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Abstract
Toroidal data is an extension of circular data on a torus and plays a critical part in various scientific fields. This article
studies the density estimation of multivariate toroidal data based on semiparametric mixtures. One of the major challenges
of semiparametric mixture modelling in a multi-dimensional space is that one can not directly maximize the likelihood over
the unrestricted component density as it will result in a degenerate estimate with an unbounded likelihood. To overcome this
problem, we propose to fix the maximum of the component density, which subsequently bounds the maximum of the mixture
and its likelihood function, hence providing a satisfactory density estimate. The product of univariate circular distributions
are utilized to form multivariate toroidal densities as candidates for mixture components. Numerical studies show that the
mixture-based density estimator is superior in general to the kernel density estimator.

Keywords Toroidal data · Density estimation · Semiparametric mixture · Bandwidth selection

1 Introduction

A circular observation can be viewed as a point lying on the
circumference of a unit circle and is usually represented by
an angle x ∈ [0, 2π). It differs from a linear observation in
its periodicity, i.e., x + 2rπ for r ∈ Z represents the same
point x . It requires special techniques to analyze circular data,
because they have a bounded range and lie on a Riemannian
manifold. Circular observations can be extended to multi-
dimensional to be on the surface of a unit (hyper-)sphere or
a unit torus. The d-dimensional spherical observations lie on
the unit d-sphere, e.g., the astronomical objects can be treated
as points on the unit 2-sphere. Each d-dimensional spheri-
cal observation can be represented by d angles in the space
[0, π)d−1 × [0, 2π). By contrast, a d-dimensional toroidal
observation, whichwill be the focus of the study in this paper,
corresponds to a point on a d-torus which is the product
space of d unit circles, i.e., Td = [0, 2π)d . An example of
2-dimensional toroidal data is the protein backbone chains,
where the two dihedral angles connecting atoms essentially
determine the shape of protein backbone structure and can
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be analyzed as toroidal data (Sittel et al. 2017). There are
other types of toroidal data in higher dimensions including
the nuclear magnetic resonance (NMR) and ribonucleic acid
(RNA) data studied in bioinformatics. It is also a common
practice to combine several circular variables into multivari-
ate circular data and treat them jointly as a set of toroidal data,
e.g., to study pairs of wind directions measured at different
time points (Johnson and Wehrly 1977) or the relationship
between the orientation of bird nests and the directions of
creek flows (Fisher 1995).

In this paper, we study nonparametric density estimation
for toroidal data (d ≥ 2) owing to their many important
applications. In particular, we propose to use semiparametric
mixtures with component distributions suitable for toroidal
data. As will be shown later, using semiparametric mix-
tures offers more flexibility than the more popular kernel
density estimators (KDE), especially in a multi-dimensional
space, and tends to produce simplermodels yet with typically
better numerical performance. For mixture components, we
employ the product of circular distributions, which may or
may not belong to the same family, hence at a higher level of
methodological generality. To properly use semiparametric
mixtures, however, there are a couple of difficult challenges.
One is that a direct maximization of the likelihood function
will result in an unusable degenerate estimate of the mixing
distribution. To overcome this, we consider using a scalar
variable and defining it as the “bandwidth”, as similarly used
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in KDE, that controls the smoothness of a density estimate.
This breaks down the maximization problem into two sub-
problems: maximizing the likelihood function for each fixed
value of the bandwidth and finding an appropriate bandwidth
value via a model selection method, either deterministically
or based on simulation. The other is how to define this band-
width variable, which is particularly relevant to toroidal data
here which have a bounded range.Wewill solve this problem
by controlling the maximum of mixture component densities
and using its reciprocal as the bandwidth variable. This very
well helps bound the likelihood function and produce appro-
priate density estimates.

Throughout the paper, a lowercase boldface letter is used
to denote a vector, e.g., x, xi and μ, and an uppercase bold-
face letter a matrix, e.g., M and �. Symbol β will be used to
designate generically the structural parameter of a semipara-
metric mixture, which can be a vector or matrix, depending
on the situation.

The remainder of the paper is organized as follows. Sec-
tion2 describes how to use semiparametric mixtures for
density estimation with toroidal data and proposes to con-
trol the maximum of component densities. In Sect. 3, the
algorithm is described in detail. Some theoretical results
regarding the product von Mises component distribution is
provided in Sect. 4. Numerical studies including simulation
and three real-world data analysis are presented in Sects. 5
and 6, respectively. Some concluding remarks are given in
the final section.

2 Using semiparametric mixtures

In this section, we describe how to use semiparametric mix-
tures for density estimation for data on a torus. We first
describe semiparametric mixtures in Sect. 2.1 and then the
mixture component densities constructed by products of uni-
variate densities in Sect. 2.2. The central problem of defining
the bandwidth is studied in Sect. 2.3. Finally, the choice of
the smoothing parameter is discussed in details in Sect. 2.4.

2.1 Semiparametric mixtures

The density of a semiparametric mixture that we use for
toroidal data is of form

f (x;G,β) =
∫

f (x;μ,β) dG(μ), (1)

where f (x;μ,β), x,μ ∈ T
d , is a component density, β a

finite-dimensional parameter that is common to all mixture
components, and G a mixing distribution that takes a com-
pletely unspecified form. For any fixedβ, the semiparametric
mixture reduces to a nonparametric mixture which has only

the infinite-dimensional parameter G. It is known that the
nonparametric maximum likelihood estimation (NPMLE) Ĝ
of G must have a discrete solution, which has no more sup-
port points than the number of distinct observations in the
sample (Laird 1978; Lindsay 1983a). This discrete NPMLE
is typically the unique one, e.g., for the exponential family
(Lindsay 1983b). It is therefore that one can only consider
discrete distributions for G for maximum likelihood estima-
tion. Suppose such a discrete G has m support points M =
(μ1, . . . ,μm) with probability masses ω = (ω1, . . . , ωm)�,
for ω1, . . . , ωm > 0 and

∑m
j=1 ω j = 1. Then mixture (1)

can be rewritten as a finite mixture with m components:

f (x;G,β) =
m∑
j=1

ω j f (x;μ j ,β), (2)

which, given a random sample x1, ..., xn ∈ T
d , has the log-

likelihood function

l(G,β) =
n∑

i=1

log[ f (xi ;G,β)]. (3)

Note that G and (ω, M) are interchangeable and that the
number of components m is also to be estimated from the
data.

For a fixed value of β, the gradient function is given by

d(μ;G,β) = ∂l((1 − ε)G + εδμ,β)

∂ε

∣∣∣∣
ε=0+

=
n∑

i=1

f (xi ;μ,β)

f (xi ;G,β)
− n, (4)

where δμ denotes the point-mass distribution function at μ.
This function characterizes the NPMLE Ĝ, in the sense that
an estimateG is theNPMLE if andonly if supμ d(μ;G,β) =
0 (Lindsay 1995). It is also highly instrumental for comput-
ing Ĝ (Wang 2007), which will be detailed below.

In general, however, leaving β with full degrees of free-
dom and maximizing the likelihood function directly will
result in useless degenerate mixture components, with the
likelihood approaching infinity (Grenander 1981;Gemanand
Hwang 1982). Wang and Wang (2015) addressed this issue
in the Euclidean space with Gaussian components, where
β is the component covariance matrix �. They suggested
to decompose � into a product of h2 and a positive-definite
matrix B subject to |B| = 1, which thusmakes the likelihood
bounded for any h > 0. This interesting technique, however,
is not directly applicable to the toroidal data situation here,
as will be explained and improved upon in Sect. 2.3.
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2.2 Product component densities

To use the semiparametric mixture (1), we need suitablemix-
ture components for toroidal data. The component density
here plays a similar role to the kernel function in kernel
density estimation. In this paper, we choose to construct
component densities by the product of univariate circular
densities, i.e., a component density is given by

f (x;μ,β) =
d∏

p=1

f (xp;μp, βp),

where f (xp;μp, βp), with a location parameter μp and a
scale parameter βp, is a univariate density function for circu-
lar data. The spread of the joint distribution is thus determined
by the vector of scale parameters for all dimensions. Virtually
all univariate circular distributions can be used, and one may
even consider using different families for different variables
according to their types and ranges.

