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Abstract
We consider the case of performing Bayesian inference for stochastic epidemic compartment models, using incomplete time
course data consisting of incidence counts that are either the number of new infections or removals in time intervals of fixed
length. We eschew the most natural Markov jump process representation for reasons of computational efficiency, and focus
on a stochastic differential equation representation. This is further approximated to give a tractable Gaussian process, that is,
the linear noise approximation (LNA). Unless the observation model linking the LNA to data is both linear and Gaussian,
the observed data likelihood remains intractable. It is in this setting that we consider two approaches for marginalising
over the latent process: a correlated pseudo-marginal method and analytic marginalisation via a Gaussian approximation of
the observation model. We compare and contrast these approaches using synthetic data before applying the best performing
method to real data consisting of removal incidence of oak processionarymoth nests in Richmond Park, London. Our approach
further allows comparison between various competing compartment models.

Keywords Stochastic epidemic model ·Bayesian inference · Linear noise approximation · Incidence data ·Oak processionary
moth

1 Introduction

The starting point for formulating amodel of epidemic spread
is usually a set of compartments or classes, characterising the
individuals participating in the epidemic (see e.g. Jacquez
1972). A transmission model then describes the dynamics of
individuals within each class, and this can be combined with
models of severity and detection/observation (see e.g. Birrell
et al. 2020) to give an overarching model that links epidemic
data to latent disease transmission. The transmission model
can be deterministic or stochastic, with the former typically
taking the form of a coupled, nonlinear ordinary differen-
tial equation (ODE) system and the latter a continuous-time
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Markov jump process (MJP). The link between determinis-
tic and stochastic models is made clear in Kurtz (1970) (see
also Kurtz 1971), with the ODE approach seen as a large
population limit of the MJP. However, while fitting ODE
models in the presence of a simple observation model is
relatively straightforward, they ignore intrinsic stochastic-
ity, which may play an important role in the dynamics of the
epidemic, particularly at the start or the end of an outbreak,
when numbers of individuals with the disease are likely to
be small. Stochastic transmission models have been widely
adopted for small-size epidemics (see e.g. Boys and Giles
2007; Stockdale et al. 2017; Funk et al. 2018) whereas Cor-
bella et al. (2022) (see also Birrell et al. 2011) combine a
deterministic transmissionmodel with sophisticated stochas-
tic observation models.

Although complex stochastic epidemic models can pro-
vide an accurate description of disease transmission, fitting
suchmodels to discrete-time data thatmay be incomplete and
subject to error is typically complicated by the intractabil-
ity of the observed data likelihood. Earlier attempts to
address this issue include the use of data augmentation and
Metropolis-Hastings steps to integrate over the uncertainty
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associated with unobserved dynamic components (Gibson
andRenshaw1998;O’Neill andRoberts 1999). Recent atten-
tion has focused on approaches that only require the ability
to generate forward realisations from the transmission model
such as approximate Bayesian computation (McKinley et al.
2009; Kypraios et al. 2017) and pseudo-marginal methods
(McKinley et al. 2014; Spannaus et al. 2020; Corbella et al.
2022). Nevertheless, these methods typically require many
(millions of) model simulations which can be impractica-
ble for large-size epidemics, that is, epidemics in which the
population size is greater than a few thousand individuals.
Alternative approaches that aim to reduce the computational
burden include the use of cheap but approximate “surrogate”
methods including the use of Gaussian process emulation
(Scarponi et al. 2022; Swallow et al. 2022), direct approx-
imation of the MJP e.g. via a linear noise approximation
(LNA, Fintzi et al. 2021) and tractable approximation of
the observed data likelihood (see e.g. Whiteley and Rimella
2021).

In this paper, we consider incidence data consisting of the
number of new cases (either infections or removals) accumu-
lated in an observation interval. We further assume imperfect
observations and consider two approaches commonly used to
allow for under reporting or over dispersion. We build on the
work of Fintzi et al. (2021) by adopting a linear noise approx-
imation of the latent cumulative incidence process. Whereas
Fintzi et al. (2021) integrate over the uncertainty in the latent
process via a sampling approach, we introduce a further
Gaussian approximation of the observation model, allow-
ing analytic integration of the latent incidence process. Our
framework additionally allows for a time-varying infection
rate, as is typically required for accounting for seasonality
and/or interventions. The infection rate is modelled stochas-
tically as an additional component in the system of stochastic
differential equations which the LNA approximates. Hence,
our contribution is a fast and efficient sampling-based frame-
work for inferring the parameters of a general class of
stochastic epidemic models.We benchmark the performance
of our approach against state-of-the-art correlated pseudo-
marginal methods (Dahlin et al. 2015; Deligiannidis et al.
2018) in terms of both accuracy and efficiency, using a
susceptible-infectious-removed (SIR) model.

Finally, we consider the application of the methodology
to the infestation of the oak processionary moth (OPM),
Thaumetopoea processionea, in Richmond Park, London.
Using time course data consisting of the yearly removal inci-
dence of infested trees between the years 2013 and 2020, we
compare and contrast an SIR model with a model in which
infected trees can re-enter the susceptible class. The assumed
initial population size is some 40,000 oak trees with the num-
ber of susceptible trees reducing to around 35,000 over the
time frame of the data set. The size of the epidemic neces-
sitates analytic integration of the latent incidence process;

Fig. 1 SIR compartment model

discrete stochastic models combined with exact (simulation-
based) inferencemethods such as data augmentation (see e.g.
Jewell et al. 2009) are practically infeasible here; see Stock-
dale et al. (2021) for a recent discussion.

The remainder of this paper is organised as follows.
Stochastic epidemic models, and in particular, the jump pro-
cess and subsequent LNA representations of the cumulative
incidence process are considered in Sect. 2. The inference
task is described in Sect. 3, including marginalisation of the
incidence process via pseudo-marginal and analyticmethods,
with the latter using an additional approximation. Applica-
tions are considered in Sect. 4 with a discussion of limitations
of the proposed approach in Sect. 5.

2 Stochastic epidemic models

For ease of exposition, we consider an SIR epidemic model
(Andersson and Britton 2000; Kermack and McKendrick
1927) within which a population of fixed size Npop is
classified into compartments consisting of susceptible (S),
infectious (I ) and removed (R) individuals. However, we
note that the framework can be easily extended to allow for
additional compartments e.g. SEIR models (Hethcote 2000)
which allows for susceptibles entering an exposed class prior
to becoming infectious.

The SIR compartment model is shown in Fig. 1. Transi-
tions between compartments can be described by the set of
pseudo-reactions given by

S + I
β−→ 2I , I

γ−→ R.

The first transition describes contact of an infective indi-
vidual with a susceptible and with the net effect resulting
in an additional infective individual and one fewer suscep-
tible. The final transition accounts for removal (recovered
with immunity, quarantined or dead) of an infected individ-
ual. The components of θ = (β, γ )′ denote infection and
removal rates.

