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Abstract
Hamiltonian Monte Carlo (HMC) algorithms, which combine numerical approximation of Hamiltonian dynamics on finite
intervals with stochastic refreshment and Metropolis correction, are popular sampling schemes, but it is known that they
may suffer from slow convergence in the continuous time limit. A recent paper of Bou-Rabee and Sanz-Serna (Ann Appl
Prob, 27:2159-2194, 2017) demonstrated that this issue can be addressed by simply randomizing the duration parameter of
the Hamiltonian paths. In this article, we use the same idea to enhance the sampling efficiency of a constrained version of
HMC, with potential benefits in a variety of application settings. We demonstrate both the conservation of the stationary
distribution and the ergodicity of the method. We also compare the performance of various schemes in numerical studies of
model problems, including an application to high-dimensional covariance estimation.

Keywords Piecewise deterministic Markov process · Sampling · Riemannian manifold · High dimensional inference

1 Introduction andmotivation

Efficient sampling of high dimensional probability distribu-
tions is required for Bayesian inference and is a challenge
in many fields including biological modelling (Wilkinson
2007), economic modelling (Greenberg 2012), machine
learning with large data sets (Pakman et al. 2017; Barber
2012) and molecular dynamics (Perez et al. 2015). A pop-
ular approach is Markov chain Monte Carlo, which defines
a Markov chain Xi+1 ∼ p(· | Xi ) with invariant measure
μ and from which we may estimate expected values from
the relation EX∼μ f (X) ≈ 1

N

∑N
i=1 f (Xi ); however conver-

gence of such averages can be slow for high dimensional
and multimodal distributions (see e.g. Quiroz et al. (2018)).
Recent attempts to address this problem include the local
bouncy particle sampler of Bouchard-Côté et al. (2018) and
the Zig-Zag process of Bierkens et al. (2019). Thesemethods
can be viewed as piecewise deterministic Markov processes
(PDMPs), see (Vanetti et al. 2018). The Randomized Hamil-
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tonian Monte Carlo (RHMC), proposed in Bou-Rabee and
Sanz-Serna (2017) and further studied in Deligiannidis et al.
(2021), evolves aHamiltonian flow for a duration drawn from
an exponential distribution. In standard HMC the choice of
integration time is a challenging task (see Hoffman and Gel-
man 2014) and mixing can be inefficient for some choices
of integration time. By contrast, RHMC does not suffer from
this problem as randomization of the duration prevents peri-
odicities. This strategy has been studied from both analytic
and numerical perspectives in Bou-Rabee and Sanz-Serna
(2017). Other recent algorithms have been proposed which
build on this idea (for example Riou-Durand and Vogrinc
(2022) and Kleppe (2022)). We remark that RHMC is a
special case of Andersen dynamics which is popular in the
Molecular dynamics literature (see (Bou-Rabee and Eberle
2022)[Remark 2.2] andAndersen (1980)). Andersen dynam-
ics has been studied inBou-Rabee andEberle (2022);Weinan
and Li (2008) and Li (2007).

The algorithms discussed above are targeted to sampling
from distributions in Euclidean space. The need to work with
Riemannian manifolds is motivated by applications where
constraints are imposed from modelling considerations or
are introduced in order to restrict sampling to a relevant
subdomain derived from statistical analysis (see (Brubaker
et al. 2012)). Examples of manifolds include products of
spheres or orthogonal matrices which arise in applications
in protein configuration modelling with the Fisher-Bingham
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distribution (Hamelryck et al. 2006), texture analysis using
distributions over rotations (Kunze and Schaeben 2004)
and fixed-rank matrix factorization for collaborative filtering
(Meyer et al. 2011; Salakhutdinov andMnih 2008). Methods
that sample from probability distributions on manifolds have
been considered and studied in Hartmann (2008); Brubaker
et al. (2012); Byrne and Girolami (2013); Girolami and
Calderhead (2011); Lelièvre et al. (2012); Zappa et al. (2018);
Diaconis et al. (2013); Lee and Vempala (2018); Lelièvre
et al. (2019) and Laurent and Vilmart (2021). In this article,
we focus on manifolds defined by algebraic constraints. In
order tomaintain the constraints, in practice one needs to per-
form projections at each step of the algorithm, an additional
overhead compared to Euclidean MCMC algorithms.

In this paper we propose the Randomized Time Rie-
mannianManifold HamiltonianMonte Carlo (RT-RMHMC)
method, an RHMC scheme for Riemannian manifolds. We
establish invariance under a compactness assumption of the
desired measure in the (small stepsize limit) continuous-time
PDMP version of our method, where the algorithm is rejec-
tion free. Our approach to proving invariance is based on
the PDMP framework established in Durmus et al. (2021),
we construct an approximation of RT-RMHMC by truncat-
ing the velocity distribution consistently and prove all the
conditions needed in Durmus et al. (2021) with the approxi-
mation; we have not found such a construction technique in
the literature. Further, we demonstrate the invariance of the
discretizedmethodwithMetropolis-Hastings adjustment and
prove ergodicity of the discretized method with Metropolis-
Hastings adjustment. We show in numerical experiments
that this method has improved robustness, demonstrating for
example that the convergence rate is relatively flat in the
choice of mean time parameter; these results mirror those
obtained for the Euclidean version of the method. Moreover,
we compare RT-RMHMC to a constrained underdamped
Langevin integrator (g-BAOAB) introduced in Leimkuhler
and Matthews (2016).

To our knowledge, there is no theoretical or numerical
treatment ofRHMCin themanifold setting and there has been
no theoretical treatment of Riemannian Hamiltonian Monte
Carlo methods in the continuous time setting. We provide a
first result to establish invariance of a continuous time Rie-
mannian Hamiltonian Monte Carlo method in the compact
setting. A biased RHMC method was recently introduced
(see (Kleppe 2022)) which has event rates which depend on
the position in the state space, these state dependent event
rates can be incorporated into our RHMCRiemannian frame-
work when the framework is unadjusted. We note that in the
appendix of that article, a version of RHMC is introduced in
the setting of adapting the metric for sampling on Euclidean
space but not for working on a Riemannian manifold.

The remainder of this article is organized as follows. In the
next sectionwedescribe the algorithmandprovide invariance

in the continuous time setting under a compactness assump-
tion. Section3 considers the numerical implementation with
and without Metropolis test. Section4 provides conserva-
tion of the stationary distribution of the discretized algorithm
and the ergodicity of the method with Metropolis-Hastings
adjustment. Section5 discusses numerical experiments and
Section6 gives some thoughts on future developments. We
include several appendices addressing the generator, the
invariance of the target measure and the irreducibility of the
scheme, from which ergodicity necessarily follows.

2 Algorithm

Let (M, g) be a d-dimensional Riemannian manifold and
TM denote its tangent bundle. Let G(x) denote the positive
definitematrix associated to themetric g at x ∈M. Consider
a target distribution on M with density

πH(x) = 1

ZM
exp (−UH(x)),

with respect to σM(dx), the surface measure (Hausdorff
measure) of M defined by σM(dx) = √detG(x)dx and
ZM = ∫

M exp (−UH(x))σM(dx), which we assume to be
finite. Consider an extension of the distribution to TM as

μ(dz) = 1

ZTM
exp (−H(x, v))λTM(dz), (1)

where λTM(dz) is the Liouville measure of TM, H is
defined by

H(x, v) = UH(x)+ 1

2
vT G(x)−1v

= U (x)+ 1

2
log {(2π)d detG(x)} + 1

2
vT G(x)−1v,

(2)

for (x, v) ∈ TM and ZTM = ∫
TM exp (−H(x, v))

λTM(dz), which is finite when ZM is. We have that

μ(dz) = πH(x)σM(dx)ψ(x)(dv),

where ψ(x)(dv) is simply the Gaussian measure on TxM
given by

ψ(x)(dv) = 1
√{(2π)d detG(x)}
× exp

(

−1

2
vT G(x)−1v

)

σTxM(dv),

in local coordinates and σTxM(dv) is the Lebesgue measure
on TxM. In particular we have that μ has marginal distribu-
tionπH with respect to the Hausdorff measure (Girolami and
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Calderhead 2011; Byrne and Girolami 2013; Lelievre et al.
2010[Section 3.3.2]).

Wewill define a stochastic process which is a Riemannian
version of theRandomizedHamiltonianMonteCarlo ofBou-
Rabee andSanz-Serna (2017). The stochastic process follows
constrained Hamiltonian dynamics for an time duration t
sampled from t ∼ exp (λ) for some rate λ > 0 before an
event. This event is a random velocity refreshment under the
distribution ψ(x).

Algorithm 1 defines Randomized time Riemannian Man-
ifold Hamiltonian Monte Carlo (RT-RMHMC) with rate
parameterλ > 0, andHamiltonian dynamics governed by the
Hamiltonian H(x, v) = UH(x) + 1

2v
T G(x)−1v defined on

TM. This stochastic process has invariant measure μ(z) =
exp (−H(z)) with respect to the Liouville measure on TM.

Algorithm 1: RT-RMHMC
• Initialize x0 arbitrarily on M and sample v0∼ψ(x0) on Tx0M

such that (x0, v0) ∈ TM.
• Initialize t0 = 0.
• for k = 1, 2, ... do

– Update time via tk = tk−1 + δt , where δt ∼ exp (λ).
– Evolve over [tk−1, tk ] Hamilton’s equations with initial

condition (x(tk−1), v(tk−1)) = (xtk−1 , vtk−1 ).
– Set (xs , vs) = (x(s), v(s)) for s ∈ [tk−1, tk).
– Set xtk = x(tk) and sample vtk ∼ ψ(xtk ) such that

(xtk , vtk ) ∈ TM.