For our mixture-based density estimation, we imple-
mented two such distributions: the von Mises (VM) and the
wrapped normal (WN) distribution. The VM density is of
form

fVM(x;μ, κ) = eκ cos(x−μ)

2π I0(κ)
,

where x, μ ∈ T, κ > 0 and I0(κ) denotes the modified
Bessel function of the first kind of order zero, for which

It (κ) = 1

2π

∫ 2π

0
cos(t x)eκ cos(x) dx,

for any integer t . Here μ is known as the location parameter
and κ the concentration parameter, an opposite to a scale
parameter.

The WN density is given by

fWN(x;μ, v) = 1√
2πv

∞∑
r=−∞

exp

[
− (x − μ + 2rπ)2

2v

]
,

where x, μ ∈ T, v > 0. For evaluation, the infinite sum
above can be easily replaced with a truncated series. With
a sufficient number of terms, this is an excellent approxi-
mation, as the normal density decreases exponentially as |r |
increases. Clearly, substituting forβ, it is κ = (κ1, . . . , κm)�
for the product von Mises (PVM) distribution and v =
(v1, . . . , vm)� for the product wrapped normal (PWN) dis-
tribution.

It is also possible to incorporate correlation between uni-
variate variables, but the nonparametric form of G is able

to deal with correlation and also account for a considerable
amount of other types of complexity in the data. Using such
a product distribution ensures that any marginal distribu-
tion can be easily produced, which can be very useful for
understanding the results in a low-dimensional space and for
gaining insights.

2.3 Controlling the component maximum

As explained in Sect. 2.1, it is not appropriate to maximize
the log-likelihood function (3) without restricting β. It is
also desirable, as in Wang and Wang (2015), to restrict a
scalar variable that is determined by β and can be considered
as the smoothing parameter. For Gaussian mixtures, Wang
and Wang (2015) use the decomposition β = � = h2B
with |B| = 1 and treat h as the smoothing parameter. For a
diagonal � = diag{σ 2

1 , . . . , σ 2
d }, as with a product Gaussian

density, h = ∏d
i=1 σi , i.e., the product of the scale parameters

of all dimensions.
However, this idea can not be directly applied to toroidal

data. Take the bivariate PVM density as an example which
has mean (π, π)� and concentration β = κ = (κ1, κ2)

�. By
simply holding κ1κ2 constant, the density can still become
degenerate, as illustrated in Fig. 1, which shows three bivari-
ate densities, all satisfying κ1κ2 = 1. Shown in Figs. 1a and
1b, as κ varies from (1, 1)� to (0.1, 10)�, the marginal den-
sity for x1 becomes more concentrated around π , while that
for x2 approaches a uniform one. To further illustrate the
effect, Fig. 1c shows the density with κ = (0.0001, 10000)�.
Themarginal density for x1 is almost degenerate, and that for
x2 is almost uniformon [0, 2π). Thismeans that the joint den-
sity value around the mean can become arbitrarily large and
thatmaximizing the likelihood functionwill lead to amixture
with an infinite likelihood value and degenerate component
distributions. The resultant mixtures are useless as density
estimates.

To overcome this challenge, we realize that bounding
the likelihood can be achieved by bounding the component
density function. For a unimodal mixture component, we
propose fixing its maximum. Therefore, we define h, the
bandwidth parameter that controls the smoothness of the
density estimate, as the reciprocal of the maximum of a mix-
ture component, up to a multiplicative constant. Then the
log-likelihood (3) can be easily shown to be bounded by
−n log(h), up to an additive constant. Now let us consider
using the PVM and PWN distributions as mixture compo-
nents. For the PVM components, we define

h = h(κ) =
d∏

p=1

I0(κp)

eκp
. (5)
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Fig. 1 Three bivariate PVM densities, holding κ1κ2 = 1

Fig. 2 Three bivariate PVM densities, holding h = 8.56, as defined in (5)

Figure2 shows three bivariate product von Mises densities,
all with h = 8.56. It is clear that for a fixed h-value, the
maximum of the PVM density remains constant, while the
shape is allowed to vary with different κ-values.

To better determine the maximum of a PWN density, we
consider an alternative representation of the univariate WN
density that is given by

fWN(x;μ, ρ)

= 1

2π

[
1 + 2

∞∑
k=1

ρk2 cos[k(x − μ)]
]

,

= 1

2π
ϑ3(x − μ, ρ), 0 < ρ < 1,

whereρ = e− v
2 andϑ3 is a Jacobi theta function (Abramowitz

and Stegun 1964, page 576). In this parametrization, the
smoothness of the density is controlled by ρ. The density
approaches the circular uniformone asρ → 0, and adegener-
ate point mass as ρ → 1. The density maximum is attained at
μ. Hence for the PWN components with ρ = (ρ1, . . . , ρd)

�,
we define

h = h(ρ) =
d∏

p=1

1

ϑ3(0, ρp)
. (6)

For computation, an infinite sum can be readily replaced
with afinite sumas the terms in the series decay exponentially
fast to zero as k2 increases.

2.4 Smoothing parameter selection

Our density estimation problem is now reformulated into two
subproblems. The first is to maximize l(G,β) subject to a
constant h, which gives estimates Ĝh and β̂h . The second is
to select an appropriate h-value to determine the smoothness
of the final density estimate. We describe the computational
algorithm for solving the first subproblem in Sect. 3 and dis-
cuss the second subproblem in this section.

We need to choose a suitable h-value and thus determine
its corresponding (Ĝh, β̂h) or the density estimate. Specif-
ically, a smaller h-value tends to produce a more wiggly
density estimate, whereas a larger one will result in a rel-
atively over-smoothed mixture density. There is no doubt
that the smoothing parameter selection is a major challenge
for nonparametric density estimators, and it may signifi-
cantly affect the performance of an estimator. To address this
important yet difficult problem, we treat it as a model selec-
tion procedure. We can either resort to either a deterministic
criterionor a simulation-based technique. Sinceh > 0 is real-
valued, we can consider only a discrete subset of h-values.
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Among the various information-theoretic model selection
criteria, we are inclined to utilize the ones that are likelihood-
based as our method itself relies on the maximum likelihood
estimation. The Akaike information criterion (AIC) appears
to be more reliable than the Bayesian information criterion
(BIC) for mixture-based density estimators (Wang and Chee
2012). The formula of AIC is given by

AIC(h) = −2l̃(h) + 2p,

where l̃(h) = maxG,β l(G,β) subject to the fixed h-value, is
the profile log-likelihood function of the smoothing param-
eter h, and p the number of free parameters in the model.
For data on a d-dimensional torus, a Ĝ with m compo-
nents and a d-dimensional scale parameter vector, we have
p = (m + 1)(d + 1) − 3.

Obviously, the number of free parameters increases with
both m and d. Since in nonparametric modelling the number
of components is unrestricted, the number of parameters p
may be close to or even exceed the number of observations n
andmore likely so in the multivariate scenario. To avoid such
an over-fitted model with an unlimited profile likelihood, an
improved version of AIC is adopted here. It is called AICc

with formula (Cavanaugh 1997)

AICc(h) = AIC + 2p(p + 1)

(n − p − 1)+
,

where (n − p − 1)+ = max{n − p − 1, 0}. With the extra
penalty term, AICc is less likely to pick an over-fitted mix-
turemodel, especiallywhen n is not sufficiently larger than p.
With a simpler model, it is also more interpretable and com-
putationally efficient.We note that, as pointed out by Lindsay
(1995), the asymptotic normality theory of maximum like-
lihood fails for mixture models. In addition, we should also
be careful for generating the bandwidth sequence as the pro-
file likelihood will increase monotonically to infinity as h
approaches zero. In practice, it is highly unlikely to fit such
a small h-value for the final mixture model unless the under-
lying data structure is extremely concentrated around a few
observations. Otherwise, AICc has been proved to perform
reasonably well in mixture modelling in both the univariate
and the multivariate Euclidean space, as reported in Wang
and Chee (2012) and Wang and Wang (2015), respectively.