In what follows, we describe the most natural stochastic
SIR model as a Markov jump process before considering a
linear noise approximation suitable for incidence data.
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2.1 Markov jump process

Let Xt = (St , It )′ denote the numbers in each state at time
t ≥ 0 and note that Rt = Npop − St − It for all t ≥ 0.
We denote by θ = (β, γ )′ the vector of parameters. The
dynamics of {Xt , t ≥ 0} are most naturally described by
a Markov jump process (MJP), that is, a continuous time,
discrete valued Markov process. Assuming that at most one
event can occur over a time interval (t, t + �t] and that
the state of the system at time t is xt = (st , it )′, the MJP
representation of the prevalence process is characterised by
transition probabilities of the form

P(Xt+�t = (st − 1, it + 1)′|xt , θ)

= βst it �t + o(�t),

P(Xt+�t = (st , it − 1)′|xt , θ)

= γ it �t + o(�t),

P(Xt+�t = (st , it )
′|xt , θ)

= 1 − (βst it + γ it )�t + o(�t),

where o(�t)/�t → 0 as �t → 0. Similarly, the cumulative
incidence of infection and removal events {Nt , t ≥ 0} is an
MJP governed by the transition probabilities

P(Nt+�t = (n1,t + 1, n2,t )
′|nt , xt , θ)

= βst it �t + o(�t),

P(Nt+�t = (n1,t , n2,t + 1)′|nt , xt , θ)

= γ it �t + o(�t),

P(Nt+�t = (n1,t , n2,t )
′|nt , xt , θ)

= 1 − (βst it + γ it )�t + o(�t),

where nt = (n1,t , n2,t )′ denotes the cumulative number of
infection and removal events at time t .

The processes describing the prevalence {Xt , t ≥ 0} and
cumulative incidence {Nt , t ≥ 0} are linked via the equation

Xt = x0 +
2∑

i=1

Si Ni,t (1)

where x0 represents the initial number of susceptible and
infected individuals, Ni,t denotes the i th component of the
incidence process at time t and Si is the i th column of the
stoichiometry matrix

S =
(−1 0

1 −1

)
.

Given x0 and θ , generating exact realisations of the inci-
dence process, and therefore the stochastic SEIR model is
straightforward and can be achieved by using well known
simulation algorithms from the stochastic kinetic models lit-
erature (see e.g. Wilkinson 2018). At this point, it will be

helpful to define the instantaneous rate or hazard function
h(xt ) = (h1(xt ), h2(xt ))′ by

h(xt ) = lim
�t→0

P(Xt+�t |xt , θ)/�t

= (βst it , γ it )
′

for Xt+�t resulting from either an infection or removal reac-
tion respectively. Note that θ is suppressed here for notational
convenience.Then, given a state xt at time t ,Gillespie’s direct
method (Gillespie 1977) simulates the time to the next event
as an exponential random variable with rate

∑2
i=1 hi . The

event that occurs will be of type i (with i = 1 infection,
i = 2 removal) with probability proportional to hi .

2.2 Linear noise approximation (LNA)

The linear noise approximation (LNA) is most commonly
presented as a Gaussian process approximation of the MJP
description of the prevalence process {Xt , t ≥ 0} (see e.g.
Ross et al. 2009; Fearnhead et al. 2014; Fuchs 2013 in the
epidemic context and Ferm et al. (2008), Komorowski et al.
(2009) and Stathopoulos and Girolami (2013) in a wider
systems biology context). As in Fintzi et al. (2021), we
require an approximation of the cumulative incidence pro-
cess {Nt , t ≥ 0}. Although this can be derived in a number
of more or less formal ways, we give an intuitive derivation
along the lines of Wallace (2010).

Consider an infinitesimal time interval, (t, t + dt], over
which the reaction hazards will remain constant almost
surely. Consequently, the counting process over this interval
for the i th component, denoted by dNi,t , is Poisson dis-
tributedwith rate hidt . Stacking these quantities in the vector
dNt it should be clear that

E(dNt ) = h(xt )dt, Var(dNt ) = diag{h(xt )}dt,

Hence, the ItôStochastic differential equation (SDE) that best
matches the MJP representation of the incidence process is
given by

dNt = h(xt )dt + diag{√h(xt )} dWt , (2)

whereWt is a length-2 vector of uncorrelated standard Brow-
nian motion processes and diag{√h(xt )} is a 2× 2 diagonal
matrix with non-zero entries given by

√
h1(xt ) and

√
h2(xt ).

Note that the RHS of (2) can be written explicitly in terms of
nt via (1) which gives xt = (s0 − nt,1, i0 + nt,1 − nt,2)′. We
then further define the hazard function written in terms of nt
as

h∗(nt ) = (β[s0 − nt,1][i0 + nt,1 − nt,2], γ [i0 + nt,1 − nt,2])′

for which (2) becomes

123



134 Page 4 of 18 Statistics and Computing (2023) 33 :134

dNt = h∗(nt )dt + diag{√h∗(nt )} dWt . (3)

The SDE in (3) can be linearised as follows. Consider a
partition of Nt as Nt = ηt + Rt where ηt is a deterministic
process satisfying the ordinary differential equation (ODE)

dηt

dt
= h∗(ηt ) (4)

and Rt = Nt − ηt is a residual stochastic process satisfying
the (typically) intractable SDE

dRt = {h∗(nt ) − h∗(ηt )} dt + diag{√h∗(nt )} dWt . (5)

We obtain an approximate, tractable R̂t by Taylor expanding
h∗(nt ) and diag{h∗(nt )} about ηt . Retaining the first two
terms in the expansion of the former and the first term in the
expansion of the latter gives

d R̂t = Ft R̂t dt + diag{√h∗(ηt )} dWt (6)

where Ft is the Jacobian matrix with (i , j)th element given
by the partial derivative of the i th component of h∗(ηt ) with
respect to the j th component of ηt . Hence, we obtain

Ft =
(

β(s0 − i0 − 2ηt,1 + ηt,2) β(ηt,1 − s0)
γ −γ

)
.

The solution of (6) is straightforward to obtain (see e.g.
Fearnhead et al. 2014, among several others). Omitting
details, we arrive at

Nt | (N0 = η0 + r0) ∼ N(ηt + Gtr0, Vt ) (7)

where the fundamental matrix Gt satisfies

dGt

dt
= FtGt , G0 = I2 (8)

and Vt satisfies

dVt
dt

= Vt F
′
t + diag{h∗(ηt )} + FtVt , V0 = 02. (9)

Note that I2 and 02 are the 2 × 2 identity and zero matrices
respectively. The LNA for the cumulative incidence process
is then summarised by (7) and (4), (8), (9).

2.3 Time varying infection rate

In practice it may be unreasonable to assume that the infec-
tion rate in the SIR model remains constant throughout the
epidemic (e.g. due to seasonality and/or interventions). We
therefore follow Dureau et al. (2013) and Spannaus et al.
(2020) (among others) and describe the contact rate via an

Itô stochastic differential equation (SDE). Let {βt , t ≥ 0}
denote the infection process and consider N3,t = log(βt ),
assumed to satisfy a time-homogeneous SDE of the form

dN3,t = a(n3,t )dt + b(n3,t )dW3,t (10)

where {W3,t , t ≥ 0} is a standard Brownian motion process.
Combining (10) with (3) gives a coupled SDE for Nt =
(N1,t , N2,t , N3,t )

′ of the form

dNt = {
h∗
1(nt ), h

∗
2(nt ), a(n3,t )

}
dt

+ diag
{√

h∗
1(nt ),

√
h∗
2(nt ), b(n3,t )

}
dWt (11)

whereWt is a length-3 vector of uncorrelated standard Brow-
nian motion processes. The LNA of (11) follows in the same
way as Sect. 2.2, albeit with the (transpose of the) Jacobian
matrix Ft redefined as

F ′
t

=
⎛

⎜⎝
exp(η3,t )(s0 − i0 − 2ηt,1 + ηt,2) γ 0

exp(η3,t )(ηt,1 − s0) −γ 0

exp(η3,t )(s0 − ηt,1)(i0 + ηt,1 − ηt,2) 0 ∂a(η3,t )

∂η3,t

⎞

⎟⎠

and the RHS of (4) and (9) augmented to include a(n3,t ) and
b2(n3,t ).

