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Abstract
In this work, minibatch MCMC sampling for feedforward neural networks is made more feasible. To this end, it is proposed
to sample subgroups of parameters via a blocked Gibbs sampling scheme. By partitioning the parameter space, sampling is
possible irrespective of layer width. It is also possible to alleviate vanishing acceptance rates for increasing depth by reducing
the proposal variance in deeper layers. Increasing the length of a non-convergent chain increases the predictive accuracy
in classification tasks, so avoiding vanishing acceptance rates and consequently enabling longer chain runs have practical
benefits. Moreover, non-convergent chain realizations aid in the quantification of predictive uncertainty. An open problem is
how to perform minibatch MCMC sampling for feedforward neural networks in the presence of augmented data.

Keywords Approximate MCMC · Bayesian inference · Bayesian neural networks · Blocked Gibbs sampling · Minibatch
sampling · Posterior predictive distribution

1 Introduction

Scope.This paper renders feedforward neural networksmore
amenable to approximate MCMC sampling of their parame-
ters by splitting the parameters into subgroups. Moreover, it
identifies several advantages of such a sampling approach.

Motivation. Why consider approximate MCMC sampling
algorithms for deep learning? The answer stems from a gen-
eralmerit ofMCMC, namely uncertainty quantification. This
work demonstrates how approximate MCMC sampling of
neural network parameters quantifies predictive uncertainty
in classification problems.

Limitations. Several impediments have inhibited the adop-
tion of MCMC in deep learning; to name three notorious
problems, low acceptance rate, high computational cost and
lack of convergence typically occur. See Papamarkou et al.
(2022) for a relevant review.

Potential. Empirical evidence herein suggests a less dis-
missive view of approximate MCMC in deep learning.
Firstly, a sampling mechanism that takes into account the
neural network structure and that partitions the parameter
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space into smaller parameter blocks retains higher accep-
tance rate. Secondly, minibatch MCMC sampling of neural
network parameters mitigates the computational bottleneck
induced by big data. Bayesian marginalization, which is
used for making predictions and for assessing predictive
performance, is also computationally expensive. However,
Bayesian marginalization is embarrassingly parallelizable
across test points and along Markov chain length. Thirdly,
if assessment of predictive uncertainty via neural networks
is the intended outcome, thenMCMC convergence in param-
eter space is viewed as a stepping stone rather than as a
pre-requirement for such an outcome. A non-convergent
Markov chain acquires valuable predictive information. In
fact, it has been shown that the posterior predictive density
in Bayesian neural networks can be restricted to a symmetry-
free subset of the parameter space (Wiese et al. 2023).

Contributions. The main contribution of this paper is to
propose minibatch blocked Gibbs sampling for feedforward
neural networks and and to experimentally corroborate the
feasibility of such a sampling approach. Without optimizing
prior specification, vanishing acceptance rates are overcome
by partitioning the parameter space into small blocks. Sev-
eral observations are drawn from an experimental study of
the proposed sampling scheme for feedforward neural net-
works. Firstly, it is observed that partitioning the parameter
space allows to sample from it under increasing width. Sec-
ondly, such partitioning alleviates vanishing acceptance rates
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in deeper layers by reducing the proposal variance as depth
increases. Thirdly, it is pointed out that increasing the batch
size increases the predictive accuracy as expected, as long as
the batch size does not become large to the point of yield-
ing vanishing acceptance rates. Fourthly, it is demonstrated
that letting the realization of a non-convergent chain run
longer increases the predictive accuracy. Fifthly, it is con-
firmed that one of the open problems is sampling in the
presence of augmented data. Finally, it is demonstrated that
non-convergent chain realizations aid in the quantification of
predictive uncertainty.

Paper structure. The paper is structured as follows. Section2
reviews the MCMC literature for deep learning. Section3
revises some basic knowledge, including the Bayesianmulti-
layer perceptron (MLP) model and blocked Gibbs sampling.
Section4 introduces a finer node-blocked Gibbs (FNBG)
algorithm to sample MLP parameters. Section5 utilizes
FNBG sampling to fit MLPs to three training datasets, mak-
ing predictions on three associated test datasets. In Sect. 5,
numerous observations are made about the scope of approx-
imate MCMC in MLPs. Section6 concludes the paper with
a discussion about future research directions and about asso-
ciated limitations.

2 Literature review

This section reviews the literature on MCMC for neural
networks. Several other reviews of the topic exist, see for
instance Titterington (2004), Wenzel et al. (2020), Izmailov
et al. (2021), Papamarkou et al. (2022). New MCMC devel-
opments for neural networks, which have appeared after the
aforementioned reviews, are included herein.

Four research directions have been mainly taken to
develop MCMC algorithms for neural networks. Initially,
sequential Monte Carlo (SMC) and reversible jump MCMC
were applied on feedforward neural networks. At a second
wave of development, minibatchMCMC algorithms became
a mainstream approach. More recently, the focus has shifted
to Gibbs sampling algorithms and to the construction of pri-
ors for Bayesian neural networks.

2.1 SMC and reversible jumpMCMC

In early stages of MCMC developments for neural networks,
SMC and reversible jump MCMC were applied on MLPs
and radial basis function networks (Andrieu et al. 1999; de
Freitas 1999; Andrieu et al. 2000; de Freitas et al. 2001).
For a historical context of Bayesian approaches to neural
networks, see Titterington (2004), Papamarkou et al. (2022).

2.2 Minibatch MCMC

In minibatch MCMC, a target density is evaluated on a sub-
set (minibatch) of the data, thus avoiding the computational
cost of MCMC iterations based on the entire data. A stochas-
tic gradient MCMC (SG-MCMC) algorithm is a minibatch
MCMC algorithm that uses the gradient of the target density.
Welling and Teh (2011) have employed the notion of mini-
batch to develop a stochastic gradient Langevin dynamics
(SG-LD) Monte Carlo algorithm, which is the first instance
of SG-MCMC. Chen et al. (2014) have introduced stochas-
tic gradient Hamiltonian Monte Carlo (SG-HMC), which is
another instance of SC-MCMC, and applied it to infer the
parameters of a Bayesian neural network fitted to theMNIST
dataset (Lecun et al. 1998).

SG-LD and SG-HMC are two SG-MCMC algorithms that
initiated approximate MCMC research in machine learn-
ing. Several variants of SG-MCMC have appeared ever
since. Gong et al. (2019) have proposed an SG-MCMC
scheme that generalizes Hamiltonian dynamics with state-
dependent drift and diffusion, and have demonstrated the
performance of this scheme on convolutional and on recur-
rent neural networks. Zhang et al. (2020) have proposed
cyclical SG-MCMC, a tempered version of SG-LD with a
cyclical stepsize schedule. Moreover, Zhang et al. (2020)
have showcased the performance of cyclical SG-MCMC
on a ResNet-18 (He et al. 2016) fitted to the CIFAR-10
and CIFAR-100 datasets (Krizhevsky and Hinton 2009).
Alexos et al. (2022) have introduced structuredSG-MCMC, a
combination of SG-MCMC and structured variational infer-
ence (Saul and Jordan1995). StructuredSG-MCMCemploys
SG-LD or SG-HMC to sample from a factorized variational
parameter posterior density. Alexos et al. (2022) have tested
the performance of structured SG-MCMC on ResNet-20 (He
et al. 2016) architectures fitted to theCIFAR-10, SVHN (Net-
zer et al. 2011) and fashion MNIST (Xiao et al. 2017)
datasets.

