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Abstract
The generalized extreme value (GEV) regression provides a framework for modeling extreme events across various fields by
incorporating covariates into the location parameter ofGEVdistributions.When the covariates are subject to errors-in-variables
(EIV) or measurement error, ignoring the EIVs leads to biased estimation and degraded inferences. This problem arises in
detection and attribution analyses of changes in climate extremes because the covariates are estimated with uncertainty.
It has not been studied even for the case of independent EIVs, let alone the case of dependent EIVs, due to the complex
structure of GEV. Here we propose a general Monte Carlo corrected score method and extend it to address temporally
correlated EIVs in GEV modeling with application to the detection and attribution analyses for climate extremes. Through
extensive simulation studies, the proposed method provides an unbiased estimator and valid inference. In the application to
the detection and attribution analyses of temperature extremes in central regions of China, with the proposed method, the
combined anthropogenic and natural signal is detected in the change in the annual minimum of daily maximum and the annual
minimum of daily minimum.

Keywords Corrected score · Estimating equation · Measurement error · Monte Carlo

1 Introduction

Extreme events arise in many fields and often have catas-
trophic impacts. Examples include extreme weather (Field
et al. 2012), natural hazards (Hamdi et al. 2021), and mar-
ket crashes (Nolde and Zhou 2021). Statistical methods for
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prediction and inference in analyzing extreme events need
to account for their unique distributional characteristics. The
generalized extreme value (GEV) distribution is the natu-
ral choice as the limiting distribution of sample maximum
(Fisher and Tippett 1928). Covariates can be incorporated
into the location parameter to predict extreme events or
understand the behavior of extreme observations (Coles et al.
2001). Such GEV regression models have been widely used
in an enormous variety of applications (Smith 1989; Wang
et al. 2004; Huerta and Sansó 2007; Hyun et al. 2019).

The validity of GEV regression analyses depends on a
critical assumption that there is no errors-in-variables (EIV)
or measurement error in the data. This assumption may be
violated in many applications, such as the detection and
attribution analyses in the context of climate extremes (see
Sect. 3). Onemajor tool for the detection and attribution anal-
yses is fingerprinting, which was first introduced to study
changes in mean climate conditions (e.g., mean temperature)
(Hasselmann 1993; Hegerl et al. 1996; Allen and Stott 2003),
and later extended to extreme climate conditions (Zwiers
et al. 2011; Wang et al. 2017, 2021). The fingerprinting
method fits a GEV distribution to the observed extremes and
takes thefingerprints of external forcings of interest as covari-
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ates in the location parameters. The fingerprint, or signal, of
a particular external forcing, is not observed but estimated
from climate-model-simulated extremes, which introduces
errors (i.e., EIV) and causes bias in the resulting estimator of
the coefficients of the fingerprints (Wang et al. 2021).

Despite the voluminous literature on EIV issues in other
regression settings, it has been rarely studied in GEV regres-
sions even for independent data, let alone for time series or
spatiotemporal data. Themain challenge owes to the complex
structure of GEV distribution, which prevents a straight-
forward extension of many methods. In the context of the
fingerprinting, for example, though the EIV issue has been
solved in the mean climate models under a linear regres-
sion setting by total least squares (Allen and Stott 2003),
integrated likelihood (Hannart 2016), and Bayesian model
averaging (Katzfuss et al. 2017), none of these approaches
can be applied to the extremes setting in a relatively straight-
forward manner. In fact, the bias issue in GEV modeling
has been explicitly raised but left unsolved (Wang et al.
2021). Additionally, the correlation in the measurement
errors further complicates the problem. Among a wide range
of applications of GEVmodeling of spatiotemporal data, the
EIVs are likely dependent. One example is again the finger-
printing with time series, where the signals are most likely
to be temporally dependent as the parameters in the signals
are often shared over time.

A promising approach to GEV regression with EIV is the
corrected-score method (Nakamura 1990). In principle, this
method constructs a corrected score equation whose expec-
tation conditional on the contaminated covariates is the same
as the original score equations evaluated at the true covari-
ates. It is attractive because, as a functional approach, it does
not require any distributional specification of the covariates
as some approaches do. Given the complex expressions of
the score functions under the GEV regression, which can
be derived from the score functions of GEV distribution
(Prescott and Walden 1980) using the chain rule, such con-
struction is challenging because the expectations of the score
functions in terms of the contaminated covariates have no
closed forms, which prohibits closed-form corrections. The
Monte Carlo corrected scores (MCCS) method, however, is
well suited for the situation. It approximates the expectations
of the score functions in terms of the contaminated covari-
ates by Monte Carlo integration, which facilitates corrected
scores (Novick and Stefanski 2002).

Our contributions are two-fold. First, as the first attempt
to address the EIV issue in GEV modeling using a func-
tional approach, we propose an MCCS-based approach and
extend it to the settingswhere the EIVs are temporally depen-
dent as in fingerprinting applications. We further develop a
small-sample correction to the sandwich variance estimator.
This is practically important because the record lengths of
extremes are usually insufficient for the variance estimator to

workwell. Simulation studies show that the proposedmethod
corrects the bias in estimating all themodel parameters, espe-
cially the regression coefficients in the location parameter.
The coverage rates of the confidence intervals based on our
corrected sandwich variance estimator are acceptable. Our
second contribution is an application of the methods to the
detection and attribution analyses of changes in temperature
extremes. The method accounts for the fact the unobserved
signals are estimated from climate model simulations under
the corresponding forcings. In applications we demonstrate
the validity of the method via simulation studies that mimic
the fingerprinting setting and real data.

The rest of the paper is organized as follows. Section2
provides the MCCS framework under the GEV setting for
both independent and temporally dependent EIVs. Section3
adapts the method to the specific setting of fingerprinting
for climate extremes in detection and attribution analyses.
The methods are validated in simulation studies with both
independent extremes and fingerprinting settings in Sect. 4.
Section5 reports an application to detection and attribution
analyses of changes in temperature extremes in centralChina.
A discussion concludes in Sect. 6.

2 Methodology

2.1 Statistical model

Consider GEV modeling with a regression setting for the
location parameter. Let F(· | μ, σ, ξ) denote a GEV dis-
tribution function with location μ, scale σ , and shape ξ ,
and Yt be observed extreme with p-dimensional error-prone
covariates Xt and q-dimensional accurate covariates Zt for
t = 1, . . . , n. Suppose that Yt follows a GEV distribution
with a location parameter that incorporates covariate effects.
In particular,

Yt ∼ F(· | μt , σ, ξ), μt = Z�
t α + X�

t β, (1)

where α and β are q- and p-dimensional regression coef-
ficients, respectively. An intercept term is included in α

by including a one in Zt . The parameters of interest are
θ = (α, β, σ, ξ).

Assumption 1 When Xt is observed, there exists an unbiased
estimating function ψ(Yt , Xt , Zt , θ) with parameters θ such
that

E{ψ(Yt , Xt , Zt , θ) | Xt , Zt } = 0, t = 1, . . . , n.

