algorithms 8 and 10 for |λ| ≥ 0.5, or
Algorithms 12 and 14 for 0 < |λ| ≤ 0.5,

2. If λ > 0, draw an additional set of points {x ′
j } from the gamma

process λe−xγ 2/2

x , x > 0, see (9) and take the union {xi } ← {xi } ∪
{x ′

j },
3. For each point xi , draw an independent and identically distributed

random variate ui ∼ N (0, 1),
4. The corresponding GH jump sizes wi are obtained as:

wi = μ + βxi + σ
√
xi ui

5. For each jump size wi , draw an independent and identically dis-
tributed jump time vi ∼ U(0, T ).

6. The process W (t) is then obtained as:

W (t) =
∞∑
i=1

wiI(vi ≤ t)

Both N1 and N2 correspond to a marginal modified tem-
pered stable process for x and a conditional truncated

√
Ga

density for z. Each simulated pair (x, z) is accepted with
probability equal to the ratio QGIG(x, z)/ QA

GIG(x, z). As a
result of the piecewise form of QA

GIG(x, z), the accept/reject
steps for N1 and N2 may be treated independently and the
union of points from the two processes forms the final set of
GIG points. The thinning probabilities for points drawn from
QA

N1
and QA

N2
are then:

QGIG(x, z)

QA
N1

(x, z)
= 2

π |H|λ|(z)|2
(

z2|λ|
z2|λ|−1
1

) (18)

QGIG(x, z)

QA
N2

(x, z)
= 2

π z|H|λ|(z)|2 (19)

Due to the presence of upper and lower incomplete gamma
functions in the marginal point process envelopes QA

N1
(x)

and QA
N2

(x) defined as

QA
N1

(x) = e−xγ 2/2

πx1+|λ|
(2δ2)|λ|γ (|λ|, z21x/(2δ2))

2z2|λ|−1
1

(20)

and

QA
N2

(x) = e−xγ 2/2

πx3/2
(2δ2)0.5
(0.5, z21x/(2δ

2))

2
(21)

direct simulation from theseLévydensities are still intractable
and hence dominating processes and associated thinning
methods are required.
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For QA
N1

(x) the following bound is used to formulate a
tractable dominating process (Neuman 2013a, Theorem 4.1):

aγ (a, x)

xa
≤ (1 + ae−x )

(1 + a)
(22)

so that the dominating process can be expressed as:

QA
N1

(x) ≤ e−xγ 2/2

πx

z1(1 + |λ|e−(z21x)/(2δ
2))

2|λ|(1 + |λ|)

= z1
2π(1 + |λ|)

(
e−xγ 2/2

|λ|x + e−x(γ 2/2+z21/(2δ
2))

x

)

= QA,d
N1

(x) (23)

Notice that the point process associated with QA,d
N1

(x)
may be considered as the union of two independent gamma
processes. Points are then independently accepted with prob-
ability QA

N1
(x)/QA,d

N1
(x). The corresponding algorithm is

given in Algorithm 7.

Algorithm 7 Sampling from QA
N1

(x).

1. N = ∅,
2. Generate a gamma process N 1

Ga having parameters a1 =
z1

2π |λ|(1+|λ|) and β1 = γ 2/2,

3. Generate a gamma process N 2
Ga having parameters a2 = z1

2π(1+|λ|)
and β2 = γ 2/2 + z21/(2δ

2),
4. N = N 1

Ga ∪ N 2
Ga ,

5. For each x ∈ N accept with probability

(2δ2)|λ|γ (|λ|, (z21x)/(2δ2))|λ|(1 + |λ|)
x |λ|z2|λ|

1 (1 + |λ|exp (−z21x/(2δ
2)

)
)

otherwise reject and delete x from N .

Having simulated the x values from the marginal point
process associated with QA

N1
(x), the corresponding z values

are simulated from a right-truncated square-root gamma den-
sity as in Corollary 2 and accept-reject steps are carried out
to obtain samples from the N1 point process. The complete
procedure is outlined in Algorithm 8.

For the simulation of QA
N2

(x) in (21), a bound on the term


(0.5, z21x/(2δ
2)) is established by using the well-known

equivalence 
(0.5, x) = √
π erfc(

√
x) where erfc(·) is the

complementary error function. Two valid upper bounds on
the gamma function are then obtained directly from Chiani
et al. (2003) as


(0.5, x) ≤ √
π

[
1

2
e−2x + 1

2
e−x

]
≤ √

πe−x (24)

While the first inequality is tighter, using it requires the
simulation of two TS processes instead of a single process.

Algorithm 8 Generation of N1 for |λ| ≥ 0.5
1. N1 = ∅,
2. Simulate xi from the marginal point process associated with

QA
N1

(x) as given in Algorithm 7,
3. For each xi , simulate a zi from a truncated square-root gamma

density


(|λ|)√Ga(z||λ|, xi/(2δ2))
γ (|λ|, z21xi/(2δ2))

I0<z<z1

4. With probability

QGIG(xi , zi )

QA
N1

(xi , zi )
= 2

π |H|λ|(zi )|2
(

z2|λ|
i

z2|λ|−1
1

)

accept xi , i.e. set N1 = N1 ∪ xi , otherwise discard xi .

Hence in the current implementation the right hand bound
in Eq. (24) is chosen and the associated dominating point
process envelope is then given by

QA
N2

(x) ≤ δe
−

[
z21
2δ2

+ γ 2

2

]
x

√
2πx3/2

= QA,d
N2

(x) (25)

which can be simulated as a TS process and for each
xi the probability of acceptance is 
(0.5, z21xi/(2δ

2))/

(
√

πe−z21xi /(2δ
2)). The corresponding algorithm is given in

Algorithm 9.

Algorithm 9 Sampling from QA
N2

(x).

1. Generate a tempered stable process NMT S with parameters C =
δ√
2π

, α = 0.5 and β = z21
2δ2

+ γ 2

2 using Algorithm 3.

2. For each point x ∈ NMT S , accept with probability

(0.5, z21x/(2δ

2))/(
√

πe−zs1 ps2x/(2δ
2)), otherwise reject and delete

x from NMT S .

Using the simulated values xi , the corresponding zi values
are generated from the conditional left-truncated square-root
gammadensityQA

N2
(z|x) and thewhole procedure is outlined

in Algorithm 10.
Note that the bound shown in Eq. (24) is a significant

improvement over the bound based on the complete gamma
function as used in Alg. 7 of Godsill and Kındap (2021).
The choice of using a single TS process instead of the two
TS processes associated with the sharper inequality is due to
ease of implementation (fewer independent point processes
to generate). However we do note that the right hand bound
in Eq. (24) would lead to additional point rejections, and
hence in some critical applications the tighter bound may be
preferred, and parallel processing of the two generated TS
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Algorithm 10 Generation of N2 for |λ| ≥ 0.5
1. N2 = ∅,
2. Simulate xi from the marginal point process associated with

QA
N2

(x) as shown in Algorithm 9,
3. For each xi , simulate a zi from a truncated square-root gamma

density


(0.5)
√
Ga(z|0.5, xi/(2δ2))


(0.5, z21xi/(2δ
2))

Iz≥z1

4. With probability

QGIG(xi , zi )

QA
N2

(xi , zi )
= 2

π zi |H|λ|(zi )|2

accept xi , i.e. set N2 = N2 ∪ xi , otherwise discard xi .

processes might indeed reduce computational burden even
further.

Finally, the set of points N = N1 ∪ N2 is a realisation
of jump magnitudes corresponding to a GIG process having
intensity function QGIG(x). The associatedGHprocessmay
be obtained using Algorithm 6.

Remark 1 ote that whenever λ > 0, the set of points gen-
erated from the process with intensity function in Eq. (9) is
added (by taking a union operation) to the set of points com-
ing from QGIG(x) in Algorithms 8 and 10 for |λ| ≥ 0.5, or
Algorithms 12 and 14 for 0 < |λ| ≤ 0.5, to obtain the full
set of jumps {xi } from the required GIG process.

Remark 2 otice that for γ = 0, the gamma process N 1
Ga in

Algorithm7 is notwell-defined since its rate parameter is zero
and hence N1 cannot be simulated. In this case, set z1 = 0
and then only samples from N2 are required. In this case the
conditional density for z becomes the complete square-root
gamma density instead of a truncated one and the marginal
modified tempered stable process for x reduces to a standard
TS process that does not require any further thinning. The
simulation algorithm then becomes equivalent to Alg. 3 in
Godsill and Kındap (2021). For all other values of γ we set

z1 ≤
(
21−2νπ

(ν)2

)1/(1−2ν)

(with ν = |λ|), in order to achieve the
improved bound according toTheorem1,with the best bound

corresponding to z1 =
(
21−2νπ

(ν)2

)1/(1−2ν)

, the case plotted in

Fig. 1. Lower values of z1 correspond to moving the lower
bound in Fig. 1 to the left: clearly still a valid bound but
suboptimal.