2.3 Gibbs sampling

Various Gibbs sampling algorithms have been developed
recently with large-scale inference in mind. Bouchard-Côté
et al. (2017) have introduced the particle Gibbs split-merge
sampler and have explored its performance on four high
dimensional datasets. Split Gibbs samplers based on the
alternating direction method of multipliers optimization
algorithm have been developed to perform Bayesian infer-
ence on large datasets and potentially on high-dimensional
models (Vono et al. 2019, 2022). Despite not having been
applied so far to neural networks, such particle Gibbs and
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split Gibbs samplers demonstrate that the idea of splitting
parameters or auxiliary variables into subgroups provides
one way of attacking the problem of large-scale inference.

Grathwohl et al. (2021) have introduced the Gibbs-with-
gradients (GWG) sampler, a general and scalable approxi-
mate sampling strategy for probabilisticmodels with discrete
variables. GWG is related to the adaptive Gibbs sam-
pler (Łatuszyński et al. 2013). Grathwohl et al. (2021) have
trained GWG on restricted Boltzmann machines, which are
generative stochastic neural networks, and have compared
GWG to blocked Gibbs sampling, using samples from the
latter as the ground truth.

MinibatchMCMC(Sect. 2.2) andGibbs samplers (current
Sect. 2.3) do not constitute two mutually exclusive classes of
algorithms. To elaborate on the involved ontology of mini-
batch MCMC and Gibbs samplers, three remarks are made.
Firstly,HMCcanbe formulated as aGibbs sampler (Girolami
and Calderhead 2011). Secondly, each parameter subgroup
in blocked Gibbs sampling can be updated via an MCMC
sampling step. For instance, if each parameter subgroup is
updated via a Metropolis-Hastings (MH), Langevin dynam-
ics (LD) or HMC sampling step, then the corresponding
sampler is known as MH-within-Gibbs, LD-within-Gibbs
or HMC-within-Gibbs. Thirdly, the terminology SG-LD and
SG-HMC is used in software documentation to refer to algo-
rithms that sample all neural network parameters at one
sweep or layer-wise. Nevertheless, when parameter sam-
pling is conducted layer-wise, SG-LD and SG-HMC are
misnomers, and the correct sampler names are SG-LD-
within-Gibbs and SG-HMC-within-Gibbs, respectively.

2.4 Prior specification

Prior specification for neural networks was considered on
the eve of the twenty-first century, see Papamarkou et al.
(2022) for a relevant review. Research on prior specification
for neural networks has resurged recently, as ridgelet pri-
ors (Matsubara et al. 2021) and functional priors (Tran et al.
2022) have been introduced. The functional priors proposed
by Tran et al. (2022) have been designed for performing
approximate MCMC sampling in Bayesian deep learning.

3 Preliminaries

This section revises two topics, the Bayesian MLPmodel for
supervised classification (Sect. 3.1) and blocked Gibbs sam-
pling (Sect. 3.2). For theBayesianMLPmodel, the parameter
posterior density and posterior predictive probability mass
function (pmf) are stated. Blocked Gibbs sampling provides
a starting point in developing the algorithm of Sect. 4 for
sampling from the MLP parameter posterior density.

Fig. 1 A graph visualization of MLP(3, 2, 2, 2). Purple, blue and gray
nodes correspond to input data, to hidden layer post-activations and to
output layer (softmax) post-activations used for making predictions

3.1 The BayesianMLPmodel

AnMLP is a feedforward neural network comprising an input
layer, one or more hidden layers and an output layer (Rosen-
blatt 1958;Minsky and Papert 1988; Hastie et al. 2016). For a
fixed natural number ρ ≥ 2, an index j ∈ {0, 1, . . . , ρ} indi-
cates the layer. In particular, j = 0 refers to the input layer,
j ∈ {1, 2, . . . , ρ − 1} to one of the ρ − 1 hidden layers, and
j = ρ to the output layer. Let κ j be the number of nodes
in layer j , and let κ0:ρ = (κ0, κ1, . . . , κρ) be the sequence
of node counts per layer. MLP(κ0:ρ) denotes an MLP with
ρ − 1 hidden layers and κ j nodes at layer j .

An MLP(κ0:ρ) with ρ − 1 hidden layers and κ j nodes at
layer j is defined recursively as

g j (xi , θ1: j ) = w j h j−1(xi , θ1: j−1) + b j , (3.1)

h j (xi , θ1: j ) = φ j (g j (xi , θ1: j )), (3.2)

for j ∈ {1, 2, . . . , ρ}. An input data point xi ∈ R
κ0 is passed

to the input layer h0(xi ) = xi , yielding vector g1(xi , θ1) =
w1xi + b1 in the first hidden layer. The parameters θ j =
(w j , b j ) at layer j consist of weights w j and biases b j . The
weight matrix w j has κ j rows and κ j−1 columns, while the
vector b j of biases has length κ j . All weights and biases up to
layer j are denoted by θ1: j = (θ1, θ2, . . . , θ j ). An activation
function φ j is applied elementwise to pre-activation vector
g j (xi , θ1: j ), and returns post-activation vector h j (xi , θ1: j ).
Concatenating all θ j , j ∈ {1, 2, . . . , ρ}, gives a parameter
vector θ = θ1:ρ ∈ R

n of length n = ∑ρ
j=1 κ j (κ j−1 + 1).

w j,k,l denotes the (k, l)-th element of weight matrix w j .
Analogously, b j,k, xi,k, g j,k and h j,k correspond to the k-th
coordinate of bias b j , of input xi , of pre-activation g j and of
post-activation h j .