To sample from a distribution π with respect to the Haus-
dorff measure we define U = − logπ under the assumption
that π is integrable on M.

We can define the generator for this stochastic process as

L f (z) = XH ( f (z))+ λ(Q f (z)− f (z)), (3)

where

Q f (x, v) := 1
√{(2π)d detG(x)}

∫

TxM
exp

(

−1

2
ξ T G(x)−1ξ

)

f (x, ξ)dξ,

is the transition kernel for a completely randomized veloc-
ity refreshment according to a Gaussian distribution on
the tangent space TxM and XH is the Hamiltonian vec-
tor field associated to H , which may be defined by XH =(

∂H
∂vi

,− ∂H
∂xi

)
in local coordinates. In the Appendix, we will

prove that this is the generator of this stochastic process in
Section A and invariance of the measure in Section B under
a compactness assumption. Our main theoretical result about
Algorithm 1 is the following.

Corollary 1 (Invariant measure for RT-RMHMC) Let (Pt )t≥0
be the transition semigroup of a simulation of Algorithm 1
with characteristics (ϕ, λ, Q) on TM andHamiltonian H ∈
C2(TM), where (M, g) is a compact smooth Riemannian
manifold and ϕ is the Hamiltonian flow associated to the
Hamiltonian. Letμ be the measure on (TM,B(TM)) given
by

μ(dz) ∝ e−H(x,v)dλTM(z),

where dλTM is the Liouville measure of TM. Then μ is
invariant for RT-RMHMC.

3 Constrained symplectic integrator and
metropolis-hastings adjustment

In this section, we will state some more broadly imple-
mentable versions of Algorithm 1 that are applicable when
the Hamiltonian dynamics cannot be solved exactly. We start
with a brief introduction to Lagrangian and Hamiltonian
dynamicswith constraints based onLee et al. (2017)[Chapter
3].

Consider manifolds M embedded in R
d that can be

described by algebraic equations

M := {x ∈ R
d | ci (x) = 0, i = 1, ...,m} ⊂ R

d ,

where ci : Rd → R i = 1, ...,m are continuously differen-
tiable functions with linearly independent gradient functions
for all x ∈M.

We refer to such a submanifold as an algebraic constraint
manifold. We can express the Euler-Lagrange equations as
an orthogonal projection of the Euler-Lagrange equations in
R
d onto the constraint manifold, hence we have

d

dt

(
∂L(x, ẋ)

∂ ẋ

)

− ∂L(x, ẋ)

∂x
+

m∑

i=1
λi

∂ci (x)

∂x
= 0,

where λi are Lagrangemultipliers for each of the constraints.
We can then define an augmented Lagrangian function La :
T ∗M×R

m → R by La(x, ẋ, λ) = L(x, ẋ)−∑m
i=1 λi ci (x).

Then the Euler-Lagrange equations can be expressed as

d

dt

(
∂La(x, ẋ, λ)

∂ ẋ

)

− ∂La(x, ẋ, λ)

∂x
= 0,

and the augmented Hamiltonian function Ha : T ∗M ×
R
m → R as Ha(x, μ, λ) = μ · ẋ − La(x, ẋ, λ), and we

therefore obtain Hamilton’s equations (see Hartmann 2007)

ẋ = ∂Ha(x, μ, λ)

∂μ
μ̇ = −∂Ha(x, μ, λ)

∂x
.
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We next introduce a new formulation of RT-RMHMC for
constraint manifolds which we will use for numerical sim-
ulation. Note that a constraint manifold Hamiltonian Monte
Carlo method was introduced in Brubaker et al. (2012), but
with a deterministic duration parameter.Wewill use the same
notation as that used in Brubaker et al. (2012) to introduce
randomized time into this algorithm.

Let us denote our constraints c(x) := (ci (x), ..., cm(x))T

and let C(x) = ∂c
∂x denote the Jacobian of the constraints,

which we assume to have full rank everywhere. Define
a Hamiltonian of the constrained system as H(x, v) =
UH(x) + K (v), where K (v) = 1

2v
T G(x)−1v is the kinetic

energy and v lies in the cotangent space, T ∗x M = {v |
C(x) ∂H

∂v
(x, v) = 0}. The dynamics of the constrained sys-

tem in terms of the Hamiltonian is thus given by

v̇ = −∂H

∂x
+ C(x)T λ, ẋ = ∂H

∂v
, such that c(x) = 0,

where we remark that we can naturally identify the tangent
and cotangent spaces and bundles.

We let πH be our target measure with respect to the Haus-
dorff measure and UH(x) = − logπH(x) be the potential
energy of our constrained system. We can then simulate
the constrained Hamiltonian dynamics using the RATTLE
scheme (Andersen 1983).However, ifwe knowπH explicitly
we can avoid computation of the metric tensor by assuming
our system is isometrically embedded in Euclidean space.
Under this assumption we can then consider Algorithm 2,
which is an explicit algorithm for simulation of Randomized
time constrainedHamiltonianMonte Carlo (RT-CHMC).We
will discuss and justify the embedding assumption further in
Sect. 3.1.

Algorithm 2: RT-CHMC
• Initialize x0 arbitrarily on M and sample

v0 ∼ N (0, I | C(x0)v0 = 0).
• Initialize t0 = 0.
• for k = 1, 2, ... do

– Update time via tk = tk−1 + δt , where δt ∼ exp (1/λ).
– Evolve over [tk−1, tk ] Hamilton’s equations subject to

constraints c(·) with initial condition
(x(tk−1), v(tk−1)) = (xtk−1 , vtk−1 ) and Hamiltonian
H(x, v) = − logπH(x)+ 1

2vT v.
– Set (xs , vs) = (x(s), v(s)) for s ∈ [tk−1, tk)
– Set xtk = x(tk) and sample vtk ∼ N (0, I | C(xtk )vtk = 0)

In Algorithm 2we sample the Gaussian distribution on the
tangent space at a point on M. We can do this by sampling
a vector whose components are independent standard nor-
mal random variables and then projecting this orthogonally.
To orthogonally project a momentum vector onto T ∗M and

correctly resample the momentum in Algorithm 2 at x ∈M
we apply the projector

PM(x) := I − C(x)T (C(x)C(x)T )−1C(x).

Proposition 1 If v′ ∼ N (0, I ) then v = PM(x)v′ is dis-
tributed according to v ∼ N (0, I | C(x)v = 0)

Proof Can be found in Graham et al. (2022). �

3.1 Embeddedmanifolds

We next introduce the theory of manifold embeddings as it
was presented in Byrne and Girolami (2013) to show that
numerical simulation of RT-CHMC is in fact simulation of
RT-RMHMC on constraint manifolds.

If we know the form of the distribution πH with respect
to the Hausdorff measure, then we can avoid the computa-
tion of the metric tensor and the lack of a global coordinate
system (Byrne and Girolami 2013). We achieve this using
isometric embeddings, remarking that every Riemannian
manifold can be isometrically embedded in Euclidean space
due to the Nash embedding theorem (Nash 1956). If we
have an isometric embedding ξ : M → R

n , then consid-
ering a path q(t) on M, the path x(t) = ξ(q(t)) is such
that ẋi (t) = ∑

j
∂xi
∂q j

q̇ j (t). The phase space (q, p), where

q̇ = G−1 p, can then be transformed to the embedded phase
space (x, v), where

v = ẋ = XG(q)−1 p = X(XT X)−1 p, where Xi j = ∂xi
∂q j

,

since G = XT X due to the fact that the embedding is iso-
metric and preserves inner products (see (Byrne andGirolami
2013)). Now the Hamiltonian (Eq.2) is

H(x, v) = − logπH(x)+ 1

2
vT v,

in terms of coordinates (x, v). When considering sampling
of the velocities in Algorithm 1 and Algorithm 2, since p ∼
N (0,G(q)), we have

v ∼ N (0, X(XT X)−1XT ),

where X(XT X)−1XT is the orthogonal projection onto the
tangent spaceof the embeddedmanifold (Byrne andGirolami
2013). Therefore we can sample from N (0, I ) and project
onto the tangent space to obtain a necessary sample. The
Hamiltonian is thus expressed in a formwhich is independent
of the metric (provided we know the density with respect
to the Hausdorff measure). We next introduce the RATTLE
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scheme for numerical integration on a manifold (Leimkuhler
and Reich 2004)[Chapter 7]:

xn+1 = xn +
tvn+1/2

vn+1/2 = vn − 
t

2
∇xU (xn)− 
t

2
C(xn)

T λn(r)

c(xn+1) = 0

vn+1 = vn+1/2 − 
t

2
∇xU (xn+1)− 
t

2
C(xn+1)T λn+1(v)

C(xn+1)vn+1 = 0,

where we solve for λn(r) and λn+1(v) at each iteration so that
the iterates lie in the tangent bundle. We solve for λn(r) (a
non-linear system of equations) by cycling through the con-
straints, adjusting one multiplier at each iteration. Denote by
Ci the i th row of C and we first initialize

Q := xn+1 = xn +
tvn − 
t2

2
∇xU (xn).