4.2 Acceptance rates for simulation fromQA
GIG(x, z)

We now analyse the acceptance rates for the new procedure.
This will enable a quantitative comparison with our previous
methods inGodsill andKındap (2021). The acceptance prob-
abilities for the two point processes N1 and N2 are obtained

from (18) and (19) as

ρ1(x, z) = 2

π |H|λ|(z)|2
(

z2|λ|
z2|λ|−1
1

)

ρ2(x, z) = 2

π z|H|λ|(z)|2 .

The expected value of the acceptance rates for fixed x may
be evaluated w.r.t. the sampling densities for random variable
Z , i.e. QA

N1
(z|x) (20) and QA

N2
(z|x) (21):

E [ρ1(x, Z)] =
∫ z1

0

2

π z|H|λ|(z)|2
(

z
z1

)2|λ|−1


(|λ|)√Ga(z||λ|, x/(2δ2))
γ (|λ|, z21x/(2δ2))

dz

E [ρ2(x, Z)] =
∫ ∞

z1

2

π z|H|λ|(z)|2

(0.5)

√
Ga(z|0.5, x/(2δ2))


(0.5, z21x/(2δ
2))

dz

However, the presence of the term z|H|λ|(z)|2 in both inte-
grals makes them intractable. The expected acceptance rates
may then be bounded by using the same functions A(z) and
B(z), introduced in Theorem 1, to replace z|H|λ|(z)|2. Note
that only the lower bound on the acceptance rates are of inter-
est here since upper bounding both expectations using A(z)
leads to a trivial upper bound of 1 on the acceptance rates.

The acceptance rates associated with the N1 and N2 pro-
cesses can be lower bounded using Theorem 2 and the proof
is provided in the Appendix.

Theorem 2 Choose a point z0 ∈ [0,∞), compute H0 =
z0|H|λ|(z0)|2 and fix z1 =

(
21−2νπ

(ν)2

)1/(1−2ν)

with ν = |λ|.
For any fixed x and |λ| ≥ 0.5, the following lower bounds
on E [ρ1(x, Z)] and E [ρ2(x, Z)] apply:

E [ρ1(x, Z)] ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
πH0

[ (
z1
z0

)2|λ|−1 γ (|λ|, z
2
0 x

2δ2
)

γ (|λ|, z
2
1 x

2δ2
)

+
(

z21x
2δ2

)|λ|−0.5

(
γ (0.5,

z21 x

2δ2
)−γ (0.5,

z20 x

2δ2
)

)

γ (|λ|, z
2
1 x

2δ2
)

]
, z0 ∈ [0, z1)

2
πH0

(
z1
z0

)2|λ|−1
, z0 ∈ [z1,∞)

(26)
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Fig. 3 Plot of optimised lower bounds on ρ1(x) and ρ2(x), for various
|λ| > 0.5. δ = 0.1 in all cases and bounds do not depend on γ

E [ρ2(x, Z)]≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2
πH0

, z0 ∈ [0, z1]
2

πH0

[

(0.5,

z20x

2δ2
)


(0.5,
z21x

2δ2
)

+
(

z20x
2δ2

)0.5−|λ|

(
γ (|λ|, z

2
0x

2δ2
)−γ (|λ|, z

2
1x

2δ2
)

)


(0.5,
z21x

2δ2
)

]
, z0 ∈ (z1,∞)

(27)

The proof for Theorem 2 can be found in the Appendix.
Note that the corner point z0 ∈ (0,∞) may be chosen arbi-
trarily, while z1 is a fixed quantity in order to ensure a correct
bounding function. Therefore the lower bound may be opti-
mised for both N1 and N2 w.r.t. z0 for each x value, leading
to:

ρ1(x) := max
z0

{E [ρ1(x, Z)]}

and

ρ2(x) := max
z0

{E [ρ2(x, Z)]}

Note that the acceptance rates for our previous algorithm
Section 3.1.1 ofGodsill andKındap (2021) can be considered
as a limiting case of the new procedure corresponding to
z1 = 0, and hence the new acceptance rates are at least
as large as the previous rates for each x > 0. In Fig. 3, the
optimised lower and upper bounds on the acceptance rates for
the new procedure are shown. Additionally for comparison,
the lower bounds on the previous algorithm (z1 = 0) are

plotted in Fig. 3. This illustrates that the new procedure is
a significant improvement in terms of the acceptance rate
for N2 (i.e. E[ρ2(x, Z)]) for small |λ| values, and a slight
improvement for larger |λ| values.

For each fixed x value, the optimised lower bounds ρi (x)
in Fig. 3 are obtained using an implementation of Sequential
Least Squares Programming (SLSQP) in the standard Python
library SciPy. The optimiser is applied toEqs. (26) and (27) to
obtain ρ1(x) and ρ2(x). Note that the sequence of x values in
Fig. 3 are log-linearly spaced. Additionally, for several fixed
x and λ values, we plot the lower bounds in Eqs. (26) and
(27) as a function of z0 in Figs. 4 and 5. These show a clearly
defined optimum that is not centred on any obvious solution
such as z1, although z0 = z1 would be a reasonable first
guess if optimisation were to be avoided. These show that
the optimal point of z0 lies to the left of z1 for all N1 cases
in Fig. 4, and to the right of z1 in N2 cases, Fig. 5.

Here we provide lower bounds on the expected accep-
tance probability across the whole range x ∈ (0,∞). We can
observe from Fig. 3 that the optimised lower bounds ρi (x)
exhibit monotonicity (not proven) and limiting behaviour
as x → 0 and x → ∞ and that these limits can thus be
postulated as a uniform lower bound on the average accep-
tance probability. The limits for each ρi (x) can be found
fromsimple asymptotic expansions of the incomplete gamma
functions4 as,

lim
x→0

E[ρ1(x, Z)] ≥
⎧
⎨
⎩

2
πH0

, z0 ∈ [0, z1)
2

πH0

(
z1
z0

)2|λ|−1
, z0 ∈ [z1,∞)

so that it can be seen that the best (highest) lower bound is
limx→0 E[ρ1(x, Z)] ≥ 2/(πH0), for any z0 ≤ z1, the term
z1/z0 being less than unity for z0 > z1 and the power 2|λ|−1
being greater than 0 in the second case.

Similarly for ρ2(x), we have:

lim
x→∞E[ρ2(x, Z)] ≥

⎧
⎨
⎩

2
πH0

, z0 ∈ [0, z1)
2

πH0

(
z1
z0

)2|λ|−1
, z0 ∈ [z1,∞)

and once again the best (highest) lower bound is seen to be
limx→0 E[ρ2(x, Z)] ≥ 2/(πH0), for any z0 ≤ z1.

In both cases it is then clear that the optimal choice of z0 ∈
[0, z1] is z0 = z1, since H0 = z0|H|λ|(z0)|2 is monotonically
decreasing as a function of z0 (see, informally, Fig. 1, and
more formally the monotonicity arguments of Theorem 1 of
Godsill and Kındap (2021)). Thus the optimal lower bound
on expected acceptance probability is found as, for both N1

and N2,

4 γ (s, x)
x→0→ xs/s and 
(s, x)

x→∞→ xs−1e−x .
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Fig. 4 Plot of the lower bounds for N1 in Eq. (26) as a function of
z0 ∈ [10−12, 105]

Fig. 5 Plot of the lower bounds for N2 in Eq. (27) as a function of
z0 ∈ [10−12, 105]

2

π z1|H(z1)|2

and we would postulate that this is a lower bound on the
expected acceptance probability for any value of x (observing
the apparent monotonic behaviour of the average acceptance
probabilities in Fig. 3). A more detailed analysis beyond the
current scope would study the expected acceptance rate as a
function of the truncation level, see Eq.(20) and Figs. 5 and
6 from Godsill and Kındap (2021) for a possible approach.

4.3 The case of 0 < |�| ≤ 0.5

This parameter range was covered in Godsill and Kındap
(2021) and we review the basics here for completeness. We
provide several improvements to this approach, including the
more efficient sampling of point process N1 as two gamma
processes, improved bounds on the incomplete gamma func-
tions, as well as the adaptive truncation method, residual
approximation and the squeezed sampling methods detailed
in subsequent sections.