MLPs are typically visualized as graphs. For instance,
Fig. 1 displays a graph representation of MLP(κ0 = 3, κ1 =
2, κ2 = 2, κ3 = 2), which has an input layer with κ0 = 3
nodes (purple), two hidden layers with κ1 = κ2 = 2
nodes each (blue), and an output layer with κ3 = 2 nodes
(gray). Purple nodes indicate observed variables (input data),
whereas blue and gray nodes indicate latent variables (post-
activations).
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Let D1:s = {(xi , yi ) : i = 1, 2, . . . , s} be a train-
ing dataset. Each training data point (xi , yi ) includes an
input xi ∈ R

κ0 and a discrete output (label) yi ∈
{1, 2, . . . , κρ}, κρ ≥ 2. Moreover, let (x, y) be a test
point consisting of an input x ∈ R

κ0 and of a label y ∈
{1, 2, . . . , κρ}. The supervised classification problem under
consideration is to predict test label y given test input x and
training dataset D1:s . An MLP(κ0:ρ), whose output layer
has κρ nodes and applies the softmax activation function
φρ , is used to address this problem. The softmax activa-
tion function at the output layer expresses as φρ(gρ) =
exp (gρ)/

∑κρ

k=1 exp (gρ,k).
It is assumed that the training labels y1:s = (y1, y2, . . . , ys)

are outcomes of s independent draws from a categorical
pmf with event probabilities given by Pr(yi = k|xi , θ) =
hρ,k(xi , θ) = φρ(gρ,k(xi , θ)), where θ is the set of
MLP(κ0:ρ) parameters. It follows that the likelihood func-
tion for the MLP(κ0:ρ) model in supervised classification is

L(y1:s |x1:s, θ) =
s∏

i=1

κρ∏

k=1

(hρ,k(xi , θ))1{yi=k} , (3.3)

where x1:s = (x1, x2, . . . , xs) are the training inputs and 1

denotes the indicator function. Interest is in sampling from
the parameter posterior density

p(θ |x1:s, y1:s) ∝ L(y1:s |x1:s, θ)π(θ), (3.4)

given the likelihood function L(y1:s |x1:s, θ) of Eq. (3.3) and
a parameter prior π(θ). For brevity, the parameter posterior
density p(θ |x1:s, y1:s) is alternatively denoted by p(θ |D1:s).

By integrating out parameters θ , the posterior predictive
pmf of test label y given test input x and training datasetD1:s
becomes

p(y|x,D1:s) =
∫

L(y|x, θ)p(θ |D1:s)dθ, (3.5)

where L is the likelihood function of Eq. (3.3) evaluated on
(x, y), and p(θ |D1:s) is the parameter posterior density of
Eq. (3.4). The integral in Eq. (3.5) can be approximated via
Monte Carlo integration, yielding the approximate posterior
predictive pmf

p̂(y|x,D1:s) �
v∑

t=1

p(y|x, ωt ), (3.6)

where (ω1, ω2, . . . , ωv) is aMarkovchain realizationobtained
from the parameter posterior density p(θ |D1:s). Maximiz-
ing the approximate posterior predictive pmf p̂(y|x, D1:s) of
Eq. (3.6) yields the prediction

ŷ = argmax
y

{ p̂(y|x, D1:s)} (3.7)

for test label y ∈ {1, 2, . . . , κρ}.
The likelihood function for an MLP model with κρ ≥ 2

output layer nodes, as stated in Eq. (3.3), is suited for multi-
class classification with κρ classes. For binary classification,
which involves two classes, Eq. (3.3) is related to an MLP
with κρ = 2 output layer nodes. There is an alternative like-
lihood function based on an MLP model with a single output
layer node, which can be used for binary classification; see
Papamarkou et al. (2022) for details.

3.2 Blocked Gibbs sampling

AblockedGibbs sampling algorithmsamples groups (blocks)
of two or more parameters conditioned on all other other
parameters, rather than sampling each parameter individ-
ually. The choice of parameter groups affects the rate of
convergence (Roberts and Sahu 1997). For instance, break-
ing down the parameter space into statistically independent
groups of correlated parameters speeds up convergence.

To sample from the parameter posterior density p(θ |D1:s)
of an MLP(κ0:ρ) model fitted to a training dataset D1:s ,
a blocked Gibbs sampling algorithm utilizes a partition
{θz(1), θz(2), . . . , θz(m)} of the MLP parameters θ = (θ1, θ2,

. . . , θn). Due to partitioning {θ1, θ2 . . . , θn}, the parameter
subsets θz(1), θz(2), . . . , θz(m) are pairwise disjoint and sat-
isfy ∪m

q=1θz(q) = {θ1, θ2, . . . , θn}, m ≤ n. Without loss of
generality, it is assumed that each subset θz(q) of θ is totally
ordered. For any (c, q) such that 1 ≤ c ≤ q ≤ m, the short-
hand notation θz(c):z(q) = (θz(c), θz(c+1), . . . , θz(q)) is used
hereafter. So, the vector θz(1):z(m) is a permutation of θ .

Under such a setup, “Appendix A” summarizes blocked
Gibbs sampling. At iteration t , for each q ∈ {1, 2, . . . ,m},
a blocked Gibbs sampling algorithm draws a sample θ

(t)
z(q)

of parameter group θz(q) from the corresponding condi-

tional density p(θz(q)|θ(t)
z(1):z(q−1), θ

(t−1)
z(q+1):z(m),D1:s). To put

it another way, at each iteration, a sample is drawn from the
conditional density of each parameter group conditioned on
the most recent values of the other parameter groups and on
the training dataset.

4 Methodology

This section introduces a blocked Gibbs sampling algorithm
forMLPs in supervised classification.MLPparameter blocks
are determined by linking parameters toMLP nodes, as elab-
orated in Sects. 4.1 and 4.2 and as exemplified in Sects. 4.3
and 4.4.

Minibatching and parameter blocking render the proposed
Gibbs sampler possible. Blocked Gibbs sampling is typi-
cally motivated by increased rates of convergence attained
via near-optimal or optimal parameter groupings. Although
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low speed of convergence is a problem with MCMC in
deep learning, near-zero acceptance rates constitute a more
immediate problem. In other words, no mixing is a more
pressing issue than slow mixing. By updating a small block
of parameters at a time instead of updating all parameters via
a single step, each block-specific acceptance ratemoves away
from zero. So, minibatch blocked Gibbs sampling provides a
workaround for vanishing acceptance rates in deep learning.
Of course there is no free lunch; increased acceptance rates
come at a computational price per Gibbs step, which consists
of additional conditional density sampling sub-steps.

In typical SG-LD-within-Gibbs and SG-HMC-within-
Gibbs software implementations, one block of parameters
is formed for each MLP layer (see Sect. 2.3). A caveat to
grouping parameters by MLP layer is that parameter block
sizes depend on layer widths. Hence, a parameter block can
be large, containing hundreds or thousands of parameters, in
which case the problemof lowacceptance rate is not resolved.
The blocked Gibbs sampler of this paper groups parameters
by MLP node and allows to further partition parameters into
smaller blocks within each node, thus controlling the number
of parameters per block.

While structured SG-MCMC (Alexos et al. 2022) also
splits the parameter space into blocks, it uses the parame-
ter blocks to factorize a variational posterior density. Hence,
structured SG-MCMC aims to solve the low acceptance and
slowmixing problems by factorizing an approximate param-
eter posterior density. The blocked Gibbs sampler herein
factorizes the exact parameter posterior density, relying on
finer parameter grouping. Minibatching, which is the only
type of approximation employed by the blocked Gibbs sam-
pler of this paper, is an approximation related to the data, not
to the MLP model.