One may consider simulation-based methods such as
cross-validation and bootstrapping. They tend to generate
more reliable estimates but at the same time are more com-
putationally demanding. In the following numerical studies,
we will only use the cost-effective AICc criterion in simula-
tion studies, whereas for real-world data, the cross-validation
approach will also be included to obtain potentially better
estimates.More details about its usewill be given in Sect. 6.1.

3 Computation

3.1 The algorithm

To find Ĝh and β̂h for h fixed, our algorithm can be described
as follows:

1. Choose initial estimates: a discrete G0 and a β0 with
h(β0) fixed and l(G0,β0) < ∞. Set s = 0.

2. UpdateGs toGs+ 1
2
: Use the constrainedNewtonmethod

(CNM).
3. Update (Gs+ 1

2
,βs) to (Gs+1,βs+1): Use the EM algo-

rithm modified for h fixed.
4. If l(Gs+1,βs+1) − l(Gs,βs) ≤ tolerance, stop. If other-

wise, set s = s + 1 and repeat Steps 2-4.

We note that since the CNM and EM algorithms are only
used here to solve subproblems, one does not have to run
each algorithm in full iterations. We find it more efficient to
run only 1 CNM iteration in Step 2 and 5 EM iterations in
Step 3.

We describe Steps 2 and 3 in details in Sects. 3.2 and 3.3,
respectively.

3.2 Update Gs

The algorithm used to updateGs in Step 2 is the CNM (Wang
2007; Wang andWang 2015; Hu andWang 2021). Each iter-
ation of the algorithm consists mainly of two steps: finding
new candidate support points and updating the mixing pro-
portions of all support points.

Due to the properties of the gradient function (4), its local
maxima are considered to be good candidate support points
(Wang 2007). The maximization to find each of these local
maxima in a multi-dimensional space can itself be computa-
tionally costly, and this is required for each iteration of the
CNM. To resolve this issue, Wang and Wang (2015) and Hu
and Wang (2021) proposed a strategy that uses a “random
grid”, by turning the gradient function into a finite mixture
density and drawing a random sample from it. To do this,
one first removes the additive constant −n and then turns
the remaining sum into a finite mixture density of μ (not x)
through normalizing the coefficients. Note that f (xi ;μ,β)

may not be a density function for μ and thus may need to be
normalized as well. For both of the families that we use as
mixture components, μ and x are symmetric in their density
functions and thus the density functions remain the same if
they swap positions. Generating a sample from such a finite
mixture is straightforward, and we find it often sufficient to
use a sample size 20. The rationale behind this strategy is
that more random points tend to be generated in the area
with large gradient values, thus increasing the possibility of
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not missing out the areas with a local maximum, in particular
with the global maximum. To locate more precisely the local
maxima in the areas, we run 100 iterations of the Modal EM
algorithm (Li et al. 2007), starting with both the randomly
generated points and the current support points ofGs . To save
computational cost, one does not have to use all of the result-
ing points but only the best one near each current support
point. Hence, one may simply choose an arbitrary dimension
and partition its range into disjoint intervals, each containing
a current support point, e.g., using the midpoints between
consecutive support points as break points, and then select
the one (if there is at least one) with the largest gradient value
in each interval. The selected points are the candidate support
points that are to be added to the support set of Gs . Note that
the dimension can be chosen arbitrarily, as the algorithmwill
converge to the NPMLE.

Adding new candidate support points with zero probabil-
itymasses toGs does not changeGs as a probabilitymeasure
but only increases the dimension of μs and ωs . One then
proceeds to update all of the mixing proportions to produce
Gs+ 1

2
. The updating of the mixing proportions makes use of

the second-order Taylor approximation to the log-likelihood
function with respect to ω only, which is then optimized as
solving aquadratic programmingproblem, in particular using
the non-negativity least squares (NNLS) algorithm (Lawson
andHanson 1995;Wang 2007, 2010;Wang andWang 2015).
It should be followed with a line search to ensure a proper
increase of the log-likelihood function and the eventual con-
vergence of the algorithm. Any support point with a zero
mass after the updating be redundant and can be immedi-
ately removed. This strategy allows for an exponentially fast
expansion and reduction of the support set of Gs , which will
eventually settle down to virtually the one of the NPMLE.
We refer the reader to the above references for more details
of the algorithm.

3.3 Update
(
Gs+ 1

2
,ˇs

)

To update (Gs+ 1
2
,βs) in Step 3, the EM algorithm (Demp-

ster et al. 1977; McLachlan and Krishnan 1997; McLachlan
and Peel 2000) is used, which is modified from its standard
version for a finite mixture. In the following, we give the
EM iterative formulae for updating the parameters of a finite
mixture with either PVM or PWN components and how we
modify the algorithm when h is fixed.

First, we note that the complete-data log-likelihood Q of
a finite mixture with product components can be written as

Q(ω, M,β)

=
n∑

i=1

m∑
j=1

pi j log[ω j f (xi ;μ j ,β)]

=
n∑

i=1

m∑
j=1

pi j log(ω j )

+
n∑

i=1

m∑
j=1

pi j

d∑
p=1

log[ f (xip;μ j p, βp)],

where

pi j = ω j f (xi ;μ j ,β)∑m
l=1 ωl f (xi ;μl ,β)

.

The product von Mises mixtures

For a von Mises finite mixture model, we can easily derive
the EM formulae as follows:

ω′
j = 1

n

n∑
i=1

pi j , (7)

μ′
j p = atan2

(
n∑

i=1

pi j sin(xip),
n∑

i=1

pi j cos(xip)

)
, (8)

κ ′
p = A−1(R̄p), (9)

where

A(κp) = I1(κp)

I0(κp)
. (10)

Note that R̄p = 1
n

∑n
i=1

∑m
j=1 pi j cos(xip − μ j p), which is

shown in the Appendix.
When h is fixed, to maximize the complete-data log-

likelihood the EM formulae (7) and (8) remain unchanged,
but (9) is not appropriate any more. Since it is impossible
to invert I0(κ) analytically to obtain a closed-form solution,
we make use of the numerical optimization tool available in
the R package “nloptr” (Johnson 2007). Among various
algorithms, we chose to use the derivative-based local opti-
mization algorithm called “conservative convex separable
approximation with a quadratic penalty term”, abbreviated
as CCSAQ (Svanberg 2002). Despite the usage of a local
searching algorithm, the solution must also be the unique,
global maximum, as shown in Sect. 4.

The product wrapped normal mixtures

The PWN distribution essentially wraps a multivariate nor-
mal density with a diagonal covariance matrix onto a torus
and is hence also unimodal around its mean μ. Define
x(r)
i = xi +2π r for r ∈ Z

d as the i th toroidal observation in
the rth wrapping. Denoting by φ(x;μ,�) the multivariate
normal density with mean vector μ and covariance matrix
�, the EM formulae for a finite PWNmixture can be derived
to be
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ω′
j = 1

n

n∑
i=1

pi j ,

μ′
j =

∑n
i=1

∑
r∈Zd p(r)

i j x(r)
i∑n

i=1
∑

r∈Zd p(r)
i j

,

v′
p =

n∑
i=1

m∑
j=1

∑
r∈Zd

p(r)
i j (x (r)

i p − μ j p)
2, (11)

where

p(r)
i j = ω jφ j (x

(r)
i ;μ j ,�)∑m

l=1 ωl f (xi ;μl ,�)
,

pi j =
∑
r∈Zd

p(r)
i j ,

and f (x;μ,�) = ∑
r∈Zd φ(x(r);μ,�), with� = diag(v),

the diagonal matrix comprising the elements of v along the
diagonal.