The process associatedwith the upper boundingLévy den-
sity QB

GIG(x, z) for this parameter range, see (16a) and (16b),
can be considered once again as a marked point process split
into two independent point processes N1 and N2 having fac-
torised intensity functions as given in Corollary 2 of Godsill
and Kındap (2021) as

N1 : e−xγ 2/2

π2x1+|λ|
(2δ2)|λ|γ (|λ|, z20x/(2δ2))

H0z
2|λ|−1
0


(|λ|)√Ga(z||λ|, x/(2δ2))
γ (|λ|, z20x/(2δ2))

Iz<z0

= QB
N1

(x)QB
N1

(z|x)

N2 : e−xγ 2/2

π2x3/2
(2δ2)0.5
(0.5, z20x/(2δ

2))

H0


(0.5)
√
Ga(z|0.5, x/(2δ2))


(0.5, z20x/(2δ
2))

Iz≥z0

= QB
N2

(x)QB
N2

(z|x)

with

QB
N1

(x) = e−xγ 2/2

π2x1+|λ|
(2δ2)|λ|γ (|λ|, z20x/(2δ2))

H0z
2|λ|−1
0

(28)

and

QB
N2

(x) = e−xγ 2/2

π2x3/2
(2δ2)0.5
(0.5, z20x/(2δ

2))

H0
(29)

Again, N1 and N2 correspond to a marginal modified tem-
pered stable process for x and a conditional truncated

√
Ga

density for z. The upper and lower incomplete gamma func-
tions in the marginal point process envelopes QB

N1
(x) and

QB
N2

(x) require the use of dominating processes and thin-
ning methods similar to Sect. 4.1.

Using the bound in Eq. (22) the density QB
N1

(x) can
be transformed into two independent gamma processes and
the methodology is summarised in Algorithm 11. This
simulation algorithm improves upon the method shown in
Algorithm 4 of Godsill and Kındap (2021) by transforming
the problem of simulating a tempered stable process into that
of simulating two gammaprocesses,which are known to con-
verge rapidly in terms of the number of points required in Eq.
(5). The convergence of these sums are discussed further in
Sect. 5. Having simulated points xi from the marginal den-
sity QB

N1
(x), zi values are simulated from a right-truncated

square-root gammadensity and the accept-reject step for each
xi is performed as shown in Algorithm 12.

For QB
N2

(x), the incomplete gamma function is upper
bounded by the complete gamma function to produce a pro-
cess that is tractable for simulation and the corresponding
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Algorithm 11 Sampling from QB
N1

(x).

1. N = ∅,
2. Generate a gamma process N 1

Ga having parameters a1 =
z0

π2H0|λ|(1+|λ|) and β1 = γ 2/2,

3. Generate a gamma process N 2
Ga having parameters a2 =

z0
π2H0(1+|λ|) and β2 = γ 2/2 + z20/(2δ

2),

4. N = N 1
Ga ∪ N 2

Ga ,
5. For each x ∈ N accept with probability

(2δ2)|λ|γ (|λ|, (z20x)/(2δ2))|λ|(1 + |λ|)
x |λ|z2|λ|

0 (1 + |λ|exp (−z20x/(2δ
2)

)
)

otherwise reject and delete x from N .

Algorithm 12 Generation of N1 for 0 < |λ| ≤ 0.5
1. N1 = ∅,
2. Simulate xi from the marginal point process associated with

QB
N1

(x) as shown in Algorithm 11,
3. For each xi , simulate a zi from a truncated square-root gamma

density


(|λ|)√Ga(z||λ|, xi/(2δ2))
γ (|λ|, z20xi/(2δ2))

I0<z<z0

4. With probability

QGIG(x, z)

QB
N1

(x, z)
= H0

|H|λ|(zi )|2
(

z2|λ|
i

z2|λ|−1
0

)

accept xi , i.e. set N1 = N1 ∪ xi , otherwise discard xi .

algorithm is given in Algorithm 13. For each xi value sim-
ulated from the marginal density, a corresponding z value
is sampled from the conditional left-truncated square-root
gamma density and the whole methodology is outlined in
Algorithm 14.

Note that the bound defined in Eq. (24) could also be used
in this parameter regime to obtain a more efficient sampling
algorithm; however, the acceptance rates using the simpler
bound are found to work well.

Algorithm 13 Sampling from QB
N2

(x).

1. Generate a tempered stable process NMT S with parameters C =
(2δ2)0.5
(0.5)

π2H0
, α = 0.5 and β = γ 2/2,

2. For each point x ∈ NMT S , accept with probability

(0.5, z20x/(2δ

2))/
(0.5), otherwise reject and delete x from
NMT S .

Lastly, the set of points N = N1 ∪ N2 is a realisation
of jump magnitudes corresponding to a GIG process having
intensity function QGIG(x) and once again the correspond-
ing GH process may be obtained using Algorithm 6.

Algorithm 14 Generation of N2 for 0 < |λ| ≤ 0.5
1. N2 = ∅,
2. Simulate xi from the marginal point process associated with

QB
N2

(x) as shown in Algorithm 13,
3. For each xi , simulate a zi from a truncated square-root gamma

density


(0.5)
√
Ga(z|0.5, xi/(2δ2))


(0.5, z20xi/(2δ
2))

Iz≥z0

4. With probability

QGIG(x, z)

QB
N2

(x, z)
= H0

zi |H|λ|(zi )|2

accept xi , i.e. set N2 = N2 ∪ xi , otherwise discard xi .

5 Adaptive truncation and Gaussian
approximation of residuals

The shot noise methods discussed in previous sections
involve infinite series of decreasing random variables and
in practice must be truncated after a finite number of terms.
In this section we propose novel methods for adaptive deter-
mination of the number of terms required in the truncated
series. This adaptive truncation can both save substantially
on the computational burden of generating very long shot
noise series, and also ensure (probabilistically) a specified
error tolerance. Furthermore, we provide lower bounds on
themean and variance of the GIG andGH residual sequences
which will be used in order to approximate the residual term
as Brownian motion once the adaptive truncation procedure
is terminated.

The adaptive truncation and residual approximationmeth-
ods studied in this section are designed tomatch themoments
of a realisation from a GH process at time t to its theoret-
ical moments. For a subordinator Lévy process X(t) with
Lévy measure Q(dx) and finite first and second moments,
the mean and variance of the subordinator may be expressed
as Barndorff-Nielsen and Shephard (2012)

E[X(t)] = t

T

∫ ∞

0
xQ(dx) (30)

and

Var[X(t)] = t

T

∫ ∞

0
x2Q(dx) (31)

where the distribution of the process at time T , denoted as
X(T ), defines the associated random variable. These inte-
grals are intractable for the GIG case. Hence upper and lower
bounds on these integrals are studied.

For normal variance-mean processes W (t), such as the
GH process, the associated Lévy measure can be expressed
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as a function of the subordinator Lévy measure QGIG(dx)
as in (4). Hence the mean and variance of the GH process
can be found in terms of the moments of a GIG process as

E[W (t)] = t

T
βE[X(T )] (32)

and

Var[W (t)] = t

T

(
β2Var[X(T )] + σ 2

E[X(T )]
)

(33)

where β and σ are the skewness and scale parameters as
defined in (17).

In Sect. 5.1 we study adaptive truncation of infinite series
for subordinator processes and provide associated algorithms
for the GIG case. In principle the adaptive truncation scheme
can also be described in terms of the GHmoments using (32)
and (33). This transformation to theGHmoments is explicitly
required for theGaussian approximation of residualmoments
of the GH process and lower bounds on these residuals are
studied in Sect. 5.2. The Gaussian approximation we use is
motivated by proofs of the convergence of normal variance-
mean mixture residuals to a Brownian motion in all cases of
the GH process except for the normal-gamma process, and
these results will be presented in a forthcoming publication.

5.1 Adaptive truncation of shot noise series

The shot noise series for a subordinator X(t) with its jumps
truncated at ε may be defined as

Xε(t) =
∑

{i :xi≥ε}
xi IVi≤t (34)

The difference of X(t) and the truncated series Xε(t) char-
acterises the residual error caused by truncation and may be
expressed as a random process Rε(t) such that

Rε(t) = X(t) − Xε(t)

=
∑

{i :xi<ε}
xi IVi≤t (35)

where ε is the value at which the jump magnitude sequence
{xi } are stochastically truncated (i.e. the truncated series Xε

has a random number of terms with xi greater than or equal
to ε).

The statistical properties of the residual error Rε(t) as a
function of ε can be used to study the convergence of the
truncated series to the Lévy process X(t). The number of
terms used in the approximation of X(t) may be dynam-
ically adjusted depending on the particular realisations of
{xi } and the required precision of approximation. Theorem 3

below and its Corollary describes the construction of a prob-
abilistic bound on the residual error caused by truncation of
a subordinator process in terms of upper bounds on its resid-
ual moments and provide the residual mean and variance for
the tempered stable and gamma processes which are used as
dominating processes for sampling the GIG process.

Note that the bound in the Theorem below is a point-
wise bound at a particular time t , whereas ideally a pathwise
bound might be desired that applies across all times. Martin-
gale inequalities can be used in principle to achieve this, see
Wolpert (2021), although these may not be directly applica-
ble here aswe do not in general have an exact characterisation
of the residual mean and variance for the GIG process, only
upper and lower bounds on these.

Theorem 3 For the residual error Rε(t) associated with
truncation of a subordinator process, the following proba-
bilistic bound applies for any E > μ̄ε and truncation level
ε > 0:

Pr
(
Rε(t) ≥ E |Xε(t)

) ≤ σ̄ 2
ε

(E − μ̄ε)2
(36)

where μ̄ε ≥ με and σ̄ε ≥ σε are upper bounds on με =
E[Rε(t)] and σ 2

ε = var(Rε(t)), and E is a threshold that
may depend on the random realisation Xε(t).