Then, the parameter θ can be estimated consistently by solv-
ing
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n∑

t=1

ψ(Yt , Xt , Zt , θ) = 0.

By fulfilling Assumption 1, the score function ψ(Yt , Xt ,

Zt , θ) of GEV loglikelihood is an unbiased estimating func-
tion, where

ψ(Yt , Xt , Zt , θ) =

⎛

⎜⎜⎝

Zt f1(Yt ;μt , σ, ξ)

Xt f1(Yt ;μt , σ, ξ)

f2(Yt ;μt , σ, ξ)

f3(Yt ;μt , σ, ξ)

⎞

⎟⎟⎠ , (2)

and f1, f2, and f3 are the partial derivatives of the log density
of F(· | μ, σ, ξ) with respect to μ, σ , and ξ , respectively,
with specific expressions given in Appendix A (Prescott
and Walden 1980). The maximum likelihood estimator
(MLE) for θ can be obtained by solving the score equation∑n

t=1 ψ(Yt , Xt , Zt , θ) = 0. For ξ > −0.5,ψ(Yt , Xt , Zt , θ)

has expectation zero and finite secondmoments (Smith 1985;
Bücher and Segers 2017).

In situations where instead of Xt , a surrogate version Wt

is observed, substituting Xt ’s directly with Wt in estimating
function (2) leads to a biased estimator of θ . The magnitude
of the bias depends on the measurement error specification.
Assume that

Wt = Xt + et , t = 1, . . . , n, (3)

where the p-dimensional measurement error et , independent
of Xt and Yt , is normally distributed with mean zero and
covariance matrix �t .

Assumption 2 When Xt is not observed, there exists a cor-
rected score function of the observed data such that for
t = 1, . . . , n,

E{ψ̃(Yt ,Wt , Zt , θ) | (Yt , Xt , Zt )} = ψ(Yt , Xt , Zt , θ). (4)

Based on Assumptions 1–2, we seek a corrected score
function ψ̃(Yt ,Wt , Zt , θ), which is conditionally unbiased
given the observed quantities and results in estimating equa-
tions

n∑

t=1

ψ̃(Yt ,Wt , Zt , θ) = 0.

While the corrected scores for some common families like
normal andPoisson are available in a closed-form (Nakamura
1990), it is hard to obtain that of theGEVdistribution because
of its nonlinear and complicated structure. Therefore, we
resort to the MCCS method developed by Novick and Ste-
fanski (2002), where the conditional expectation in (4) is
approximated by Monte Carlo integration. This method is

relatively robust and can yield satisfying results in certain
settings even when the normality assumption of et is vio-
lated.

A further complication in practice, however, is that the
measurement errors et ’s in GEV could be correlated in var-
ious ways. For instance, in fingerprinting applications, the
fingerprint or signal of an external forcing cannot be observed
but is generally estimated from climate model simulations.
The measurement errors et ’s could be temporally corre-
lated over time and we denote the covariance matrix for
e� = (e�

1 , . . . , e�
n )� as �. This brings an additional com-

plexity compared to the classical MCCS approach in Novick
and Stefanski (2002). In the sequel, we address this issue
after dealing with independent EIVs.

2.2 MCCS for GEV regression with independent EIV

First, we illustrate the MCCS method for GEV regression
under the assumption that measurement error et ’s are mutu-
ally independent for t = 1, . . . , n. Let εb,t be the bth Monte
Carlo copy generated from N (0, �t ), where �t is the vari-
ance matrix for et , t = 1, . . . , n. The complex variates are
constructed as W̃b,t = Wt + ιεb,t for b = 1, . . . , B, where B
is a large integer and ι = √−1. Then, the following Lemma
was established by Novick and Stefanski (2002).

Lemma 1 (Novick and Stefanski 2002) When the measure-
ment error et ’s are mutually independent, under integrability
conditions and the assumption that ψ(Yt , Xt , Zt , θ) is an
entire function of Xt in the complex plane,

E{ψ(Yt , W̃b,t , Zt , θ) | (Yt , Xt , Zt )}
= E[�{ψ(Yt , W̃b,t , Zt , θ)}

| (Yt , Xt , Zt )]
= ψ(Yt , Xt , Zt , θ),

where �(·) is the real part of a complex number.
Consequently, �{ψ(Yt , W̃b,t , Zt , θ)} is a corrected score

based on a randomly generated random vector εb,t . Then, we
use Monte Carlo integration to approximate the conditional
expectation as

ψ̃B(Yt ,Wt , Zt , θ,�t ) = 1

B

B∑

b=1

�[ψ(Yt , W̃b,t , Zt , θ)], (5)

with its specific form in GEV provided in Appendix A. As
B → ∞, the MCCS converges to the exact conditional
expectation (Novick and Stefanski 2002). The MCCS esti-
mator θ̃n,B solves the estimating equations

n∑

t=1

ψ̃B(Yt ,Wt , Zt , θ,�t ) = 0.
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In practice,�t is unknown and needs to be replaced with a
consistent estimator in the abovederivation.Weprovidemore
details on estimating �t in Sect. 3. Let θ0 be the true value of
θ . When (Yt ,Wt ) are mutually independent for t = 1, . . . , n,
and ψ̃B(Yt ,Wt , Zt , θ,�t ) and ψ(Yt ,Wt , Zt , θ,�t ) are dif-
ferentiable, there exists a consistent estimator for θ by solving∑n

t=1 ψ̃B(Yt ,Wt , Zt , θ,�t ) = 0 (Nakamura 1990). The
solution can be obtained via nleqslv (Hasselman 2018), a
nonlinear equation solver package in R.

Proposition 1 Under certain regularity conditions,with n →
∞,

√
n(θ̃n,B − θ0) → N (0, Vψ̃ ),

where Vψ̃ = D−1C(D−1)�, C = E[ψ̃B(Yt ,Wt , Zt , θ,�)

ψ̃�
B (Yt ,Wt , Zt , θ,�t )] and D = E[(∂/∂θ�)ψ̃B(Yt ,Wt ,

Zt , θ,�t )]. The asymptotic variance Vψ̃ is consistently esti-

mated by a sandwich formula estimator Ṽn,ψ̃ = D̃−1
n,ψ̃

C̃n,ψ̃

(D̃−1
n,ψ̃

)�, where

D̃n,ψ̃ = 1

n

n∑

t=1

ψ̃B(Yt ,Wt , Zt , θ,�t )

∂θ�
∣∣∣
θ=θ̃n,B

and

C̃n,ψ̃ = 1

n

n∑

t=1

ψ̃B(Yt ,Wt , Zt , θ̃n,B , �t )ψ̃
�
B (Yt ,Wt , Zt , θ̃n,B , �t ).

The proof based on standard estimating equation theory
is outlined in Appendix B.1.