Although truncation is definitely needed to avoid eval-
uating the above infinite sums, the computational cost for
the PWN mixtures increases exponentially with dimension
d. This makes the PVM mixtures a much better choice for
computational purposes when d is large.

When h is fixed, the EM formula (11) has to be replaced.
We again utilize the R package “nloptr” but with a
derivative-free optimization algorithm “Constrained Opti-
mization BY Linear Approximations” (COBYLA) to avoid
the costly evaluation of its multi-dimensional derivatives
(Powell 1994).

4 Uniqueness

As described in Sect. 3.3, the EM algorithm is applied to
update the parameters of a finite mixture model.With a prod-
uct von Mises component density, we implement a local
searching algorithm to solve the constrained optimization
problem. Here we show that there is only one local maxi-
mum, which is the unique global maximum.

It is known that the linear combinationwith positive coeffi-
cients of strictly concave functions is strictly concave.Hence,
to show that Q(κ) is concave, it suffices to show that

log[ f (κp)] = − log(I0(κp)) + κp cos(xip − μ j p)

is concave for any κp > 0. First, it is known that for all
κ ∈ R,

I0(κ)′ = I1(κ), I1(κ)′ = I0(κ) − 1

κ
I1(κ)

(Abramowitz and Stegun 1964, Section 9.6.28). Notice that

∂ log( f )

∂κp
= cos(xip − μ j p) − I1(κp)

I0(κp)
,

∂2 log( f )

∂κ2
p

= I1(κp)

I0(κp)

[
I1(κp)

I0(κp)
+ 1

κp

]
− 1.

By Segura (2022, Theorem 2) for all κ > 0,

I0(κ)

I1(κ)
>

√
3
4 + κ2 + 1

2

κ
.

Therefore,

I0(κ)

I1(κ)
− 1

κ
>

√
3
4 + κ2 − 1

2

κ
= κ + 1

2κ√
3
4 + κ2 + 1

2

>
I1(κ)

I0(κ)
,

i.e.,

I1(κ)

I0(κ)

[
1

κ
+ I1(κ)

I0(κ)

]
< 1.

Hence, log[ f (κp)] is strictly concave, and so is Q(κ).
Since the maximum of a mixture component is restricted

to be a constant, the constraint can be written as

g(κ) =
d∑

p=1

log

[
I0(κp)

eκp

]
,

with

∂g

∂κp
= I1(κp)

I0(κp)
− 1,

∂2g

∂κ2
p

=
[I0(κp) + 1

κp
I1(κp)] − I1(κp)

2

I0(κp)2
> 0.

That is, the constraint is a strictly convex function of κ .
Therefore, it is a strictly concave function Q(κ) that is to

be maximized, subject to a convex constraint. As a result,
there exists only one point in the optimal set, and hence a
local maximum must also be the unique global maximum
(Boyd and Vandenberghe 2004, page 152).

5 Simulation studies

In this section, we report the results of simulation studies
that examine the performance of the proposed nonparametric
mixture density estimators on a torus. After introducing the
three loss functions used as performance metrics in Sect. 5.1,
two candidates for the mixture components are compared
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using four simulation models in Sect. 5.2. In Sect. 5.3, the
mixture-based estimator is compared with the kernel density
estimator. All computations were carried out in R (R Core
Team 2021).

5.1 Performancemeasures

For performance measures, we consider three loss functions,
as used by Wang and Chee (2012). They are the integrated
squared error (ISE), the Kullback-Leibler divergence (KL)
and the Hellinger distance (HD):

ISE( f , f̂ ) =
∫
T

[
f̂ (x) − f (x)

]2
dx,

KL( f , f̂ ) =
∫
T

f (x) log

[
f (x)

f̂ (x)

]
dx,

HD( f , f̂ ) =
∫
T

[
f̂ (x)

1
2 − f (x)

1
2

]2
dx,

where f̂ is an estimate of a true density function f . The
ISE is the most popular loss measure, as was also used
by Oliveira et al. (2012), García-Portugués (2013) and Di
Marzio et al. (2011) for, respectively, circular, spherical
and toroidal kernel density estimation. Aiming to lower the
squared difference between two densities, it tends to perform
better in high-density areas than in low-density areas. TheKL
is likelihood-based and computed as the expected log-ratio
between the true and estimated densities. It thus may sacri-
fice estimation in areas with high density to improve the fit in
areas with few observations. As for the HD, it can be viewed
as a compromise between the other two.

To efficiently evaluate these integrals in a non-Euclidean,
high-dimensional space, we use Monte Carlo integration,
particularly the importance sampling technique. To use it,
one may simply divide an integrand by the true density f ,
randomly generate sufficient data points according to f , and
take the average of the transformed integrand evaluated at
these data points. However, if f̂ has heavier tails than f ,
which is not unusual in practice, then the loss will be signif-
icantly inflated around tails, resulting in high variation. To
solve this problem, one should use a sampling distribution
that has heavier tails than f and f̂ , while having a similar
shape to both. We therefore used the true density function
but with a higher degree of smoothness. Since the smoother
the sampling density is, the larger sample size is required
to ensure accurate loss calculation, an appropriate level of
smoothness is needed to achieve a trade-off between effi-
ciency and accuracy.

5.2 Comparison betweenmixture component
families

To compare the two candidate families used for mixture
components, four bivariate toroidal mixtures are considered
which cover the situations with skewness, multi-modality
and correlation. These distributions are listed in Table 1, with
their contour plots shown in Fig. 3. The parametric wrapped
normal and the mixture consisting of six von Mises densities
with a skewed shape do not have obvious correlation between
the two dimensions. The bimodal wrapped normal mixture
and the trimodal von Mises mixture model should be more
challenging for density estimation.

As discussed in Sect. 2.4, the smoothing parameter for our
mixture is selected on the basis of the model selection cri-
terion AICc. Generally, to generate a sequence of potential
h-values, one would like to start tuning the model from an
over-smoothed estimate with a large bandwidth, and grad-
ually decrease the h-value until it results in an obviously
under-smoothed estimate. For each value of h, (Ĝh, β̂h)

can be computed by the algorithm described in Sect. 3. The
optimal smoothing parameter and its corresponding density
estimate are chosen for the lowest AICc-value.

In each scenario, 20 data sets are randomly generated
with sample sizes 100 and 500, respectively. The average
loss including the mean ISE (MISE), the mean KL (MKL)
and the mean HD (MHD) are summarized in Table 2, with
standard errors given in parentheses. In this table, and later
in Tables 4–9, each entry in boldface indicates the smallest
value among the methods in comparison in each case. The
results show that the two candidate families give similar per-
formance inmost cases, andnoonedominates theother. Their
performance depends on the simulation family, the sample
size, and the measurement of loss. In the first two simulated
models without obvious correlation, the wrapped normal is
superior to the von Mises density, whereas the von Mises
is more advantageous in the presence of multi-modality and
correlation in the last two models. Comparing among three
loss metrics, the von Mises family seems to perform slightly
better in terms of the ISE and the wrapped normal performs
better in terms of the other two. A plausible reason is that the
wrapped normal has lighter tails than the von Mises, and it

Table 1 Distributions for simulation studies

Name Distribution

(a) Single PWN PWN((π, π)�, (1, 0.5)�)

(b) Skewed PVM
∑5

i=0
(i+1)2

91 PVM((2
+ 0.4i, π)�, (5, 10)�)

(c) Bimodal PWN 3
10PWN((1, 5)�, (0.6, 0.5)�)

+ 7
10 PWN((π, π)�, (0.6, 0.5)�)

