Skip to main content
Log in

Testing symmetry for bivariate copulas using Bernstein polynomials

  • Original Paper
  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In this work, tests of symmetry for bivariate copulas are introduced and studied using empirical Bernstein copula process. Three statistics are proposed and their asymptotic properties are established. Besides, a multiplier bootstrap Bernstein version is investigated for implementation purpose. The simulation study demonstrated the superior performance of the Bernstein tests compared to tests based on empirical copulas. Furthermore, in real data applications, these tests consistently yielded similar conclusions across a diverse range of scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahraoui, T., Quessy, J.F.: Tests of multivariate copula exchangeability based on Lévy measures. Scand. J. Stat. 49(3), 1215–1243 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Bahraoui, T., Bouezmarni, T., Quessy, J.F.: Testing the symmetry of a dependence structure with a characteristic function. Depend. Model. 6(1), 331–355 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Beare, B.K., Seo, J.: Randomization tests of copula symmetry. Econ. Theory 36(6), 1025–1063 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Belalia, M.: On the asymptotic properties of the Bernstein estimator of the multivariate distribution function. Stat. Probab. Lett. 110, 249–256 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Belalia, M., Bouezmarni, T., Lemyre, F.C., et al.: Testing independence based on Bernstein empirical copula and copula density. J. Nonparametric. Stat. 29(2), 346–380 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Carabarin-Aguirre, A., Ivanoff, B.G.: Estimation of a distribution under generalized censoring. J. Multivar. Anal. 101(6), 1501–1519 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, S.X., Huang, T.M.: Nonparametric estimation of copula functions for dependence modelling. Can. J. Stat. 35(2), 265–282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Cousido-Rocha, M., de Uña-Álvarez, J., Hart, J.D.: A two-sample test for the equality of univariate marginal distributions for high-dimensional data. J. Multivar. Anal. 174, 104537 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Deheuvels, P.: La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Bull. Acad. R. Belg. 65, 274–292 (1979)

    MATH  Google Scholar 

  • Fermanian, J.D., Radulović, D., Wegkamp, M.: Weak convergence of empirical copula processes. Bernoulli 10(5), 847–860 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Fujii, Y.: Test for the equality of marginal distributions on positively dependent bivariate survival data. Commun. Stat. Simul. Comput. 18(2), 633–642 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Genest, C., Ghoudi, K., Rivest, L.P.: A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82(3), 543–552 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Genest, C., Remillard, B., Beaudoin, D.: Goodness-of-fit tests for copulas: a review and a power study. Insur. Math. Econ. 44(2), 199–213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Genest, C., Nešlehová, J., Quessy, J.F.: Tests of symmetry for bivariate copulas. Ann. Inst. Stat. Math. 64(4), 811–834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Genest, C., Nešlehová, J.G., Rémillard, B.: Asymptotic behavior of the empirical multilinear copula process under broad conditions. J. Multivar. Anal. 159, 82–110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Gijbels, I., Mielniczuk, J.: Estimating the density of a copula function. Commun. Stat. Theory Methods 19(2), 445–464 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Grimaldi, S., Serinaldi, F.: Asymmetric copula in multivariate flood frequency analysis. Adv. Water Resour. 29(8), 1155–1167 (2006)

    Article  Google Scholar 

  • Harder, M., Stadtmüller, U.: Testing exchangeability of copulas in arbitrary dimension. J. Nonparametric. Stat. 29(1), 40–60 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Hofert, M., Kojadinovic, I., Maechler, M., et al.: copula: Multivariate Dependence with Copulas. https://CRAN.R-project.org/package=copula, r package version 1.1-2 (2023)

  • Janssen, P., Swanepoel, J., Veraverbeke, N.: Large sample behavior of the Bernstein copula estimator. J. Stat. Plan. Inference 142(5), 1189–1197 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Janssen, P., Swanepoel, J., Veraverbeke, N.: A note on the asymptotic behavior of the Bernstein estimator of the copula density. J. Multivar. Anal. 124, 480–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Janssen, P., Swanepoel, J., Veraverbeke, N.: Bernstein estimation for a copula derivative with application to conditional distribution and regression functionals. TEST 25(2), 351–374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Jaser, M., Min, A.: On tests for symmetry and radial symmetry of bivariate copulas towards testing for ellipticity. Comput. Stat. 36(3), 1–26 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Khoudraji, A.: Contributions à l’étude des copules et à la modélisation de valeurs extrêmes bivariées. PhD thesis, Université Laval, Québec, Canada (1995)