The finer node-blocked Gibbs sampler for feedforward
neural networks, as presently conceived here, is a minibatch
MH-within-Gibbs sampler. The main idea is to update a rela-
tively small block of neural network parameters, thusmaking
it possible to accept states proposed byminibatchMH.Due to
takingminibatchMHsampling steps per blockof parameters,
the sampler is gradient-free. Such a gradient-free approach
has been chosen to cap the computational cost. Subject to
availability of computing resources, SG-LD or SG-HMC
sampling steps can be taken instead of minibatch MH sam-
pling steps.

4.1 Metropolis inside blocks

Blocked Gibbs sampling raises the question how to sam-
ple each parameter block from its conditional density. Such
conditional densities for MLPs are not available in closed
form. Instead, a singleMetropolis-Hastings step can be taken
to draw a sample from a conditional density. In this case,

the resulting blocked Gibbs sampling algorithm is known as
Metropolis-within-blocked-Gibbs (MWBG) sampling.

At iteration t ofMWBG, a candidate state θ�
z(q) for param-

eter block θz(q) can be sampled from an isotropic normal

proposal density N (θ
(t−1)
z(q) , σ 2

q Iq) centered at state θ
(t−1)
z(q) of

iteration t−1, where Iq is the |θz(q)|×|θz(q)| identity matrix,
|θz(q)| is the number of parameters in block θz(q), and σ 2

q > 0
is the proposal variance for block θz(q). The acceptance prob-

ability a(θ�
z(q), θ

(t−1)
z(q) ) of candidate state θ�

z(q) is given by

a(θ�
z(q), θ

(t−1)
z(q) )

= min

⎧
⎨

⎩

π(θ�
z(q)) exp

(E(θ(t−1),D1:s)
)

π(θ
(t−1)
z(q) ) exp (E(θ�,D1:s))

, 1

⎫
⎬

⎭
,

(4.1)

whereE denotes the cross-entropy loss function.More details
for the acceptance probability a(θ�

z(q), θ
(t−1)
z(q) ) are available

in “Appendix A”.
Algorithm 1 summarizes exact MWBG sampling. To

make Algorithm 1 amenable to big data, minibatching can
be used by replacing all instances ofD1:s with batches (strict
subsets ofD1:s); the resulting approximateMCMCalgorithm
is termed ‘minibatch MWBG sampling’.

4.2 Finer blocks

Big data and big models challenge the adaptation of MCMC
sampling methods in deep learning. Minibatching provides
a way of applying MCMC to big data. It is less clear how
to apply MCMC to big neural network models, containing
thousands ormillions of parameters.MinibatchMWBGsam-
pling proposes away forward bydrawing an analogy between
subsetting data and subsetting model parameters. As data
batches reduce the dimensionality of data per Gibbs sam-
pling iteration, parameter blocks reduce the dimensionality
of parameters per Metropolis-within-Gibbs update.

In an MLP(κ0:ρ) with n parameters, layer j contains
κ j (κ j−1 + 1) parameters, of which κ jκ j−1 are weights and
κ j are biases. So, if parameters are grouped by layer, then
the block of layer j contains κ j (κ j−1 + 1) parameters. The
number of parameters in the block of layer j grows linearly
with the number κ j of nodes in layer j as well as linearly
with the number κ j−1 of nodes in layer j − 1.

If parameters are grouped by node, then each node block
in layer j contains κ j−1 + 1, of which κ j−1 are weights and
one is bias. The number of parameters in a node block in
layer j does not depend on the number κ j of nodes in layer
j , but it grows linearlywith the number κ j−1 of nodes in layer
j − 1. MWBG sampling (Algorithm 1) based on parameter
grouping byMLPnode is termed ‘(Metropolis-within-)node-
blocked-Gibbs (NBG) sampling’.
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Algorithm 1 Metropolis-within-blocked-Gibbs (MWBG) sampling based on cross-entropy
1: Input: training dataset D1:s
2: Input: initial state θ

(0)
z(1):z(m)

3: Input: proposal variances (σ 2
1 , . . . , σ 2

m) across blocks
4: Input: number of Gibbs sampling iterations v

5: for t = 1, . . . , v do
6: for q = 1, . . . ,m do
7: Draw θ�

z(q) ∼ N (θ
(t−1)
z(q) , σ 2

q Iq )

8: Compute a(θ�
z(q), θ

(t−1)
z(q) ) = min

⎧
⎨

⎩

π(θ�
z(q)) exp

(E(θ(t−1),D1:s)
)

π(θ
(t−1)
z(q) ) exp (E(θ�,D1:s))

, 1

⎫
⎬

⎭

9: Draw u ∼ U(0, 1)
10: if u ≤ a(θ�

z(q), θ
(t−1)
z(q) ) then

11: Set θ(t)
z(q) = θ�

z(q)
12: else
13: Set θ(t)

z(q) = θ
(t−1)
z(q)

14: end if
15: end for
16: end for

Finer parameter blocks of smaller size can be generated
by splitting the κ j−1 + 1 parameters of a node in layer j
into β j subgroups. In this case, each finer parameter block in
each node in layer j contains (κ j−1 + 1)/β j parameters. If
hyperparameter β j is chosen to be a linear function of κ j−1,
then the number of parameters per finer block per node in
layer j depends neither on the number κ j of nodes in layer
j nor on the number κ j−1 of nodes in layer j − 1. MWBG
sampling (Algorithm 1) based on finer parameter grouping
per node is termed ‘(Metropolis-within-)finer-node-blocked-
Gibbs (FNBG) sampling’.

Parameter blocks of smaller size increase both the accep-
tance rate per block and the computational complexity of
FNBG sampling. Thus, the number of parameters per block
regulates the trade-off between acceptance rates and com-
putational complexity. As a practical guideline, the number
of parameters per block can be tuned by reducing it incre-
mentally until non-vanishing acceptance rates are attained
in order to make sampling possible. The question of opti-
mal parameter block size for sampling is analogous to the
question of optimal learning rate for stochastic optimization.
Both of these questions pose hyperparameter optimization
problems, which can be approached primarily from an engi-
neering perspective in lieu of theoretical solutions.

4.3 Finer blocks: toy example

The MLP(3, 2, 2, 2) architecture shown in Fig. 1 provides
a toy example that showcases layer-based, node-based
and finer node-based parameter grouping (more briefly
termed ‘layer-blocking’, ‘node-blocking’ and ‘finer node-
blocking’). It is reminded that finer node-based grouping
refers to parameter grouping into smaller blocks within

each node. Figure2 shows the directed acyclic graph (DAG)
representation of MLP(3, 2, 2, 2), augmenting Fig. 1 with
parameter annotations and with a layer consisting of a sin-
gle node that represents label yi . Yellow shapes indicate
parameters; yellow circles and boxes correspond to biases
and weights. Yellow boxes adhere to expository visual con-
ventions of plate models, with each box representing a set
of weights. Purple nodes indicate observed variables (input
and output data), whereas blue and gray nodes indicate latent
variables (post-activations).