3 Bayesian inference

In this section, we consider the problem of performing
fully Bayesian inference for the parameters (and unobserved
dynamic processes) governing the SIR (LNA) model, based
on incidence observations that we assume are incomplete
and subject to measurement error. We describe the observa-
tion model before considering the inference task. For ease of
exposition, we assume a constant infection rate, but note that
extension of the methodology to a time varying infection rate
is straightforward and considered in Sect. 4.

3.1 Observationmodel

Without loss of generality, consider data y = (y1, . . . , yT )′
at integer times, where yt is a (partial) observation on the
cumulative incidence �Nt = Nt − Nt−1 over a time interval
(t−1, t]. Commonly used models for incidence data include
additive Gaussian noise (Dureau et al. 2013), the Bino-
mial distribution (Cauchemez and Ferguson 2008) and the
Negative Binomial distribution (Lloyd-Smith 2007; Fintzi
et al. 2021; Spannaus et al. 2020). The latter two models
are typically used under the assumption of under reporting
and to capture overdispersion, respectively. In large popula-
tion settings, they may be well approximated by a Gaussian
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distribution which may offer computational benefits when
combined with a Gaussian description of the underlying epi-
demic dynamics, such as the LNA described in Sect. 2.2.
These models take the form

Yt | (�Nt = �nt ) ∼ N
(
P ′�nt , σ

2
)

, (12)

Yt | (�Nt = �nt ) ∼ Bin
(
P ′�nt , λ

)
, (13)

Yt | (�Nt = �nt ) ∼ NegBin
(
μ = λP ′�nt , σ

2 = μ + φμ2
)

(14)

for t = 1, . . . , T . We assume that Yt is univariate and P
is a constant matrix with P ′ = (1, 0) corresponding to
noisy counts of new infections in a given time window and
P ′ = (0, 1) for removals. We further assume that the obser-
vations are independent (given the latent process) and we let
π(yt |�nt , ψ) denote the probability mass function linking
yt and �nt = nt − nt−1, with ψ denoting the parame-
ters governing the observation model. For example, in (14),
ψ = (λ, φ)′ with λ controlling the average proportion of
cases seen and φ is the (inverse) overdispersion parameter.

3.2 Inference task

We assume that interest lies in the vector of all static param-
eters θ = (β, γ, ψ ′, x ′

0)
′ including the initial state x0 =

(s0, i0)′ for convenience, and the latent incidence process at
the observation times n = {nt , t = 0, . . . , T }.

Upon ascribing a prior density π(θ) to θ , Bayesian infer-
ence proceeds via the joint posterior

π(θ, n|y) ∝ π(θ)π(n|x0, β, γ )π(y|�n, ψ) (15)

where

π(n|x0, β, γ ) =
T∏

t=1

π(nt |nt−1, x0, β, γ )

and π(nt |nt−1, x0, β, γ ) is the Gaussian transition density
obtained from (7) with the ODEs (4) and (9) integrated over
[t − 1, t] with ηt−1 = nt−1 and Vt−1 = 02. Note that in this
case the residual rt−1 = nt−1 − ηt−1 = 0 and subsequently
theODE satisfied byGt in (8) need not be integrated. Finally,

π(y|�n, ψ) =
T∏

t=1

π(yt |�nt , ψ).

Since the joint posterior in (15) will be intractable, we resort
toMonteCarlomethods for generating samples of the param-
eters and latent dynamic process. AGibbs sampler provides a
naturalmechanism for sampling (15), whereby one alternates
between draws of θ |n, y and n|θ, y. However, dependence

between n and θ can lead to poor mixing. For this rea-
son, Fintzi et al. (2021) use a non-centred parameterisation
whereby standard Gaussian innovations driving the genera-
tive form of the LNA are used as the effective components
to be conditioned on. In what follows, we take a different
approach by marginalising out the latent process, either via
(correlated) pseudo-marginal methods (e.g. Andrieu et al.
2010; Deligiannidis et al. 2018) or by further approximating
the observation model in the non Gaussian case.

3.3 Marginalisation of the incidence process

The joint posterior density in (15) can be factorised as

π(θ, n|y) = π(θ |y)π(n|θ, y) (16)

where

π(θ |y) ∝ π(θ)π(y|θ). (17)

The form of (16) suggests a two step approach to inference
whereby samples are first drawn from the marginal parame-
ter posterior π(θ |y) in step 1, and then conditioned on in a
second step when drawing samples of the latent process from
π(n|θ, y). However, unless the observation model takes the
linear Gaussian form of (12), neither the observed data like-
lihood π(y|θ) in (17) nor the constituent densities in (16)
will be tractable, despite the linear Gaussian structure of the
LNA. The main focus of this paper is exactly this intractable
scenario, and we now consider two approaches to address it.

3.3.1 Pseudo-marginal methods

Consider first the intractable observed data likelihoodπ(y|θ)

which can be factorised as

π(y|θ) = π(y1|θ)

T∏

t=2

π(yt |y1:t−1, θ) (18)

where y1:t−1 = (y1, . . . , yt−1)
′. The terms in (18) can be

recursively estimated using a particle filter (see e.g. Chopin
and Papaspiliopoulos 2020, for an overview) in such a way
that realisations of a non-negative unbiased estimator of the
full likelihood are obtained. We denote this estimator by

π̂U (y|θ) = π̂U1(y1|θ)

T∏

t=2

π̂Ut (yt |y1:t−1, θ)

where the flattened vector U = (U ′
1, . . . ,U

′
T )′ ∼ g(u)

denotes all random variables used in the construction
of the estimator. Hence, unbiasedness here means that
EU∼g{π̂U (y|θ)} = π(y|θ). Algorithm 1 gives step t + 1 of
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the particle filter and can be executed for t = 0, . . . , T − 1
upon initialising with particles {n(k)

0 = 02, k = 1, . . . , N }.
Note that component t+1ofU is partitioned as (Ũ ′

t+1, Ūt+1)
′

where the kth value of Ũt+1 is Ũk,t+1 ∼ N(0, I2) and used to
propagate particles in step 1(b); Ūt+1 ∼ Unif(0, 1) is used in
the systematic resampling step 3. As presented, step 1a has
that the ODE system governing the LNA is initialised and
integrated for each particle n(k)

t . This ‘restarting’ approach
avoids potential mismatch between the deterministic process
ηt and the latent stochastic process nt (see e.g. Fearnhead
et al. 2014; Minas and Rand 2017, for further discussion).
Upon iterating Algorithm 1 over t , the product (over obser-
vation times) of the average unnormalised weight gives an
unbiased estimator of π(y|θ) (Del Moral 2004) and is key to
the construction of a pseudo-marginal scheme that we now
describe.