  • Kiriliouk, A., Segers, J., Tsukahara, H.: Resampling procedures with empirical beta copulas. In: Pioneering Works on Extreme Value Theory: In Honor of Masaaki Sibuya. Springer, p 27–53 (2021)

  • Kojadinovic, I.: On Stute’s representation for a class of smooth, possibly data-adaptive empirical copula processes. ArXiv preprint arXiv:2204.11240 (2022)

  • Kojadinovic, I., Yi, B.: A class of smooth, possibly data-adaptive nonparametric copula estimators containing the empirical beta copula. ArXiv preprint arXiv:2106.10726 (2021)

  • Leblanc, A.: On the boundary properties of Bernstein polynomial estimators of density and distribution functions. J. Stat. Plan. Inference 142(10), 2762–2778 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Liebscher, E.: Construction of asymmetric multivariate copulas. J. Multivar. Anal. 99(10), 2234–2250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Mangold, B.: New concepts of symmetry for copulas. Technical report, FAU Discussion Papers in Economics (2017)

  • Morettin, P.A., Toloi, C.M.C., Chiann, C., et al.: Wavelet-smoothed empirical copula estimators. Rev. Bras Finanças 8(3), 263–281 (2010)

    Google Scholar 

  • Nelsen, R.B.: Some concepts of bivariate symmetry. J. Nonparametric. Stat. 3(1), 95–101 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  • Nelson, R.B.: Extremes of nonexchangeability. Stat. Pap. 48(2), 329–336 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Omelka, M., Gijbels, I., Veraverbeke, N.: Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing. Ann. Stat. 37(5B), 3023–3058 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2023)

  • Rémillard, B., Scaillet, O.: Testing for equality between two copulas. J. Multivar. Anal. 100(3), 377–386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Rüschendorf, L.: Asymptotic distributions of multivariate rank order statistics. Ann. Stat. 4(5), 912–923 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Sancetta, A., Satchell, S.: The Bernstein copula and its applications to modeling and approximations of multivariate distributions. Economet. Theor. 20(3), 535–562 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Segers, J.: Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18(3), 764–782 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Segers, J., Sibuya, M., Tsukahara, H.: The empirical beta copula. J. Multivar. Anal. 155, 35–51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Sklar, A.: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8, 229–231 (1959)

  • van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, New York (1996)

    Book  MATH  Google Scholar 

  • Wu, S.: Construction of asymmetric copulas and its application in two-dimensional reliability modelling. Eur. J. Oper. Res. 238(2), 476–485 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Y., Kim, C.W., Beer, M., et al.: Modeling multivariate ocean data using asymmetric copulas. Coast. Eng. 135, 91–111 (2018)

Download references

Acknowledgements

M. Belalia gratefully acknowledge the research support of the Natural Sciences and Engineering Research Council of Canada(RGPIN/05496-2020 ). In addition, the authors wish to thank the Editor, Associate Editor and two anonymous referees whose comments led to significant improvements to this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors participate equally in the preparation of the manuscript.

Corresponding author

Correspondence to Mohamed Belalia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 2

Proof

This proof is an adaption of Genest et al. (2012, Proposition 3). For the convergence of \(nR_{n, m}\) and \(n^{1/2}T_{n, m}\), one can directly apply continuous mapping theorem combined with Theorem 1. For the convergence of \(nS_{n, m}\), the functional delta method was used. To this end, let \(\mathscr {C}[0, 1]^2\) denote the space of continuous functions on \([0, 1]^2\), \(\mathscr {D}[0, 1]^2\) denote the space of functions with continuity from upper right quadrant and limits from other quadrants on \([0, 1]^2\), equipped with sup-norm. Further, denote \(\textrm{BV}_1[0, 1]^2\) by the subspace of \(\mathscr {D}[0, 1]^2\) where functions with total variation bounded by 1. By continuous mapping theorem,