Layer-blocking partitions the set of 20 parameters of
MLP(3, 2, 2, 2) to three blocks θz(1), θz(2), θz(3), which
contain |θz(1)| = 8, |θz(2)| = 6, |θz(3)| = 6 param-
eters. For instance, the first hidden layer induces block
θz(1) = (w1,1,1:3, b1,1, w1,2,1:3, b1,2), where w j,k,1:l =
(w j,k,1, w j,k,2, . . . , w j,k,l).

Node-blocking partitions the set of 20 parameters of
MLP(3, 2, 2, 2) to six blocks, as many as the number of
hidden and output layer nodes. Each blue or gray node in
a hidden layer or in the output layer has its own distinct set
of yellow weight and bias parents. Parameters are grouped
according to shared parenthood. For instance, the parameters
of block θz(1) = (w1,1,1:3, b1,1), have node h1,1 as a common
child.

Acceptance probabilities for parameter blocks require
likelihood function evaluations. It is not possible to factor-
ize conditional densities to achieve more computationally
efficient block updates. For instance, as it can be seen in
Fig. 2, changes in block θz(1) = (w1,1,1:3, b1,1) induced by
node h1,1 in layer 1 propagate through subsequent layers due
to the hierarchical MLP structure, thus prohibiting a factor-
ization of conditional density p(θz(1)|θz(2):z(6),D1:s). More
formally, each pair of node-based parameter blocks forms
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Fig. 2 Visual demonstration of
node-based parameter blocking
for the MLP(3, 2, 2, 2)
architecture. The MLP is
expressed as a DAG. Yellow
nodes and yellow plates
correspond to biases and
weights. Each of the blue hidden
layer nodes and of the gray
output layer nodes is assigned a
parameter block of yellow
parent nodes in the DAG

a v-structure, having label yi (purple node) as a descendant.
Since training label yi is observed, such v-structures are acti-
vated, and therefore any twonode-basedparameter blocks are
not conditionally independent given label yi .

As a demonstration of finer node-blocking for MLP(3, 2,
2, 2), set β1 = 2 in layer 1. For β1 = 2, blocks θz(1) =
w1,1,1:2 and θz(2) = (w1,1,3, b1,1) are generated within
node h1,1. Similarly, blocks θz(3) = w1,2,1:2 and θz(4) =
(w1,2,3, b1,2) are generated within node h1,2.

To recap on this toy example, layer-based grouping
produces a single block of eight parameters in layer 1, node-
based grouping produces two blocks of four parameters each
in layer 1, and a case of finer node-based grouping produces
four blocks of two parameters each in layer 1. It is thus illus-
trated that finer blocks per node provide a way to reduce the
number of parameters per Gibbs sampling block.

4.4 Finer blocks: MNIST example

After having used MLP(3, 2, 2, 2) as a toy example to
describe the basics of finer node-blocking, the wider
MLP(784, 10, 10, 10, 10) architecture is utilized to elabo-
rate on the practical relevance of smaller blocks per node.
An MLP(784, 10, 10, 10, 10) is fitted to the MNIST (and
FMNIST) training dataset in Sect. 5. An MLP(784, 10, 10,
10, 10) contains 8180 parameters, of which 7850, 110, 110
and 110 have children nodes in the first, second, third hidden
layer and output layer, respectively.

So, layer-blocking for MLP(784, 10, 10, 10, 10) involves
four parameter blocks θz(1), θz(2), θz(3), θz(4) of sizes
|θz(1)| = 7850, |θz(2)| = |θz(3)| = |θz(4)| = 110.
Metropolis-within-Gibbs updates for block θz(1) have zero
or near-zero acceptance rate due to the large block size of
|θz(1)| = 7850. Although each of blocks θz(2), θz(3), θz(4)
has nearly two orders of magnitude smaller size than θz(1),
a block size of |θz(2)| = |θz(3)| = |θz(4)| = 110 might be
large enough to yield Metropolis-within-Gibbs updates with
prohibitively low acceptance rate.

Node-blocking for MLP(784, 10, 10, 10, 10) entails a
block of 785 parameters for each node in the first hidden
layer, and a block of 11 parameters for each node in the sec-

ond and third hidden layer and in the output layer. Thus,
node-blocking addresses the low acceptance rate problem
related to large parameter blocks for block updates in all lay-
ers apart from the first hidden layer.

There is no practical need to carry out finer node-blocking
in nodes belonging to the secondor third hidden layer or to the
output layer of MLP(784, 10, 10, 10, 10), since each block
in these layers contains only 11 parameters based on node-
blocking. On the other hand, finer node-blocking is useful in
nodes belonging to the first hidden layer, since each block
related to such nodes contains a large number of 785 param-
eters. By setting β1 = 10, smaller blocks (each consisting of
78 or 79 parameters) are generated in the first hidden layer.
So, finer node-blocking disentangles block sizes in the first
hidden layer from input data dimensions, making it possible
to decrease block sizes and to consequently increase accep-
tance rates.

5 Experiments

Minibatch FNBG sampling is put into practice to make
empirical observations about several characteristics of approx-
imate MCMC in deep learning. In the experiments of this
section, parameters of MLPs are sampled. Three datasets are
used, namely a simulatednoisyversionof exclusive-or (Papa-
markou et al. 2022), MNIST (Lecun et al. 1998) and fashion
MNIST (Xiao et al. 2017). For brevity, exclusive-or and fash-
ion MNIST are abbreviated to XOR and FMNIST. Table 1
displays the correspondence between used datasets and fitted
MLPs.

The noisy XOR training and test datasets are visualized
in Fig. 9 of “Appendix B”. Random perturbations of (0, 0)
and of (1, 1), corresponding to gray and yellow points, are
mapped to 0 (circles). Moreover, random perturbations of
(0, 1) and of (1, 0), corresponding to purple and blue points,
are mapped to 1 (triangles). More information about the sim-
ulation of noisy XOR can be found in Papamarkou et al.
(2022).

Each MNIST and FMNIST image is firstly reshaped, by
converting it from a 28 × 28 matrix to a vector of length
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Table 1 Datasets used in the
experiments and MLPs fitted to
these datasets

Dataset Neural network
Name Sample size Architecture # Parameters

Training Test

Noisy XOR 5000 1200 MLP(2, 2, 1) 9

Noisy XOR 5000 1200 MLP(2, 2, 2, 2, 2, 2, 2, 1) 39

MNIST 60000 10000 MLP(784, 10, 10, 10, 10) 8180

FMNIST 60000 10000 MLP(784, 10, 10, 10, 10) 8180

Training and test dataset sample sizes as well as MLP parameter dimensions are shown

784 = 28 × 28, and it is subsequently standardized. This
image reshaping explains why theMLP(784, 10, 10, 10, 10)
model, which is fitted to MNIST and FMNIST, has an input
layer width of 784.

5.1 Experimental configuration

Binary classification for noisyXOR is performed via the like-
lihood function based on binary cross-entropy, as described
in Papamarkou et al. (2022). Multiclass classification for
MNIST and FMNIST is performed via the likelihood func-
tion given by Eq. (3.3), which is based on cross-entropy.