2.3 MCCS for GEV regression with temporally
dependent EIV

In many GEV applications, such as the fingerprinting set-
up, measurement error et ’s could be temporally correlated
(Wang et al. 2021). Here we explain how to adapt the
aforementioned MCCS approach to time-dependent EIV. To
construct Monte Carlo replicates W̃ ∗

b,t = Wt + ιε∗
b,t , we

propose to generate ε∗
b,t as part of ε∗�

b = (ε∗�
b,1, . . . , ε

∗�
b,n)

�
from N (0, �). Ideally, one would expect to construct cor-

rected scores based on Y� = (
Y�
1 , . . . ,Y�

n

)�
, W� =

(
W�

1 , . . . ,W�
n

)�
and Z� = (

Z�
1 , . . . , Z�

n

)�
to incorpo-

rate the temporal correlations. Such practice can be difficult
or undesired for GEV modeling as the temporal dependence
may be hard to specify. As θ is assumed to be shared across
n years, we again consider the corrected score based on each
year t as in Eq. (5) and obtain the unbiased estimator θ̃n,B .
Though the estimating equation is constructed at each time
point, the validity of the approach is stated in Proposition 1.

Lemma 2 Assume that ψ(Yt , Xt , Zt , θ) is an entire func-
tion of Xt in the complex plane, and that measurement error
e� = (e�

1 , . . . , e�
n )� are temporally correlated with covari-

ancematrix�.With ε∗�
b ∼ N (0, �), the following equations

still hold:

E{ψ(Yt , W̃
∗
b,t , Zt , θ) | (Yt , Xt , Zt )}

= E[�{ψ(Yt , W̃
∗
b,t , Zt , θ)}

| (Yt , Xt , Zt )] = ψ(Yt , Xt , Zt , θ).

This Lemma is based on representing ψ as a multivariate
power series and then applying Lemma 4 from Stefanski and
Cook (1995).More details can be found in the Appendix B.3.

Then, we define

ψ̃∗
B(Yt ,Wt , Zt , θ,�) = 1

B

B∑

b=1

�[ψ(Yt , W̃
∗
b,t , Zt , θ)], (6)

and theMCCS estimator θ̃∗
n,B solves the estimating equations

n∑

t=1

ψ̃∗
B(Yt ,Wt , Zt , θ,�) = 0. (7)

Again, the R package nleqslv can be used to solve Equa-
tion (7).

Proposition 2 Under certain regularity conditions,with n →
∞,

√
n(θ̃∗

n,B − θ0) → N (0, Vψ̃∗),

where Vψ̃∗ = D∗−1C∗(D∗−1)�, C∗ = Var{n−1/2

∑n
t=1 ψ̃∗

B(Yt ,Wt , Zt , θ,�)}. and D∗ = E[(∂/∂θ�)

ψ̃∗
B(Yt ,Wt , Zt , θ,�)]. The asymptotic variance Vψ̃∗ can be

estimated consistently as V̂n,ψ̃∗ = D̂−1
n,ψ̃∗Ĉn,ψ̃∗(D̂−1

n,ψ̃∗)
�,

where

D̂n,ψ̃∗ = n−1
n∑

t=1

ψ̃∗
B(Yt ,Wt , Zt , θ,�t )

∂θ�
∣∣∣
θ=θ̃∗

n,B

and

Ĉn,ψ̃∗ = 1

nB

⎡

⎣
n∑

t,t ′=1

B∑

b=1

�
{
ψ(Yt , W̃

∗
b,t , θ

∗
n,B)ψ�(Yt ′ , W̃

∗
b,t ′ , θ

∗
n,B)

}
⎤

⎦ ,

for t = 1, . . . , n.

The detailed proof is provided in Appendix B.2.

Remark 1 Our work is built upon standard estimating equa-
tion theory. There are some sufficient but not necessary
conditions for our asymptotic theory to hold as below.
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1. The parameter space is compact, and there is a unique θ in
the parameter space satisfying E{ψ̃∗

B(Yt ,Wt , Zt , θ,�)}
= 0 for all t = 1, . . . , n.

2. The estimating equation (7) has a unique solution.
3. The matrix D∗ is of full rank within a neighborhood of

the true value θ0. For sufficiently large n, D̂n,ψ̃∗ is of full
rank with eigenvalues bounded away from 0 and ±∞
within a neighborhood of the true value θ0.

Sandwichvariance estimators are known tounder-estimate
the variance for small samples (Mancl and DeRouen 2001;
Westgate 2012). A major reason is that the middle matrix
C∗ is under-estimated. To mitigate the potential underesti-
mation of Ĉn,ψ̃∗ when the sample size is small, and deal with
the time dependency in extreme observations if that exists
in the data, we propose a block bootstrap to account for the
time dependency in ψ̃∗

B , rendering an estimate for the vari-
ance matrix of ψ̃∗

B . To create M bootstrap samples, we use
the following bootstrap procedure for each m = 1, . . . , M
and t = 1, . . . , n:

1. Calculate residuals by subtracting Z�
t α +W�

t β from Yt .
2. Group residuals into non-overlapping blocks of samples

in specified length with replacement.
3. Obtain bootstrapped data Ym,t by adding the grouped

residuals to the Z�
t α + W�

t β.

4. Calculate the ψ̃m,B = n−1∑n
t=1 B

−1∑B
b=1 �[ψ(Ym,t ,

W̃ ∗
m,b,t , Zt , θ̃n,B)] for m = 1, . . . , M , where W̃ ∗

m,b,t is
generated for the mth bootstrap sample.

5. Determine the covariance matrix of ψ̃m,B using M sam-
ples and multiplying the covariance matrix with n to get
Ĉn,ψ̃∗ .

This bootstrap procedure is computationally efficient as it
only requires evaluating the outer-products of individual esti-
mating functions instead of solving any estimating equations.
Of note, the bootstrap is only used for estimating the mid-
dle part of the sandwich estimator. As it does not bootstrap
extremes directly, this procedure also avoids some potential
issues in sampling extremes (Gilleland 2020), and the con-
fidence intervals of the estimates are still built based on the
asymptotic normality.

3 Application in fingerprinting with time
series

Fingerprinting in the context of extremes is a direct applica-
tion of the proposed method. Fingerprinting aims to quantify
the impact of external forcings on the climate variable of
interest, in which the expected responses of the climate sys-
tem to external forcings, also called fingerprints, are treated

as predictors (Li et al. 2021, 2023). These external forcings
can be classified into two types: anthropogenic and natural,
which are factors that impact the climate system while not
being part of the climate system itself, such as greenhouse
gas emissions and volcanic eruptions. The fingerprints are
not observable but can be inferred from numerical climate
model outputs. Climate models typically contain multiple
initial condition ensembles, which, most of the time, can
be treated as random independent and identically distributed
samples from one multivariate spatial-temporal process due
to their sensitivity to the initial conditions (Stein 2020). The
estimated signals from these outputs are naturally tempo-
rally dependent. Here we limit our scope to a setting with
time series data instead of spatiotemporal data; handling
spatiotemporal EIVs requires a separate investigation. We
investigate this application setting as follows.