Proof Themean and variance of a subordinator process X(t)
are given in (30) and (31). Similarly, the mean and variance
of the truncated process residual Rε(T ) can be found as

με = E[Rε(t)] = t

T

∫ ε

0
xQ(dx) (37)

and

σ 2
ε = Var(Rε(t)) = t

T

∫ ε

0
x2Q(dx) (38)

where both of these integrals are well-defined and finite for
any valid subordinator and 0 < ε < ∞, by condition (3).

Now, using the expected value and standard deviation of
Rε(t) we may bound the residual error using concentration
inequalities. Specifically, Chebyshev’s inequality states that
for a random variable Rε(t) with finite expected value με

and finite non-zero variance σ 2
ε

Pr
(|Rε(t) − με| ≥ kσε

) ≤ 1

k2

where the probability is conditional on a random realisa-
tion of Xε(t). We require here only the right tail probability
mass corresponding to the event Rε(t) − με ≥ kσε, and this
is clearly less than or equal to the probability of the event
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|Rε(t) − με| ≥ kσε; hence rearranging we arrive at

Pr
(
Rε(t) ≥ με + kσε

) ≤ 1

k2

Now, if we have instead upper boundsμε ≤ μ̄ε and σε ≤ σ̄ε,
it is clear that με + kσε ≤ μ̄ε + kσ̄ε and so

Pr
(
Rε(t) ≥ μ̄ε + kσ̄ε

) ≤ 1

k2
(39)

Finally, a simple rearrangement with E = μ̄ε + kσ̄ε leads to
the theorem as stated. ��
Corollary 4 Our simulation algorithms for the GIG process
involve thinning/rejection sampling operations in order to
generate point processes N1 and N2 from gamma and tem-
pered stable dominating processes, see Algorithms 7, 9, 11
and 13. By construction, the resulting thinned processes
have Lévy density Q(x) strictly less than or equal to that
of the dominating process in each case, say Q0(x), i.e.
Q(x) ≤ Q0(x). Hence the means and variances of the
truncation error, calculated using (37) and (38), are strictly
less than or equal to those of the corresponding dominating
gamma and tempered stable processes, and we may thus take
the means and variances of the underlying TS or gamma pro-
cesses as the upper bounds μ̄ε and σ̄ε required in Theorem
3.

For the TS process the expected value and variance of the
residual process is found as

μT S(t) = t

T

∫ ε

0
Cx−αe−βxdx

= tCβα−1

T
γ (1 − α, βε) (40)

and

σ 2
T S(t) = t

T

∫ ε

0
Cx1−αe−βxdx

= tCβα−2

T
γ (2 − α, βε) (41)

In limit as β → 0 we obtain the stable subordinator whose
moments can be obtained either directly or as limits of the
above TS case using γ (s,x)

xs → 1
s as x → 0, giving:

μS(t) = tCε1−α

T (1 − α)
(42)

and

σ 2
S (t) = tCε2−α

T (2 − α)
(43)

Similarly for the gamma process the expected value and
variance of the residual process can be found as

μGa(t) = t

T

∫ ε

0
Ce−βxdx

= tC

Tβ
γ (1, βε) (44)

and

σ 2
Ga(t) = t

T

∫ ε

0
Cxe−βxdx

= tC

Tβ2 γ (2, βε) (45)

Take, for example, generation of N2 in Algorithms 9 and
10. The starting point is generation of a TS process with

parameters C = δ√
2π

, α = 0.5 and β = z21
2δ2

+ γ 2

2 , imple-

mented using Algorithm 3. The mean and variance for the
truncated residual of this process are obtained from (40) and
(41). Algorithms 9 and 10 then perform random thinning on
the TS points. Hence the resulting process N2 has truncated
residual with mean and variance no larger than those of the
corresponding TS process. Thus Theorem 3 applies, using the
TS mean and variance as the upper bounds μ̄ε and σ̄ 2

ε . The
other cases of N1 and N2 simulation follow a similar argu-
ment, using the appropriate gammaor TS process to generate
upper bounds on the moments required for Theorem 3.

Finally, a probabilistic upper bound on the GIG residual
may be obtained by adding the upper bounds on the means
and variances for N1 and N2, since the two point processes
are independent.

Corollary 5 Improved residual errors and corresponding
bounds on these are available if the mean με is available,
as then the improved estimate X̂ ε(t) = X ε(t) + με may be
formed as proposed in Asmussen and Rosiński (2001). In
our GH case however we only have upper and lower bounds
μ

ε
≤ με ≤ μ̄ε established in Theorems 3 and 4 (see below).

In this case it would seem appropriate to take a conservative
line and substitute the lower bound μ

ε
in place of με . Then

Theorem 3 can be modified in step (39) as follows,

Pr
(
|Rε(t) − μ

ε
| ≥ μ̄ε − μ

ε
+ kσ̄ε

)
≤ 1

k2
(46)

To justify this, use Chebyshev directly to give

Pr(|Rε(t) − με| ≥ kσε) ≤ 1/k2

But we have

A := {|Rε(t) − μ
ε
| ≥ μ̄ε − μ

ε
+ kσε}

⊆ {|Rε(t) − με| ≥ kσε} := B
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and hence Pr(A) ≤ Pr(B) from which (46) follows.
Rearranging this expression with E = μ̄ε − μ

ε
+ kσ̄ε a

new expression is obtained, valid for E + μ
ε
− μ̄ε > 0:

Pr
(
|Rε(t) − μ

ε
| ≥ E

)
≤ σ̄ 2

ε

(E + μ
ε
− μ̄ε)2

This expression would then be recommended for practical
use in adaptive truncation schemes, yielding always smaller
probabilities of exceedance than Theorem 3 for fixed thresh-
old E since E + μ

ε
− μ̄ε ≥ E − μ̄ε.

Using the probabilistic bounds given in Theorem 3 and its
Corollaries, an adaptive truncation scheme can be devised to
determine a suitable value for ε for each generated realisation
of the process. As ε decreases, sowe accumulate sequentially
the realised value of Xε(t) (or itsmean-adjusted version from
Corollary 5) according to Eq. (34). A tolerance E = τ Xε(t)
is chosen, where 0 < τ � 1, which is designed to trun-
cate the series once the predicted residual has become very
small in comparison with the series realised to level ε. Then
a probability threshold, pT � 1 is chosen for comparison
with Pr(Rε(t) ≥ E), in order to decide when to terminate
the simulation. A generic adaptive truncation scheme is out-
lined in Algorithm 15 for a point process N associated with a
subordinator Lévy process X(t) having Lévy density Q(x).

Algorithm 15 Simulation of N with adaptive truncation
using tolerance τ and probability threshold pT for a point
process with Lévy density Q() having moment bounds μ̄εn

and σ̄εn .
1. Define a decreasing truncation schedule ε0 = ∞ > ε1 > ε2 >

· · · > εn > . . . and initialise E0 = 0, N = ∅. Set n = 1, B =
False.

2. While B = False,

– If
σ̄ 2

εn
(τ En−μ̄εn )2

> pT
Simulate points {xi } from Q(x)Ix∈(εn ,εn−1] using Algo-
rithms 1 and 2 (with a = εn and b = εn−1),
Set N = N ∪ {xi },
Set En = En−1 + ∑

i xi ,
– Else B = True.
– n = n + 1.

3. Return N .

The GH simulation algorithms studied in this work and
Godsill and Kındap (2021) are made up of two independent
point processes N1 and N2. An adaptive truncation algo-
rithm such as Algorithm 15 can be applied separately to each
process to obtain the resulting jumps. This misses a trick
however, since either series could in principle be truncated
even earlier once its residual error is very small relative to
the accumulated sum of both N1 and N2. There are many

Algorithm 16 Simulation of N = ∪K
k=1Nk with Lévy den-

sity Q(x) = ∑K
k=1 Qk(x), x > 0, having moment bounds

μ̄k
εn

and σ̄ k
εn

with adaptive truncation using tolerance τ and
probability threshold pT .
1. Define a decreasing truncation schedule ε0 = ∞ > ε1 > ε2 >

... > εn > ... and initialise E = 0, Nk = ∅. Set n = 1, Bk = False,
B = False.

2. While B = False

– For k = 1 to K ,

If
σ̄ k2

εn
(τ En−μ̄k

εn )2
> pT

Simulate points {xi } from Qk(x)Ix∈(εn ,εn−1] using
e.g. Algorithms 1 and 2 (with a = εn and b = εn−1)
Set N = N ∪ {xi }.
Set E = E + ∑

i xi
Else Bk = True.