Algorithm 1 Step t + 1 of the Particle Filter
Input: Parameter θ , auxiliary variable ut+1 = (ũ′

t+1, ūt+1)
′, next obser-

vation yt+1, N particles {n(k)
t , k = 1, . . . , N }.

1. Forward propagation. For k = 1, . . . , N :

(a) Integrate (4) and (9) over (t, t+1]with initial conditionsη(k)
t =

n(k)
t and V (k)

t = 02 to give η
(k)
t+1 and V (k)

t+1. Note that (8) need
not be integrated.

(b) Set n(k)
t+1 = η

(k)
t+1 +

√
V (k)
t+1 ũk,t+1 and �n(k)

t+1 = n(k)
t+1 − n(k)

t .

2. Compute the weights. For k = 1, . . . , N :

w̃
(k)
t+1 = π

(
yt+1|�n(k)

t+1, ψ
)

,

w
(k)
t+1 = w̃

(k)
t+1∑N

j=1 w̃
( j)
t+1

.

3. Resample N particles using systematic resampling with uniform
draw ūt+1 and weights w

(k)
ti+1

, k = 1, . . . , N .

Output: N particles {n(k)
t+1, k = 1, . . . , N } to be used in step t + 1, an

estimate for the current marginal likelihood term π̂ut+1 (yt+1|y1:t , θ) =
1
N

∑N
k=1 w̃

(k)
t+1.

Pseudo-marginal Metropolis-Hastings methods (PMMH,
Andrieu et al. 2009; Andrieu and Roberts 2009) are a class
of Metropolis-Hastings (MH) scheme that target the joint
density

π(u, θ) ∝ π(θ)g(u)π̂u(y|θ)

for which it is easily checked that marginalising over U
gives the marginal parameter posterior π(θ |y). Hence, an
MH scheme with proposal density q(θ∗|θ)g(u∗) and accep-
tance probability

α
({θ∗, u∗}|{θ, u})

= min

{
1,

π(θ∗)π̂u∗(y|θ∗)
π(θ)π̂u(y|θ)

× q(θ |θ∗)
q(θ∗|θ)

}

targets the joint density π(u, θ) for with retaining draws of
θ gives (dependent) samples from the marginal parameter
posterior.

The efficiency of the PMMH scheme can be improved by
proposing the auxiliary variable from a g-reversible kernel
f (u∗|u) that induces positive correlation between u and u∗,
and in turn, π̂u(y|θ) and π̂u∗(y|θ∗), so that the variance of
the acceptance probability is reduced. Suppose that g(u) =
N

(
u; 0, Idim(u)

)
and note that where necessary, the inverse

CDF method can be used to transform the auxiliary variable
to be Gaussian (for example, in step 3 of Algorithm 1) where
a uniform draw is required). A practical choice of f (u∗|u) is
the g-reversible Crank–Nicolson kernel

f (u∗|u) = N
(
u∗; ρu,

(
1 − ρ2

)
Idim(u)

)

for which the tuning parameter ρ controls correlation
between u and u∗. The resulting correlated PMMH scheme
(CPMMH, Dahlin et al. 2015; Deligiannidis et al. 2018)
is an MH scheme targeting π(u, θ) with proposal den-
sity q(θ∗|θ) f (u∗|u) and acceptance probability as above.
CPMMH can result in significant gains in computational
efficiency over PMMH (see e.g. Golightly et al. 2019, in
the context of stochastic kinetic models), provided that the
positive correlation between u and u∗ induces positive corre-
lation between successive likelihood estimates. To alleviate
the issue of resampling in the particle filter potentially erod-
ing this correlation, we follow Choppala et al. (2016) by
sorting particles (according to Euclidean distance from the
particle with the smallest first component) before propaga-
tion.

Finally we note that when interest lies in the posterior
for the latent incidence process, samples can be obtained via
modification of the (C)PMMH scheme (Andrieu et al. 2010)
by drawing a particle path at each iteration of the algorithm.
Note that this requires storing the ancestral lineages of the
particles in each run of the particle filter.

3.3.2 Analytic method via Gaussian approximation

The LNA, when combined with the linear Gaussian obser-
vation model (12), permits analytic calculation of the
observed data likelihood π(y|θ) and the conditional poste-
rior π(n|θ, y). Evaluation of the former can be efficiently
achieved via a forward filter and draws from the latter via
backward sampling. We apply these methods to the Bino-
mial and Negative Binomial observation models in (13) and
(14) through suitable Gaussian approximations thereof. For
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reasons of brevity, we focus on the Binomial case but note
that our approach is easily extended to theNegative Binomial
case. Where appropriate, we suppress the parameter vector
θ from the notation for simplicity.

To make clear the two appoximations to be used in the
filtering recursions, consider the LNA written in state-space
format over a time interval (t, t+1], using aGaussian approx-
imation to the Binomial observation model. We have that

Nt+1|(Nt = nt )

∼ N (ηt+1 + Gt+1(nt − ηt ), Vt+1) , (19)

Yt+1|(Nt+1 = nt+1, Nt = nt )

∼ N
(
λP ′�nt+1, λ(1 − λ)P ′�nt+1

)
, (20)

where ηt+1, Gt+1 and Vt+1 are obtained by integrating (4),
(8) and (9) over (t, t + 1] with initial conditions of ηt (itself
integrated from time 0), I2 and 02. Although (19) is linear
in nt , as noted in Sect. 3.3.1, ηt should be initialised at nt .
‘Restarting’ the LNA in this way can avoid issues arising
from the ODE solution becoming poor over long time inter-
vals (Fearnhead et al. 2014;Minas andRand 2017).However,
we nowhave that both (19) and (20) involve nonlinear expres-
sions of the latent process. Therefore, to permit the use of
standard Kalman-filtering recursions we make further linear
approximations. Suppose that the filtering distribution at time
t is Nt |(Y1:t = y1:t ) ∼ N(at ,Ct ). Firstly, we set ηt = at ,
Vt = Ct and integrate (4) and (9) over (t, t+1] to obtain ηt+1

and Vt+1. Finally, we replace �nt+1 in the variance of (20)
with �n̂t+1 := E(�Nt+1) = ηt+1 − at . Note that explicit
conditioning of the expectation on y1:t has been supressed
for simplicity. The resulting linear and Gaussian state-space
model is

Nt+1|(Nt = nt )

∼ N (ηt+1, Vt+1) , (21)

Yt+1|(Nt+1 = nt+1, Nt = nt )

∼ N
(
λP ′�nt+1, λ(1 − λ)P ′�n̂t+1

)
. (22)

In the remainder of this section, we derive the filtering recur-
sions based on (21) and (22) to compute the observed data
likelihood and conditional posterior of the latent process.