Suppose the observed climate extremes Yt specified in
Sect. 2 are available at a particular grid box for year t =
1, . . . , n. The climate extremes of interest can be station
annual maximum of daily maximum (TXx) and minimum
(TNx) temperatures or the annual minimum of daily maxi-
mum (TXn) and minimum (TNn) temperatures. The error-
prone covariates Xt in Equation (1) are signals of external
forcings, and β are the corresponding coefficients of the sig-
nals. We also assume a constant shape and scale parameters
throughout the year at the site, and an intercept is included in
the location parameter, which makes Zt a constant of 1 and
α a scalar (Wang et al. 2021; Zwiers et al. 2011).

Since the signal vector Xt is unknown, it needs to be
estimated from the climate models simulations. Following
Zwiers et al. (2011) and Wang et al. (2021), we assume
another GEV model for the simulated climate extremes. Let
L j denote the total number of available ensemble runs under

the j th forcing from the climate models, and U (l)
t j extreme

observations for the lth ensemble run under the j th forcing in
year t , where j = 1, . . . , p, t = 1, . . . , n, and l = 1, . . . , L j .

The annual extremes U (l)
t j can be modeled as follows,

U (l)
t j ∼ F(· | Xt j , σ

′
j , ξ

′
j ), Xt j = μ(t; γ j ), (8)

where σ ′
j and ξ ′

j are forcing-specific scale and shape param-
eters, respectively, and Xt j is the fingerprint or the signal of
forcing j characterized by function μ with parameter vector
γ j . To account for the temporal dynamics, a flexible formu-
lation for μ with B-splines is

μ(t; γ j ) = S�
t γ j

where St = (S1(t), . . . , SD(t))�, Sd(t)’s are a set of
B-splines basis with D degree of freedom, and γ j =
(γ j,1, . . . , γ j,D)� is the coefficient vector for the basis. The
B-spline representation is assumed to be flexible enough to
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approximate the temporal pattern in signals. With all the
ensemble runs under forcing j as independent replicates, we
can obtain the MLE γ̂ j of γ j and its covariance matrix �γ j .

Therefore, Wt j = ∑D
d=1 γ̂ j,d Sd(t) is an MLE of Xt j with

covariance matrix S�
t �γ j St .

Given the B-spline model is correctly specified, using
Wt = (Wt1, . . . ,Wtp)

� rather than the true Xt introduces
additional variability to Equation (1), resulting bias when
estimating β. It has the same effect as EIV and needs to
be recognized. This is exactly the unsolved issue raised by
Wang et al. (2021), which results in biased estimation. Here
the relationship between Xt and Wt is the same as in Equa-
tion (3), that is, Wt = Xt + et . In general, et and et ′ for any
t 
= t ′ are not independent as the variance of et j and et ′ j
both depend on γ̂ j . The covariance of e j = (e�

1 j , . . . , e
�
nj )

�,
can be estimated by S��γ j S with S = (S�

1 , . . . , S�
n )�. This

fits the situation in Sect. 2.3. For each j = 1, . . . , p, we can
generate W̃�

b, j = (W̃�
b,1 j , . . . , W̃

�
b,nj )

� from a multivariate

normal distribution with meanW� = (W�
1 j , . . . ,W

�
nj )

� and

covariance matrix S��γ j S. Since the runs under different
forcings are independent, we can generate the Monte Carlo
copies separately for each j . Then, W̃b,t j for any t = 1, . . . , n
and j = 1, . . . , p can be used to construct the corrected
score in Equation (6), yielding the unbiased estimates of θ

as explained in Sect. 2.
The coefficients of the fingerprints β, also known as scal-

ing factors, are the primary target of the inference. To account
for the time dependency in the measurement error, we rely
on the block bootstrap method with 5-year blocks detailed
in Sect. 2.3 to construct the 90% confidence interval for β,
which is frequently used in attribution and detection analy-
ses. If the 90% corresponding confidence interval of a scaling
factor is above zero, then the fingerprint is claimed to be
detected. Additionally, given that a fingerprint is detected, a
90% confidence interval covering one is the necessary evi-
dence that the observed changes can be attributed to the
corresponding external forcing.

4 Simulation studies

4.1 Independence setting

We first considered the case with independent measurement
errors. For simplicity, Xt is a univariate normal random
variable with mean 0 and standard deviation 2, and Zt =
1. The observed extremes Yt was subsequently generated
from a generalized extreme value distribution with θ =
(1, 1, 4,−0.2) by using the R package evd (Stephenson
2002). The observed surrogate Wt was then generated from
Equation (3) where � reduces to σ 2

e I with σ 2
e = 1. To carry

out the MCCS method, W̃b,t was obtained by adding ιεb,t to

Wt , where εb,t is also a normal variable withmean 0 and vari-
ance σ 2

e = 1, and b = 1, . . . , B. Here we treat σe as known
and focus on estimating θ . In the simulation, we consider
the Monte Carlo sampling B ∈ {200, 400} and the sample
size n ∈ {100, 200}. For each configuration, 1000 data sets
have been generated. Also, for each dataset, we obtained
MLE for θ without correcting forWt and θ̃ by implementing
MCCS with W̃b,t . The MLE estimation was carried out by
the package ismev (Heffernan and Stephenson 2018), and
the MCCS was solved by using nleqslv.

Table 1 summarizes the results in estimating θ . TheMLEs
of θ are the naive estimates with measurement error ignored.
The naive estimates of α, σ , and ξ are unbiased under all
configurations. The naive estimate of parameter β, however,
is severely biased, and the coverage rate is low across dif-
ferent sample sizes. On the other hand, the proposed method
provides an unbiased estimate of β, and the coverage rate is
close to the nominal level 90% for all the settings, including
the case that B = 200. The other parameters are consistently
estimated, and their coverage rates are close to the nominal
level as well. In general, as n increases, the convergence rate
improves, and the bias, RMSE, ESE, and ASE decreases as
n increases. Regarding the performance of the algorithm, the
percentage of successfully finding a root using nleqslv is
around 95% when n = 100 and improves to 99.5% when n
increases to 200 in our simulation. Given a fixed n, however,
the performance of MCCS estimators is very similar across
different Bs in our setting. Nonetheless, the proposedmethod
works well in correcting bias in β.

4.2 Fingerprinting setting

We also carried out simulation studies with fingerprinting
setting described in Sect. 3 with one forcing (p = 1). In
order to mimic the real detection and attribution process,
we first simulated the climate model extremes U (l)

t from a
generalized extreme model with σ ′ = 2 and ξ ′ = − 0.2.
The location parameter Xt is determined by a cubic spline
where γ is uniformly distributed in (38, 40). The number
of ensemble runs L is assumed to be 50, and for each run,
we have 100 years of data. Then the observed extreme Yt
was generated from a generalized extreme value distribution
with {α, β, σ, ξ} = {40, 1, 1,− 0.2}.Again, two levels of the
Monte Carlo sampling size, {200, 400} are considered here.