$$\begin{aligned} \left( \mathbb {S}^2_{n, m}, \mathbb {B}_{n, m}\right) \rightsquigarrow \left( \mathbb {S}_C^2, \mathbb {B}_C\right) \end{aligned}$$

in the space \(\ell ^{\infty }[0, 1]^2\times \ell ^{\infty }[0, 1]^2\). Rewrite it as

$$\begin{aligned} \left( \mathbb {S}^2_{n, m}, \mathbb {B}_{n, m}\right) =n^{1/2}\{(A_{n, m}, \widehat{C}_{n, m})-(A, C)\}, \end{aligned}$$

where \(A\equiv 0\) and \(A_{n, m}:=n^{1/2}(\widehat{C}_{n, m}-\widehat{C}_{n, m}^{\top })^2\), where \( \widehat{C}_{n, m}^{\top }(u,v) = \widehat{C}_{n, m}(v,u) \). Then, consider the map \(\phi : \ell ^{\infty }[0, 1]^2\times \textrm{BV}_1[0, 1]^2\rightarrow {\mathbb {R}}\) defined by

$$\begin{aligned} \phi (a, b)=\int _{(0, 1]^2}a {\textrm{d}}b, \end{aligned}$$

Clearly,

$$\begin{aligned} nS_{n, m}&=\phi \left( \mathbb {S}^2_{n, m}, \mathbb {B}_{n, m}\right) \\&=n^{1/2}\{\phi (A_{n, m}, \widehat{C}_{n, m})-\phi (A, C)\}. \end{aligned}$$

To conclude the proof, by Carabarin-Aguirre and Ivanoff (2010, Lemma 4.3), \(\phi \) is Hadamard differentiable tangentially to \(\mathscr {C}[0, 1]^2\times \mathscr {D}[0, 1]^2\) at each \((\alpha , \beta )\) in \(\ell ^{\infty }[0, 1]^2\times \textrm{BV}_1[0, 1]^2\) such that \(\int |d\alpha |<\infty \) with derivative

$$\begin{aligned} \phi '_{(\alpha , \beta )}(a, b)=\int \alpha {\textrm{d}}b+\int a {\textrm{d}}\beta . \end{aligned}$$

Then by applying the Functional Delta Method (van der Vaart and Wellner 1996, Theorem 3.9.4), \(nS_{n, m}\rightsquigarrow \phi '_{(A, C)}\left( \mathbb {S}_C^2, \mathbb {B}_C \right) \), where

$$\begin{aligned} \phi '_{(A, \,C)}\left( \mathbb {S}_C^2, \mathbb {B}_C \right)&=\int _{(0, 1]^2}A {\textrm{d}}\mathbb {B}_C+\int _{(0, 1]^2}\mathbb {S}_C^2 {\textrm{d}}C\\&=\int _{(0, 1]^2}\mathbb {S}_C^2 {\textrm{d}}C. \end{aligned}$$

This yields to the desired result. \(\square \)

Appendix B: Proof of Theorem 3

Proof

This proof is an adaption of Genest et al. (2012, Proposition 4). The strongly uniform consistency of \(\widehat{C}_{n,m}\) was provided in Janssen et al. (2012, Theorem 1), then by continuous mapping theorem, it follows immediately that \(R_{n,m}\) and \(T_{n,m}\) converge to \(R_C\) and \(T_C\) almost surely, respectively. Further, to prove the convergence of \(S_{n,m}\), write

$$\begin{aligned} |S_{n, m}-S_C|\le |\gamma _{n, m}|+|\zeta _{n}|, \end{aligned}$$

where

$$\begin{aligned} \gamma _{n, m}&=\int _{0}^1\int _{0}^1\left\{ \widehat{C}_{n, m}(u, v) -\widehat{C}_{n, m}(v, u)\right\} ^2 {\textrm{d}}\widehat{C}_{n}(u, v)\\&\quad -\int _{0}^1\int _{0}^1\left\{ {C}(u, v)-{C}(v, u)\right\} ^2 {\textrm{d}}\widehat{C}_{n}(u, v), \end{aligned}$$

and

$$\begin{aligned} \zeta _{n}&=\int _{0}^1\int _{0}^1\left\{ {C}(u, v)-{C}(v, u)\right\} ^2 {\textrm{d}}\widehat{C}_{n}(u, v)\\&\quad -\int _{0}^1\int _{0}^1\left\{ {C}(u, v)-{C}(v, u)\right\} ^2 {\textrm{d}}{C}(u, v). \end{aligned}$$