The sigmoid activation function is applied at each hid-
den layer of each MLP of Table 1. Furthermore, the sigmoid
activation function is also applied at the output layer of
MLP(2, 2, 1) and of MLP(2, 2, 2, 2, 2, 2, 2, 1), conforming
to the employed likelihood function for binary classifica-
tion. The softmax activation function is applied at the output
layer of MLP(784, 10, 10, 10, 10), in accordance with like-
lihood function (3.3) for multiclass classification. The same
MLP(784, 10, 10, 10, 10) model is fitted to the MNIST and
FMNIST datasets.

A normal prior π(θ) ∼ N (0, 10I ) is adopted for the
parameters θ ∈ R

n of each MLP model shown in Table 1.
Thus, a relatively high variance (equal to 10) is assigned a
priori to each parameter.

NBG sampling is run upon fitting MLP(2, 2, 1) and
MLP(2, 2, 2, 2, 2, 2, 2, 1) to the noisy XOR training set,
while FNBG sampling is run upon fitting MLP(784, 10, 10,
10, 10) to theMNISTandFMNIST training sets. So, parame-
ters are grouped by node inMLP(2, 2, 1) andMLP(2, 2, 2, 2,
2, 2, 2, 1), whereas multiple parameter groups per node are
formed in the first hidden layer of MLP(784, 10, 10, 10, 10)
as elaborated in Sect. 4.4. Parameters are grouped by node
from the secondhidden layer onwards inMLP(784, 10, 10, 10, 10).
All three MLPs of Table 1 are relatively shallow neu-
ral networks. However, MLP(784, 10, 10, 10, 10) has two
orders of magnitude larger input layer width in compar-
ison to MLP(2, 2, 1) and MLP(2, 2, 2, 2, 2, 2, 2, 1). So,
the higher dimension of MNIST and FMNIST input data

necessitates finer node-blocking in the first hidden layer of
MLP(784, 10, 10, 10, 10). On the other hand, the smaller
dimension of noisy XOR input data implies that finer blocks
per node are not required in the first hidden layer of
MLP(2, 2, 1) or of MLP(2, 2, 2, 2, 2, 2, 2, 1).

A normal proposal density is chosen for each parameter
block. The variance of each proposal density is a hyperpa-
rameter, thus enabling to tune themagnitude of proposal steps
separately for each parameter block. Preliminary FNBGpilot
runs have been carried out in order to tune the proposal vari-
ances. During this pre-training stage, the proposal variances
have been set initially to a single relatively high value across
all parameter blocks. Subsequently, the proposal variances
of blocks in each hidden layer have been reduced to smaller
values in deeper layers until non-vanishing acceptance rates
have been attained.

m = 10 Markov chains are realized for noisy XOR,
whereas m = 1 chain is realized for each of MNIST and
FMNIST due to computational resource limitations. 110000
iterations are run per chain realization, 10000 of which are
discarded as burn-in. Thereby, v = 100000 post-burnin iter-
ations are retained per chain realization. Acceptance rates are
computed from all 100000 post-burnin iterations per chain.

Monte Carlo approximations of posterior predictive pmfs
are computed according to Eq. (3.6) for each data point of
each test set. To reduce the computational cost, the last v =
10,000 iterations of each realized chain are used in Eq. (3.6).

Predictions for noisy XOR are made using the binary
classification rule mentioned in Papamarkou et al. (2022).
Predictions for MNIST and for FMNIST are made using the
multiclass classification rule specified by Eq. (3.7). Given a
single chain realization based on a training set, predictions
are made for every point in the corresponding test set; the
predictive accuracy is then computed as the number of cor-
rect predictions over the total number of points in the test
set. For the noisy XOR test set, the mean of predictive accu-
racies across the m = 10 realized chains is reported. For
the MNIST and FMNIST test sets, the predictive accuracy
based on the corresponding single chain realization (m = 1)
is reported.
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5.2 Exact versus approximate MCMC

An illustrative comparison between approximate and exact
NBGsampling ismade in terms of acceptance rate, predictive
accuracy and runtime. The comparison between approximate
and exact NBG sampling is carried out in the context of noisy
XOR only, since exact MCMC is not feasible for the MNIST
and FMNIST examples due to vanishing acceptance rates
and high computational requirements.

MLP(2, 2, 2, 2, 2, 2, 2, 1) is fitted to the noisy XOR train-
ing set under four scenarios. For scenario 1, approximate
NBG sampling is run with a batch size of 100 to simulate
m = 10 chains. For scenario 2, exact NBG is run to simulate
10 chains. For scenario 3, exact NBG is run until 10 chains
are obtained, each having an acceptance rate ≥ 5%. For sce-
nario 4, exact NBG is run until 10 chains are acquired, each
with an acceptance rate ≥ 20%. 11 and 23 chains have been
run in total under scenarios 3 and 4, respectively, to get 10
chains that satisfy the acceptance rate lower bounds in each
scenario.

It is not suggested to develop a sampling algorithm that
relies on some acceptance rate threshold as a criterion for
chain retention, since such a criterionwould introduce bias in
the estimation of the target parameter posterior density. The
purpose of this experiment is to showcase that the avoidance
of prohibitively low acceptance rates enables the generation
of chains with predictive capacity.

For approximate NBG sampling (scenario 1), the proposal
variance is set to 0.04. For the three exact NBG sampling sce-
narios, the proposal variance is lowered to 0.001 in order
to mitigate decreased acceptance rates in the presence of
increased sample size (5000 training data points) relatively
to the batch size of 100 used in approximate sampling.

Figure 3a displays boxplots of node-specific acceptance
rates for approximate and exact NBG sampling without
lower bound conditions on acceptance rates (scenarios 1
and 2). A pair of boxplots is shown for each of the 13
nodes in the six hidden layers and one output layer of
MLP(2, 2, 2, 2, 2, 2, 2, 1). The left and right boxplots per
pair correspond to approximate and exact NBG sampling.
Blue lines represent medians.

Three empirical observations are drawn from Fig. 3a. First
of all, approximate NBG attains higher acceptance rates than
exact NBG according to the (blue) medians, despite setting
higher proposal variance in the former in comparison to the
latter (0.04 and 0.001, respectively). Secondly, approximate
NBG attains less volatile acceptance rates than exact NBG
as seen from the boxplot interquartile ranges. Acceptance
rates for exact NBG range from near 0% to about 50% as
neural network depth increases, exhibiting lack of stability
due to entrapment in local modes in some chain realiza-
tions. Thirdly, acceptance rates decrease as depth increases.
For instance, exact NBG yields median acceptance rates of

63.83% and 20.72% in nodes 1 and 13, respectively. The
attenuation of acceptance rate with depth is further discussed
in Sect. 5.3.