Next we cycle through the list of constraints one after another
as follows: for each i = 1, ...,m compute


�i := ci (Q)

Ci (Q)Ci (xn)
,

and update Q by Q := Q − Ci (xn)T
�i until ci (Q) <

tol for all i = 1, ...,m, where tol is a certain prescribed
tolerance. Then we set xn+1 = Q and have xn+1 ∈ M
within the tolerance. (Note that other stopping criteria could
be used (see (Ortega and Rheinboldt 2000)).) We solve for
λn+1(v) by solving the linear system:

(
C(xn)C(xn)

T
)

λn(v) = C(xn)

(
2


t
vn−1/2 −∇xU (xn)

)

.

Once the linear system has been solved we obtain (xn+1,
vn+1) ∈ T ∗M.

Theorem 2 Let M be a constraint manifold. Let H ∈
C2(TM), the RATTLE numerical integrator of the Hamil-
tonian system defined by H in TM is symmetric, symplectic
and of order 2. Further it respects the manifold constraints.

Proof Given in Leimkuhler and Skeel (1994). �

3.2 Metropolis hastings adjustment

Let �L

t : TM→ TM be the numerical integrator defined

by L steps of RATTLE with stepsize 
t . This integrator
approximates theHamiltonian dynamics. For theoretical pur-
poses we will also define the map N : TM→ TM which
negates the momentum term i.e. N (x, v) ≡ (x,−v). Note
that this leaves the Hamiltonian invariant and due to the fact

that the momentum is resampled this has no affect on the
samples fromπH.Wewill define the followingMetropolized
RT-RMHMC, where we sample T ∼ exp (λ) and fix a max-
imum time length 
tmax below the stability threshold of the
numerical integrator. Thenwe choose the number of leapfrog
steps L to be �T /
tmax �. Having chosen L in this way,
we set 
t = T /L ≤ 
tmax. At each step we perform L
RATTLE steps with stepsize 
t . We propose this method
of discretisation instead of purely randomizing the stepsize
and fixing a number of leapfrog steps to avoid numerical
instabilities in the numerical integrator. One could also pro-
pose fixing a stepsize within the numerical stability threshold
of the integrator and simply sampling an integer number of
leapfrog steps geometrically to randomize the time. How-
ever our proposed method closer relates to the continuous
dynamics without the issues due to numerical instabilities.

Remark 1 For large choices of stepsize
t it has been shown
that L


t is not reversible where RATTLE is used to inte-
grate on the manifold, see (Lelièvre et al. 2019; Zappa et al.
2018). In Lelièvre et al. (2019) they propose to combat this by
adding a reversibility check incorporated into theMetropolis-
Hastings adjustment, although in practice such checks may
be neglected in favor of an implicit assumption that 
t is
sufficiently small to avoid non-reversibility issues. We will
investigate this further in Sect. 5.

In light of Remark 1, we include Rev(·) as a addi-
tional (optional) accept-reject condition which implements
a reversibility check (following (Lelièvre et al. 2019)). In
numerical experiments we examine the stepsize threshold
where the reversibility condition fails (See Fig. 1).

Remark 2 Our framework can be adapted to handle inequal-
ity constraints by incorporating an additional rejection con-
dition in theMetropolis-Hastings step, which rejects samples
which aren’t within the boundary.

Fig. 1 Ratio of samples out of 106 samples which don’t satisfy
reversibility check for different choices of 
t for the BVMF distri-
bution with parameters A = diag(−1000, 0, 1000) and c = (100, 0, 0)

123



48 Page 6 of 21 Statistics and Computing (2024) 34 :48

Algorithm 3:RT-CHMCwithMetropolis-Hastings step
• Initialize 
tmax within the stability threshold.
• Initialize x0 arbitrarily on M and sample

v0 ∼ N (0, I | C(x0)v0 = 0).
• Initialise t0 = 0.
• for k = 1, 2, ... do

1. Sample vk−1 ∼ N (0, I | C(xk−1)vk−1 = 0).
2. – Sample T ∼ exp (λ).

– Set L = �T /
tmax� and 
t = T /L .
– Set (x∗, v∗) = �(xk−1, vk−1) =

Rev(N (�L

t (xk−1, vk−1))).

– Accept (x∗, v∗) with probability
min {1, exp {H(x, v)− H(x∗, v∗)}} and set
(xk , vk) = (x∗, v∗).

– Otherwise (xk , vk) = (xk−1, vk−1).

This will be used in our application in Section5.4 to
impose a half-normal prior on some dimensions of our
Bayesian model.

4 Ergodicity

We will now prove ergodicity and exact invariance of
the desired measure of the discrete time algorithm with
Metropolis-Hastings adjustment. We will provide ergodicity
under two assumptions by the same technique as Brubaker
et al. (2012) and restating some of their results.

Proposition 3 Assuming that � for 
tmax > 0 then μ is
invariant with respect to theMarkov kernel proposed in Algo-
rithm 3.

Proof See Section C of the Appendix. �
Assumption 1 Let M ∈ {x ∈ R

n | c(x) = 0} be Rieman-
nianmanifoldwhich is connected, smooth and differentiable.
We assume that ∂c/∂x is full rank everywhere.

Assumption 2 LetM be a Riemannian manifold which sat-
isfies Assumption 1. For x ∈ M we define Br (x) = {x ′ ∈
M | d(x ′, x) ≤ r} to be the geodesic ball of radius r of x .We
assume that there exists a r > 0 such that for every x ∈M
and x ′ ∈ Br (x) there exists a unique choice of Lagrange
multipliers and velocity v ∈ TxM, v′ ∈ Tx ′M for which
(v′, x ′) = �L


t (v, x) for sufficiently small 
t .

Theorem 4 (Accessibility) Let U ∈ C2(M), and assum-
ing Assumption 1. For any x0, x1 ∈ M and 
t sufficiently
small, there exists finite v0 ∈ TM, v1 ∈ TM and Lagrange
multipliers λ0, λ1 such that (v1, x1) = �
t (v0, x0).

Proof Found in Brubaker et al. (2012)[Theorem 2] and is an
extension of the results of Marsden and West (2001)[The-
orem 2.1.1] and Hairer et al. (2006)[Theorem 5.6, Section
IX.5.2]. �

Theorem 5 (μ-irreducible) Let U ∈ C2(M), and under
Assumptions 1 and 2 we have that for any x ∈ M, and
measurable set A ⊂ M with positive measure. Then there
exists an n ∈ N such that

K n(x, A) > 0,

where K denotes the marginal transition kernel defined on
M of Algorithm 3.

Proof See Section C of the Appendix. �

Lemma 6 (Aperiodic) Let U ∈ C2(M) and under Assump-
tions 1 and 2 Algorithm 3 is aperiodic.

Proof Proof given in Brubaker et al. (2012)[Lemma 1]. �

Theorem 7 (Ergodicity) LetU ∈ C2(M)andunderAssump-
tions 1 and 2 we have for μ−almost all starting values x

lim
t→∞

∫

M
|K t (x, y)− πH(y)|σM(dy) = 0.

Proof Since Algorithm 3 is μ−invariant by Theorem 3,
μ−irreducible by Theorem 5 and aperiodic by Theorem 6,
the required result holds by Tierney (1994)[Theorem 1]. �

5 Numerical results

We perform numerical simulations of the RT-CHMC algo-
rithm and compare to the CHMC algorithm of Brubaker et al.
(2012); Girolami andCalderhead (2011), specifically explor-
ing the underlying dynamics of the two processes. MCMC
schemes are used to approximate expected values of certain
functions f over some distribution with probability density
function π

Eπ ( f ) =
∫

f (x)π(x)dx,

where we can estimate this quantity using our MCMC
scheme by

f := Eπ ( f ) ≈ 1

M

M∑

i=1
f (Xi ),

where Xi is the Markov chain from our MCMCmethod. We
quantify the convergence rate associated to approximation of
Eπ ( f ) by considering the integrated autocorrelation function
and essential sample size.
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5.1 g-BAOAB

As a comparison method we implemented the g-BAOAB
integrator of Leimkuhler and Matthews (2016), a numerical
integrator for constrained underdamped Langevin dynam-
ics. Constrained underdamped Langevin dynamics can be
described by

ẋ = v,

0 = C(x)v,

v̇ = −∇xU (x)− γ v +√
2γ R(t)− C(x)T λ,

0 = c(x),

where γ is a friction coefficient and R(t), is a vector-valued,
stationary, zero-mean Gaussian process. The numerical inte-
grator g-BAOAB is a splitting method for such dynamics,
which uses similar constrained integrators as that of RT-
CHMC. We note that g-BAOAB is a biased sampling
algorithm due to the error in the numerical integrator. For
a full description of g-BAOAB and a discussion of the sam-
pling error we refer to Leimkuhler and Matthews (2016).

5.2 Computational cost

The cost of propagation steps are essentially the same as
those of g-BAOAB. In situations where there are relatively
few constraints compared to the dimension of the parameter
space, the constraint cost should be affordable. This happens
even in complex applications like molecular dynamics of
proteins, where the constraint solver rarely introduces a cost
greater than a few percent of the total cost of, say, long-
ranged force evaluations (Xie et al. 2000). Obviously the
practicality of the scheme will depend on the problem itself.
The cost of solving the constraints using the semi-explicit
SHAKE/RATTLE or geodesic integrator steps is expected to
be lower than the cost to integrate the equations of CHMC in
the general metric setting (using unconstrained ODEs), since
the nonseparable Hamiltonian structure demands an implicit
symplectic integration.

5.3 Test examples

We next provide examples of distributions on implicitly
defined manifolds embedded in Euclidean space, with the
distributions defined with respect to the Hausdorff measure
of the manifold. We will consider two types of constraint
manifolds: spheres and Stiefel manifolds.