(d) Trimodal PVM 3
5PVM((2, 3)�, (10, 5)�)

+ 3
10 PVM((3, 5)�, (10, 5)�)

+ 1
10 PVM((5, 4)�, (10, 5)�)
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Fig. 3 Contour plots for the
four simulated densities listed in
Table 1

Table 2 Simulation results for
four distributions in Table 1 for
the two component densities

Loss Comp. (a) S. PWN (b) S. PVM (c) B. PWN (d) T. PVM

n = 100

MISE PVM 0.55 (0.01) 1.37 (0.03) 0.72 (0.02) 2.11 (0.04)

PWN 0.57 (0.02) 1.57 (0.04) 0.95 (0.02) 2.22 (0.05)

MKL PVM 5.52 (0.09) 5.50 (0.11) 5.61 (0.14) 10.44 (0.23)

PWN 4.13(0.12) 4.84 (0.11) 6.93 (0.15) 10.58 (0.32)

MHD PVM 3.23 (0.05) 3.13 (0.06) 4.44 (0.10) 5.98 (0.11)

PWN 2.27 (0.07) 2.53 (0.06) 3.82 (0.09) 5.58 (0.13)

n = 500

MISE PVM 0.16 (0.00) 0.37 (0.01) 0.19 (0.00) 0.32 (0.01)

PWN 0.16 (0.01) 0.45 (0.01) 0.29 (0.01) 0.49 (0.01)

MKL PVM 2.12 (0.04) 1.60 (0.04) 2.07 (0.05) 0.85 (0.04)

PWN 1.18 (0.05) 1.48 (0.04) 2.08 (0.07) 2.07 (0.03)

MHD PVM 1.19 (0.02) 0.91 (0.03) 1.52 (0.03) 1.00 (0.02)

PWN 0.64 (0.03) 0.80 (0.02) 1.18 (0.04) 1.07 (0.01)
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may sacrifice the goodness of fit in areas with high density
but perform better around the tails.

Between the two, we advocate the use of the von Mises
family for mixture components. It is advantageous with
increasing sample sizes and model complexity and is also
competitive in small data sets. In addition, the density func-
tion of the wrapped normal distribution is an infinite sum
of terms and is computationally expensive to evaluate (even
after ignoring minor terms), especially in higher dimensions.
In the following studies, we will only use the von Mises
as mixture components due to its competitive performance,
cheaper computational cost and wider usage in both para-
metric and nonparametric modelling.

5.3 Comparison with kernel density estimators

Next, we would like to compare the accuracy between KDEs
andMDEs. Regarding our mixture-based density estimators,
the mixture component used here is the product von Mises
distribution. Both the model selection criterion AICc and the
cross-validation method minimizing, respectively, the inte-
grated squared error and the Kullback-Leibler divergence are
utilized.

Di Marzio et al. (2011) proposed and studied some ker-
nel density estimators and provided their implementations in
theMatlab language. Their simulation studies were under-
taken with the toolbox Circstat written by Berens (2009),
and the optimization step made use of the Optimization
toolbox. To enable a convenient comparison in R, we imple-
mented their LCV and UCV bandwidth selectors. As for the
BCVselector, the objective function to beminimized is rather
complicated, and it tends to be dominated by either LCV or
UCV as shown in the simulation studies of Di Marzio et al.
(2011). Therefore, we chose not to implement it. There is
also a plug-in estimator using a bivariate vonMises kernel in
Taylor et al. (2012). However, it only considers the problem
in two-dimensions. In addition, from our experience using
plug-in estimators for other types of directional data, they
only have a reasonable performance when the underlying
data largely have the shape of the kernel. As a consequence,
we did not include it in our numerical studies.

To compare between the two kernel density estimators
and three mixture-based estimators, four simulation models
are considered using mixtures of product von Mises distri-
butions. We consider the sample sizes n = 100 and 500
in d = 2 or 4 dimensions. The bivariate mixture mod-
els and their two-dimensional contour plots are shown in
Table 3 and Fig. 4, respectively. The four models have 1, 2, 8
and 32 mixture components, respectively, and the modelling
complexity increases correspondingly. The four-dimensional
models basically follow from the two-dimensional ones, by
adding 2 zeros to the vectors of location parameters and 2
ones to the vectors of concentration parameters.

The averaged losses over 50 repetitions are given in
Tables 4, 5 and 6 with standard errors in parentheses. Both
the means and standard errors are rounded to two decimal
places after scaling.

As evident from the three tables, the threeMDEs dominate
the two KDEs in almost all cases. The differences between
them can sometimes be several times of the standard error,
indicating a clear superiority of mixture density estimators.
Although in the latter two scenarios in two dimensions, LCV
has the lowest MISE when the sample size is 100, there is at
least oneMDE that is still competitive in this situation.More-
over, MDE is clearly superior for a large sample size or in
higher dimensions, which is consistent with our expectation
based on the characteristics of the corresponding estimators.
Among the three mixture-based estimators, CVKL tends to
perform the best in various scenarios, and the two cross-
validation approaches both outperform the AICc-based one.
It is not surprising that MDEs manifest such strong advan-
tages over KDEs. To model toroidal data, KDE bandwidth
selectors can only have the same concentration parameters
among all dimensions, which drastically decreases its flexi-
bility. On the other hand, MDEs are able to model different
concentrations in different dimensions by incorporating the
bandwidth factor h, which is the maximum of the estimated
joint density. By fixing the h-value, the best choice of κ is
automatically selected by likelihood maximization. There-
fore, one may conclude that the mixture-based estimators on
the torus are indeed superior in general.

6 Real-world data analysis

In this section, three real-world density estimation problems
are studied. The first one is the classical wind direction data,
which usually appears in one dimension and can be analyzed
using tools for circular observations, but here the measure-
ments in three locations are combined into trivariate toroidal
observations. The other two data sets are related to bioinfor-
matics concerning protein backbones and RNA structures,
and such problems form the major applications of toroidal
data.

6.1 Setup

Same as simulation studies, we are going to utilize the same
five bandwidth selectors to facilitate the comparison between
two sets of estimators for real-world data sets. In terms of the
mixture density estimators, we use the vonMises component
density to take advantage of its computational simplicity,
which is more obvious in higher dimensions.
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Table 3 Simulated distributions
in two-dimensions to compare
KDEs and MDEs

Name Distribution

(a) PVM1 PVM((π, π)�, (2, 5)�)

(b) PVM2 3
10 PVM((π, π)�, (1, 4)�) + 7

10 PVM(( 3π4 , π
2 )�, (1, 4)�)

(c) PVM8 1
8

∑7
i=0 PVM((2π( 9

10 )7−i , π( 9
10 )i )�, (4, 1)�)

(c) PVM32 1
32

∑31
i=0 PVM((2π( 9

10 )7−i , 2π( 9
10 )i )�, (1, 3)�)

Fig. 4 Contour plots for the
four simulated densities listed in
Table 3

To assess the performance of estimators, the following two
sensible losses are considered (omitting additive constants):

ISE( f̂n, f̂ ) =
∫
T

f̂ (x)2 dx − 2

n

n∑
i=1

f̂ (xi ),

KL( f̂n, f̂ ) = −1

n

n∑
i=1

log[ f̂ (xi )],

where f̂ denotes a density estimate from the training set, and
f̂n the empirical probability mass function of the test data
of size n. It is worth noting that with a von Mises compo-
nent density, there is no need to compute the integral in ISE

numerically nor applying the importance sampling as in the
simulation. Instead, the product of two vonMises densities is
still proportional to a von Mises density. Therefore, to avoid
integrating f̂ (x)2, one may directly compute the sum of the
product of the weights multiplied by the corresponding nor-
malizing constants.