Figure 3b shows boxplots of predictive accuracies for the
four scenarios under consideration. Approximate NBG has
a median predictive accuracy of 98.88%, with interquartile
range concentrated around the median and with a single out-
lier (87.25%) in 10 chain realizations. Exact NBG without
conditions on acceptance rate and exact NBG conditioned
on acceptance rate ≥ 5% have lower median predictive
accuracies (86.92% and 95.38%) and higher interquartile
ranges than exact NBG. Exact NBG conditioned on accep-
tance rate ≥ 20% attains a median predictive accuracy of
100%; nine out of 10 chain realizations yield 100% accu-
racy, and one chain gives an outlier accuracy of 72.83%. The
overall conclusion is that approximate NBG retains a predic-
tive advantage over exact NBG, since minibatch sampling
ensures consistency in terms of high predictive accuracy
and reduced predictive variability. Exact NBG conditioned
on higher acceptance rates can yield near-perfect predictive
accuracy in the low parameter and data dimensions of the toy
noisy XOR example, but stability and computational issues
arise, as many chains with near-zero acceptance rates are dis-
carded before 10 chains with the required level of acceptance
rate (≥ 20%) are obtained.

Figure 3c shows a barplot of runtimes (in hours) for the
four scenarios under consideration. Purple bars represent
runtimes for the 10 retained chains per scenario, whereas
gray bars indicate runtimes for the chains that have been dis-
carded due to unmet acceptance rate requirements. As seen
from a comparison between purple bars, approximate NBG
has shorter runtime (for retained chains of same length) than
exact NBG, which is explained by the fact that minibatching
uses a subset of the training set at each approximate NBG
iteration. A comparison between gray bars in scenarios 3 and
4 demonstrates that exact NBG runtimes for discarded chains
increase with increasing acceptance rate lower bounds. By
observing Fig. 3b, c jointly, it is pointed out that predictive
accuracy improvements of exact NBG (arising from higher
acceptance rate lower bounds) come at higher computational
costs.

Observation 1 Exact MCMC algorithms based on the
Metropolis-Hastings acceptance mechanism are not feasible
for feedforward neural networks due to vanishing acceptance
rates and high computational cost. Splitting the parameter
space into smaller blocks recovers higher acceptance rates,
and minibatch MCMC sampling reduces the computational
cost per sampling step. With relatively small penalty in pre-
dictive accuracy, minibatch blockedGibbs samplingmakes it
possible to traverse the parameter space with reduced com-
putational cost. Being able to shift from no mixing of exact
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Fig. 3 A comparison between approximate and exact NBG sampling.
MLP(2, 2, 2, 2, 2, 2, 2, 1) is fitted to noisy XOR under four scenarios,
acquiring 10 chains per scenario. Scenario 1: approximate NBG with
a batch size of 100. Scenario 2: exact NBG. Scenario 3: exact NBG

with acceptance rate ≥ 5%. Scenario 4: exact NBG with acceptance
rate ≥ 20%. Chains with acceptance rates below 5% in scenario 3 and
below 20% in scenario 4 are discarded until 10 chains are attained in
each case

MCMC to slow mixing of approximate MCMC yields gains
in predictive accuracy.

5.3 Depth and acceptance rate

Figure 4 displays mean acceptance rates across m = 10
chains realized viaminibatchNBGupon fittingMLP(2, 2, 2,
2, 2, 2, 2, 1) to noisy XOR. In particular, Fig. 4a shows the
mean acceptance rate for each node in the six hidden lay-
ers and one output layer of MLP(2, 2, 2, 2, 2, 2, 2, 1), while
Fig. 4b shows the mean acceptance rate for each of these
seven (six hidden and one output) layers. A batch size of 100
is used for minibatch NBG. The same set of 10 chains have
been used in Figs. 3 and 4.

Figures 3a and 4a provide alternative views of node-
specific acceptance rates. The former figure represents such
information via boxplots and medians, whereas the latter
makes use of a barplot of associated means.

Figure 4 demonstrates that if the proposal variance is the
same for all parameter blocks across layers, then the accep-
tance rate reduces with depth. For instance, it can be seen in

Fig. 4b that the acceptance rates for hidden layers 1, 2 and 3
are 56.31%, 36.18% and 26.56%, respectively.

Using a common proposal variance for all parameter
blocks across layers generates disparities in acceptance rates,
with higher rates in shallower layers and lower rates in deeper
layers. These disparities become more pronounced with big
data or with high parameter dimensions. For example, sam-
pling MLP(784, 10, 10, 10, 10) parameters with the same
proposal variance in all parameter blocks is not feasible in
the case ofMNIST or FMNIST; the acceptance rates are high
in the first hidden layer and drop near zero in the output layer.
FNBG sampling enables to reduce the proposal variance for
deeper layers, thus avoiding vanishing acceptance rates with
increasing depth.

Tables 5 and 6 of “Appendix C” exemplify empirically
tuned proposal variances for minibatch FNBG sampling of
MLP(784, 10, 10, 10, 10) parameters in the respective cases
of MNIST and FMNIST. Batch sizes of 600, 1800, 3000
and 4200 are employed, corresponding to 1%, 3%, 5% and
7% of the MNIST and FMNIST training sets. For each of
these four batch sizes and for each training set, the proposal
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Fig. 4 Mean acceptance rates (per node and per layer) across 10 chains
realized via minibatch NBG sampling of the MLP(2, 2, 2, 2, 2, 2, 2, 1)
parameters. The MLP is fitted to noisy XOR. A batch size of 100 is
used

variance per layer is reduced during pre-training until the
acceptance rate of the layer is not prohibitively low, and sub-
sequently the proposal variance tuned via pre-training is used
for computing the acceptance rate of the corresponding layer
from a chain realization. Tables 5 and 6 demonstrate that if
proposal variances are reduced in deeper layers, then accep-
tance rates do not vanish with depth. For increasing batch
size, acceptance rates drop across all layers, as expectedwhen
shifting from approximate towards exact MCMC.

As part of Table 5, a chain is simulated upon fitting
MLP(784, 10, 10, 10, 10) to the MNIST training set via
minibatch FNBG sampling with a batch size of 3000. Fig-
ure5, which comprises a grid of 4 × 2 = 8 traceplots, is
produced from that chain. Each row of Fig. 5 is related to one
of the 8180 parameters of MLP(784, 10, 10, 10, 10). More
specifically, the first, second, third and fourth row correspond
to parameter θ1005 in hidden layer 1, parameter θ7872 in hid-
den layer 2, parameter θ8008 in hidden layer 3 and parameter
θ8107 in the output layer. A pair of traceplots per parameter
is shown in each row; the right traceplot is more zoomed out
than the left one. All traceplots in the right column share a
common range of [−8, 8] in their vertical axes.

It is observed that the zoomed-in traceplots (left column
of Fig. 5) do not exhibit entrapment in local modes irre-

spective of network depth, agreeing with the non-vanishing
acceptance rates of Table 5. Furthermore, it is seen from
the zoomed-out traceplots (right column of Fig. 5) that chain
scales decrease in deeper layers. For example, the right
traceplot of parameter θ8107 (output layer) has non-visible
fluctuations under a y-axis range of [−8, 8], whereas the
right traceplot of parameter θ1005 (first hidden layer) fluc-
tuates more widely under the same y-axis range.