Since

$$\begin{aligned}&\left| \left\{ \widehat{C}_{n ,m}(u, v)-\widehat{C}_{n, m}(v, u)\right\} ^2-\left\{ C(u, v)-C(v, u)\right\} ^2\right| \\&\quad =\left| \left[ \widehat{C}_{n, m}(u, v)+C(u, v)\right] -\left[ \widehat{C}_{n ,m}(v, u)+C(v, u)\right] \right| \\&\quad \quad \times \left| \left[ \widehat{C}_{n, m}(u, v)-C(u, v)\right] -\left[ \widehat{C}_{n, m}(v, u)-C(v, u)\right] \right| \\&\quad \le \left[ \left| \widehat{C}_{n, m}(u, v)+C(u, v)\right| +\left| \widehat{C}_{n ,m}(v, u)+C(v, u)\right| \right] \\&\quad \quad \times \left[ \left| \widehat{C}_{n, m}(u, v)-C(u, v)\right| +\left| \widehat{C}_{n, m}(v, u)-C(v, u)\right| \right] \\&\quad \le 8\sup _{(u,v)\in [0, 1]^2}\left| \widehat{C}_{n, m}(u, v)-C(u, v)\right| , \end{aligned}$$

one has

$$\begin{aligned} |\gamma _{n ,m}|\le 8\sup _{(u,v)\in [0, 1]^2}\left| \widehat{C}_{n, m}(u, v)-C(u, v)\right| \xrightarrow {a.s.} 0. \end{aligned}$$

For \(\zeta _{n}\), by Genest et al. (1995, Proposition A.1 (i)), one has

$$\begin{aligned}&\int _{0}^1\int _{0}^1\left\{ {C}(u, v)-{C}(v, u)\right\} ^2 {\textrm{d}}\widehat{C}_{n}(u, v)\\&\quad \rightarrow \int _{0}^1\int _{0}^1\left\{ {C}(u, v)-{C}(v, u)\right\} ^2 {\textrm{d}}{C}(u, v), \end{aligned}$$

then \(\zeta _{n} \rightarrow 0\). Therefore, \(S_{n, m}\) converges to \(S_C\) almost surely.

\(\square \)

Appendix C: Proof of Lemma 1

Proof

Under these assumptions, one need to use the framework in Segers et al. (2017). Specifically, let \(\mu _{m, (u, v)}\) be the law of random vector \((B_1/m, B_2/m)\), where \(B_1, B_2\) follow \(\textsf {Binomial}(m, u)\) and \(\textsf {Binomial}(m, v)\), respectively. The empirical Bernstein copula can be rewritten as

$$\begin{aligned} \widehat{C}_{n, m}(u, v)=\int _{[0, 1]^2}\widehat{C}_n(x, y)\,\textrm{d}\mu _{m, (u, v)}(x, y), \; (x, y)\in [0 ,1]^2. \end{aligned}$$

Moreover, write \((x, y)(t)=(u, v)+t((x, y)-(u, v))\) with \(t\in [0, 1]\). Then, the empirical Bernstein copula process is