– B = ∧k Bk , Logical AND operation
– n = n + 1

3. Return N .

workable schemes based around this idea and one possible
such approach is presented in Algorithm 16. It is presented
in a general form that can apply to the parallel simulation
and adaptive truncation of K independent subordinator point
processes Nk having Lévy densities Qk(x) and overall Lévy
density Q(x) = ∑K

k=1 Qk(x).
For N1 in the most general settings of Algorithm 8 and

12, the dominating process is made up of two independent
gamma processes N 1

Ga and N 2
Ga . In the case of N2 in both

settings, Algorithms 10 and 14, a single dominating tem-
pered stable process is required. Hence an efficient method
of simulation is runningAlgorithm16 on these 3 independent
dominating processes. The residual means and variances of
the tempered stable and gamma processes required by Algo-
rithm 15 and Algorithm 16 are shown in Corollary 4. It is
worth noting that the convergence of a gamma process is
typically significantly faster than a tempered stable process
and so the N1 process tends to terminate much sooner than
N2.

Remark 3 In the edge parameter settingλ < 0 and γ = 0, the
marginal point process simulation methods shown in Algo-
rithms 7 and 11 are not valid as a result of N 1

Ga becoming
undefined for γ = 0. For this setting, Alg. 3 of Godsill and
Kındap (2021) may be used together with the adaptive trun-
cation and residual approximationmethods introduced in this
section.

For this parameter setting the tempered stable process
defined in Alg. 3 of Godsill and Kındap (2021) becomes
a stable process since the tempering parameter β is equal to
0. The associated residual moments of a stable process are
presented in Corollary 4 which should be used to implement
Step 2) of Algorithm 15.
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5.2 Gaussian approximation of residual errors

Here we present a Brownian motion approximation method
for the residual error Rε(t) of a GIG or GH process caused
by the truncation of a shot noise series as defined in Eq. (35).
Such an approach is well known from previous work, see
e.g. Asmussen and Rosiński (2001), but here we propose an
intermediate solution in which a Brownianmotion is injected
whose drift and variance are lower bounds comparedwith the
exact result, which is intractable in general for the GIG and
GH processes.

The theoretical mean and variance of the residual error
for the GH case can be found as a function of the mean
and variance of an associated GIG residual error Rε(t) using
Eqs. (32) and (33). Hence similar to Sect. 5.1, we provide
lower bounds με, σ 2

ε on the mean and variance of a residual
GIG process as a function of the truncation level ε. Together
with the upper bounds discussed in Corollary 4, these lower
bounds characterise the residual error of truncating the infi-
nite shot noise series for the GIG and GH cases. Using the
residual approximation module the series representation of
the GIG Lévy process X(t) can be expressed as

X(t) ≈ tμε

T
+ σε√

T
B(t) + Xε(t)

where Xε(t) is computed in the usual way as
∑

{i :xi≥ε}
xi IVi≤t , B(t) is an independent standard Brownian motion
termandμε,σ 2

ε are lower bounds on themean andvariance of
the residual error Rε(T ) given a truncation level ε. Note that
this approximation can technically become negative because
the Brownian motion term is unconstrained, which is unde-
sirable for the positive-valued process X(t). This effect will
however become negligible as ε → 0 in the GIG case, see
convergence results in Asmussen and Rosiński (2001), but
in any case we show this result only for completeness and
the approximation we implement is for W (t) itself, which is
permitted to become negative or positive, see Eq. (49) below.

According to Eqs. (32) and (33), the lower bounds on the
moments of the residual error Rε

W (t) of the associated GH
process W (t) can be obtained as

E[Rε
W (t)] ≥ t

T
βμε (47)

Var[Rε
W (t)] ≥ t

T

(
β2σ 2

ε + σ 2με

)
(48)

Hence for the GH process the same procedure is adopted to
obtain an approximation as

W (t) ≈ t

T
βμε +

√
β2σ 2

ε + σ 2με

√
T

B(t) + W ε(t) (49)

The approximation of the residual error is in addition to
the adaptive truncation methods described in Sect. 5.1 that
provide a specified level of truncation ε for the simulation
of sample paths from a GH process. In Theorem 4 below
we provide the required lower bounds on the mean and vari-
ance of a residual GIG process with Lévy density QGIG(x)
as a function of ε. The derivation of these bounds are pre-
sented for a specific T as it is straightforward to scale the
moments according to time. The lower bounds are then used
to evaluate the mean and variance of the residual error in the
GH process simulation and approximate the contribution of
the residual small jumps according to Eq. (49). A Brownian
motion approximation to the residual is known to hold for
many shot noise series, see Asmussen and Rosiński (2001),
with the gamma process being a well-known exception that
does not converge to a Gaussian as ε → 0. In our own work
we have proven convergence of the shot noise series for the
GH process to a Brownian motion in all cases except the
normal-gamma, and these results will be presented in a future
publication.

Theorem 4 Given a truncation level ε, a residual sequence
Rε(T ) of GIG jumps with mean με = E[Rε(T )] and vari-
ance σ 2

ε = Var[Rε(T )] may be lower bounded by:

με ≤ με, σ 2
ε ≤ σ 2

ε

where the bounds are defined as:

με =

⎧⎪⎨
⎪⎩

CB
Gaγ

(
1,βB

Gaε
)

βB
Ga

+ CB
T Sγ

(
0.5,βB

T Sε
)

βB
T S

0.5 , |λ| ≥ 0.5

CA
Gaγ

(
1,β A

Gaε
)

β A
Ga

+ CA
T Sγ

(
0.5,β A

T Sε
)

β A
T S

0.5 , |λ| < 0.5

σ 2
ε =

⎧
⎪⎨
⎪⎩

CB
Gaγ

(
2,βB

Gaε
)

βB
Ga

2 + CB
T Sγ

(
1.5,βB

T Sε
)

βB
T S

1.5 , |λ| ≥ 0.5

CA
Gaγ

(
2,β A

Gaε
)

β A
Ga

2 + CA
T Sγ

(
1.5,β A

T Sε
)

β A
T S

1.5 , |λ| < 0.5

where

C A
Ga = z1

2π |λ| and β A
Ga = γ 2

2
+ |λ|

(1 + |λ|)
z21
2δ2

CB
Ga = z0

π2H0|λ| and βB
Ga = γ 2

2
+ |λ|

(1 + |λ|)
z20
2δ2

CA
T S = δ

√
e
√

β0 − 1

πβ0
and β A

T S = γ 2

2
+ β0z21

2δ2
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CB
T S = 2δ

√
e
√

β0 − 1

π2H0β0
and βB

T S = γ 2

2
+ β0z20

2δ2

and β0 is a free parameter such that β0 > 1.

The proof for Theorem 4 can be found in the Appendix.
Note that the lower bounds presented in Theorem 4 are valid
only for the λ < 0 setting. The additional mean and variance
components present for λ > 0 are associated with a gamma
process with Lévy density (9) and residual moments given
by Eqs. (44) and (45). These terms are simply added to the
lower bounds με and σ 2

ε in order to obtain the final bounds
on the GIG process.

Remark 4 For the special case of |λ| = 0.5, the GIG density
QGIG(x) has a functional form equivalent to a TS process
with intensity function

e−xγ 2/2

x3/2
δ
(1/2)√

2π

Thus both the simulation algorithms in Sect. 4, and the
adaptive truncation and residual approximation methods
presented in this Section are significantly simplified. It is
straightforward to simulate a TS process using Algorithm 3
and the residualmoments shown inEqs. (40) and (41) provide
exact expressions for the residual moments of the equivalent
GIG process.

The true mean and variance of the residual moments
replace the upper and lower bounds required for determining
the adaptive truncation level ε and the associated moments
of the approximating Brownian term. In this case Eq. (49)
exactly matches the first and second moments of the residual
process.

6 Squeezed rejection sampling

In this section, we provide a practical extension to the sam-
pling algorithms discussed in Sect. 4 that is designed to
increase the efficiency of simulation. The above methods for
sampling of N1 and N2 in both parameter settings, given
in Algorithms 8, 10 and 12, 14, involve a computation-
ally expensive pair of steps in the sampling of a truncated
gamma random variate (Step 3) and a pointwise evaluation
of the Hankel function (Step 4). Notice however, that The-
orem 1 provides both lower and upper bounds on the term
z|Hν(z)|2, which allows us to specify squeezing functions
on QGIG(x, z),5 as given in (15a)–(16b). This allows for a

5 see Devroye (1986) Section 3.6 for application of the Squeeze prin-
ciple in the setting of standard random variate generation.

labour-saving retrospective sampling procedure inwhich, for
a fixed fraction of points xi , wemay replace the simulation of
a conditional random variable z and rejection sampling based
on its value (Steps 3 and 4) with a simple 1-step accept/reject
and no requirement to sample z or evaluate H|λ|. Consider-
ing first the case |λ| ≥ 0.5 and the sampling of process N1,
see Algorithm 8, we have generated at Step 2 a single point
realisation xi from the process QA

N1
(x). Now consider Step

4, which accepts xi with probability

QGIG(xi , zi )

QA
N1

(xi , zi )
≥ QB

GIG(xi , zi )

QA
GIG(xi , zi )

= 2

πH0

where we have used the squeezing inequality (13) and where
the final equality applies when we set z0 = z1, see Remark
2. This implies that we may carry out a retrospective sam-
pling step: draw a uniform random variate Wi on [0, 1], test
whether it is less than or equal to 2

πH0
, and if so, accept xi

with no Steps 3 and 4 required. IfWi > 2
πH0

, carry out steps
3 and 4, using the same realised Wi to carry out the test in
Step 4.6 Themodified version of Algorithm 8 using squeezed
rejection sampling is presented in Algorithm 17.