We construct the observed data likelihood contribution
π(yt+1|y1:t , θ) as follows. Conditional on y1:t , we have that

Var(�Nt+1) = Vt+1 + Ct − CtG
′
t+1 − Gt+1Ct

where we have used that Cov(Nt+1, Nt ) = Gt+1Var(Nt ).
Hence, combining with (22) gives

π(yt+1|y1:t , θ) =
N

(
yt+1; λP ′E(�Nt+1) , λ2P ′Var(�Nt+1)P + σ̂ 2

)
(23)

where σ̂ 2 = λ(1 − λ)P ′�n̂t+1 is the observation variance
in (22). To update the filtering distribution, we construct the
joint density of Nt+1 and Yt+1 conditional on Y1:t = y1:t as

(
Nt+1

Yt+1

)
∼ N

{(
ηt+1

λP ′E(�Nt+1)

)
,

(
Vt+1 Cov(Nt+1,Yt+1)

Cov(Yt+1, Nt+1) λ2P ′Var(�Nt+1)P + σ̂ 2

)}

whereCov(Nt+1,Yt+1) = λ(Vt+1−Gt+1Ct )P . Hence, con-
ditioning on Yt+1 = yt+1 gives Nt+1| (Y1:t+1 = y1:t+1) ∼
N(at+1,Ct+1) with mean

at+1 = ηt+1 + Cov(Nt+1,Yt+1)

× (λ2P ′Var(�Nt+1)P + σ̂ 2)−1

× (yt+1 − λP ′E(�Nt+1)) (24)

and variance

Ct+1 = Vt+1 − Cov(Nt+1,Yt+1)

× (λ2P ′Var(�Nt+1)P + σ̂ 2)−1

× Cov(Yt+1, Nt+1). (25)

Calculation of (23), (24) and (25) constitutes a single step of
the forward filter; seeAlgorithm2,which can be iterated over
t to give an evaluation of the observed data likelihood (under
the LNA), π(y|θ). Hence, draws from the marginal parame-
ter posterior π(θ |y), with the LNA as the inferential model,
are obtained in a straightforward manner via Metropolis-
Hastings e.g. random walk Metropolis (RWM).

Algorithm 2 Step t + 1 of the LNA Forward Filter
Input: Parameter θ ; at and Ct , the initial conditions of (4) and (9);
π(y1:t |θ), the current observed data likelihood; yt+1, the next observa-
tion.

1. Prior at t + 1. Initialise the LNA with ηt = at , Gt = 12 and
Vt = Ct . Integrate (4), (8) and (9) forward to t + 1 to obtain ηt+1,
Gt+1 and Vt+1. Thus

Nt+1| (Y1:t = y1:t ) ∼ N(ηt+1, Vt+1).

2. Likelihood update. Compute

π(y1:t+1|θ) = π(y1:t |θ)π(yt+1|y1:t , θ)

where π(yt+1|y1:t , θ) is given by (23).
3. Posterior at t + 1. Combining the distributions of Nt+1

and Yt+1 (given y1:t ) and then conditioning on yt+1 gives
Nt+1| (Y1:t+1 = y1:t+1) ∼ N(at+1,Ct+1) where at+1 and Ct+1
are given by (24) and (25).

Output: π(y1:t+1|θ), at+1 and Ct+1.
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It remains that we can use the LNA to generate draws from
π(n|θ, y). Note the factorisation

π(n|θ, y) =
T−1∏

t=1

π(nt |nt+1, y1:t , θ)

where each constituent term is a Gaussian density. Under
the LNA, the joint density of Nt and Nt+1 conditional on
Y1:t = y1:t is
(

Nt

Nt+1

)
∼ N

{(
at

ηt+1

)
,

(
Ct CtG ′

t+1
Gt+1Ct Vt+1

)}
.

Conditioning on Nt+1 = nt+1 gives Nt | (Nt+1 = nt+1,Y1:t
= y1:t , θ) ∼ N(ãt , C̃t ) with mean and variance

ãt = at + CtG
′
t+1V

−1
t+1 (nt+1 − ηt+1) ,

C̃t = Ct − CtG
′
t+1V

−1
t+1Gt+1Ct .

Hence, the components of the cumulative incidence n can be
drawn via backward sampling for t = T , T −1, . . . , 1, given
storage of the LNA ODE output and filtering mean/variance
from the forward filter. Then, the latent process x can be
constructed deterministically from n and the initial values x0
using (1).

4 Applications

We consider two applications of the methodology described
in Sect. 3. Firstly, using synthetic data generated from the SIR
model, we compare the performance of the two marginali-
sation techniques described in Sects. 3.3.1 and 3.3.2; these
are the correlated pseudo-marginal Metropolis-Hastings
(CPMMH)and forwardfilteringMetropolis-Hastings (hence-
forth FFMH) based inference schemes. We compare the
accuracy of posterior output from these schemes with infer-
ences obtained by assuming the most natural Markov jump
process as the inferential model. We fit this model using
the pseudo-marginal Metroplis-Hastings (PMMH) scheme
described in Golightly and Wilkinson (2011). Additionally,
we include inferences based on a deterministic ODE model
of latent incidence (fit via MH). In the second application,
we use FFMH to fit SIR and SIRS models wth two different
choices of observation model, to a real data set consisting of
pest removals from trees in a London park.

All algorithms are coded in R and were run on a desktop
computer with an Intel quad-core CPU. Source code is avail-
able at https://github.com/AndyGolightly/LNA-Incidence.
All schemes use randomwalk proposals with Gaussian inno-
vations for the log-transformed parameters. For CPMMH,
we fixed ρ = 0.99, which we found to give a good balance

between mixing over the auxiliary variable and parameter
chains. We chose the number of particles N by follow-
ing the practical advice of Deligiannidis et al. (2018). That
is, we choose N so that the variance of log π̂u∗(y|θ∗) −
log π̂u(y|θ) ≈ 1. For CPMMH and FFMH, we took the ran-
dom walk innovation variance to be V̂ar(log θ |y) estimated
from a pilot run, and subsequently scaled to meet a desired
empirical acceptance rate (see e.g. Schmon et al. (2021) for
(C)PMMH and Schmon and Gagnon (2022) for Metropolis-
Hastings). CPMMH was run for 50,000 iterations and the
remaining schemes were run for 10,000 iterations, which we
found gave reasonable mixing efficiency as measured by, for
example, effective sample size (see e.g. Plummer et al. 2006).

4.1 Simulation study

We generated three synthetic data sets (denoted Di , i =
1, 2, 3) from the SIR model, each consisting of the num-
ber of new infections in time intervals (t, t + 10] for
t = 10, 20, . . . , 70. For D1, we used x0 = (119, 1)′
and (β, γ )′ = (0.00091, 0.082)′; these choices are consis-
tent with inferences from the well studied Abakaliki small
pox data (see e.g. Bailey 1975). For D2, we constructed a
larger outbreak by scaling the total population size Npop and
removal rate by a factor of 3, resulting in x0 = (359, 1)′ and
(β, γ )′ = (0.00091, 0.246)′. For D3, we scaled Npop by a
factor of 10 (compared to D1) and set x0 = (1180, 20)′.
We scaled both the infection and removal rates to give
(β, γ )′ = (0.00018, 0.164)′. Note that all data sets have the
same basic reproduction number, R0 = Npopβ/γ = 1.33.
Wecorrupted the resulting incidences via theBinomial obser-
vation model (13) with λ = 0.8 in each case. The data sets
are shown in Fig. 2 alongside the underlying traces of St and
It (assumed unobserved).

When analysing D1, we adopted an independent prior
specification with Gamma and Uniform components by tak-
ing β ∼ Gamma(10, 104), γ ∼ Gamma(10, 102) and
λ ∼ Unif(0, 1). The first two choices have been used by
Fearnhead and Meligkotsidou (2004) and many others when
analysing the Abakaliki small pox data. For D2 and D3 we
adopted a more diffuse prior for the removal rate to better
reflect the increase in the ground truth value; specifically,
γ ∼ Gamma(10, 30), with the prior specification for the
remaining components as for D1. We assume that the initial
state x0 is fixed and known but note that inference for x0 is
possible by augmenting θ to include the components of x0.