Regarding the bandwidth selectors for mixture models,
both the model selection criterion AICc and the cross-
validation method are adopted here. First we would like to
obtain the model with the lowest AICc. For the data sets
involving wind direction and the protein backbone structure,
as they both have small to moderate sample sizes, 10 rep-
etitions of 10-fold cross-validation are conducted for each
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Table 4 Simulation results for
MISE (×103)

Estimator (a) PVM1 (b) PVM2 (c) PVM8 (d) PVM32

d = 2, n = 100

LCV 15.90 (0.74) 6.94 (0.35) 3.87 (0.24) 3.24 (0.17)

UCV 17.05 (0.89) 7.76 (0.40) 4.01 (0.23) 3.37 (0.18)

AICc 9.30 (0.81) 5.57 (0.43) 4.29 (0.31) 4.22 (0.13)

CVISE 9.97 (1.59) 5.38 (0.60) 4.97 (0.51) 4.18 (0.31)

CVKL 7.63 (1.00) 4.52 (0.43) 4.71 (0.42) 3.89 (0.22)

d = 2, n = 500

LCV 6.17 (0.32) 2.98 (0.10) 1.42 (0.05) 1.24 (0.05)

UCV 6.14 (0.33) 3.21 (0.12) 1.55 (0.06) 1.34 (0.06)

AICc 2.98 (0.39) 1.52 (0.12) 1.05 (0.08) 1.36 (0.09)

CVISE 2.34 (0.55) 1.29 (0.11) 1.18 (0.09) 1.14 (0.06)

CVKL 1.52 (0.18) 1.13 (0.08) 1.04 (0.07) 1.13 (0.07)

d = 4, n = 100

LCV 2.84 (0.06) 0.94 (0.02) 0.53 (0.01) 0.42 (0.01)

UCV 2.89 (0.07) 0.98 (0.03) 0.55 (0.02) 0.43 (0.01)

AICc 2.58 (0.10) 1.11 (0.04) 0.76 (0.02) 0.51 (0.02)

CVISE 1.11 (0.09) 0.58 (0.04) 0.48 (0.03) 0.37 (0.02)

CVKL 0.98 (0.05) 0.54 (0.03) 0.38 (0.02) 0.35 (0.02)

d = 4, n = 500

LCV 1.62 (0.03) 0.58 (0.01) 0.29 (0.01) 0.24 (0.00)

UCV 1.60 (0.04) 0.59 (0.01) 0.29 (0.01) 0.25 (0.01)

AICc 1.01 (0.04) 0.29 (0.01) 0.32 (0.01) 0.20 (0.00)

CVISE 0.27 (0.02) 0.14 (0.01) 0.10 (0.00) 0.12 (0.00)

CVKL 0.21 (0.02) 0.13 (0.01) 0.10 (0.00) 0.12 (0.00)

data set, and the average loss will be computed. For the RNA
data which has a large number of observations (n = 8301),
cross-validation is not necessary. Thus, we randomly parti-
tion the data set into two subsamples (1000 + 7301), using
the first one for density estimation and the second one for its
performance evaluation.

As for the K -fold cross-validation approach to select the
best model, the procedure also slightly differs between data
sets with small and large sample sizes. For the wind direction
and protein data, the data sets are randomly partitioned into K
subsets P1, . . . , PK , repeatedly with K −1 parts for training
the model and the remaining one for testing the estimate. To
measure the performance, we also resort to either the squared
error loss or the Kullback-Leibler loss. The formulae without
the additive constants are given by

CVISE(h) = 1

K

K∑
j=1

∫
f ( j)
h (x)2 dx

− 2

K

K∑
j=1

1

n j

∑
xi∈Pj

f ( j)
h (xi ),

CVKL(h) = − 1

K

K∑
j=1

1

n j

∑
xi∈Pk

log[ f (k)
h (xi )],

where f ( j)
h is the mixture model fitted to all observations but

those in Pj and n j the number of observations in Pj . For the
first two real data sets, K is chosen to be 10. For all three
data sets, the models with the lowest CVISE and CVKL are
then selected.

6.2 Wind directions

The trivariate wind directional data contains 1682 sets of
wind directions measured at three monitoring stations at 14
p.m. on days between January 1, 1993 andFebruary 29, 2000.
The respective locations are San Agustin in the north, Pedre-
gal in the southwest, and Hangares in the southeast of the
Mexico Valley. The data set is available from the R package
“CircNNTSR” (Fernandez-Duran et al. 2016).

The resultant estimated density is shown in Fig. 5. As we
can see from the plot, observations are spread all around
the circle in all three dimensions, indicating relatively small
concentration parameter values for mixture components.
Comparing the results among the five bandwidth selectors
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Table 5 Simulation results for
MKL (×102)

Estimator (a) PVM1 (b) PVM2 (c) PVM8 (d) PVM32

d = 2, n = 100

LCV 9.61 (0.35) 8.65 (0.43) 7.21 (0.56) 5.92 (0.37)

UCV 10.42 (0.41) 9.46 (0.46) 7.24 (0.39) 5.83 (0.32)

AICc 4.71 (0.40) 6.14 (0.53) 6.97 (0.57) 7.34 (0.25)

CVISE 6.41 (1.17) 5.91 (0.60) 7.14 (0.68) 7.04 (0.55)

CVKL 4.97 (0.94) 4.98 (0.45) 6.87 (0.65) 6.63 (0.44)

d = 2, n = 500

LCV 3.76 (0.12) 3.54 (0.12) 2.30 (0.08) 2.00 (0.08)

UCV 4.01 (0.13) 3.63 (0.13) 2.55 (0.09) 2.08 (0.09)

AICc 1.57 (0.19) 1.39 (0.13) 1.55 (0.14) 1.84 (0.13)

CVISE 1.34 (0.28) 1.27 (0.12) 1.67 (0.15) 1.64 (0.10)

CVKL 0.96 (0.09) 1.21 (0.11) 1.43 (0.12) 1.68 (0.11)

d = 4, n = 100

LCV 30.68 (0.48) 23.23 (0.38) 18.03 (0.46) 15.79 (0.41)

UCV 30.83 (0.50) 23.71 (0.46) 18.45 (0.48) 15.98 (0.45)

AICc 18.71 (0.78) 23.81 (1.08) 24.37 (0.90) 18.95 (0.67)

CVISE 11.11 (0.96) 13.06 (0.80) 15.40 (1.05) 14.32 (1.19)

CVKL 9.25 (0.38) 12.09 (0.57) 12.77 (0.64) 13.24 (0.91)

d = 4, n = 500

LCV 16.57 (0.24) 12.89 (0.20) 9.13 (0.16) 8.22 (0.16)

UCV 16.66 (0.23) 13.06 (0.21) 9.18 (0.16) 8.34 (0.18)

AICc 6.24 (0.27) 4.67 (0.24) 8.95 (0.21) 6.30 (0.14)

CVISE 2.86 (0.21) 3.12 (0.18) 3.17 (0.16) 4.16 (0.15)

CVKL 2.31 (0.16) 2.85 (0.15) 2.93 (0.12) 4.07 (0.16)

in Table 7, the CVISE fit outperforms the UCV one and has
the lowest MISE, while the CVKL model outperforms the
LCVone and has the lowestMKL loss.Among the threemix-
ture density estimates, themodel selected based on the lowest
CVISEhas the smallest h-value and contains the largest num-
ber of components. As indicated from the plot, it is the least
smooth one.

It isworthmentioning that inFig. 5, themarginal estimated
densities are superimposed onto the circular histograms of
the corresponding dimension. Note that they are all area-
proportional to better reveal the true underlying structure of
the data set. In particular, the term “area-proportional” indi-
cates that, in a circular histogram, the frequency of each bar is
proportional to its area rather than height. Similarly, one can
also interpret a circular density in terms of the enclosed area.
The plots are constructed using the R package “cplots”
(Xu and Wang 2019) and more details can be found in Xu
and Wang (2020).