Bingham-VonMises-Fisher distribution on Sn

The first test case is the Bingham-VonMises-Fisher (BVMF)
distribution defined on the n−dimensional sphere embedded

in R
n+1, that is Sn := {x ∈ R

n+1 | ∑n+1
i=1 x2i = 1}. The

BVMF distribution is the exponential family on Sn ⊂ R
n+1

with density of the form

πH(x) ∝ exp {cT x + xT Ax},

where c ∈ R
n+1 and A ∈ Mn+1(R) is a symmetric matrix.

We compare the integrated autocorrelation (IAC) of
− logπH of the RT-CHMC method to that of the CHMC
method introduced in Brubaker et al. (2012) for a number
of distributions with parameters defined in the captions. We
also compare themaximum IACof xi for i = 1, ..., n to com-
pare the worst efficiency of the mixing in all dimensions. We
comparemethods by setting the event rate parameter λ of RT-
CHMC to be the deterministic duration parameter of CHMC
(running the dynamics for this duration before momentum
randomization). We then compute the integrated autocorre-
lation of− logπH and xi for i = 1, ..., n for the twomethods
for varying choices of λ by a Monte Carlo averaging pro-
cedure as described in Section Appendix E. Regarding the
reversibility issue for large choices of stepsize (as discussed
in Section3.2), for the geometries and distributions chosen,
this is shown to exhibit behaviour as in Fig. 1, where there is
a dramatic change in reversibility failure for a small change
in step-size. Before this point all samples generated satisfy
reversibility conditions.We simply chose stepsizeswhich are
below this threshold in our simulations.

The results are presented in Fig. 2. We choose the stepsize
in RATTLE to be 
t = 0.01 and sample N = 1, 000, 000
eventswith a burn time of 10%of samples beforewe compute
the Monte Carlo average. We also use lags of up to M =
N/50, 2 percent of the number of samples used to estimate
the IAC. As our choice of 
t is small, the acceptance rate
is high so this process is close to the continous version. The
IAC compares the efficiency of the continuous processes.

Remark 3 Due to the symmetry in the x3-coordinate (x3 �→
−x3) in the BVMF distribution with parameters A =
diag(−1000, 0, 1000) and c = (100, 0, 0), the distribution
is bimodal. However in practice we consider this a unimodal
distribution as the probability of transferring between modes
is extremely small. This can be seen in Fig. 3, as the sec-
ond mode is at θ = π . Our dynamics stay near the mode at
(0, 0, 1) and do not visit the othermode in all our simulations.

In ourfirst example andFig. 2we can see that the regularity
of the quality of samples with respect to the duration param-
eter is poor when a deterministic duration parameter is used
and nearly uniform across a wide interval for a randomized
duration with the same expected value. This is illustrated in
Fig. 3, where a small change in duration parameter causes the
dynamics dramatically slows convergence and due to very
slow mixing. The fact that CHMC behaves erratically for
large mean duration parameters may not be very surprising
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Fig. 2 IAC estimates for different choices of λ for the BVMF distribution with parameters A = diag(−1000, 0, 1000) and c = (100, 0, 0) averaged
over 20 independent runs.. Left: IAC of − logπH. Right: Maximum IAC over x1, x2 and x3

Fig. 3 Contour plot of− logπH for theBVMFdistributionwith param-
eters A = diag(−1000, 0, 1000) and c = (100, 0, 0). The axis being a
2D parameterisation of S2. The points are 2000 samples after a 8000

sample burn in time. Upper left: RT-CHMC for λ−1 = 0.09. Upper
right: CHMC for λ−1 = 0.09. Lower left: RT-CHMC for λ−1 = 0.1.
Lower right: CHMC for λ−1 = 0.1

to some readers as the theoretical convergence bound for
HMCwithout randomization requires a limit on the duration
T (see (Mangoubi and Smith 2017)). This is due to the fact
that when T is set too large, the coupling argument breaks
down.

We next compare efficiencies using the metric gradi-
ent evaluations per effective sample size, which tells us
the number of gradient evaluations needed for one inde-
pendent sample in estimating our observables. We compare
this metric for varying choices of step-size up to when the
reversibility condition is broken and the numerical integra-
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tor becomes unstable. Our observables will be− logπH and
xi for i = 1, ..., n. We can see as in Figs. 4 and 5 CHMC
(with deterministic time) exhibits the same behaviour as in
Fig. 2 for all choices of step-size, which is not the case for
RT-CHMC. We next compare the efficiency of the method
with the g-BAOAB constrained Langevin integrator, we find
in Figures4 and 5 that g-BAOABoutperforms RT-CHMC for
large choices of the friction parameter γ (for this example
γ = 50). g-BAOAB has no Metropolis-Hastings adjustment
and hence is a biased sampling method. The bias in the sam-
ples creates errors in computedobservables. For large choices
of γ , this bias is dramatically reduced, but use of high friction
may slow convergence of metastable systems.

To explore this we next consider a bimodal distribution
from Byrne and Girolami (2013) in Fig. 6. It is shown in
Fig. 6 that g-BAOAB incurs bias for large stepsizes and con-
vergence is slow for large choices of the friction parameter
for this metastable system. The figure also shows that this is
not the case for RT-CHMC. In Fig. 4 we choose step-sizes up
to which the integrator is reversible and stable.

The efficiency of the methods with their optimal choices
of parameters is comparable, butRT-CHMC ismuch less sen-
sitive with respect to the choice of parameters (stepsize and

number of leapfrog steps) compared toCHMC, soRT-CHMC
is more reliable from this point of view. This is important as
it is hard to know an appropriate choice of parameters a priori
and the integration length between samples might have to be
arbitrarly small for CHMC to be efficient.

VonMises-Fisher distribution onVd,p

Definition 1 A Stiefel manifold Vd,p is the set of d× pmatri-
ces X such that XT X = I .

These arise in many statistical problems which are discussed
in Byrne and Girolami (2013). Applications include dimen-
sionality reduction such as is used in factor analysis, principal
component analysis (Jolliffe 2002) and directional statistics
(Mardia et al. 2000). These are a generalisation of orthog-
onal groups. The von Mises-Fisher distribution on Stiefel
manifolds is defined by the density

pvMF (X) ∝ exp (Tr(FT X))

= exp (〈 f1, x1〉 + ...+ 〈 f p, xp〉),

where xi and fi are the columns of F and X .We simulate IAC
esimates for two example distributions for varying duration

Fig. 4 Gradient evaluation per ESS estimates of − logπH for the
BVMF distribution using 100,000 samples with parameters A =
diag(−1000, 0, 1000) and c = (100, 0, 0) and for varying choices of

step-size. Upper left: CHMC. Upper right: RT-CHMC. Lower left: g-
BAOAB. Lower right: g-BAOAB and RT-CHMC
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Fig. 5 Maximum gradient evaluation per ESS estimates over x1, x2 and
x3 for the BVMF distribution using 100,000 samples with parameters
A = diag(−1000, 0, 1000) and c = (100, 0, 0) and for varying choices

of step-size. Upper left: CHMC. Upper right: RT-CHMC. Lower left:
g-BAOAB. Lower right: g-BAOAB and RT-CHMC

(a) (b) (c)

Fig. 6 Monte Carlo average of − logπH for the BVMF distribution with parameters A = diag(−20,−10, 0, 10, 20) and c = (40, 0, 0, 0, 0) with
N = 5× 106 samples. Left: 10 step RT-CHMC. Middle: g-BAOAB with γ = 2. Right: g-BAOAB with dt = 0.01

parameters. In the simulationswe use a stepsize of
t = 0.01
and 100, 000 samples in each IAC estimate. The results are
shown in Fig. 7. We can see similar behaviour as the easier
example on the Sphere. Both examples it is clear CHMC is
much more sensitive to the mean duration and hence with
respect to stepsize and number of leapfrog steps. We note
that Skew(2,−45,−4) denotes the 3 by 3 skew-symmetric
matrix with up triangular entries 2,−45 and −4.

5.4 High dimensional covariance estimation

In many statistical applications for analysing high dimen-
sional data sets it is necessary to estimate sample covariances.
This can be challenging when the number of dimensions is
larger than the number of data points, as the sample covari-
ance estimator does not work well in such cases. Lam (2020)
provides a review of high-dimensional covariance estima-
tion and applications in principal component analysis (Shen
et al. 2016), cosmological data analysis (Joachimi 2017) and
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Fig. 7 IAC estimates of − logπH for different choices of λ for the
VMF distribution on O(3) and V18,3 with parameters given in the cap-
tions averaged over 20 independent runs. Left: VMF distribution on

O(3) with parameters F = A := Skew(2,−45,−4). Right: VMF
distribution on V18,3 with parameters F = [I ,−A, I ,−A, I ,−A]T

finance (Lam 2016). Lam (2020) focuses on the setup where
the matrix dimension is diverging or even larger than the
sample size. In this setting one needs to estimate the popula-
tion covariance matrix � of a set of n, p−dimensional data
vectors, which we assume are drawn from an underlying dis-
tribution.

One estimator is the sample covariance matrix, which
is defined by �S = 1/n

∑n
i=1(xk − x)(xk − x)T , where

x = 1/n
∑n

k=1 xk is the sample mean. However this is a poor
estimator of � when p is large compared to the sample size
n (due to rank deficiency). A way to combat this is to con-
sider regularized covariancematrix estimators which include
structural assumptions on the covariance matrix �.