Algorithm 17 Squeezed generation of N1 for |λ| ≥ 0.5
1. N1 = ∅,
2. Simulate xi from themarginal point process associated with QA

N1
(x)

as given in Algorithm 7,
3. Generate wi ∼ U[0, 1],
4. If wi ≤ 2

πH0
, accept xi , i.e. set N1 = N1 ∪ xi ,

Else,

(a) For each rejected xi , simulate a zi from a truncated square-root
gamma density


(|λ|)√Ga(z||λ|, xi/(2δ2))
γ (|λ|, z21xi/(2δ2))

I0<z<z1

(b) If

wi ≤ QGIG(xi , zi )

QA
N1

(xi , zi )
= 2

π |H|λ|(zi )|2
(

z2|λ|
i

z2|λ|−1
1

)

accept xi , i.e. set N1 = N1 ∪ xi ; otherwise discard xi .

An exactly similar modification applies for generation of
N2 in Algorithm 10 for |λ| > 0.5. In the other parameter
range |λ| < 0.5, the bounds are reversed, see (14) and so
Step 4 in the squeezed sampler is replaced with ‘if wi ≤
πH0
2 ’; otherwise squeezed procedures for N1 and N2 in this

parameter range are modified exactly as in Algorithm 17.

6 The method is termed ‘retrospective’ because we only need to gener-
ate z and test the exact acceptance probability following amuch simpler
initial accept/reject step.
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Fig. 6 Fractional computational saving for the retrospective sampling
procedure, as a function of |λ|

We can see that the savings arising from this method could
be substantial in cases where 2

πH0
is close to unity, saving

almost all of the heavy computations in the original Steps 3
and 4. This will occur when |λ| is close to 0.5, and improve-
ments will lessen as |λ| moves away from this value. The
fraction of saved computation is shown as a function of |λ|
are shown in Fig. 6, exhibiting a broad range of λ values for
which savings are useful.

7 Simulations

In this section we present results on the accuracy and effi-
ciency of our proposed improvements to the simulation of
a generalised hyperbolic process in Sect. 4 including the
modifications discussed in Sect. 5. Particularly, we present
the results of applying the Gaussian approximation of the
residual process studied in Sect. 5.2 to our novel adaptive
truncation method and compare these results to the method
in Godsill and Kındap (2021). Additionally, we use a QQ
(quantile-quantile) plot to compare the marginal distribution
of randomly sampled GH processes generated up to T = 1
against exact samples from the GH distribution generated
using random variable samplers as in Devroye (2014), Sta-
tovic (2017)). Note that while these methods are able to
generate samples for a specific t = T , our method is able
to generate the entire path of the process up to t = T and
hence information about the dynamics within the interval
(0, T ) is made available. Furthermore, we show histograms
and continuous-time sample paths formultiple parameter set-
tings including special cases as the normal-inverse Gaussian
and Student-t processes.

Since there is no known closed-form cumulative distri-
bution function (CDF) for the GH distribution, the accuracy
of the simulated sample paths are measured using the two-
sample Kolmogorov-Smirnov (KS) test which compares the
empirical distribution functions of the sample paths at T = 1
and exact samples from the GH distribution. These tests
involve 106 independent samples for eachmethod andparam-

Table 1 The results of two-sample KS tests for adaptive simulation
algorithm (using Algorithms 16)

λ KS statistic Time/sample τ

−0.4 0.00301 8.27 × 10−4 0.01

−0.4 0.00442 7.77 × 10−4 0.1

−0.8 0.00305 1.34 × 10−3 0.01

−0.8 0.00578 9.87 × 10−4 0.1

−2.5 0.00369 3.20 × 10−3 0.01

−2.5 0.00976 1.27 × 10−3 0.1

−10 0.00485 9.28 × 10−3 0.01

−10 0.01038 2.01 × 10−3 0.1

No residual approximation, i.e. using W ε(t) to approximate W (t)

Table 2 The results of two-sample KS tests for adaptive simulation
(Algorithm 16 plus Corollary 5) with residual approximation algorithm,
using Eq. (49)

λ KS statistic Time/sample τ

−0.4 0.00178 7.98 × 10−4 0.01

−0.4 0.00246 6.57 × 10−4 0.1

−0.8 0.00269 9.34 × 10−4 0.01

−0.8 0.00179 7.89 × 10−4 0.1

−2.5 0.00325 2.22 × 10−3 0.01

−2.5 0.00487 9.71 × 10−4 0.1

−10 0.00276 1.09 × 10−2 0.01

−10 0.00835 1.72 × 10−3 0.1

Table 3 The results of two-sampleKS tests for the simulation algorithm
in Godsill and Kındap (2021)

λ KS statistic Time/sample

−0.4 0.00292 1.72 × 10−2

−0.8 0.00435 8.37 × 10−3

−2.5 0.00494 1.09 × 10−2

−10 0.00272 2.13 × 10−2

eter setting and the results are shown in Table 1 for the
simulation procedure using only adaptive determination of
the number of jumps, in Table 2 for the improvements in
convergence by approximating the residual small jumps. The
results of the same test using the methods in Godsill and
Kındap (2021) are repeated and shown in Table 3 for com-
parison.

For the proposed adaptive truncation algorithm in Algo-
rithm 16, the probability threshold pT = 0.05 is found to
work well and is used for all cases throughout the section.
The results in both Tables 1 and 2 show clear trade-offs
between the accuracy of the distribution at T = 1 and the
time required per sample for a given λ value. This can be
observed by comparing the KS statistic and time per sam-
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Fig. 7 Pathwise simulations of the GH process for λ = −0.4, δ = 1.0,
γ = 0.1 and β = 0

Fig. 8 Simulation comparison between the shot noise generated GH
process and GH random variates, λ = −0.4, γ = 0.1, δ = 1, β = 0.
The adaptive truncation parameters are pT = 0.05 and τ = 0.01. Left
hand panel: QQ plot comparing our shot noise method (y-axis) with
random samples of the GH density generated using a random variate
generator (x-axis). Right hand panel: Normalised histogram density
estimate for our method compared with the true GH density function

Fig. 9 Pathwise simulations of the GH process for λ = −0.8, δ = 1.0,
γ = 0.1 and β = 0

ple for different tolerance parameters τ . A large tolerance
results in worse convergence but allows faster simulation,
and hence the tolerance parameter may be adjusted depend-
ing on the requirements of the application. Furthermore as
|λ| increases both the time required per sample and the KS
statistic increases as a result of the reduced acceptance rates
of the simulation algorithm as plotted in Fig. 3.

Fig. 10 Simulation comparison between the shot noise generated GH
process and GH random variates, λ = −0.8, γ = 0.1, δ = 1, β = 0.
The adaptive truncation parameters are pT = 0.05 and τ = 0.01. Left
hand panel: QQ plot comparing our shot noise method (y-axis) with
random samples of the GH density generated using a random variate
generator (x-axis). Right hand panel: Normalised histogram density
estimate for our method compared with the true GH density function

Comparing the results in Table 1, where no residual
approximation is applied i.e.W (t) is approximated asW ε(t),
against the results in Table 2, where the residual part of the
process is approximated as in Eq. (49) and the adaptive trun-
cation procedure includes the adjustment in Corollary 5, it
can be seen that there is a significant improvement in the KS
statistic for all parameter settings. Particularly, the results
suggest that the improvement in large tolerance parameter
cases where τ = 0.1 are substantial. Furthermore, no sig-
nificant increase in time per sample can be observed when
applying residual approximation methods. Note that to com-
pare our new methods with the method studied in Godsill
and Kındap (2021) producing a fixed number M of jumps,
the adaptive truncation algorithm in Algorithm 16 is limited
to producing a certain maximum number M = 104 of jump
magnitudes per sample path while running the experiments.
Comparing the results in Tables 2 and 3 it can be seen that
improved convergence results can be obtained by the novel
algorithms introduced in this work while also providing sig-
nificantly reduced time complexity.

To present a more intuitive understanding of the accu-
racy of our methods, QQ plots of sample paths generated
up to T = 1 and samples from a random variable generator
are shown in addition to histograms with the true probabil-
ity density function overlaid. The parameter values in the
examples are selected to reflect the different characteristic
behaviour of the GH process as well as edge cases such as
the normal-inverse Gaussian process (λ = −1/2), and the
Student-t process (γ = 0, λ ≤ 0).