6.3 Protein dihedral angles

Proteins are a class of macromolecules composed by num-
bers of peptide-bonded amino acids, where a linear chain
of amino acid residues is called a polypeptide. Proteins per-

form a diverse range of functions within the body including
transmitting signals to coordinate cells, allowing metabolic
reactions, building and repairing tissues, etc. (Liljas et al.
2016). Hence it is a critical topic in bioinformatics to deter-
mine the protein structure by polypeptide backbones. The
configuration of the backbone can be described by three dihe-
dral angles φ,ψ and ω, where a dihedral angle is the angle
between amide planes through sets of atoms. Due to the pla-
narity of the peptide bond, ω is often restricted to be 180◦
(the trans case) or 0◦ (the cis case), whereas the other two
conformational angles connected to the Cα atoms are free to
rotate (Boomsma et al. 2008). In particular, φ involves the
backbone atoms C − N − Cα − C and ψ is the torsion angle
within N − Cα − C − N (García-Portugués et al. 2018). The
tertiary structure of a peptide bond can then be determined
if all dihedral angles related to the corresponding Cα atoms
are known. Thus, we are interested in (φ,ψ)� which reveals
the structure of protein backbones and lies naturally on a
two-dimensional torus.

The data set used here forms a representative sample from
the Protein Data Bank (Berman et al. 2006) and is retrieved
from the R package “CircNNTSR”. It contains 233 pairs
of conformational angles φ and ψ . Unlike the wind direc-
tional data which is relatively uniform, the protein data is
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Table 6 Simulation results for
MHD (×102)

Estimator (a) PVM1 (b) PVM2 (c) PVM8 (d) PVM32

d = 2, n = 100

LCV 4.97 (0.18) 4.60 (0.21) 3.99 (0.21) 3.22 (0.17)

UCV 5.32 (0.19) 5.31 (0.29) 4.38 (0.22) 3.35 (0.18)

AICc 2.61 (0.23) 3.45 (0.31) 4.41 (0.35) 4.45 (0.13)

CVISE 2.83 (0.34) 3.00 (0.27) 3.84 (0.31) 3.81 (0.24)

CVKL 2.34 (0.27) 2.61 (0.21) 3.65 (0.28) 3.58 (0.20)

d = 2, n = 500

LCV 1.89 (0.06) 1.91 (0.05) 1.41 (0.03) 1.16 (0.04)

UCV 1.96 (0.06) 1.99 (0.05) 1.62 (0.05) 1.25 (0.05)

AICc 0.82 (0.09) 0.83 (0.07) 1.03 (0.09) 1.28 (0.10)

CVISE 0.67 (0.12) 0.71 (0.05) 0.97 (0.06) 0.97 (0.05)

CVKL 0.49 (0.05) 0.66 (0.05) 0.84 (0.05) 0.96 (0.06)

d = 4, n = 100

LCV 16.80 (0.26) 12.96 (0.24) 10.17 (0.24) 8.42 (0.19)

UCV 17.04 (0.26) 13.39 (0.28) 10.47 (0.27) 8.56 (0.22)

AICc 9.92 (0.40) 13.07 (0.61) 14.27 (0.51) 10.69 (0.34)

CVISE 5.80 (0.42) 6.77 (0.38) 8.19 (0.49) 7.70 (0.47)

CVKL 4.92 (0.19) 6.31 (0.28) 6.98 (0.32) 7.28 (0.39)

d = 4, n = 500

LCV 8.96 (0.10) 7.10 (0.09) 5.33 (0.07) 4.53 (0.07)

UCV 8.95 (0.10) 7.19 (0.11) 5.38 (0.07) 4.60 (0.07)

AICc 3.16 (0.12) 2.54 (0.12) 5.56 (0.10) 4.01 (0.06)

CVISE 1.51 (0.10) 1.68 (0.08) 1.90 (0.07) 2.49 (0.08)

CVKL 1.21 (0.08) 1.56 (0.07) 1.78 (0.05) 2.42 (0.08)

quite clustered in each dimension. Thus, to better present the
bivariate data, observations from [0, π

2 ) are transformed to
[2π, 5π

2 ). In Fig. 6, the contour plots represent the finalmodel
chosen by the five density estimators, respectively. Combin-
ing with the corresponding results in Table 8, it is evident
that the AICc model is in good agreement with the CVKL
model in all aspects, which may be attributed to their basis
of maximum likelihood. Hence, they both perform signifi-
cantly well and are superior to the LCV selector in terms of
MKL. On the other hand, the estimated density chosen by
the lowest CVISE dominates all the others in terms of MISE.
It has more than twice as many mixture components as the
AICc-selected model.

6.4 RNA structure

Ribonucleic acid (RNA) is another polymer essential for all
known forms of life. While a protein is made up of chained
amino acids,RNAanddeoxyribonucleic acid (DNA) are both
nucleic acids comprising chains of nucleotides. RNA car-
ries out a broad range of functions including regulating gene
expression, facilitating the translation of DNA into proteins
and catalyzing biological reactions. RNA resembles DNA

Table 7 Results of models based on five bandwidth selectors for the
wind direction data set, with MISE and MKL (×102), the bandwidth
parameter and the number of components

Estimator MISE MKL h #Comp

LCV −3.20 (0.01) 451.49 (0.17) − −
UCV −3.55 (0.01) 460.41 (0.22) − −
AICc −2.56 (0.00) 459.65 (0.15) 0.50 32

CVISE −3.74 (0.00) 452.82 (0.20) 0.19 355

CVKL −3.58 (0.01) 448.31 (0.04) 0.29 157

with the same basic components, but it has a single strand
folded onto itself rather than a paired double helix. Along
the RNA backbone, each nucleotide comprises six back-
bone dihedral angles α, β, γ, δ, ε, ξ and one torsion angle
χ describing the rotation of the base relative to the sugar,
which is more complicated than the backbone structure of
the amino acids in a protein (Lee and Gutell 2004). We are
going to analyze the RNA backbone conformations using the
torus formed by the seven torsion angles.

The data set used here contains 8301 residues. It was first
obtained by Duarte and Pyle (1998) using high experimental
X-ray precision and later updated by Wadley et al. (2007).
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Fig. 5 The area-proportional circular histogram of each dimension of the wind directional data set (n = 1682), superimposed with five marginal
estimated densities represents the result for LCV, UCV, AICc, CVISE and CVKL, respectively

Fig. 6 Contour plots of five estimated densities for the protein data set (n = 233), where the contour lines are all drawn at density levels of 8, 2, 0.5
and 0.125
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Table 8 Results of models based on five bandwidth selectors for the
protein data set, with MISE, MKL, the bandwidth parameter and the
number of components

Estimator MISE MKL h #comp.

LCV −5.02 (0.01) −0.20 (0.01) – –

UCV −7.70 (0.02) 0.05 (0.01) – –

AICc −5.33 (0.01) −0.34 (0.00) 0.28 17

CVISE −9.51 (0.01) −0.09 (0.02) 0.14 40

CVKL −6.68 (0.04) −0.43 (0.00) 0.27 18

This large and classical data set has been analyzed by many
researchers, for example, Eltzner et al. (2018) and Nodehi
et al. (2021), where the latter paper carried out the princi-
pal component and clustering analysis on toroidal data. Here
we are interested in estimating the density of the seven-
dimensional toroidal data to reveal the structure of RNA
backbones. Owing to the high dimensionality, it is impos-
sible to view the whole data set and the joint distribution
on a torus. Therefore, we present their univariate marginal
plots and one of the bivariate marginal plots in Figs. 7 and 8,
respectively, but one has to bear inmind that the goodness-of-
fit marginally is not equivalent to the goodness-of-fit jointly
in seven dimensions. Alongwith the results shown in Table 9,
it is evident that the model generated by AICc is clearly over-
smoothed with the largest MISE and MKL value and only
122 components, which seems unrealistic for this data set. In
terms of the cross-validationmethods,CVISEhas amarkedly
low MISE value whereas CVKL has a substantially small
MKL value as expected. Similarly as the previous two data
sets, they both outperform their KDE competitors UCV and
LCV, respectively. Based on the shape of marginal densities
and the bandwidth parameters, the AICc and UCV models
have the highest and lowest level of smoothness, respectively,
while LCV and CVKLmodels provide similar and moderate
level of smoothness.