One such method which has been proposed assumes the
structure of a low rank matrix plus a sparse matrix (see
(Ross 1976) and Lam (2020)). This structure is known as a
spiked covariance structure and has been studied inBouchard
et al. (2020); Lam (2020) and Cai et al. (2015). There have
been interesting applications to finance (Fan et al. 2008),
chemometrics(Kritchman and Nadler 2008), and astronomy
(Joachimi 2017). The covariance matrix � is assumed to be
expressible in the form

� = XD1X
T + D2,

where X is a Stiefel manifold of dimension p×m for p � m
and Di for i = 1, 2 are diagonal matrices of dimensionsm×
m and p × p respectively. The motivation for this structure
is that we assume that lower dimensional variables yi can
describe the data xi such that xi = Xyi + εi , where X is a
p × m matrix with orthogonal columns. We have that

� = X�y X
T +�ε,

which we interpret as a low rank matrix (rank m) plus a
sparse matrix. We take �y and �ε to be diagonal, which is

an approximation of the spiked covariance structure (Cham-
berlain and Rothschild 1982).

Assume a uniform prior on X with respect to the Haus-
dorff measure on X . Further assume a half-normal prior of
the diagonal entries of Di for i = 1, 2 to ensure positive def-
initeness. We also consider the following likelihood for the
covariance estimation

L(� | x1, ..., xp) = (2π)−np/2
n∏

i=1
det (�)−1/2

exp

(

−1

2
(xi − x)T�−1(xi − x)

)

.

We introduce the posterior distribution p(� | x1, ..., xp) ∝
L(� | x1, ..., xp)p(�), where p(�) = p(X)p(D1)p(D2)

for X ∼ U(Vp,m), D1 j j ∼ N+(0, σ 2
1 ) for j = 1, ...,m and

D2 j j ∼ N+(0, σ 2
2 ) for j = 1, ..., p andN+ denotes the half-

normal distribution. Define the potential U : Vp,m × R
m ×

R
p �→ R byU (X ,d1,d2) = − logL(�(X ,d1,d2) | x1, ...,

xp) − log p(X) − log p(d1) − log p(d2) with forces given
by

∂U

∂Xi j
= ∂U

∂�kl

∂�kl

∂Xi j

=
(
1

2
n(�−1)Tkl+

1

2

n∑

r=1
(xr − x)T Bkl(xr − x)

)
∂�kl

∂Xi j
,

where [Bkl ]i j = −(�−1)ik(�−1)l j and

∂�kl

∂Xi j
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xkj D1
j j k �= i, l = i,

D1
j j Xl j k = i, l �= i,

2Xi j D1
j j k = i, l = i,

0 otherwise.
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We also have that

∂U

∂di j
= ∂U

∂�kl

∂�kl

∂di j
+ di j

σ 2
1

,

for i = 1, 2 and where

∂�kl

∂d1 j1

= Xkj1Xl j1 and
∂�kl

∂d2 j2

=
{
1 if k = l = j2
0 otherwise,

for j1 = 1, ...,m and j2 = 1, ..., p. We will use the like-
lihood and its gradient for implementing our RT-CHMC
algorithm for such models.

Covariance estimation for cosmological data

We consider an application of high dimensional covari-
ance estimation in cosmological data analysis introduced in
Joachimi (2017) and discussed in Lam (2020). The data is
taken from Joachimi (2017) and consists of covariances of
two-point correlation functions of cosmic weak lensing. It
is simulated using coupled log-normal random fields from
angular power spectra. For further information we refer the

reader to Joachimi (2017). We will test this method using
2n/3 data vectors, where n is the dimension of the data
vectors. Therefore we are in the setting where the dimen-
sion of the covariance matrix is larger than the number of
samples. For our low rank plus sparse structure we choose
m = p/6 << p and to ensure fast convergence we will nor-
malize the data entry-wise and initialize our Markov chain
via a eigenvalue decomposition of the sample covariance.We
initialize our Markov chain as �0 = XT D1X + D2 ≈ �S ,
using the sample covariance matrix �S and where D2 is the
diagonal of �S and XT D1X corresponds to the eigenvalue
decomposition of �S − D2, but with the p largest eigenvec-
tors. After the covariance of the normalized data is estimated
it can easily be rescaled to match the real data via entry-
wise multiplication with the outer product of the entry-wise
standard deviations. We compare our method to a maxi-
mum a posterior (MAP) estimate of the covariance matrix
which uses a simple constrained gradient descent algorithm
with Lagrange multipliers to ensure that the “low-rank plus
sparse” structure is maintained. We compare the Bayesian
and MAP approaches using a relative Frobenius norm and a
covariancemetric introducedbyFörstner andMoonen (2003)
which is defined by

Fig. 8 Covariance estimates of astronomical data of 60-dimensional
data vectors. � is the true covariance using all 2000 data points. �MAP
is a maximum a posteriori covariance estimate and �̂ is a posterior
expectation estimate of� using 40 data points. �̂−1 is a posterior expec-

tation estimate of �−1 using 40 data points. The posterior expectation
estimate uses priors of σ1 = σ2 = 2 after normalisation and 500, 000
samples from RT-CHMC. a): �. b): �MAP . c): �̂. d): ln |�−1|. e):
ln |�−1MAP |. f): ln |�̂−1|

123



Statistics and Computing (2024) 34 :48 Page 13 of 21 48

Table 1 A comparison using three metrics between the MAP estimate
and the posterior expectation estimate using 500,000 samples from RT-
CHMC

Metric MAP Posterior expectation

‖� −�EST ‖F/‖�‖F 0.4862 0.5155

‖�−1 −�−1EST ‖F/‖�−1‖F 1.8503 0.8946

d(�,�EST ) 15.2515 14.7547

The relative Frobenius norm of the estimate and its inverse and the
covariance metric introduced by Förstner and Moonen (2003)

d(A, B) =
√
√
√
√

n∑

i=1
ln2 λi (A, B),

where A and B are covariance matrices and λi (A, B) are the
generalized eigenvalues from det(λA − B) = 0. As pointed
out in Förstner and Moonen (2003), this covariance metric is
affine invariant and invariant to inversion.

Note that in Fig. 8 we have not included the sample esti-
mate with 40 samples because the sample covariance matrix
is rank deficient and hence it is not possible to invert the
matrix. We notice from Fig. 8 and Table 1 that the MAP
and Posterior Expectation perform well when estimating the
covariance matrix for only using 40 data points, but lose
accuracy under inversion. The posterior expectation using
a sampling method seems to retain more structure when
inverted and provides a more accurate estimate according
to the metric of Förstner and Moonen (2003).

It is clear from Table 1 that using the posterior means
do not sacrifice accuracy compared to using the MAP esti-
mators. An additional benefit of the Bayesian approach is
that we can compute posterior standard deviations for each
component of the covariance estimator, which gives error
estimates. This is illustrated in Fig. 9. By comparing these
standard deviations with the covariance estimates, we can
get a sense of the relative error we are making. This infor-
mation can be useful when deciding on the number of data
samples we need to get a satisfactory level of accuracy in

Fig. 10 IAC estimates for different choices of λ for the Bayesian pos-
terior estimation of the upper left quadrant of the covariance matrix for
CHMC and RT-CHMC averaged over 20 independent runs

estimating the covariance matrix. Since in practice we do
not have access to the true covariance matrix, there is no
straightforward way to compute error estimates based on the
MAP estimator, and it is challenging to see whether we have
reached sufficient accuracy.

Further it is clear from Fig. 10 that the CHMC still suffers
from the robustness issue that were present in the lower-
dimensional examples and RT-CHMC maintains robustness
for this application.

6 Conclusion and future work

In thisworkwehave introduced aRandomizedTimeRieman-
nian Manifold Hamiltonian Monte Carlo (RT-RMHMC),
which is a robust alternative to RiemannianManifold Hamil-
tonian Monte Carlo methods introduced by Girolami and
Calderhead (2011) and Brubaker et al. (2012). We estab-
lish invariance of the desired measure under a compactness
assumption in the continuous (small stepsize limit) setting.
We provide an Metropolis adjusted version of RT-RMHMC
in the discrete setting and prove invariance and ergodicity

Fig. 9 A comparison between
the log of the absolute error and
the log of the posterior standard
deviations in each component.
Left: ln|� − �̂|. Right: ln�SD
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of the adjusted discretized algorithm. We show that RT-
RMHMC is a more robust method with respect to parameter
choice on a number of numerical examples arising in appli-
cations and provide an example to demonstrate that our
Riemannianmanifold samplingmethod can be used for high-
dimensional covariance estimation. We expect the stability
with respect to choice of parameters is especially needed in
poorly conditioned problems, where RMHMCwould require
very short time steps for stability but this may lead to some
randomwalk behaviour andhighly inefficientmixing in some
principal directions.

In terms of future developments for RT-RMHMC, the next
step would be to establish invariance of the measure in the
non-compact setting and further to this establish (geometric)
ergodicity of RT-RMHMC, which is already established in
Bou-Rabee and Sanz-Serna (2017) for the Euclidean setting.
Then one could find optimal choices of integration parame-
ters and step-size. Another possibility would be to establish
mixing time guarantees for RT-RMHMC by a coupling argu-
ment like Bou-Rabee et al. (2020) and Mangoubi and Smith
(2018). In Mangoubi and Smith (2018) they establish rapid
mixing guarantees for a geodesic walk algorithm on man-
ifolds with positive curvature, which is RMHMC for the
uniform distribution. One may be able to use a similar cou-
pling argument to guarantee mixing times for RT-RMHMC
for manifolds with positive curvature.