For the case |λ| > 0.5, Figs. 10, 12, 14 shows the QQ plot
and histogram for different parameter settings and Figs. 9, 11,
13 presents sample paths from our new adaptive simulation
algorithm with residual approximation. The corresponding
processes are simulated using Algorithms 7, 8, 9 and 10.
Similarly, Figs. 7, 8 presents an example in the 0 < |λ| <
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Fig. 11 Pathwise simulations of theGHprocess for λ = −2.5, δ = 1.0,
γ = 0.1 and β = 0

Fig. 12 Simulation comparison between the shot noise generated GH
process and GH random variates, λ = −2.5, γ = 0.1, δ = 1, β = 0.
The adaptive truncation parameters are pT = 0.05 and τ = 0.1. Left
hand panel: QQ plot comparing our shot noise method (y-axis) with
random samples of the GH density generated using a random variate
generator (x-axis). Right hand panel: Normalised histogram density
estimate for our method compared with the true GH density function

Fig. 13 Pathwise simulations of the GH process for λ = −10, δ = 1.0,
γ = 0.1 and β = 0

0.5 setting and the corresponding simulation methods are
described in Algorithms 11, 12, 13 and 14. The number of
samples from each simulation method is N = 106 and the
sample path plots show randomly selected 50 paths.

The normal-inverse Gaussian (NIG) distribution, or the
distribution of NIG processes at T = 1, forms an exponential
family and hence all of its moments have analytical expres-
sions Barndorff-Nielsen (1997b). As a result of its tractable

Fig. 14 Simulation comparison between the shot noise generated GH
process andGH random variates, λ = −10, γ = 0.1, δ = 1, β = 0. The
adaptive truncation parameters are pT = 0.05 and τ = 0.1. Left hand
panel: QQ plot comparing our shot noise method (y-axis) with random
samples of the GH density generated using a random variate generator
(x-axis). Right hand panel: Normalised histogram density estimate for
our method compared with the true GH density function

Fig. 15 Simulation comparison between the shot noise generated NIG
process and NIG random variates, λ = −0.5, γ = 0.1, δ = 1, β = 0.
The adaptive truncation parameters are pT = 0.05 and τ = 0.01. Left
hand panel: QQ plot comparing our shot noise method (y-axis) with
random samples of the NIG density generated using a random variate
generator (x-axis). Right hand panel: Normalised histogram density
estimate for our method compared with the true NIG density function

probabilistic properties, the NIG process finds application in
modelling turbulence and financial data (Barndorff-Nielsen
1997a; Rydberg 1997). The NIG process is in fact a special
case of the GH process where λ = −0.5. This results in
the bounds given in Corollary 15b being exactly equal to the
GIG density and thus the acceptance rate of points simulated
from Alg. 3 of Godsill and Kındap (2021) is 1.0. The QQ
plot, density estimate and sample paths for this parameter
setting are shown in Figs. 15 and 16.

Another special case of the GH process is the Student-t
process where λ < 0, γ = 0 and δ2 = −2λ. The Student-
t distribution is parameterised using a single parameter ν,
called the degrees of freedom,which is a positive real number.
This parameter is related to the usual parameters of a GH
process such that λ = −ν/2 and δ = √

ν.
As remarked in Sect. 5, it is not possible to simulate a

Student-t process using Algorithms 7, 8, 9 and 10 because
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Fig. 16 Pathwise simulations of the NIG process for λ = −0.5, γ =
0.1, δ = 1, β = 0

Fig. 17 Simulation comparison between the shot noise generated
student-t process and student-t random variates, λ = −2.5, γ = 0,
δ = √

5, β = 0. The adaptive truncation parameters are pT = 0.05 and
τ = 0.1. Left hand panel: QQ plot comparing our shot noise method
(y-axis) with random samples of the student-t density generated using
a random variate generator (x-axis). Right hand panel: Normalised his-
togramdensity estimate for ourmethod comparedwith the true student-t
density function

the corresponding gamma processes are not well-defined in
this case. Instead, for this parameter setting Algorithm 3 of
Godsill and Kındap (2021) is used together with the adaptive
truncation and residual approximation methods presented in
Sect. 5 to produce the jumps from the subordinator GIG pro-
cess. The QQ plot, density estimate and sample paths for the
resulting samples from the Student t process are shown in
Figs. 17 and 18. Note that removing the condition δ2 = −2λ
still results in a well defined Lévy process with its marginal
distribution parameterised by Eq. (3.11) in Eberlein and
Hammerstein (2004).

It is common to apply the Student-t distribution to finan-
cial data sets as an alternative to the Gaussian distribution to
account for the heavier tails observed in asset returns. There
has been numerous studies that suggest that the asymmetric
Student-t distribution, β �= 0, provides a better fit to finan-
cial data sets compared to its symmetric counterpart (Zhu
and Galbraith 2010; Alberg et al. 2008; Aas and Haff 2006).
To the best of our knowledge, we present the sample paths of
an asymmetric Student-t process for the first time in Fig. 19
together with the resultingmarginal QQ plot and density esti-

Fig. 18 Pathwise simulations of the Student t process for ν = 5 and
β = 0. (λ = −2.5, δ = √

5, γ = 0)

Fig. 19 Pathwise simulations of the asymmetric Student t process for
ν = 5 and β = 2. (λ = −2.5, δ = √

5, γ = 0)

Fig. 20 Simulation comparison between the shot noise generated asym-
metric student-t process and student-t random variates, λ = −2.5,
γ = 0, δ = √

5, β = 2. The adaptive truncation parameters are
pT = 0.05 and τ = 0.1. Left hand panel: QQ plot comparing our shot
noise method (y-axis) with random samples of the asymmetric student-t
density generated using a random variate generator (x-axis). Right hand
panel: Normalised histogram density estimate for ourmethod compared
with the true student-t density function

mate in Fig. 20. The marginal density of this limiting case of
asymmetric GH processes are given in Eq. (3.9) of Eberlein
and Hammerstein (2004).
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8 Conclusions

The point process representation of a generalised hyperbolic
process and the generalised shot noise methods developed
in this work provide the the first complete methodology for
simulation of generalised hyperbolic (GH) Lévy processes,
giving a unified framework for a very broad range of heavy-
tailed and semi-heavy-tailed non-Gaussian processes. The
continuous time formulation, simulating directly in continu-
ous timepath space, canbe employed for accurate uncertainty
propagation, path visualisation, modelling and inference,
especially for irregularly sampled time series datasets.

The presentedmethods are based on the subordination of a
Brownian motion by the generalised inverse Gaussian (GIG)
process, and we have here provided novel improvements in
GIG process simulation compared with our previous work
(Godsill and Kındap 2021). We have proved also that these
series representations are almost surely convergent, verifying
the conditions presented in Rosiński (2001). In addition to
these improvements we present a novel scheme for adaptive
truncation of the random shot noise representation based on
probabilistic exceedance bounds, relying on new upper and
lower bound expressions for the moments of truncated resid-
ual of the shot noise process; these truncations methods are
shown to reduce computational burden dramatically without
noticeable compromising of accuracy. Further computational
savings are made through the use of squeezed rejection sam-
pling, again based on our lower and upper moment bounds.
The new GH process simulators developed in this work
are used as a fundamental building block for modelling of
stochastic differential equations (SDEs) driven by GH pro-
cesses in Kındap and Godsill (2023), in a spirit similar to
Godsill et al. (2019), where the conditionally Gaussian form
of our models is of great benefit in inference for states and
parameters for GH process-driven SDEs, finding application
in spatial tracking, finance and vibration data modelling, to
list only a few possibilities. These models and their applica-
tions will be further studied in future publications.
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A: Proof of Theorem 2

Proof For the case |λ| ≥ 0.5, B(z) forms an upper bound
on z|H|λ|(z)|2 as stated in Eq. (12). The resulting integral
obtained by replacing z|H|λ|(z)|2 with B(z) is therefore a
lower bound for both E [ρ1(x, Z)] and E [ρ2(x, Z)]. As the
function B(z) has a piecewise form dependent on the choice
of z0 and the integrals are defined in terms of z1, the lower
bounds form a piecewise function dependent on their relative
values.