$$\begin{aligned} \mathbb {B}_{n, m}(u, v)&=\sqrt{n}\left\{ \widehat{C}_{n, m}(u, v)-C(u, v)\right\} \nonumber \\&=\sqrt{n}\left\{ \widehat{C}_{n, m}(u, v)-\int _{[0, 1]^2}C(x, y)\,\textrm{d}\mu _{m, (u, v)}(x, y)\right. \nonumber \\&\quad \left. +\int _{[0, 1]^2}C(x, y)\,\textrm{d}\mu _{m, (u, v)}(x, y)-C(u, v)\right\} \nonumber \\&=\int _{[0, 1]^2}\sqrt{n}\left\{ \widehat{C}_{n, m}(x, y)-C(x, y)\right\} {\textrm{d}}\mu _{m, (u, v)}(x, y)\nonumber \\&\quad +\sqrt{n}\left\{ \int _{[0, 1]^2}C(x, y)\,\textrm{d}\mu _{m, (u, v)}(x, y)-C(u, v)\right\} \nonumber \\&=T_1+T_2. \end{aligned}$$
(C1)

The two terms are dealt with separately.

  • For the term \(T_1\), according to Segers et al. (2017, Proposition 3.1), one has

    $$\begin{aligned}&\sup \limits _{(u, v)\in [0, 1]^2}\left| \int _{[0, 1]^2}\sqrt{n}\left\{ \widehat{C}_{n, m}(s, t)-C(s, t)\right\} \,\textrm{d}\mu _{m, (u, v)}(s, t)\right. \\&\qquad \left. -\sqrt{n}\left\{ \widehat{C}_{n, m}(u, v)-C(u, v)\right\} \right| =o_p(1). \end{aligned}$$

    And note that, \(\sqrt{n}\left\{ \widehat{C}_{n, m}(u, v)-C(u, v)\right\} \rightsquigarrow \mathbb {B}_C(u, v)\) in \(\ell ^{\infty }([0, 1]^2)\) under the Assumption 1 (see Segers (2012)). Therefore, \(T_1\rightsquigarrow \mathbb {B}_C(u, v)\) as n goes to infinity.

  • For the term \(T_2\), Let \(m=cn^{\alpha }\) for some \(c >0\), by Kojadinovic (2022, Lemma 3.1), under Assumption 1-2, one has

    $$\begin{aligned}&\sup _{(u,v)\in [0, 1]^2}\sqrt{n}\bigg |\int _{[0, 1]^2}C(x, y)\,\textrm{d}\mu _{m, (u, v)}(x, y)\\&\qquad -C(u, v)\bigg |=O\left( n^{(3-4\alpha )/6}\right) \end{aligned}$$

    almost surely. Therefore, if \(\alpha > 3/4\), \(T_2\) goes to zero as n goes to infinity.

Combining above results completes the proof. \(\square \)

Appendix D: Proof of Proposition 1

Proof

By Rémillard and Scaillet (2009), one has

$$\begin{aligned}&\mathbb {C}_n(u, v)\\&\quad =\sqrt{n}\left\{ C_n(u, v)-C(u, v)\right\} \\&\quad =n^{1/2}\Bigg \{\frac{1}{n}\sum _{i=1}^n\left\{ {\mathbb {I}}\left( U_i\le u, V_i\le v)-C(u, v\right) \right\} \Bigg \}\\&\quad \rightsquigarrow \mathbb {C}(u ,v), \end{aligned}$$

where \(C_n(u,v)=\frac{1}{n}\sum _{i=1}^{n}{\mathbb {I}}\left( U_i\le u, V_i\le v\right) \), and

$$\begin{aligned}&\overline{\mathbb {C}}^{(h)}_n(u, v)=n^{1/2}\Bigg \{\frac{1}{n}\sum _{i=1}^n\left( \xi ^{(h)}_i-\bar{\xi }_n^{(h)}\right) {\mathbb {I}}(\widehat{U}_i\le u, \widehat{V}_i\le v) \Bigg \}\\&\quad \rightsquigarrow \mathbb {C}(u ,v). \end{aligned}$$

To end the proof, one needs to show that the difference between \(\left( \mathbb {C}_n, \overline{\mathbb {C}}^{(h)}_n\right) \) and \(\left( \widetilde{\mathbb {B}}_{n, m}, \overline{\mathbb {B}}^{(h)}_{n, m}\right) \) are asymptotically negligible.