The C code for RT-CHMC and CHMC for each applica-
tion is available at https://github.com/PAWhalley/Randomiz
ed-Time-Riemannian-Manifold-Hamiltonian-Monte-Carlo.

Acknowledgements The authors would like to thank the anonymous
referees for their valuable feedback and suggestions, which have
improved the quality and presentation of the paper. The authors
acknowledge the support of the Engineering and Physical Sciences
Research Council Grant EP/S023291/1 (MAC-MIGS Centre for Doc-
toral Training).

Author Contributions P.A.W., D.P. and B.L. developed the theory, con-
ceptualized the algorithm and the simulation tests. P.A.W., D.P. andB.L.
wrote the main manuscript text. D.P. and B.L. supervised the project.

Funding The research leading to these results received support of the
Engineering and Physical Sciences Research Council Grant EP/S023
291/1 (MAC-MIGS Centre for Doctoral Training).

Declarations

Conflicts of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Generator of RT-RMHMC

To prove that the generator of this stochastic process takes
the form of Equation (3) and that the measure (Equation (1))
is invariant under RT-RMHMC we use the framework of
Durmus et al. (2021) viewing RT-RMHMC as a piecewise
deterministic Markov process (PDMP) defined on TM. For
a general state spaceZ , aZ−valued continuous-time PDMP
(ϕ, λ, Q) consists of the following components:

• a differential flow ϕ : R+ × Z �→ Z which satisfies
the semi group property and is measurable. Moreover,
is continuously differentiable with respect to time and a
C1-diffeomorphism of Z .

• an event rate λ : Z → R
+, which is measurable and

locally bounded.
• a inhomogeneousMarkov transition kernel Q : R+×Z×

B(Z) → [0, 1], such that for all A ∈ B(Z), (t, z) �→
Q(t, z, A) is measurable and for all (t, z) ∈ R+ × Z ,
Q(t, z, ·) ∈ P(Z),

where B(Z) denotes the σ -algebra on the spaceZ andP(Z)

denotes the space of probability measures on the space Z .
For RT-RMHMC we consider Z = TM.

Definition 2 For a PDMP Z = (Zt )t≥0, we call τ∞(Z) =
inf{t ≥ 0 | Zt = ∞} the explosion time of the process
(Zt )t≥0. A process (Zt )t≥0 is said to be non-explosive if
τ∞(Z) = +∞ almost surely. PDMP characteristics are said
to be non-explosive if for all initial distribution the associated
PDMP is non-explosive.

Due to the event rate λ of RT-RMHMC being constant
and bounded we have that RT-RMHMC is non-explosive.
As RT-RMHMC is a non-explosive PDMP we can use the
theory of Durmus et al. (2021)[Section 7 and 8] to estabilish
the generator and invariance of the desired measure.

We shall useL to denote the generator of a PDMP, we use
D(L) to denote the core of the generator (or domain), which
informally is all the continuous functions which vanish at
infinity and for which the generator is well-defined. For more
information we refer you to Durmus et al. (2021). Under the
assumption that the expected number of events in any unit
time interval [0, t] is finite, it is shown in Davis (1993)[The-
orem 26.14] that for a non-explosive PDMP with generator

123

https://github.com/PAWhalley/Randomized-Time-Riemannian-Manifold-Hamiltonian-Monte-Carlo.
https://github.com/PAWhalley/Randomized-Time-Riemannian-Manifold-Hamiltonian-Monte-Carlo.
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Statistics and Computing (2024) 34 :48 Page 15 of 21 48

L with domain D(L) that all f ∈ D(L) and x ∈ TM,

A f (x) = Dϕ f (x)+ λ(x)(Q f (x)− f (x)),

where Dϕ is the associated vector field to φ.
If we let Nt denote the number of events in the interval

[0, t] then we have for RT-RMHMC Ex (Nt ) = λt < ∞,
Ex denoting the expected value given the stochastic process
starts with initial condition x . Therefore all the assumptions
are satisfied of Davis (1993)[Theorem 26.14] and Durmus
et al. (2021)[Section 7] and we have that the generator of
RT-RMHMC is given by

L f (x) = XH ( f )+ λ(Q f (x)− f (x)),

where XH is the Hamiltonian vector field and Q is the tran-
sition kernel for the Gaussian distribution induced by the
metric G(x) on the tangent space of x ∈M.

Appendix B: invariant measure

To prove that μ is an invariant measure of RT-RMHMC it is
sufficient to show that

∫
L f (x)dμ = 0 for all f ∈ D(L). As

it is difficult to consider D(L), one approach is to show that
C1
c (TM) is a core of the generator and that

∫
L f (x)dμ = 0

for all f ∈ C1
c (TM), where Ck

c (TM) denotes the space of
k times differentiable functions f : TM→ Rwith compact
support.

Theorem 8 (Infinitesimal Invariance of RT-RMHMC) Let
M be a smooth Riemannian manifold with metric g and let
(Pt )t≥0 be the semigroup of RT-RMHMC defined onM with
potential U ∈ C2(M) and Hamiltonian H = U + K ∈
C2(TM). Let μ be the measure on (TM,B(TM)) defined
by

μ(dz) ∝ e−H(x,v)dλTM(z),

where dλTM is the Liouville measure of TM. Then for all
f ∈ C1

c (TM)

∫

TM
L f (x, v)μ(dz) = 0,

where L is the generator of RT-RMHMC.

Proof We have that

∫

TM
L f (x, v)μ(dz) =

∫

TM
XH ( f )dμ

+ λ

∫

TM
(Q − I ) f dμ,

where I is the identity operator. We will now consider these
two integrals separately. Considering the first integral, due
to the fact that μ is a Liouville measure, μ is invariant under
the Hamiltonian flow by Liouville’s theorem (see for exam-
ple Grothaus and Mertin (2022)) and hence the first integral
is identically zero. Now considering the second integral we
have

∫

[Q f (x, v)− f (x, v)]μ(dz)

=
∫ ∫

C(x)e−
1
2 ξT G(x)−1ξ ( f (x, ξ)

− f (x, v))dξe−H(x,v)dλT M (z)

=
∫ ∫

C(x)e−
1
2 ξT G(x)−1ξ e−U (x)− 1

2 vT G(x)−1v( f (x, ξ)

− f (x, v))dξdλT M (z)

=
∫

C(x)e−U (x)
∫ ∫

e−
1
2 ξT G(x)−1ξ e−

1
2 vT G(x)−1v( f (x, ξ)

− f (x, v))dξdvdσM(x) = 0,

where C(x) is varying depending on x and does not depend
on v or ξ . The last equality is identically integral as it can
be seperated as the subtraction of identical integrals using a
change of variables. Therefore we have that

∫

TM
L f (x, v)μ(dz) = 0,

and μ is an infinitesimally invariant measure. �

Wewill next demonstrate thatC1
c (TM) is a core of D(A)

by showing that certain conditions established in Durmus
et al. (2021) hold under the assumption that M is compact.
To show thatC1

c (TM) is a core of D(A)we use the approach
of compactly approximating RT-RMHMC by a more well-
behaved PDMP, which has PDMP characteristics (ϕ, λ, Qε)

satisfying the Assumption A3 from Durmus et al. (2021)
and has a Feller transition semigroup (Pt )t≥0. We then use
this approximation to show that RT-RMHMC is Feller and
C1
c (TM) is a core of the strong generator of RT-RMHMC,

whose transition semigroup (Pt )t≥0 is seen as a semigroup
on C0(TM). Note that C0(TM) denotes the space of con-
tinuous functions f : TM → R that vanish at infinity and
C0(TM) is a Banach space when equipped with the ‖·‖∞
norm.

We first approximate our PDMP (ϕ, λ, Q) (RT-RMHMC)
with the PDMP with characteristics (ϕ, λ, Qε) in the sense
that

sup
z∈TM,A∈B(TM)

{λε(z) ∧ λ(z)|Qε(z, A)− Q(z, A)|

+|λε(z)− λ(z)|} ≤ ε,

123



48 Page 16 of 21 Statistics and Computing (2024) 34 :48

where Qε is constructed as a Markov kernel corresponding
to a consistently truncated Gaussian distribution on each tan-
gent space as follows.

Define G :M× R→ R by

G(x, a) =
∫

B(0,a)

ψ(x)(dv)− (1− ε/2λ),

where ψ(x) denotes the probability density function of the
Gaussian distribution on TxM defined by ψ(x)(dv) ∝
exp (− 1

2v
T G(x)−1v)dv, known as the Maxwellian distri-

bution. Then we have that ∂G/∂a �= 0 due to the fact that
G(x, ·) is strictly increasing. By the implicit function theo-
rem there exists a unique continuously differentiable function
M :M→ R such that G(x, M(x)) = 0 for all x ∈M. We
define the transition kernel as follows:
Qε(z, dz′) = λδx (dx

′)ψε(x)(dv′),

where

ψε(x)(dv′) =
{

1
1−ε/2λ

ψ(x)(dv′) for |v′|g ≤ M(x)

0 otherwise,

is the truncated Maxwellian distribution. Then we have that
for any (x, v) ∈ TM and A ∈ B(TM)

|Qε((x, v), A)− Q((x, v), A)|
= λ|( 1

1− ε/2λ
− 1)

∫

A∩B(0,M(x))
ψ(x)(dv′)

−
∫

A∩B(0,M(x))c
ψ(x)(dv′)|

≤ λ(
1

1− ε/2λ
− 1)|

∫

A∩B(0,M(x))
ψ(x)(dv′)|

+ λ|
∫

A∩B(0,M(x))c
ψ(x)(dv′)|

≤ λ(
1

1− ε/2λ
− 1)(1− ε/2λ)+ λ(1− (1− ε/2λ))

= ε.