Table 1 and Figs. 3 and 4 summarise the posterior out-
put from each scheme. For data set D1 (population size
Npop = 120), although all inferential models give posterior
output that is consistent with the ground truth parameter val-
ues, there are noticeable inconsistencies between LNA- and
MJP-based inferences. Using the LNA to model the latent
incidence process but with the correct observation model

123

https://github.com/AndyGolightly/LNA-Incidence


Statistics and Computing (2023) 33 :134 Page 9 of 18 134

Fig. 2 Synthetic data sets D1 (top panel), D2 (middle panel) and D3 (bottom panel). Left: noisy numbers of new infecteds in a 10 day interval
(circles) and latent values (line). Middle and right: corresponding susceptible and infected states

(LNA/(C)PMMH) results in an overestimation of the infec-
tion and removal rates, although there is little difference
between this approach compared to the MJP when consider-
ing the basic reproduction numberR0. However, differences
are more pronounced when further approximating the obser-
vation model as Gaussian (LNA / FFMH), which results in
under estimation of R0. Nevertheless, these differences are
relatively small, and the advantages (in terms of overall effi-
ciency) of analytically integrating out the latent process (as
per LNA/FFMH) are clear.

We measure overall efficiency using minimum (over
each parameter chain) effective sample size (ESS) per sec-
ond (mESS/s). Given the small population size for D1,
using the MJP inside a PMMH scheme is computationally
more efficient than using the LNA (which, as implemented,
requires numerical integration of 5 coupled ODEs per parti-
cle per iteration). Correlating successive likelihood estimates
(LNA/CPMMH vs PMMH) increases overall efficiency by a
factor of 2, however, the largest gains in overall efficiency are
obtained by LNA/FFMH, which improves on MJP/PMMH
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Table 1 Synthetic data application

Model/scheme ρ N mESS/s Mean (Std. Dev.)
β γ λ R0

Data set D1

0.00091 0.082 0.8 1.33

MJP/PMMH 0.00 30 0.682 0.00091 (0.00024) 0.088 (0.022) 0.62 (0.22) 1.29 (0.35)

LNA/PMMH 0.00 25 0.039 0.00107 (0.00027) 0.094 (0.025) 0.61 (0.24) 1.37 (0.41)

LNA/CPMMH 0.99 15 0.064 0.00111 (0.00024) 0.101 (0.027) 0.64 (0.22) 1.36 (0.40)

LNA/FFMH – – 3.075 0.00102 (0.00021) 0.117 (0.029) 0.82 (0.15) 1.09 (0.26)

ODE/MH – – 12.091 0.00203 (0.00024) 0.192 (0.042) 0.48 (0.16) 1.35 (0.42)

Data set D2

0.00091 0.246 0.8 1.33

MJP/PMMH 0.00 125 0.091 0.00087 (0.00016) 0.225 (0.041) 0.75 (0.12) 1.35 (0.19)

LNA/PMMH 0.00 120 0.018 0.00092 (0.00017) 0.231 (0.050) 0.77 (0.12) 1.51 (0.23)

LNA/CPMMH 0.99 60 0.030 0.00089 (0.00016) 0.228 (0.056) 0.77 (0.12) 1.44 (0.25)

LNA/FFMH – – 3.680 0.00094 (0.00021) 0.234 (0.060) 0.78 (0.12) 1.49 (0.22)

ODE/MH – – 13.440 0.00087 (0.00005) 0.188 (0.021) 0.65 (0.04) 1.68 (0.10)

Data set D3

0.00018 0.164 0.8 1.33

MJP/PMMH 0.00 120 0.045 0.00032 (0.00006) 0.290 (0.059) 0.82 (0.09) 1.33 (0.10)

LNA/PMMH 0.00 120 0.012 0.00034 (0.00007) 0.318 (0.070) 0.83 (0.10) 1.30 (0.11)

LNA/CPMMH 0.99 60 0.019 0.00034 (0.00006) 0.308 (0.062) 0.81 (0.12) 1.32 (0.12)

LNA/FFMH – – 3.533 0.00023 (0.00005) 0.217 (0.049) 0.85 (0.10) 1.29 (0.11)

ODE/MH – – 12.984 0.00019 (0.00001) 0.159 (0.008) 0.63 (0.01) 1.45 (0.04)

Inferential model/scheme, correlation parameter, number of particles, minimum effective sample size per second and marginal parameter posterior
summaries. The ground truth parameter values are indicated for each data set

by a factor of 4 and on LNA/CPMMH by a factor of almost
50.

For data setD2 (population size Npop = 360), the pseudo-
marginal schemes require more particles, due to the intrinsic
stochasticity of realisations of the latent process generated
inside the particle filter, which is large compared to observa-
tion noise. The increased population size (and corresponding
parameter values that generated the data) leads to manymore
reaction occurrences between observation instants (com-
pared toD1) reducing the relative efficiency of MJP/PMMH
versus LNA/(C)PMMH and LNA/FFMH. We note that for
this data set, using the LNA to model the latent process and
additionally taking a linear Gaussian approximation of the
observation model leads to an inference scheme that is both
efficient (with an mESS/s 40 times larger than that of the
next best perfoming scheme) and accurate (see Fig. 3, bot-
tom panel).

The magnitude of of typical observations in data set D3

(population size Npop = 1200) is broadly consistent with
that of D2 and we find that the pseudo-marginal schemes
require similar particle numbers. Using the LNA with the
correct observation model gives parameter inferences that
are consistent with the MJP. Using LNA/FFMH appears

to result in underestimates of the infection and removal
rates although the basic reproduction number appears to
be accurately estimated. In terms of overall efficiency, the
advantage of LNA/FFMH over competing schemes is clear,
with an mESS/s that is approximately 80 times larger than
MJP/PMMH. There is relatively little difference between the
performance of LNA/CPMMH and MJP/PMMH.

Table 1 also includes summarised posterior output when
using a deterministic ODE model of latent incidence, com-
bined with a Guassian approximation to the Binomial obser-
vation model (ODE/MH). This approach requires only the
solution of the ODE system in (4), as opposed to (4), (8)
and (9) when using the LNA. Consequently, an approxi-
mate 4-fold increase in overall efficiency is achieved for
ODE/MH compared to LNA/FFMH. However, ignoring
intrinsic stochasticity leads to a clear loss of inferential accu-
racy. In particular, the reporting rate is underestimated (which
is unsurprising, as this leads to a larger observation vari-
ance, which can somewhat offset the inability of the latent
ODE model to capture intrinsic stochasticity) and the basic
reproduction number is typically overestimated. As Npop

increases, posterior uncertainty for all static parameters is

123



Statistics and Computing (2023) 33 :134 Page 11 of 18 134

Fig. 3 Synthetic data application. Marginal posterior densities based on D1 (top panel), D2 (middle panel) and D3 (bottom panel), and using the
output of MJP/PMMH (solid line), LNA/CPMMH (dashed line), LNA/FFMH (dotted line)
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Fig. 4 LNA within-sample predictive distributions (mean and 95% credible intervals) for St (left) and It (right) based on synthetic data sets D1
(top panel), D2 (middle panel) and D3 (bottom panel). Ground truth latent process trajectories are shown as dashed lines

underestimated (relative to the gold standard MJP approach)
irrespective of each data set.