It is well-known (for example, see Deheuvels (1979)) that, as \(n\rightarrow \infty \),

$$\begin{aligned} \Vert C_n(u, v)-C(u, v)\Vert =O\left( n^{-1/2}(\log \log n)^{1/2}\right) , \end{aligned}$$

almost surely and using the same techniques in Janssen et al. (2012) gives

$$\begin{aligned} \Vert C_{n,m}(u, v)-C(u, v)\Vert =O\left( n^{-1/2}(\log \log n)^{1/2}\right) , \end{aligned}$$

almost surely, it immediately follows that

$$\begin{aligned} \Vert C_{n,m}(u, v)-C_n(u, v)\Vert = O\left( n^{-1/2}(\log \log n)^{1/2}\right) , \end{aligned}$$

almost surely. Therefore, one can conclude that \(\widetilde{\mathbb {B}}_{n,m}(u, v)\rightsquigarrow \mathbb {C}(u, v)\).

Further, by Janssen et al. (2012, Lemma 1), as \(n\rightarrow \infty \),

$$\begin{aligned} \Vert \widehat{C}_{n}(u ,v)-C(u, v)\Vert&=O\left( n^{-1/2}(\log \log n)^{1/2}\right) , \end{aligned}$$

almost surely. By Lemma 1, under the assumptions,

$$\begin{aligned} \Vert \widehat{C}_{n,m}(u ,v)-C(u, v)\Vert =o_p(1). \end{aligned}$$

Hence

$$\begin{aligned} \Vert \widehat{C}_{n,m}(u ,v)-\widehat{C}_n(u ,v)\Vert = o_p(1), \end{aligned}$$

one has that \( \overline{\mathbb {B}}_{n,m}^{(h)}(u, v) \rightsquigarrow \mathbb {C}(u,v)\). \(\square \)

Appendix E: Proof of Proposition 2

Proof

We only show the uniform consistency for

$$\begin{aligned} \frac{\partial \widehat{C}_{n,m}(u, v)}{\partial u}&=m\sum _{k=0}^{m-1}\sum _{\ell =0}^m\bigg \{\widehat{C}_n\left( \frac{k+1}{m}, \frac{\ell }{m}\right) -\widehat{C}_n\left( \frac{k}{m}, \frac{\ell }{m}\right) \bigg \}\\&\quad \cdot P_{m-1, k}(u)P_{m, \ell }(v). \end{aligned}$$

The result for the other partial derivative can be obtained similarly. For any \(u\in [b_n, 1-b_n], v\in [0, 1]\), one has

$$\begin{aligned}&\left| \frac{\partial \widehat{C}_{n,m}(u, v)}{\partial u}-\dot{C}_1(u, v)\right| \\&\quad \le \Bigg |m\sum _{k=0}^{m-1}\sum _{\ell =0}^m\bigg \{\widehat{C}_n\left( \frac{k+1}{m}, \frac{\ell }{m}\right) -\widehat{C}_n\left( \frac{k}{m}, \frac{\ell }{m}\right) \\&\quad \quad -{C}\left( \frac{k+1}{m}, \frac{\ell }{m}\right) +{C}\left( \frac{k}{m}, \frac{\ell }{m}\right) \bigg \}P_{m-1, k}(u)P_{m,\ell }(v)\Bigg |\\&\qquad +\Bigg |m\sum _{k=0}^{m-1}\sum _{\ell =0}^m\bigg \{{C}\left( \frac{k+1}{m}, \frac{\ell }{m}\right) -{C}\left( \frac{k}{m}, \frac{\ell }{m}\right) \bigg \}\\&\qquad \cdot P_{m-1, k}(u)P_{m, \ell }(v)-\dot{C}_1(u, v)\Bigg |\\&\quad =A_1+A_2. \end{aligned}$$