Lemma 9 (Continuity of Semigroup) Let (M, g) be a smooth
Riemannian manifold, and let U ∈ C1(M) and hence
H ∈ C1(TM). Let (Pt )t≥0 be the transition semigroup of
(ϕ, λ, Qε), then

|Pt f − f | → 0 as t → 0, for all f ∈ C0(TM).

Proof Let (Zt )t≥0 denote a sample path of (ϕ, λ, Qε). We
have that

|Pt f (z)− f (z)| = |Ez( f (Zt )− f (z)|
= |Ez( f (Zt )1(S1 ≤ t)+ f (Zt )1(S1 > t))− f (z)|

≤ ‖ f ‖∞P(S1 ≤ t)+ | f (ϕt (z))e
−λt − f (z)|

= ‖ f ‖∞(1− e−λt )+ | f (ϕt (z)− f (z)| → 0,

where S1 is the time of the first event and ϕt (z) is the solution
of the Hamiltonian flow. If H is continuously differentiable
everywhere then ϕt (z) is well defined for all t > 0, and
ϕt (z)→ z as t → 0 (see for example Chicone (2006)[The-
orem 1.186]). �
Lemma 10 Let (M, g) be a compact Riemannian manifold,
and let U ∈ C1(M). Let (ϕ, λ, Qε) be the PDMP approxi-
mation of RT-RMHMC defined above. The set of all possible
sample paths of (ϕ, λ, Qε) with initial condition (X0, V0) is
contained in a compact set.

Proof Let M(x) denote the continuous function in the def-
inition of Qε which controls the truncation of the Gaussian
distribution. M(x) is a continuous function on a compact set
and hence bounded by Mε . We further choose Mε such that
|V0|g ≤ Mε . Define the set

Uε = {(x, v) | x ∈M, |v|g ≤ Mε} ⊂ TM.

Due to the fact that M is compact it follows that Uε is
a compact subset of TM by Lemma 13. We have that H
restricted to Uε is bounded by MH as it’s continuous on a
compact set. We also have that H is constant between event
times of the PDMP, by the definition of Hamiltonian flow.
Therefore the Hamiltonian defined on the PDMP (Xt , Vt )
takes values which are defined by the image of (Xti , Vti ), for
events ti i = 1, 2, .... At event time ti ∼ exp λ, we have that
(Xti , Vti ) ∈ Uε , where (Xti , Vti ) ∼ Q(Xti−, Vti−, ·). There-
fore we can bound the Hamiltonian by MH on {(Xt , Vt ) |
t ≥ 0}. Now we have that

MH ≥ H(Xt , Vt ) = U (Xt )+ |Vt |g ≥ mU + |Vt |g,

for all t . Therefore

{(Xt , Vt ) | t ≥ 0} ⊂ {(x, v) | x ∈M, |v|g ≤ MV

:= MH − mU },

which is compact by Lemma 13. �
Wehave the following assumption fromDurmus et al. (2021),
which we use to establish Proposition 11.

Definition 3 Durmus et al. (2021)(Definition 16)We say that
a homogeneous differential flow ϕ on TM and a homoge-
neousMarkov kernel Q on TM are compactly compatible if
for all compact sets K ⊂ TM and T ≥ 0, there exists a com-
pact set K̃ ⊂ TM satisfying: for all n ∈ N

∗, (ti )i∈�1,n� ∈
R
n+,

∑n
i=1 ti ≤ T , there exists a sequence (Ki )i∈�1,n� of

compact sets of TM such that, setting K0 = K ,
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1. for all i ∈ �1, n�, Ki only depends on (t j ) j∈�1,n� and

∪ni=0Ki ⊂ K̃ ;
2. for all i ∈ �0, n− 1�, si+1 ∈ [0, ti+1] and sn+1 ∈ [0, T −∑n

j=1 t j ],
⋃

x∈Ki

supp{Q(ϕti+1(x), ·)} ⊂ Ki+1, ϕsi+1(Ki ) ⊂ K̃ ,

ϕsn+1(Kn) ⊂ K̃ .

Assumption 3 Durmus et al. (2021)(A3) The homogeneous
characteristics (ϕ, λ, Q) satisfy

1. the flow ϕ and the Markov kernel Q are compactly com-
patible;

2. λ ∈ C1(TM) and for all f ∈ C1(TM), λQε f ∈
C1(TM) and there exists a locally bounded function
� : TM→ R+ such that for all x ∈ K ,

λ‖∇(Qε f )(x)‖ ≤ ‖�‖∞,K sup{| f (y)|
+‖∇ f (y)‖ : y ∈ supp{Qε(x, ·)}};

3. (t, x) �→ ϕt (x) ∈ C1(R+ × TM) and for all compact
K ⊂ TM and t ≥ 0,

sup {‖∇ϕs(x)‖ | s ∈ [0, t], x ∈ K } < +∞.

Proposition 11 (Feller and Core of Generator) Let (Pt )t≥0
be the transition semigroup of (ϕ, λ, Qε) on TM, where
(M, g) is a compact smooth Riemannian manifold and ϕ

is the Hamiltonian flow associated to the Hamiltonian H ∈
C2(TM). Then, (Pt )t≥0 is Feller and C1

c (TM) is a core
for the strong generator of (Pt )t≥0 seen as a semigroup on
C0(TM).

Proof If we prove that (ϕ, λ, Qε) satisfies Assumption 3,
then fromDurmus et al. (2021)[Theorem17] (Pt )t≥0 satisfies
the Feller property. Once the Feller property is established by
Lemma 9 and due to the fact that TM is a complete metric
space we have by Böttcher et al. (2013)[Lemma 1.4] strong
continuity of (Pt )t≥0 and that (Pt )t≥0 is Feller. Further to this
C1
c (TM) is a core for the strong generator of (Pt )t≥0 seen as

a semigroup on C0(TM) is a consequence of Durmus et al.
(2021)[Theorem 17] and Ethier and Kurtz (1986)[Proposi-
tion 3.3,Chapter 1]. We will now establish Assumption 3.

For any compact set K ⊂ TM, as K is compact, |v|g ≤
MK for some constantMK ≥ 0 and for all v such that (·, v) ∈
K . Then by the same argument to that of Lemma 10, but
choosingMε larger thanMK we have that all PDMPs starting
in K are contained in a compact set K̃ .We candefine K0 = K
and Ki = K̃ for all i ≥ 1. Then we have the flow ϕ and Qε

are compactly compatible and hence Assumption 3i) holds.
We show Assumption 3ii) as follows. Trivially we have

λ ∈ C1(TM). We have taken the metric to be smooth and

hence, as the truncated Gaussian distribution has a smooth
transition kernel, we have that Qε f ∈ C1(TM). Firstly we
note that

supp{Qε(x, ·)} = {(x, v) | |v|g ≤ M(x)},

which is compact by Lemma 13. For all continuously differ-
entiable functions f : TM → R, with (x, y) ∈ TM, we
define

A(x, y) := λQε f (x, y)

= λ

1− ε/2λ

∫

B(0,M(x))
f (x, y′)ψ(x)(dy′).

Therefore it is sufficient to show that for all compact sets
K ⊂ TM, and for all (x, y) ∈ K ,

‖∇A(x, y)‖ ≤ sup
(w,z)∈K

{�(w, z)} sup{| f |(x, y′)

+‖∇ f (x, y′)‖ | |y′|g ≤ M(x)},

where � : TM → R is bounded on compact sets of TM.
Define ‖·‖∞,M(x) ≡ ‖·‖∞,B(0,M(x)). We have that for all
(x, y) ∈ TM, since all functions considered are C1 and
hence bounded on all compact sets of TM we have the fol-
lowing computation which uses the dominated convergence
theorem, a Leibniz’s integral rule and a spherical coordinate
system:

‖∇A(x, y)‖
= λ

1− ε/2λ
‖∇x

∫

B(0,M(x))
f (x, y′)ψ(x, y′)dy′‖

= C‖∇x

∫ M(x)

0

∫

Sn−1
f (x, r , σ )ψ(x, r , σ )rn−1dσdr‖

= C‖
∫ M(x)

0

∫

Sn−1
∇x ( f (x, r , σ )ψ(x, r , σ )rn−1)dσdr

+
∫

Sn−1
f (x, M(x), σ )ψ(x, M(x), σ )M(x)n−1dσ

× ·∇x M(x)‖
≤ C‖

∫

B(0,M(x))
∇x ( f (x, y

′)ψ(x, y′))dy′‖

+ C‖
∫

Sn−1
f (x, M(x), σ )ψ(x, M(x), σ )dσ‖

× ·‖M(x)n−1∇x M(x)‖∞
≤ C1‖

∫

B(0,M(x))
∇x ( f (x, y

′))ψ(x, y′)dy′‖

+ C1‖
∫

B(0,M(x))
f (x, y′)∇x (ψ(x, y′))dy′‖

+ C2‖ f (x, ·)‖∞,M(x)

≤ C1‖∇x f (x, ·)‖∞,M(x) + C2‖ f (x, ·)‖∞,M(x)
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+ C3‖ f (x, ·)‖∞,M(x)‖
∫