Table 2 summarizes the results in estimating θ in the fin-
gerprinting setup. Both methods provide unbiased estimates
to σ and ξ . Unlike the previous results, the bias is observed
in both α and β in the naive estimates, resulting in extremely
poor coverage rates. This could lead to misleading conclu-
sions in the detection and attribution analysis which mainly
relies on the statistical inferences of β. In contrast, MCCS
estimates of α and β are nearly unbiased. Even though the
bias of α̂ estimated by MCCS is around −1.2 in Table 2, it
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Table 1 Summary of simulation
results based on 1000
replications

n Parameter Method Bias RMSE ESE ASE CR

100 α Naive method 0.036 0.450 0.449 0.451 0.895

MCCS(B = 200) 0.056 0.464 0.461 0.538 0.906

MCCS(B = 400) 0.055 0.461 0.458 0.492 0.907

β Naive method −0.191 0.280 0.204 0.188 0.710

MCCS(B = 200) 0.024 0.266 0.265 0.264 0.874

MCCS(B = 400) 0.027 0.271 0.270 0.256 0.875

σ Naive method 0.038 0.318 0.315 0.319 0.907

MCCS(B = 200) −0.092 0.357 0.345 0.399 0.867

MCCS(B = 400) −0.091 0.359 0.348 0.350 0.867

ξ Naive method −0.017 0.074 0.072 0.068 0.869

MCCS(B = 200) −0.006 0.084 0.084 0.133 0.880

MCCS(B = 400) −0.006 0.086 0.086 0.087 0.878

200 α Naive method 0.002 0.321 0.321 0.320 0.904

MCCS(B = 200) 0.035 0.332 0.330 0.333 0.902

MCCS(B = 400) 0.035 0.332 0.330 0.333 0.903

β Naive method −0.197 0.240 0.137 0.133 0.576

MCCS(B = 200) 0.014 0.176 0.176 0.171 0.892

MCCS(B = 400) 0.015 0.176 0.176 0.171 0.894

σ Naive method 0.085 0.240 0.224 0.224 0.883

MCCS(B = 200) −0.025 0.241 0.240 0.238 0.892

MCCS(B = 400) −0.025 0.242 0.240 0.238 0.893

ξ Naive method −0.012 0.049 0.047 0.045 0.876

MCCS(B = 200) −0.010 0.056 0.055 0.049 0.862

MCCS(B = 400) −0.010 0.056 0.055 0.050 0.861

Bias is the bias of point estimates; RMSE is the root mean square error; ESE is the empirical standard error;
ASE is the average of the standard errors of the estimator; and CR is the coverage rate of 90% confidence
interval

is relatively unbiased given that the true value of α is 40.
More importantly, the coverage rate of the scaling factor β in
MCCS is much closer to 90%, which implies a more reliable
decision on the detection and attribution of a signal. Even
though the coverage rates of σ and ξ are lower than the nom-
inal level using theMCCSmethod, they are still around 85%,
and their MCCS point estimates are also unbiased. In simu-
lations, the convergence rate of the MCCS method is around
99%, indicating high success in finding a root.

5 Temperature extremes in central China

The observed annual temperature extremes in the East Asia
region over the period of 1951–2010 were extracted from
the HadEX2 data (Donat et al. 2013). For each temperature
extreme described in Sect. 3, grid boxes of resolution 5◦ ×
5◦ (latitude × longitude) are available. After excluding the
grid boxes with missing values, we have 47, 48, 41, and
43 grid boxes for TXx, TXn, TNx, and TNn, respectively.
The longitude value covered by these grid boxes ranges from

100E to 150E, and latitude value ranges from 25N to 50N.
Since observations on land are more reliable than those in the
ocean, we focused on twelve land grid boxes with latitude
ranging from 30N to 40N and longitude covering from 100E
to 115E, which covers a large part of inland China (Fig. 1).

The ALL (combination of anthropogenic and natural
external) forcing is the single external forcing being consid-
ered. To avoid making any assumptions about the exchange-
ability of different climate models, we only used the second-
generation Canadian Earth System Model (CanESM2)
(Chylek et al. 2011) to estimate signals, which contains 50
runs under the ALL forcing. In order to match the spatial res-
olution of the HadEx2 data, the CanESM2 data also has been
regridded to 5◦ × 5◦ grid boxes. The 50 runs are indepen-
dent replicates simulated under both anthropogenic factors
(greenhouse gas and aerosol emissions) and natural-only
factors (solar radiation and volcano eruptions). The signals
under the ALL forcing at each grid box were estimated by
fitting (8) to the 50 runs. A cubic spline with a 5-year knots
was used to estimate the ALL signal. In regional detection
and attribution analyses, it is often assumed that the scaling
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Table 2 Summary of simulation
results based on 1000
replications

Parameter Method Bias RMSE ESE ASE CR

α Naive method 27.739 33.077 18.026 11.637 0.251

MCCS(B = 200) −1.294 13.476 13.421 12.790 0.866

MCCS(B = 400) −1.247 13.420 13.369 12.759 0.873

β Naive method −0.712 0.849 0.463 0.299 0.251

MCCS(B = 200) 0.033 0.346 0.344 0.328 0.867

MCCS(B = 400) 0.032 0.344 0.343 0.327 0.872

σ Naive method 0.042 0.100 0.091 0.089 0.876

MCCS(B = 200) −0.019 0.085 0.083 0.078 0.837

MCCS(B = 400) −0.019 0.085 0.083 0.077 0.836

ξ Naive method −0.021 0.071 0.068 0.068 0.886

MCCS(B = 200) −0.007 0.075 0.075 0.067 0.851

MCCS(B = 400) −0.006 0.074 0.074 0.067 0.851

Bias is the bias of point estimates; RMSE is the root mean square error; ESE is the empirical standard error;
ASE is the average of the standard errors of the estimator; and CR is the coverage rate of 90% confidence
interval

Fig. 1 Twelve grid boxes in central China were selected for analysis

factors across all the grid boxes are the same (Zwiers et al.
2011; Wang et al. 2017, 2021), in which case, the spatial
dependence among the grid boxes needs to be addressed.
Since a spatial extension of the MCCS method needs a full
investigation, here we apply the method to each grid box
separately.

At each grid box, the fingerprinting method in Sect. 3
was applied to each of the four temperature extremes. The
minimum extremes TXn and TNn were negated before the
analyses. The size of Monte Carlo sampling was fixed at
B = 1, 000 for each analysis. For comparison, we also
included the naive estimators, which ignored the measure-
ment errors in the estimated fingerprint and fitted the data

using the MLE method. To ensure ξ > −0.5, we use a
Beta(9, 6) prior to constraint ξ within a range of (−0.5, 0.5)
(Martins and Stedinger 2000) in both methods as done by
Wang et al. (2021).