Further, let \(P_{m, k}'(u)= \frac{1}{u(1-u)}P_{m, k}(u)\left( k -mu\right) \) be the derivative of \(P_{m, k}(u)\), then

$$\begin{aligned} A_1&\le \sum _{k=0}^{m}\sum _{\ell =0}^m\bigg |\widehat{C}_n\left( \frac{k}{m}, \frac{\ell }{m}\right) -{C}\left( \frac{k}{m}, \frac{\ell }{m}\right) \bigg |\\&\quad \cdot \left| P_{m, k}'(u)\right| P_{m, \ell }(v)\\&\le \sup _{(u,v)\in [0, 1]^2}\bigg |\widehat{C}_n\left( u, v\right) -{C}\left( u, v\right) \bigg |\cdot \sum _{k=0}^m\left| P_{m, k}'(u)\right| \\&=O\left( m^{1/2}n^{-1/2}(\log \log n)^{1/2}\right) , \end{aligned}$$

almost surely as \(n\rightarrow \infty \) and where

$$\begin{aligned} \sum _{k=0}^m\left| P_{m, k}'(u)\right| =O(m^{1/2}), \end{aligned}$$

by Janssen et al. (2014, Lemma 1).

For dealing with \(A_2\), let \(\nu _{m, (u, v)}\) be the law of random vector \((S_1/(m-1), S_2/m)\), where \(S_1, S_2\) follow \(\textsf {Binomial}(m-1, u)\) and \(\textsf {Binomial}(m, v)\), respectively. Therefore,

$$\begin{aligned}&\sum _{k=0}^{m-1}\sum _{\ell =0}^mC\left( \frac{k+1}{m}, \frac{\ell }{m}\right) P_{m-1, k}(u)P_{m, \ell }(v)\\&\quad =\int _{[0, 1]^2} C\left( \left( x+\frac{1}{m-1}\right) \frac{m-1}{m}, y\right) \\&\qquad {\textrm{d}}\nu _{m, (u, v)}(x, y), \end{aligned}$$

and

$$\begin{aligned}&\sum _{k=0}^{m-1}\sum _{\ell =0}^mC\left( \frac{k}{m}, \frac{\ell }{m}\right) P_{m-1, k}(u)P_{m, \ell }(v)\\&\quad =\int _{[0, 1]^2} C\left( x\frac{m-1}{m}, y\right) {\textrm{d}}\nu _{m, (u, v)}(x, y). \end{aligned}$$

Using the representation in Segers et al. (2017, Proof of Proposition 3.4), for \(0< t <1\), one has

$$\begin{aligned} A_2&=\Bigg |m\sum _{k=0}^{m-1}\sum _{\ell =0}^m\bigg \{{C}\left( \frac{k+1}{m}, \frac{\ell }{m}\right) -{C}\left( \frac{k}{m}, \frac{\ell }{m}\right) \bigg \}\nonumber \\&\quad \cdot P_{m-1, k}(u)P_{m, \ell }(v)-\dot{C}_1(u, v)\Bigg |\nonumber \\&=\left| \int _0^1\bigg \{\int _{[0, 1]^2} \left[ \dot{C}_1\left( \frac{m-1}{m}x{+}\frac{1+t}{m}, y\right) {-}\dot{C}_1(u, v)\right] \right. \nonumber \\&\quad \left. \textrm{d}\nu _{m, (u, v)}(x, y) \bigg \} \textrm{d}t\right| . \end{aligned}$$
(E2)

Let \(x'(x, t):= \frac{m-1}{m}x+\frac{1+t}{m}\) and \(\varepsilon _n= b_n/2\), then one has,

$$\begin{aligned} (\text {E2})&\le \left| \int _0^1\bigg \{\int _{[0, 1]^2} \left[ \dot{C}_1\left( x', y\right) -\dot{C}_1(u, v)\right] \right. \\&\quad \cdot {\mathbb {I}}\left( \max (|x'-u|, |y-v|)\le \varepsilon _n\right) \\&\quad \left. {\textrm{d}}\nu _{m, (u, v)}(x, y) \bigg \} {\textrm{d}}t\right| \\&\quad +\left| \int _0^1\bigg \{\int _{[0, 1]^2} \left[ \dot{C}_1\left( x', y\right) -\dot{C}_1(u, v)\right] \right. \\&\quad \left. \cdot {\mathbb {I}}\left( \max (|x'-u|, |y-v|)> \varepsilon _n\right) {\textrm{d}}\nu _{m, (u, v)}(x, y) \bigg \} \textrm{d}t\right| \\&= A_{21}+A_{22}. \end{aligned}$$

Further, the two terms are dealt with separately using the strategy in Kojadinovic (2022, Proof of Lemma 3.1).