Figure 4 shows within-sample predictive summaries
(averaged over parameter uncertainty) for the susceptible
and infective states under the LNA. That is, for each of niters
parameter draws from the marginal posterior under the LNA,
backward sampling (see Sect. 3.3.2) was run to obtain sam-
ples (S(k)

t , I (k)
t )′ from the conditional posteriorπ(xt |θ(k),D)

for t = 10, 20, . . . , 80 and k = 1, 2, . . . , niters . We see that
although the LNA (unsurprisingly) fails to capture the dis-
crete nature of the infective process (most evident for data set

D1), within-sample predictive draws are generally consistent
with the ground truth traces generated by the jump process,
although there is some suggestion for data sets D1 and D3

that the LNA is least accurate at the end of the epidemic.

4.2 Oak processionary moth in Richmond park,
London

In this section we consider the application of the methodol-
ogy to the infestation of the oak processionary moth (OPM),
Thaumetopoea processionea, in Richmond Park, London.
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Table 2 OPM data Year 2013 2014 2015 2016 2017 2018 2019 2020

No. removals 1024 1414 958 540 594 557 587 1029

Number of “removed trees” in a given year, Richmond park, London, 2013–2020

Fig. 5 SIRS compartment model

OPM is an invasive pest, destructive to oak trees and toxic to
humans and animals (Maier et al. 2003, 2004; Gottschling
and Meyer 2006; Rahlenbeck and Utikal 2015). The moth
was first established in the UK in 2006 and despite efforts to
initially eradicate, and then contain the infestation, OPM has
continued to spread (Suprunenko et al. 2021; Wadkin et al.
2022).

Surveys and control strategies for Richmond Park are
carried out by The Royal Parks charity, and this data is
then shared with the governmental Oak Processionary Moth
Control Programme (Mainprize and Straw 2021). The data
records the numbers of OPM nests removed from trees
(with recorded locations) between the years 2013 and 2020,
allowing the formation of a time series for the yearly
removal incidence of infested trees; see Table 2. The removal
prevalence of the same set of trees (constructed under the
assumption of known initial conditions) was considered in
an SIR model in Wadkin et al. (2022). However, upon the
manual removal of the OPM nests, it is possible for the trees
to become susceptible to re-infestation, and thus we addi-
tionally consider the SIRS model below.

4.2.1 Model and prior distribution

To allow for removed trees re-entering the susceptible class,
we consider the SIRS compartmentmodel shown graphically
in Fig. 5.

Transitions between compartments can be described by
the set of pseudo-reactions given by

S + I
βt−→ 2I , I

γ−→ R, R
κ−→ S

where βt is a time varying infection rate whose natural log-
arithm is described by the SDE

d logβt = σβ dWt .

That is, the log infection rate is a scaled Brownian motion
process. We note that setting κ = 0 gives the SIR model
and in what follows fit both SIR and SIRS models under the
assumption the latent incidence process is well described by
the linear noise approximation. Further details of the LNA
for the SIRS compartment model are given in Appendix A.
We additionally consider two observation models; these are
the Binomial and Negative Binomial models given by (13)
and (14). This leads to 4 competing models which we com-
pare using the deviance information criterion DIC, (see e.g.
Gibson et al. 2018, for a discussion of DIC in the epidemic
context) given by

DIC = −2Eθ {logπ(y|θ)|y} + pD

where pD = −2Eθ {logπ(y|θ)|y} + 2 logπ(y|θ̄ ) measures
the effective number of parameters in the model. Note that
the observed data likelihood π(y|θ) is tractable under the
Gaussian approximation approach to inference described in
Sect. 3.3.2, which we employ here. Hence, DIC is easily cal-
culated and the model with the smallest DIC is preferred.

We followWadkin et al. (2022) by fixing Npop = 40,000,
x0 = (38,600, 1400)′ and logβ0 = −10. We adopt an inde-
pendent prior specification by taking log γ ∼ N(0, 0.52),
log κ ∼ N(0, 1), log σβ ∼ N(1, 1), λ ∼ Unif(0, 1) and,
when using a Negative Binomial observation model, logφ ∼
N(0, 1). Note that the choice of β0 and prior for the removal
rate γ induces a prior on the basic reproduction number
R0 = Npopβ0/γ at time 0 as lognormal logN(0.6, 0.52).
This gives a 95% equitailed credible interval of (0.7, 4.8)
for R0, which reflects our belief that OPM spread is likely
to persist, without precluding R0 < 1. We note also that
the prior for κ gives a 95% credible interval of (0.14, 7.10)
years, reflecting vague prior beliefs on the time taken for a
removed tree to re-enter the susceptible class.

4.2.2 Results

Weran themarginalMetropolis–Hastings scheme (as described
in Sect. 3.3.2) for 50,000 iterations, with the resulting param-
eter chains suggesting adequate mixing. Tables 3 and 4 and
Figs. 6, 7 and 8 summarise the posterior output under each
competing model.

Table 3 shows estimated DIC for the SIR and SIRS mod-
els, under the assumption of either a Binomial or Negative
Binomial observation model. A Binomial observation model
is preferred irrespective of the assumed underlying compart-
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Table 3 OPM data application Model SIR (Bin) SIR (Neg Bin) SIRS (Bin) SIRS (Neg Bin)

DIC 115.4 120.4 113.4 119.8

Estimated DIC for the SIR and SIRS models, assuming either a Binomial (Bin) or Negative Binomial (Neg
Bin) observation model

Table 4 OPM data application Mean (Standard Deviation)

Parameter SIR (Bin) SIR (Neg Bin) SIRS (Bin) SIRS (Neg Bin)

γ 0.90 (0.30) 1.44 (0.44) 0.96 (0.31) 1.45 (0.47)

κ – – 1.57 (2.02) 1.26 (1.72)

σβ 0.64 (0.24) 0.58 (0.58) 0.56 (0.22) 0.51 (0.39)

λ 0.64 (0.16) 0.57 (0.20) 0.61 (0.16) 0.62 (0.20)

φ – 0.30 (0.38) – 0.25 (0.32)

Marginal parameter posterior summaries

Fig. 6 OPM data application.
Marginal posterior densities
(histograms) and prior (solid
line), of the parameters in the
SIRS model assuming binomial
observations

ment model. This is consistent with the inferred values of
the (inverse) dispersion parameter φ, which are typically
small; see Table 4. Hence, it appears that the true but unob-
served removal incidence is much larger than the observed
incidence, which is unsurprising given surveyed areas of
Richmond park in each year, which typically consitute a
small fraction of the total area. Although our findings sup-
port the hypothesis that trees can become susceptible to
re-infestation over the time scales of the data set considered,
we note that the analysis has not been particularly infor-
mative for the parameter κ , governing the rate of R to S
transitions; see Fig. 6 showing marginal posterior densities
for parameters in the SIRS model and the prior specification.
Since removed trees are treated with insecticide, this param-

eter is likely to be of interest to practitioners. Nevertheless,
improved data collection protocols and a longer study period
may provide a partial record of the number of R to I transi-
tions, which would greatly improve inferences on κ .