Assuming z0 ≤ z1, the interval (0, z1) is partitioned into
two non-overlapping intervals (0, z0) and (z0, z1). The con-
stituent functions of B(z) is used to replace z|H|λ|(z)|2 in
both partitions of E [ρ1(x, Z)] as follows

E [ρ1(x, Z)]

≥
∫ z0

0

2
(|λ|)√Ga(z||λ|, x
2δ2

)

πH0

(
z0
z

)2|λ|−1 (
z
z1

)2|λ|−1
γ (|λ|, z21x

2δ2
)

dz

+
∫ z1

z0

2
(|λ|)√Ga(z||λ|, x
2δ2

)

πH0

(
z
z1

)2|λ|−1
γ (|λ|, z21x

2δ2
)

dz

=
22

(
x
2δ2

)|λ|

πH0

(
z1
z0

)2|λ|−1

γ (|λ|, z21x
2δ2

)

∫ z0

0
z2|λ|−1e− z2x

2δ2 dz

+
22

(
x
2δ2

)|λ|

πH0

z2|λ|−1
1

γ (|λ|, z21x
2δ2

)

∫ z1

z0
e− z2x

2δ2 dz

= 2

πH0

( (
z1
z0

)2|λ|−1 γ (|λ|, z20x
2δ2

)

γ (|λ|, z21x
2δ2

)

+
(
z21x

2δ2

)|λ|−0.5

[
γ (0.5,

z21x
2δ2

) − γ (0.5,
z20x
2δ2

)

]

γ (|λ|, z21x
2δ2

)

)

For E [ρ2(x, Z)], the same assumption that z0 ≤ z1 leads
to a simple lower bound as

E [ρ2(x, Z)] ≥ 2

πH0

∫ ∞

z1


(0.5)
√
Ga(z|0.5, x

2δ2
)


(0.5,
z21x
2δ2

)

dz
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= 22

πH0

(
x
2δ2

)0.5


(0.5,
z21x
2δ2

)

∫ ∞

z1
e− z2x

2δ2 dz

= 2

πH0

For the case of z0 ≥ z1, replacing z|H|λ|(z)|2 with B(z)
again leads to a simple lower bound on E [ρ1(x, Z)] as

E [ρ1(x, Z)]

≥
∫ z1

0

2
(|λ|)√Ga(z||λ|, x
2δ2

)

πH0

(
z0
z

)2|λ|−1 (
z
z1

)2|λ|−1
γ (|λ|, z21x

2δ2
)

dz

=
22

(
x
2δ2

)|λ|
z2|λ|−1
1

πH0γ (|λ|, z21x
2δ2

)z2|λ|−1
0

∫ z1

0
z2|λ|−1e− z2x

2δ2 dz

= 2

πH0

(
z1
z0

)2|λ|−1

Lastly, the lower bound on E [ρ2(x, Z)] for z0 ≥ z1 is
obtained by partitioning (z1,∞) into two non-overlapping
intervals (z1, z0), (z0,∞), and the constituent functions of
B(z) is used to replace z|H|λ|(z)|2 as

E [ρ2(x, Z)] ≥
∫ z0

z1

2
(0.5)
√
Ga(z|0.5, x

2δ2
)

πH0

(
z0
z

)2|λ|−1

(0.5,

z21x
2δ2

)

dz

+
∫ ∞

z0

2

πH0


(0.5)
√
Ga(z|0.5, x

2δ2
)


(0.5,
z21x
2δ2

)

dz

=
22

(
x
2δ2

)0.5

πH0z
2|λ|−1
0 
(0.5,

z21x
2δ2

)

∫ z0

z1
z2|λ|−1e− z2x

2δ2 dz

+
22

(
x
2δ2

)0.5

πH0
(0.5,
z21x
2δ2

)

∫ ∞

z0
e− z2x

2δ2 dz

= 2

πH0

(

(0.5,

z20x
2δ2

)


(0.5,
z21x
2δ2

)

+
(
z20x

2δ2

)0.5−|λ|
[
γ (|λ|, z20x

2δ2
) − γ (|λ|, z21x

2δ2
)

]


(0.5,
z21x
2δ2

)

)

��

B: Proof of Theorem 4

Proof In principle the residual moments of a Lévy process
can be obtained directly from Eqs. (37) and (38) as before.

However, once again these cannot be evaluated exactly for
most parameter settings. Instead we provide lower bounds
for the integrand term QGIG(x)which are obtained from the
marginal point processes QA/B

N1/N2
(x) defined in Eqs. (20),

(21), (28) and (29).
The startingpoint is the bivariateLévydensityQGIG(x, z),

and the lower bounds on this function given in Corollary 1.
For the case |λ| ≥ 0.5, the marginal QGIG(x) is bounded as

QB
N1

(x) + QB
N2

(x) ≤ QGIG(x)

Hence for n ∈ {1, 2}, bounds on the residual moments
may be found by studying each term in

∫ ε

0
xnQB

N1
(x)dx +

∫ ε

0
xnQB

N2
(x)dx

≤
∫ ε

0
xnQGIG(x)dx

The first integral over QB
N1

(x) is still intractable and hence
has to be further lower bounded.A lower boundon the incom-
plete gamma function is defined in Neuman (2013b), Th.
4.1)7 as

(z20x/(2δ
2))|λ|

|λ| exp

(
−|λ|z20x/(2δ2)

|λ| + 1

)
≤ γ (|λ|, z20x/(2δ2))

Therefore a lower bounding density is obtained as

z0
π2H0|λ| x

−1 exp

(
−

[
γ 2

2
+ |λ|

(1 + |λ|)
z20
2δ2

]
x

)
≤ QB

N1
(x)

which is the density of a gamma process. The associated
residual moments have already been given in Theorem 3 and
shown in Eqs. (44) and (45). The associated mean and vari-
ance of the residual of QB

N1
for a truncation level ε are then

given directly as

μB
N1

(ε) = CB
Ga

βB
Ga

γ
(
1, βB

Gaε
)

σ B
N1

2
(ε) = CB

Ga

βB
Ga

2 γ
(
2, βB

Gaε
)

where

CB
Ga = z0

π2H0|λ| and βB
Ga = γ 2

2
+ |λ|

(1 + |λ|)
z20
2δ2

7 Note that an alternative bound is given by (1−e−x )/x ≤ a/xaγ (a, x)
for 0 ≤ a ≤ 1.
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The density QB
N2

is a modified tempered stable charac-
terised by the upper incomplete gamma function, which can
be lower bounded as (Chang et al. 2011, Th. 2)

√
2e

√
β0 − 1

β0
exp

(
−β0

z20x

2δ2

)
≤ 
(0.5,

z20x

2δ2
)

where β0 > 1 and x ≥ 0. The free parameter β0 can be adap-
tively optimised across the whole domain. The bound can
be derived using the well-known equivalence 
(0.5, x) =√

π erfc(
√
x).

Hence a lower bound on QB
N2

is obtained as

2δ
√
e
√

β0 − 1

π2H0β0
x−3/2 exp

(
−

[
γ 2

2
+ β0z20

2δ2

]
x

)
≤ QB

N2
(x)

which is the density of a tempered stable process and the
associated residual moments are previously derived in the
proof of Theorem 3 and shown in Eqs. (40) and (41). The
lower bound on the residual mean and variance of QB

N2
for a

truncation level ε are then obtained directly as

μB
N2

(ε) = CB
T Sβ

B
T S

−0.5
γ

(
0.5, βB

T Sε
)

σ B
N2

2
(ε) = CB

T Sβ
B
T S

−1.5
γ

(
1.5, βB

T Sε
)

where

CB
T S = 2δ

√
e
√

β0 − 1

π2H0β0
and βB

T S = γ 2

2
+ β0z20

2δ2

Finally the lower bound on the residual mean and variance
of the GIG density can be expressed in terms of the residual
means and variances of the lower bounding gamma and TS

processes as με = μB
N1

(ε) + μB
N2

(ε) and σ 2
ε = σ B

N1

2
(ε) +

σ B
N2

2
(ε).

For the case 0 < |λ| ≤ 0.5, the marginal QGIG(x) is
bounded as

QA
N1

(x) + QA
N2

(x) ≤ QGIG(x)

Similarly for n ∈ {1, 2}, lower bounds on the moments
may be found as

∫ ε

0
xnQA

N1
(x)dx +

∫ ε

0
xnQA

N2
(x)dx

≤
∫ ε

0
xnQGIG(x)dx

The lower bounds on the incomplete gamma functions
established for the previous parameter setting can be directly
substituted into QA

N1
(x) and QA

N2
. The resulting densities

are again characterised as a gamma process and a tempered
stable process respectively such that

z1
2π |λ| x

−1 exp

(
−

[
γ 2

2
+ |λ|

(1 + |λ|)
z21
2δ2

]
x

)
≤ QA

N1
(x)

δ
√
e
√

β0 − 1

πβ0
x−3/2 exp

(
−

[
γ 2

2
+ β0z21

2δ2

]
x

)
≤ QB

N2
(x)

Hence the associated residual moments of these processes
can be directly found again using Eqs. (44), (45) and (40),
(41). The corresponding lower bound on the residual mean
and variance of the GIG process for the case 0 < |λ| ≤ 0.5
and truncation level ε are then found as

με = CA
Gaγ

(
1, β A

Gaε
)

β A
Ga

+ CA
T Sγ

(
0.5, β A

T Sε
)

β A
T S

0.5

σ 2
ε = CA

Gaγ
(
2, β A

Gaε
)

β A
Ga

2 + CA
T Sγ

(
1.5, β A

T Sε
)

β A
T S

1.5
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