Figure 2 displays the 90% confidence intervals of the scal-
ing factor for each temperature extreme in each of the 12
grid boxes. Additional figures of other parameters are pre-
sented in the Appendix 1. The estimates of ξ are negative
in most grid boxes, which is consistent with the findings
in Huang et al. (2016). The influence of the ALL forcing
is detected for all the temperature extremes in most of the
12 grid boxes. In particular, the most detectable influence is
on TNx, the annual maximum of daily minimum tempera-
ture, and the least detectable influence is on TXx, the annual
maximum of daily maximum. In most cases, both naive and
proposedmethods reach consistent conclusions, although the
point estimates of the scaling factor can be quite distinct
from both methods in temperature minimums. For the max-
imums TNx and TXx, for example, the estimates of β are
quite close except for the (115E, 30N) case. The analysis
on the minimums, especially on the TXn, displays a much
larger discrepancy in the β̂. In the (110E, 40N) case, for
instance, the difference in the β̂s bring about different con-
clusions in the attribution decision. Moreover, the proposed
method tends to produce a larger standard error inmost cases,
which might lead to different conclusions even though the
estimated values of β are close for both approaches. For
example, both methods produce similar values in β̂ in the
(105E, 40N) grid box, but the lower bound of the 90% confi-
dence interval is much closer to 1 using the proposed method
while the counterpart for the naive method is way above 1.
Overall, both methods agree on the detection and attribution
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Fig. 2 The top and bottom
graphs present the scaling factor
estimation for all the
temperature extremes and the
corresponding 90% bootstrap
confidence intervals for the
selected grid boxes

results on TNx and TXx for all the grid boxes. ALL forc-
ings are always detected on TNx using both methods, but its
evidence of attribution is obvious in the grid boxes with lat-
itude 40N. Different from the results on TNx, the influence
of ALL forcings are not detected in grid boxes (110E, 30N),
(115E, 30N), (110E, 35N), and (115E, 35N). There is also no
evidence that the change in TXx is attributable to ALL forc-
ings. For TNn and TXn, there are a few cases that the ALL
forcings are not detectable. For the (115E, 30N) grid box,
the influence of the ALL forcing is not detectable using the
proposed method, while the naive method reach a different
decision. In terms of attribution, only the (115E, 30N) and
(115E, 40N) grid boxes show necessary evidence of attribut-
ing the ALL influence to the change in TNn. Similar to the
results of TNn, the change in TXn can only be attributed to
ALL forcings in two grid boxes. Interestingly, both methods
agree on the attribution results for the (100E, 30N) grid box,
but disagree on the attribution results for (110E, 40N) grid
box.

For illustration purposes, we choose the (110E, 40N) grid
box and report the point estimates (Est), the corresponding
standard errors (SE), and the 90% confidence intervals (CI)
of θ for each temperature extreme based on the two methods
(Table 3). The estimates of ξ and σ between the two meth-
ods are quite similar, which is consistent with the simulation
results in Sect. 4. On the other hand, the location parameters
α and β can be very different between the naive estimates
and the MCCS estimates in some cases. For instance, the
estimates of α and β are very different between the two
methods on TXn, directly resulting in a different conclusion.
The naive method detects the ALL signal at all on TXn, but
there is no evidence that the change on TXn is attributable
to the influence of ALL forcings. On the opposite side, ALL
forcings are not only detected by the proposed method but
also demonstrate necessary evidence of attribution on TXn,
with the corresponding 90%confidence interval being signif-
icantly greater than zero. For extremes other than TXn, both
methods detect the ALL signal to the temperature change.
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Table 3 Summaries of estimated parameters of the ALL signals for four temperature extremes in grid box indexed by longitude 110E and latitude
40N

Method Param TXx TNx
Est SE 90% CI Est SE 90% CI

α Naive 5.733 13.286 (−16.121, 27.587) −17.020 5.389 (−25.884, −8.156)

MCCS 3.070 13.696 (−19.458, 25.598) −18.152 5.262 (−26.808, −9.497)

β Naive 0.737 0.341 (0.175, 1.298) 1.739 0.244 (1.338, 2.140)

MCCS 0.805 0.352 (0.227, 1.384) 1.791 0.238 (1.399, 2.182)

σ Naive 1.037 0.100 (0.873, 1.201) 0.686 0.062 (0.584, 0.788)

MCCS 1.033 0.114 (0.844, 1.221) 0.677 0.070 (0.562, 0.792)

ξ Naive −0.077 0.091 (−0.227, 0.073) −0.112 0.069 (−0.226, 0.002)

MCCS −0.076 0.069 (−0.189, 0.037) −0.113 0.061 (−0.213, −0.013)

Method Param TXn TNn
Est SE 90% CI Est SE 90% CI

α Naive 19.567 8.333 (5.860, 33.273) 11.558 7.786 (−1.249, 24.366)

MCCS 29.222 13.503 (7.012, 51.432) 13.641 9.652 (−2.234, 29.517)

β Naive 1.786 0.486 (0.986, 2.587) 1.194 0.276 (0.740, 1.647)

MCCS 2.350 0.793 (1.046, 3.654) 1.267 0.342 (0.705, 1.829)

σ Naive 1.525 0.148 (1.281, 1.768) 1.462 0.133 (1.243, 1.680)

MCCS 1.453 0.145 (1.214, 1.692) 1.448 0.127 (1.239, 1.656)

ξ Naive −0.082 0.101 (−0.248, 0.084) −0.147 0.084 (−0.286, −0.009)

MCCS −0.052 0.107 (−0.227, 0.124) −0.148 0.056 (−0.239, −0.056)

6 Discussion

Relatively little attention has been paid to understanding and
correcting for the EIVs in the location parameters of GEV
regressions. Motivated by the optimal fingerprinting method
in the detection and attribution analysis of changes in climate
extremes, we investigated the impact ofmeasurement error in
both the independent and time-correlated measurement error
settings through simulation studies. The bias caused by the
measurement error can be severe. Our MCCS method takes
advantage of the existing score functions of the GEV distri-
bution and the flexibility ofMonte Carlo copies to correct for
the bias of estimators. For inferences, the confidence inter-
vals based on our block bootstrap approach appear to give
acceptable coverage rates. Though our method was applied
to single grid boxes, it is able to correct the bias and provide
valid inference effectively. Given the fact that the signals at
each grid box are much lower than those on a bigger spa-
tial scale, our results are encouraging, indicating that our
method can be served as a building block for further research
on pooling boxes together to estimate β (Wang et al. 2021).
The corrected score functions also allow further extension
of the fingerprinting by incorporating covariates in the scale
parameter to account for non-stationarity and other possible
influencing factors (Huang et al. 2016). Overall, the MCCS

approach can be applied to GEV regressions with indepen-
dent and temporally dependent EIVs that arise inmany fields.