B(0,M(x))
∇xψ(x, y′)dy′‖

≤ C1‖∇x f (x, ·)‖∞,M(x) + C2‖ f (x, ·)‖∞,M(x)

+ C3‖ f (x, ·)‖∞,M(x)(M(x)n)

≤ C1‖∇ f (x, ·)‖∞,M(x) + C2‖ f (x, ·)‖∞,M(x)

≤ (C1 + C2)‖ ‖∇ f (x, ·)‖ + | f (x, ·)| ‖∞,M(x),

where C,C1,C2 and C3 are general constants carrying line
by line and ∇x denotes the differential operator with respect
to position on M and we have bounded ∇xψ universally
on {(x, y) | x ∈ M, |y|g ≤ M(x)} ⊂ TM. Therefore we
have the required result by setting � = C1 + C2. Finally
we have to show Assumption 3iii), where we use the fact
that ϕ is continuously differentiable, whenU ∈ C2(M) and
for any compact set K ⊂ TM we have that |v|g ≤ MK

for all (x, v) ∈ TM. Then by the same argument as that
of Lemma 10 we can define a larger constant such that all
PDMPs starting in K have bounded velocity and hence are
contained in a compact set K̃ . Hence Assumption 3iii) holds
by the fact that a continuous function on a compact set is
bounded. �

Theorem 12 (RT-RMHMC Feller and Core) Let (Pt )t≥0
be the transition semigroup of (ϕ, λ, Q) on TM, where
(M, g) is a compact smooth Riemannian manifold and
ϕ is the Hamiltonian flow associated to the Hamiltonian
H ∈ C1(TM). Then, (Pt )t≥0 is Feller and C1

c (TM) is a
core for the strong generator of (Pt )t≥0 seen as a semigroup
on C0(TM).

Proof By construction of Qε we have the property that

sup
x∈M,A∈B(M)

{λε(x) ∧ λ(x)|Qε(x, A)− Q(x, A)|

+|λε(x)− λ(x)} ≤ ε.

Using Durmus et al. (2021)[Theorem 11], Proposition 11,
Durmus et al. (2021)[Theorem 17] and the same argument
as Durmus et al. (2021)[Theorem 21] we have the required
result. �

Corollary 2 (Invariant measure for RT-RMHMC) Let (Pt )t≥0
be the transition semigroup of (ϕ, λ, Q) on TM, where
(M, g) is a compact smooth Riemannian manifold and
ϕ is the Hamiltonian flow associated to the Hamiltonian
H ∈ C2(TM). Let μ be the measure on (TM,B(TM))

given by

μ(dz) ∝ e−H(x,v)dλTM(z),

where dλTM is the Liouville measure of TM. Then μ is
invariant for RT-RMHMC.

Appendix C: Proof of invariance and �-
irreducibility for theMetropolized algorithm

Proof of Proposition 3 Let P1 be the Markov kernel corre-
sponding to the first step. It is clear that resampling from the
Gaussian measure on the tangent space keeps πH invariant
as it has marginal φ(x), and therefore keeps μ invariant.

Let P2 be the Markov Kernel corresponding the second
step (the combination of the sampling the time duration,
deterministic step by� and the Metropolis-Hastings accept-
reject step. Let L be an arbitrary number of RATTLE steps
we will check that μ is reversible with respect to P2 and
hence also invariant.

P2 is reversible with respect to μ if for every measurable
bounded function f : TM× TM→ R

∫ ∫

f (z1, z2)μ(dz1)P2(z1, dz2)

=
∫ ∫

f (z1, z2)μ(dz2)P2(z2, dz1).

For P2 we have that P2(z1, dz2) is non-zero if and only if
z2 = �(z1) or z2 = z1, hence we have that

∫ ∫

f (z1, z2)μ(dz1)P2(z1, dz2)

=
∫ ∫

f (z1, �(z1))min [1, exp (H(z1)

− H(�(z1))]μ(dz1)

+
∫ ∫

f (z1, z1)(1−min [1, exp (H(z1)

− H(�(z1))])μ(dz1).

Now let z2 = �(z1), then due to the momentum reversal
map N , we have that z1 = �(z2) = �(�(z1)), and by the
volume preserving property of � (preserving the Liouville
measure), we have that

μ(dz2) = μ(dz1) · exp (−H(z2))

exp (−H(z1))
= μ(dz1) · exp (H(z1)

−H(z2)),

and using this property we have that the first part of the above
sum can be written as
∫ ∫

f (z1, �(z1))min [1, exp (H(z1)− H(�(z1)))]μ(dz1)

=
∫ ∫

f (�(z2), z2)min [1, exp (H(�(z2))− H(z2))]
× · exp (H(z2)− H(�(z2)))μ(dz2)

=
∫ ∫

f (�(z2), z2)min [1, exp (H(z2)

− H(�(z2)))]μ(dz2).
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Now considering the second part of the sum, through the
change of variables z1 = z2 and combining this with the
above result we have the required equality.We therefore have
that μ is reversible with respect to P2. Considering f to be
an indicator function we have invariance P2 with respect to
μ. Due to the fact that this calculation was independent of
time we have that μ is invariant with respect to the Markov
kernel of this algorithm. �

Proof of Theorem 5 Based on Brubaker et al. (2012)[The-
orem 3]. Fix 
t > 0 sufficiently small such that our
assumption holds. For a measurable set A ⊂ M, we can
say A is contained in a compact set K , which can be covered
by {Br/2(x) | x ∈ K }. Then we have that for some x ′ ∈ K ,
Br/2(x ′) ∩ A has positive measure. We can connect x and
x ′ by a sequence of points x0, ..., xi , ..., xn for 0 ≤ i ≤ n,
defined on the geodesic between x0 = x and xn = x ′ such
that d(x, xn) ≤ r/2. We can find unique v0, ..., vn such that
(xi+1, vi+1) = �L


t (xi , vi ) by Theorem 4. We have that

K (xi , xi+1) > 0

due to the Theorem 4 and the fact that φ(xi )(vi ) > 0. Con-
sidering the final step we have due to the triangle inequality
|xn−1 − x̃ | < r for all x̃ ∈ Br/2(x ′)∩ A. Hence by the same
reasoning andTheorem4wehave that K (xn−1, x̃) > 0 for all
x̃ ∈ Br/2(x ′)∩ A. Using the fact that K (xi , xi+1) > 0 for all
0 ≤ i ≤ n− 2, and K (xn−1, x̃) > 0 for all x̃ ∈ Br/2(x ′)∩ A
we have that Kn(x, x̃) > 0 for all x̃ ∈ Br/2(x ′) ∩ A and

Kn(x, A) ≥ Kn(x, Br/2(x
′) ∩ A)

=
∫

Br/2(x ′)∩A
Kn(x, y)σM(dy) > 0.

�

Appendix D: Additional results

Lemma 13 Let (M, g) be a smooth k-dimensional Rieman-
nian manifold, let K ⊂M be compact and let R ∈ C1(M)

such that R(x) > 0 for all x ∈M, then the set

K̃R := {(x, v) | x ∈ K , v ∈ TxM, |v|g ≤ R(x)}

is a compact subset of TM.

Lemma 13 can be shown by showing that the embedding of
K̃R is closed and bounded. Closure can be established by
showing that the limit of convergent sequences is contained
in K̃R , using the derivative of the local parametrisation as
defined in Guillemin and Pollack (1974)[Page 50].

Appendix E: Integrated autocorrelation and
ESS

If the MCMC method converges quickly, we have that the
variance σ 2( f ) (the variance of the estimator) is small. From
the central limit theorem we know that as N →∞,

√
N ( f − 〈 f 〉) ∼ N (0, a2),

and hence

lim
N→∞ σ 2( f ) = a2

N
,

where the quantity a is known as the asymptotic variance.
We have the following result

a2 = τ f σ
2( f ),

where σ 2( f ) is the variance of f under the distribution π

and is independent of the MCMC scheme used (see (Casella
2004)[Chapter 12] for an in depth study).

We also have

τ f = 1+ 2
∞∑

i=1
corr( f (X0), f (Xi )),

which is known as the integrated autocorrelation (IAC). If all
samples are independent, then τ f = 1. Generally, MCMC
schemes generate correlated samples, and the larger the value
of τ f the more correlated the samples are.

The IAC (τ f ) is a measure of how dependent the samples
are and the closer this value is to 1, the higher the quality
of the MCMC samples produced. Note that we will use X•
to denote the random variables in a Markov chain and X•
to denote the outputs of an MCMC scheme. In the following
numerics we approximate the IAC by aMonte Carlo method,
that is we create a finite chain { fn}Nn=1 = { f (Xi )}Nn=1 from
the MCMC schemes we want to test. We estimate

corr( f (X0), f (Xi )) ≈ c f (i)

c f (0)
,

where

c f (i) = 1

N − i

N−i∑

n=1
( fn − μ f )( fn+i − μ f ),

and

μ f = 1

N

N∑

n=1
fn .
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We have that

τ f ≈ 1+ 2
M∑

i=1

c f (i)

c f (0)
,

for some large M such that M  N . Note that in practice
one uses a fast Fourier transform method to calculate c f (·)
as it is much more computationally efficient.

We now define an additional metric of quality of samples
known as effective sample size (ESS) which is defined as

Neff = N

τ f
,

for a sample size of size N . This metric is used to say that a
sample of size N of an MCMC algorithm has the efficiency
of Neff independent samples for computing the Monte Carlo
average of f .
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