  • For \(A_{21}\), under Assumption 1-2, by Segers (2012, Lemma 4.3), for a constant \(L>0\), one has

    $$\begin{aligned}&\left| \dot{C}_1\left( x', y\right) -\dot{C}_1(u, v)\right| {\mathbb {I}}\left( \max (|x'-u|, |y-v|)\le \varepsilon _n\right) \\&\quad \le Lb_n^{-1}\left[ |x'-u|+|y-v|\right] . \end{aligned}$$

    Further,

    $$\begin{aligned}&A_{21}\nonumber \\&\quad \le Lb_n^{-1}\int _0^1\bigg \{\int _{[0, 1]^2} \left[ |x'-u|+|y-v|\right] \nonumber \\&\quad \quad \textrm{d}\nu _{m, (u, v)}(x, y) \bigg \} {\textrm{d}}t\nonumber \\&\quad \le Lb_n^{-1} \int _{[0, 1]^2} \int _{0}^{1} \left[ |x-u|+|y-v|+\left| \frac{x}{m}-\frac{1+t}{m}\right| \right] \nonumber \\&\quad \quad {\textrm{d}}t {\textrm{d}}\nu _{m, (u, v)}(x, y)\nonumber \\&\quad \le Lb_n^{-1} \int _{[0, 1]^2} \int _{0}^{1} \left[ |x-u|+|y-v|\right. \nonumber \\&\quad \quad \left. +\frac{x}{m}+\frac{1+t}{m}\right] {\textrm{d}}t {\textrm{d}}\nu _{m, (u, v)}(x, y)\nonumber \\&\quad =Lb_n^{-1} \int _{[0, 1]^2} \left[ |x-u|+|y-v|+\frac{x}{m}\right. \nonumber \\&\quad \quad \left. +\frac{3}{2m}\right] {\textrm{d}}\nu _{m, (u, v)}(x, y). \end{aligned}$$
    (E3)

    By Cauchy-Schwarz inequality,

    $$\begin{aligned} (\text {E3})&\le Lb_n^{-1}\left[ O\left( m^{-1/2}\right) +O(m^{-1})\right] \\&=O\left( b_n^{-1}m^{-1/2}\right) . \end{aligned}$$
  • For \(A_{22}\), since \(0\le \dot{C}_1\le 1\) and using the result of \(A_{21}\),

    $$\begin{aligned} A_{22}&\le \left| \int _0^1\bigg \{\int _{[0, 1]^2} \frac{2}{\varepsilon _n}\max (|x'-u|, |y-v|)\right. \\&\quad \left. {\textrm{d}}\nu _{m, (u, v)}(x, y) \bigg \} \textrm{d}t\right| \\&\le \left| \int _0^1\bigg \{\int _{[0, 1]^2}\frac{2}{\varepsilon _n}(|x'-u|+|y-v|)\right. \\&\quad \left. {\textrm{d}}\nu _{m, (u, v)}(x, y) \bigg \} \textrm{d}t\right| \\&\le \varepsilon _n^{-1}\left[ O\left( m^{-1/2}\right) +O(m^{-1})\right] \\&=O\left( b_n^{-1}m^{-1/2}\right) . \end{aligned}$$

Therefore,

$$\begin{aligned}&\sup _{\begin{array}{c} v\in [0, 1],\\ u\in [b_n, 1-b_n] \end{array}}\left| \frac{\partial \widehat{C}_{n,m}(u, v)}{\partial u}-\dot{C}_1(u, v)\right| \\&\quad =O\left( m^{1/2}n^{-1/2}(\log \log n)^{1/2}\right) +O\left( b_n^{-1}m^{-1/2}\right) , \end{aligned}$$

almost surely as \(n\rightarrow \infty \), which completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, G., Belalia, M. Testing symmetry for bivariate copulas using Bernstein polynomials. Stat Comput 33, 128 (2023). https://doi.org/10.1007/s11222-023-10297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-023-10297-1

Keywords

Navigation