A few future directions are worth pursuing. Computation-
ally, one concern is the numerical instability in estimation
when the sample size is small. As many GEV regressions
have a limited amount of observations, it would be useful to
develop regularized estimation along the line of Firth (1993).
For sandwich variance estimation, the “bread” part, or the
inverse of the derivative of the corrected scores with respect
to the parameters, could be poorly conditionedwhen the sam-
ple size is small. The regularized estimation might be helpful
with this issue as well. Due to these computational issues,
in our application to central China temperature extremes, we
performed only one-signal analysis with the ALL signal. It is
desirable to do two-signal analyses with both anthropogenic
forcing and natural forcing at the same time. One possibility
is to use a longer record of data, such as HadEX3 (Dunn et al.
2020) and CanESM5 (Swart et al. 2019). Methodologically,
however, it would be interesting to extend theMCCSmethod
to the spatial setting and restrict the scaling factors across grid
boxes to be the same in one regional analysis (Zwiers et al.
2011). Incorporating spatial dependency to improve the effi-

123



Statistics and Computing (2023) 33 :125 Page 11 of 17 125

ciency of the MCCS method similar to the combined score
equations (Wang et al. 2021) merits a full investigation.
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Appendix A Derivation of MCCS for GEV

The derivatives of the log density of F(· | μ, σ, ξ) with
respect to the parameter are (Prescott and Walden 1980)

f1(Y ; μ, σ, ξ) = 1 + ξ − ν

σw
,

f2(Y ; μ, σ, ξ) = 1

σ

{
−1 + (1 + ξ − ν)(Y − μ)

σw

}
,

f3(Y ; μ, σ, ξ) =
⎧
⎨

⎩

log(w)(1−ν)

ξ2
− (1+ξ−ν)(Y−μ)

ξσw ξ 
= 0

1
2

(
1 − exp(Y−μ

σ )
) (

Y−μ
σ

)2 − Y−μ
σw ξ = 0

,

where w = 1 + ξ(Y − μ)/σ, ν = w−1/ξ1(ξ 
= 0) +
e−(Y−μ)/σ1(ξ = 0), μ = Z�α + X�β, and 1(·) is the
indicator function.

To derive the real part of the ψ̃B , we first replace X with
W̃b,t in f1(·), f2(·), and f3(·). Then we can rewrite Y −μ as
following,

Y − μ = Y − W�β − Z�α − ιε�
b,tβ = u − ιv, (A1)

where u = Y − W�β − Z�α and v = ε�
b,tβ. In addition,

using polar representation, we have

σ + ξ(u − ιv) = reιω, (A2)

where r = √
(uξ + σ)2 + (vξ)2 andω = atan2{−uξ, (vξ +

σ)}. Note that atan2{−uξ, (vξ + σ)} returns a single value
ω such that −π < θ ≤ π and, for some r > 0, (aξ + σ) =
r cosω and −bξ = r sinω. From Euler’s formula, we can

also write reιω as

reιω = r cosω + ιr sinω, (A3)

or equivalently, re−ιω = r cosω − ιr sinω. Given these
expressions, we can first start to rewrite f1(·) in the following
way, allowdisplaybreaks

f1(Y ;μ, σ, ξ)

= 1 + ξ − ν

σw

= 1 + ξ − w−1/ξ

σ {1 + ξ(Y − μ)/σ }
= 1 + ξ − {1 + ξ(Y − μ)/σ }−1/ξ

σ {1 + ξ(Y − μ)/σ }
= 1 + ξ − {1 + ξ(u − ιv)/σ }−1/ξ

σ {1 + ξ(u − ιv)/σ } ( use (A1))

= (reιω)−1
{
1 + ξ − (reιω/σ )−1/ξ

}
( use (A2))

= cosω − ι sinω

r
[
1 + ξ − r−1/ξ {cos(ω/ξ) − ι sin(ω/ξ)}

σ−1/ξ

]
( use (A3))

= c + ιd,

where

c = cosω

r

{
1 + ξ − (σ/r)1/ξ cos (ω/ξ)

}

+ sinω

r
(σ/r)1/ξ sin(ω/ξ),

d = cosω

r
(σ/r)1/ξ sin(ω/ξ)

− sinω

r

{
1 + ξ − (σ/r)1/ξ cos(ω/ξ)

}
.

In a similar way, we can also rearrange f2(·) such that,

f2(Y ;μ, σ, ξ) = 1

σ
{−1 + f1 · (u − ιv)}

= −1 + (c + ιd)(u − ιv)

σ

= −1 + cu + dv

σ
+ ι

du − cv

σ
.

We then focus on the case when ξ 
= 0 to separate the real
and imaginary part of f3(·), and we have,

f3(Y ;μ, σ, ξ)
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= log(w)(1 − ν)

ξ2
− (σ f2 + 1)

ξ

= 1

ξ2
log

{
σ + ξ(u − ιv)

σ

}[
1 −

{
σ + ξ(u − ιv)

σ

}−1/ξ
]

− (σ f2 + 1)

ξ

= 1

ξ2
log

(
reιω

σ

)(
1 − (reιω)−1/ξ

σ−1/ξ

)
− (σ f2 + 1)

ξ
( use (A2))

= log r − log σ + ιω

ξ2
× [

1 − (σ/r)1/ξ {cos(ω/ξ) − ι sin(ω/ξ)}]

− (σ f2 + 1)

ξ

= log(r/σ)
{
1 − (σ/r)1/ξ cos(ω/ξ)

}

ξ
− ω(σ/r)1/ξ sin(ω/ξ)

ξ2

− (cu + dv)

ξ

+ ι
ω
{
1 − (σ/r)1/ξ cos(ω/ξ)

}

ξ2
− ι

log(r/σ) sin(ω/ξ)

ξ2

− ι
(du − cv)

ξ
.

The real part of the three functions can be readily obtained
by,

�( f1(Y ;μ, σ, ξ)) = c,

�( f2(Y ;μ, σ, ξ)) = −1 + cu + dv

σ
,

�( f3(Y ;μ, σ, ξ)) = log(r/σ)
{
1 − (σ/r)1/ξ cos(ω/ξ)

}

ξ2

− ω(σ/r)1/ξ sin(ω/ξ)

ξ2
− (cu + dv)

ξ
.

Furthermore, �(W f1) = �((W + ιεb,t )(c + ιd)) = cW −
dεb,t , and �(Z f1) = Zc. The derivation of the case when
ξ = 0 can be done in a similar way.

Appendix B Sketch of technical arguments

B.1 Argument for Proposition 1

Denote ψ̃B,t (θ) = ψ̃B(Yt ,Wt , Zt , θ,�t ). By Taylor series,

n−1/2
n∑

t=1

{
ψ̃B,t (θ̃n,B) − ψ̃B,t (θ0)

}

= n−1/2
n∑

t=1

{
∂ψ̃B,t (θ0)

∂θ�
0

(θ̃n,B−θ0)+op‖θ̃n,B−θ0‖
}

=
{
n−1

n∑

t=1

∂ψ̃B,t (θ0)

∂θ�
0

}
√
n(θ̃n,B − θ0) + op(1).