Figure 7 summarises the within-sample predictive distri-
butions for the susceptible and infective prevalence processes
(which are easily reconstructed from the predicted inci-
dences, not shown) and the log infection process, logβt .
These results are broadly consistent with those of Wadkin
et al. (2022), which suggest a plausibly constant infection
rate and an uptick in infected trees from 2018. Figure8
summarises the marginal posterior distribution of the basic
reproduction number R0 against year. Sampled values of
R0 appear to be largely consistent across years, however,
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Fig. 7 OPM data application. Within-sample predictive distributions (mean and 95% credible intervals) for St (left) and It (middle) and logβt
(right)

Fig. 8 OPM data application.
Boxplots summarising the
marginal posterior distribution
of the basic reproduction
number R0 against year

the marginal posterior distributions in years 2018, 2019 and
2020 have greatest support forR0 > 1 suggesting that OPM
will continue to propagate in Richmond park.

5 Discussion

Theconstructionof efficient andwidely applicable approaches
to inference for stochastic epidemic models remains a key
challenge (Swallow et al. 2022.) In this paper, we have
proposed a fast an efficient method for inferring the param-
eters governing the linear noise approximation (LNA) of
a stochastic epidemic model, using incidence data con-
sisting of the cumulative number of new infections (or
removals) in fixed-length windows. This setting is consid-
ered in Fintzi et al. (2021) who combine the LNA of the
incidence process with a Negative Binomial observation
model and develop an efficient MCMC scheme targeting
the joint density of the parameters and latent incidence pro-
cess. Our contribution, on the other hand, is a framework
for marginalising out the latent incidence process: either by
exactly targeting the marginal parameter posterior via a (cor-

related) pseudo-marginal method, or analytically through a
Gaussian approximation of the observation process.We addi-
tionally allow for a flexible, time-varying stochastic infection
rate, which is naturally handled within the LNA framework.
Our experiments demonstrated that use of the LNA and a
further Gaussian approximation of an observation model
can be both accurate and efficient. Using parameter values
inspired by theAbakaliki smallpox outbreak, we investigated
the accuracy and efficiency of the analytically marginalised
LNA as the population size increases (and with the param-
eters scaled appropriately). In the ‘large epidemic’ setting
(Npop = 1200), the analytic marginalisation scheme outper-
forming the next best performing scheme by about a factor
of 80. In this scenario, use of the most natural Markov jump
process representation of the epidemic is computationally
prohibitive.

We further illustrated our approach via an application
with real data consisting of numbers of trees infested with
oak processionary moth (OPM) nests in Richmond Park,
London. Typical observations consist of around 500–1500
removals in a given year, with a total population size of
around 40,000 trees, thus necessitating the efficient infer-
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ence methods developed here. As well as inferring key
quantities of interest, such as the basic reproduction num-
ber and latent susceptible and infective trajectories, our
approach allows for easy computation of the observed data
likelihood which can be used, for example, to compute a
deviance information criterion (DIC). We used DIC to com-
pare two different compartment models (SIR versus SIRS)
and two different observation models (Binomial versus Neg-
ative Binomial). Out analysis suggests the SIRS model as
the best fitting compartmentment model, suggesting that
trees can re-enter the susceptible class following removal
(via treatment). Although improved data collection protocols
which include observation of the number of removed trees
which susbequently become infected will greatly improve
predictive power, our approach demonstrates that meaning-
ful conclusions on the spread of OPM can be drawn, despite
a data poor scenario.

5.1 Limitations and extensions

Within the stochastic kinetic models context, the LNA can be
derived directly from the most natural Markov jump process
(MJP) representation (Kurtz 1970, 1972) but is perhaps most
intuitively viewed as a tractable Gaussian process approxi-
mation of the Itô Stochastic differential equation (SDE) that
best matches the MJP representation Ferm et al. (2008);
Fearnhead et al. (2014). As advocated by Fuchs (2013)
among others, judging the validity of these continuous-
valued approximations should involve comparison with the
MJP (e.g. via simulations) for the specific system considered.
Nevertheless, we expect, in general, that the best matching
SDE and LNA approaches are likely to approximate theMJP
particularly poorly when specie numbers are comparatively
small (e.g. in the few tens). In such situations, we envisage
that our approach is likely to be of most practical benefit in
providing initial values and tuning choices for simulation-
based inference schemes that target the posterior under the
MJP. For inherentlymulti-scale epidemics, itmay be possible
to leverage hybrid simulation techniques (see e.g. Sherlock
et al. 2014) whereby the LNA is used to model species which
frequently change state, coupled with a discrete stochastic
updating procedure for species which change state less often.

This work can be further extended in a number ofways. Of
particular interest to us is the use of the proposed approach
within a spatio-temporal setting, and with application to
OPM spread, for example, by allowing importation of pests
from nearby locations. Extension of the methodology to
allow incorporation of multiple data streams (see e.g. Cor-
bella et al. 2022) also merits further attention.
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Appendix A: SIRSmodel details

Let Xt = (St , It )′ denote the numbers of susceptibles and
infectives at time t . Similarly, let nt = (n1,t , n2,t , n3,t )′
denote the cummulative number of infection, removal and
loss of immunity (that is, removal to susceptible) events at
time t . Let βt , γ and κ denote the corresponding event rates.
The cumulative incidence {Nt , t ≥ 0} is an MJP governed
by the transition probabilities

P(Nt+�t = (n1,t + 1, n2,t , n3,t )
′|nt , xt , θ)

= βt st it �t + o(�t),

P(Nt+�t = (n1,t , n2,t + 1, n3,t )
′|nt , xt , θ)

= γ it �t + o(�t),

P(Nt+�t = (n1,t , n2,t , n3,t + 1)′|nt , xt , θ)

= κ(Npop − st − it )�t + o(�t),

P(Nt+�t = (n1,t , n2,t , n3,t )
′|nt , xt , θ)

= 1 − (βst it + γ it + κ[Npop − st − it ])
�t + o(�t)

and recall that Npop is the total population size (assumed
fixed and known). The stoichiometry matrix is given by

S =
(−1 0 1

1 −1 0

)
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and the hazard function is

h(xt ) = (βt st it , γ it , κ[Npop − st − it ])′.

Using (1), we may write the hazard function in terms of the
incidence process as

h∗(nt ) = (β[s0 − nt,1 + nt,3][i0 + nt,1 − nt,2],
γ [i0 + nt,1 − nt,2],
κ[Npop − s0 − i0 − nt,3 + nt,2])′.

Now define N4,t = logβt as a Brownian motion process
scaled by σβ . This leads to the CLE for the SIRS model
(with time varying infection rate) as

dNt = {
h∗
1(nt ), h

∗
2(nt ), h

∗
3(nt ), 0

}
dt

+ diag
{√

h∗
1(nt ),

√
h∗
2(nt ),

√
h∗
3(nt ), σβ

}
dWt

where Wt is a length-4 vector of uncorrelated Brownian
motion processes. The LNA then follows from equations (4),
(8) and (9), with the (transpose of the) Jacobian matrix Ft
given by

F ′
t =

⎛

⎜⎜⎝

exp(η4,t )(s0 − i0 − 2ηt,1 + ηt,2 + η3,t ) γ 0 0
exp(η4,t )(ηt,1 − ηt,3 − s0) −γ κ 0
exp(η4,t )(i0 + nt,1 − nt,2) 0 −κ 0

exp(η4,t )(s0 − ηt,1 + ηt,3)(i0 + ηt,1 − ηt,2) 0 0 0

⎞

⎟⎟⎠ .
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