Comparing with the previous two examples, RNA data
is in seven-dimensional space which results in much more
parameters to estimate, and consequently the model selec-
tion criterion AICc will have much larger penalty for model
complexity. Therefore, AICc tends to choose over-simplified
models with increasing dimensionality whereas the cross-
validation approach is relatively robust in regard to dimen-
sions.

Using the product distributionsmakes it straightforward to
producemarginal densities of any dimension. Figure8 shows
the contour plots of the 2-dimensional marginal density for
(δ, ξ) obtained by the five estimators, respectively. These
plots provide extra information about the performance of
these estimates. Though using only 2 out of 5 variables, they
show that theUCVestimate is under-smoothed, theAICc one
is likely over-smoothed, and the other three seem acceptable.

Such visual observation is largely consistent with the results
given in Table 9.

7 Concluding remarks

In the above, we studied density estimation of multi-
dimensional toroidal data using semiparametric mixture
models. It takes the form of an integral of the mixture com-
ponent with respect to a mixing distribution G, where G can
take a completely unspecified form. There always exists a
discrete solution of the NPMLE of G.

In the multivariate setting, one of the major difficulties in
the nonparametric modelling is to decide the smoothness of
the mixture estimate. It is inappropriate to leave it entirely
determined by the likelihood maximization as the resultant
mixture will become degenerate with an infinite likelihood.
Moreover, for toroidal observations, one also needs to avoid
the situation where the estimated density tends to uniformity
in some dimensions while clustering around a single point
in the others. Therefore, we directly fix the maximum of the
mixture component density and define h to be the reciprocal
of the maximum to set the level of smoothness of the mix-
ture density. For such a fixed h-value, one can maximize the
bounded likelihood l(G,β) to obtain a meaningful mixture
model estimated by our algorithm. In fact, the concept of
controlling the maximum can be applied to any type of mix-
ture components to effectively bound the likelihood. In terms
of determining the value of the maximum, we find it rather
straightforward to resort to the model selection procedure. In
particular, with a sequence of h-values, their corresponding
(Ĝh, β̂h) can be found, and they form a family of mixture
models indexed by h. One may choose the best fitting model
with the information criterion AICc or apply a simulation-
based method such as the cross-validation approach if the
computational cost is acceptable.

Regarding the toroidal component distributions, the prod-
uct of univariate distributions is considered in this paper,
including the von Mises and the wrapped normal distribu-
tion. They are both widely used in the study of directional
data and have similar numerical performance in our sim-
ulation studies. As the von Mises density belongs to the
exponential family and is mathematically simpler, it is more
advantageous in statistical analysis. Adapting a von Mises
component in our mixture model, theMDE clearly compares
favorably against the KDE in almost all cases. For the KDE
being a convolution of the kernel and the empirical probabil-
ity mass function, it tends to flatten the estimated density and
results in a higher bias. In contrast, theMDE is a convolution
between the mixing distribution and the component density.
Thus, it is a de-convolution process that computes directly
themixing distribution, and awell-fittedmixture densitymay
have a lower bias. In addition,MDEpossesses amuch simpler
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Fig. 7 The histogram of each dimension of the RNA data set (n = 8301), superimposed with five marginal estimated densities represents the result
for LCV, UCV, AICc, CVISE and CVKL, respectively

Fig. 8 Contour plots of five estimated densities for the RNA data set (n = 8301), where the contour lines are all drawn at density levels of
1, 0.1, 0.01, 0.001 and 0.0001
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Table 9 Results of models based on five bandwidth selectors for the
RNA data set, with MISE, MKL, the bandwidth parameter and the
number of components

Estimator MISE MKL h #comp

LCV − 2.62 3.22 – –

UCV − 103.96 12.48 – –

AICc − 0.06 4.73 1.00 122

CVISE − 139.17 4.64 0.23 468

CVKL − 15.35 2.26 0.38 307

expression than KDE as it can possibly be represented by the
weighted sum of a few mixture components, whereas KDE
always keeps record of all observations. On account of the
prevalence of the curse of dimensionality, KDE can hardly
provide an accurate density estimation in high dimensions.

There are some potential improvements for our method.
To better incorporate the correlation between dimensions,
it is beneficial to consider the correlation between univari-
ate densities to enable a more flexible mixture. In addition,
one may also vary the smoothing parameter for each mixture
component depending on its location. It is similar in spirit
to the adaptive or variable-bandwidth kernel density estima-
tion. In the real-world data set, it is not uncommon to observe
some extreme tails such as the ones in the protein and RNA
data. In this case, using a fixed global bandwidth may result
in a mixture with extremely small bandwidth to cope with
low-density areas, but it will create redundant components
in areas with large numbers of observations. Thus, a variable
bandwidthmatrixmay effectively reduce the number of com-
ponents needed in themodel, and it will be particularly useful
when the sample space is in high dimensions as the size of
the problem increases exponentially with the dimensionality.

Apart from data lying on a torus, the nonparametric
mixturemodelling can also be applied to other types ofmulti-
dimensional data such as those in a Euclidean space, on the
surface of a hyper-sphere, or even the combination of them.
One simply needs to find the appropriate univariate density
function to model each dimension and take the product of
them to form the joint density. Once the maximum of the
joint density is bounded, the corresponding (Ĝh, β̂h) can be
solved using the maximum likelihood. Thus, our method is
compatible for density estimation in various scenarios, and
it has potential to be more flexible in the future.
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Appendix

Consider a univariate von Mises density. To compute the
maximum likelihood estimator κ̂ of its concentration param-
eter, we need to incorporate a unique measurement of
concentration for directional data, the mean resultant length,
denoted by

R =
√
C2 + S2,

where

C = E[cos(X)], S = E[sin(X)]. (12)

In particular, R is close to zero if observations dispersewidely
around the circle, whereas R = 1 for a point mass. Mardia
and Jupp (2000, page 85) showed that κ̂ is the solution of

A(κ̂) = I1(κ̂)

I0(κ̂)
= R,

or equivalently we have

κ̂ = A−1(R).

As outlined in Sect. 3, for the EM algorithm of a product
vonMisesmixture density, denoting R̄ = ∑m

j=1 R̄ j , we have

R̄ = 1

n

n∑
i=1

m∑
j=1

pi j cos(xid − μ jd).
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To verify this relationship, firstly define

C̄ j = 1

n

n∑
i=1

pi j cos(xi ),

S̄ j = 1

n

n∑
i=1

pi j sin(xi ).

By Eq. (12), it is not hard to see that

C̄ = 1

n

n∑
i=1

cos(xi ) =
m∑
j=1

C̄ j ,

and similarly,

S̄ = 1

n

n∑
i=1

sin(xi ) =
m∑
j=1

S̄ j .

Thus, for

R̄ j =
√
C̄2

j + S̄2j ,

x̄ j is the solution to equations

C̄ j = R̄ j cos(x̄ j ), S̄ j = R̄ j sin(x̄ j ),

and then given Eq. (8), we have

x̄ j = atan2(S̄ j , C̄ j ) = μ j .

Therefore,

1

n

n∑
i=1

m∑
j=1

pi j cos(xi − μ j )

= 1

n

n∑
i=1

m∑
j=1

pi j
[
cos(xi ) cos(μ j ) + sin(xi ) sin(μ j )

]

=
m∑
j=1

cos(μ j )R̄ j cos(x̄ j ) +
m∑
j=1

sin(μ j )R̄ j sin(x̄ j )

=
m∑
j=1

R̄ j cos(μ j − x̄ j )

= R̄.
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