Thus,

√
n(θ̃n,B − θ0) = −

{
n−1

n∑

t=1

∂ψ̃B,t (θ0)

∂θ�
0

}−1

n−1/2
n∑

t=1

{
ψ̃B,t (θ̃n,B) − ψ̃B,t (θ0)

}
+ op(1).

Subsequently, we have

n−1
n∑

t=1

∂ψ̃B,t (θ0)

∂θ�
0

= D + op(1),

and

√
n(θ̃n,B − θ0) → N (0,C),

where D and C are defined as in Proposition 1.

B.2 Argument for Proposition 2

Denote ψ̃∗
B,t (θ) = ψ̃∗

B(Yt ,Wt , Zt , θ,�). By Taylor series,

n−1/2
n∑

t=1

{
ψ̃∗

B,t (θ̃
∗
n,B) − ψ̃∗

B,t (θ0)
}

= n−1/2
n∑

t=1

{
∂ψ̃∗

B,t (θ0)

∂θ�
0

(θ̃∗
n,B − θ0) + op‖θ̃∗

n,B − θ0‖
}

=
{
n−1

n∑

t=1

∂ψ̃∗
B,t (θ0)

∂θ�
0

}√
n(θ̃∗

n,B − θ0) + op(1).

Thus,

√
n(θ̃∗

n,B − θ0) = −
{
n−1
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B,t (θ0)

∂θ�
0
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+ op(1).

Let D∗ = E
{

∂ψ̃B (Yt ,Wt ,Zt ,θ)

∂θ�
}
, then we have

D∗ = E

{
∂ψ̃∗

B(Yt ,Wt , Zt , θ)

∂θ�

}
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= ∂E{ψ̃∗
B(Yt ,Wt , Zt , θ)}

∂θ�

= ∂E[E{ψ̃∗
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= ∂E{ψ∗(Yt , Xt , Zt , θ)}
∂θ�

= E

{
∂ψ∗(Yt , Xt , Zt , θ)

∂θ�

}

= E

[
E

{
∂ψ∗(Yt , Xt , Zt , θ)

∂θ�
∣∣ Xt

}]

= E

(
Re

[
E

{
∂ψ∗(Yt , W̃ ∗

t,b, Zt , θ)

∂θ�
∣∣ Xt

}])
.

Thus, we have

n−1
n∑

t=1

∂ψ̃∗
B,t (θ0)

∂θ�
0

= D∗ + op(1),

and

√
n(θ̃∗

n,B − θ0) → N (0,C∗),

where C∗ = Var{n−1/2∑n
t=1 ψ̃∗

B(Yt ,Wt , Zt , θ,�)}. Con-
sidering the correlations among ψ̃∗

B,t ’s caused by cor-
related measurement errors, C∗ can be decomposed as

Var
{
ψ̃∗

B,t (θ)
}
and Cov

{
ψ̃∗

B,t (θ)ψ̃∗
B,t ′(θ)

}
.

For the bth Monte Carlo copy of year t , we generate
Z̃b1 and Z̃b2 independently from N (0, Inp×np) and construct
W̃ ∗

b,t = Wt + ι�t Z̃b1 and W̃ ∗
b,t ′ = Wt ′ + ι�t ′ Z̃b2, where

� = �1/2 and {�t }p×np is the top t th chunk of �. We have

E
[
Re

{
ψ(Yt , W̃

∗
b,t , Zt , θ)ψ�(Yt , W̃

∗
b,t , Zt , θ)

} ∣∣ (Yt , Xt , Zt )
]

= E
[
Re

{
ψ(Yt , Xt + et + ι�t Z̃b1, Zt , θ)

ψ�(Yt , Xt + et + ι�t Z̃b1, Zt , θ)
∣∣ (Yt , Xt , Zt )

}]

(Expand around Xt ) ≈ ψ(Yt , Xt , Zt , θ)ψ�(Yt , Xt , Zt , θ),

and similarly,

E
[
Re

{
ψ(Yt , W̃

∗
b,t , Zt , θ)ψ�(Yt ′ , W̃

∗
b,t ′ , Zt ′ , θ)

}

∣∣ (Yt ,Yt ′ , Xt , Xt ′ , Zt , Zt ′)
]

≈ ψ(Yt , Xt , Zt , θ)ψ�(Yt ′ , Xt ′ , Zt ′ , θ).

Thus, for t = 1, . . . , n and t ′ = 1, . . . , n, a consistent
estimator for C∗ can be constructed as below,

Ĉψ̃∗ = 1

nB

⎡

⎣
n∑

t,t ′=1

B∑

b=1

� {
ψ(Yt , W̃

∗
b,t , Zt , θ

∗
n,B)

ψ�(Yt ′ , W̃
∗
b,t ′ , Zt ′ , θ

∗
n,B)

}]
.

B.3 Argument for Lemma 2

We denote Z̃�
b = (Z̃�

b,1, . . . , Z̃
�
b,t , . . . , Z̃

�
b,n)

� from

N (0, Inp×np) and generate W̃ ∗
b = W + ι�1/2 Z̃b for the bth

Monte Carlo copy. The first equality is based on Lemma 1–2
in Stefanski and Cook (1995). Then, we denote {�t }p×np be
the top t th chunk of �1/2 and have

E
[
Re

{
ψ(Yt , W̃

∗
b,t , θ)

} ∣∣ (Yt , Xt )
] = E [Re {ψ(Yt , Xt + et

+ι�t Z̃b,t , θ)
}]

= ψ(Yt , Xt , θ).

As the measurement error et and �t Z̃b,t are independent
and identically distributed random vectors generated from
N (0, �), the last equality is a result of Lemma 4 in Stefanski
and Cook (1995). Hence, we finish the proof for Proposi-
tion 2.

Appendix C Additional figures

This section contains plots for parameters, α, σ , and ξ , in
the application of modeling temperature extremes in central
China. See Figs. 3, 4, and 5, respectively. Each plot includes
the point estimates and corresponding 90% bootstrap confi-
dence intervals. In most grid boxes, the estimates of shape
parameter ξ are negative, which aligns with the findings in
Huang et al. (2016).
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Fig. 3 The top and bottom
graphs present the location
parameter α estimation for all
the temperature extremes and
the corresponding 90%
bootstrap confidence intervals
for the selected grid boxes
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Fig. 4 The top and bottom
graphs present the scale
parameter σ estimation for all
the temperature extremes and
the corresponding 90%
bootstrap confidence intervals
for the selected grid boxes
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Fig. 5 The top and bottom
graphs present the scale
parameter ξ estimation for all
the temperature extremes and
the corresponding 90%
bootstrap confidence intervals
for the selected grid boxes
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