Figure 5 suggests that chains of parameters in shallower
layers perform more exploration, while chains of parame-
ters in deeper layers carry out more exploitation. This way,
chain scales collapse towards point estimates for increasing
network depth.

5.4 Batch size and log-likelihood

For each batch size shown in Fig. 6a, the likelihood func-
tion of Eq. (3.3) is evaluated on 10 batch samples, which
are drawn from the MNIST training set. A boxplot is then
generated from the 10 log-likelihood values and it is dis-
played in Fig. 6a. The log-likelihood function is normalized
by batch size in order to obtain visually comparable boxplots
across different batch sizes. In PyTorch, the normalized
log-likelihood is computed via the CrossEntropyLoss
class initialized with reduction=‘mean’. In each box-
plot, the blue line and yellow point correspond to the median
andmean of the 10 associated log-likelihood values. The hor-
izontal gray line represents the log-likelihood value based on
the whole MNIST training set. Figure6b is generated using
the FMNIST training set, following an analogous setup.

Figures 6a and 6b demonstrate that log-likelihood values
are increasingly volatile for decreasing batch size. Further-
more, the volatility of log-likelihood values vanishes as the
batch size gets close to the training sample size. So, Fig. 6
confirms visually that the approximate likelihood tends to the
exact likelihood for increasing batch size. Thus, the batch size
in FNBG sampling is preferred to be as large as possible, up
to the point that (finer) block acceptance rates do not become
prohibitively low.

5.5 Depth and predictions

Figure 7 explores how network depth affects predictive accu-
racy in approximate MCMC. Shallower MLP(2, 2, 1), con-
sistingof onehidden layer, anddeeperMLP(2, 2, 2, 2, 2, 2, 2, 1),
consisting of six hidden layers, are fitted to the noisy XOR
training set using minibatch NBG with a batch size of 100
and a proposal variance of 0.04; m = 10 chains are realized
for each of the twoMLPs. Subsequently, the predictive accu-
racy per chain is evaluated on the noisy XOR test set. One
boxplot is generated for each set of 10 chains, as shown in
Fig. 7. Blue lines represent medians.
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Fig. 5 Markov chain traceplots of four parameter coordinates of
MLP(784, 10, 10, 10, 10), which is fitted to MNIST via minibatch
FNBG sampling with a batch size of 3000. Each row displays two
traceplots of the same chain for a single parameter; the traceplot on the

right is more zoomed-out than the one on the left. The traceplots of the
right column share a common range on the vertical axes. Vertical dotted
lines indicate the end of burnin

The same 10 chains are used to generate relevant plots in
Figs. 3b, 4 and 7. In particular, the leftmost boxplot in Fig. 3b
and right boxplot in Fig. 7 stem from the same 10 chains and
are thus identical. Figure4 shows mean acceptance rates per
node and per layer across the 10 chains that also yield the
right boxplot of predictive accuracies in Fig. 7.

MLP(2, 2, 1) and MLP(2, 2, 2, 2, 2, 2, 2, 1) have respec-
tive predictive accuracy medians of 86.75% and 98.88% as
blue lines indicate in Fig. 7, so predictive accuracy increases
with increasing depth. Moreover, the interquartile ranges
of Fig. 7 demonstrate that a deeper architecture yields less
volatile, and in that sense more stable, predictive accuracy.
As an overall empirical observation, increasing the network
depth in approximate MCMC seems to produce higher and
less volatile predictive accuracy.

Observation 2 Increasing the depth of a feedforward neural
network increases the predictive accuracy but reduces the
acceptance rates for blocks in deeper layers. Reducing the
proposal variance in deeper layers helps counter the reduc-
tion of acceptance rates. Increasing the network width in
initial layers does not have a negative impact on acceptance

rates, in contrast to the negative impact of increasing depth
on acceptance rates.

5.6 Batch size and predictions

This subsection assesses empirically the effect of batch
size on predictive accuracy in approximate MCMC. To this
end, MLP(784, 10, 10, 10, 10) is fitted to the MNIST and
FMNIST training sets using minibatch FNBG sampling with
batch sizes of 600, 1800, 3000 and 4200, which correspond
to 1%, 3%, 5% and 7% of each training sample size. One
chain is realized per combination of training set and batch
size. Table 2 reports the predictive accuracy for each chain.

The same chains are used to compute predictive accuracies
in Table 2 as well as acceptance rates in Tables 5 and 6 of
“Appendix C”. The chain that yields the predictive accuracy
for MNIST and for a batch size of 3000 (first row and third
column of Table 2) is partly visualized by traceplots in Fig. 5.

According to Table 2, the highest accuracy of 90.75%
for MNIST and of 80.89% for FMNIST are attained by
employing a batch size of 3000. Overall, predictive accu-
racy increases as batch size increases. However, predictive
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Fig. 6 Boxplots of normalized log-likelihood values for MNIST and
FMNIST. Each boxplot summarizes normalized log-likelihood values
of 10 batch samples for a given batch size. To normalize, each log-
likelihood value is divided by batch size. Blue lines and yellow points
correspond tomedians andmeans. Horizontal gray lines represent exact
log-likelihood values for batch size equal to training sample size

Fig. 7 A comparison between a shallower and a deeper MLP archi-
tecture. Each of MLP(2, 2, 1) and MLP(2, 2, 2, 2, 2, 2, 2, 1) is fitted
to noisy XOR via minibatch NBG sampling with a batch size of 100.
Predictive accuracy boxplots are generated from 10 chains per MLP.
Blue lines indicate medians

accuracy decreases when batch size increases from 3000 to
4200; this is explained by the fact that a batch size of 4200
is too large, in the sense that it reduces acceptance rates (see
Tables 5 and 6). So, as pointed out in Sect. 5.4, a tuning
guideline is to increase the batch size up to the point that no
substantial reduction in finer block acceptance rates occurs.

Table 2 Predictive accuracies obtained by fitting
MLP(784, 10, 10, 10, 10) to MNIST and to FMNIST via minibatch
FNBG sampling with different batch sizes

Dataset Batch size
1% 3% 5% 7%
0.6K 1.8K 3K 4.2K

MNIST 85.99 89.01 90.75 90.43

FMNIST 71.50 80.07 80.89 79.17

An attained predictive accuracy of 90.75% on MNIST
demonstrates that non-convergent chains (simulated via
minibatch FNBG) learn fromdata, since data-agnostic guess-
ing based on pure chance has a predictive accuracy of 10%.
While stochastic optimization algorithms for deep learn-
ing achieve predictive accuracies higher than 90.75% on
MNIST, the goal of this work has not been to construct an
approximate MCMC algorithm that outperforms stochastic
optimization on the predictive front. The main objective has
been to demonstrate that approximateMCMC for neural net-
works learns from data and to uncover associated sampling
characteristics, such as diminishing chain ranges (Fig. 5) and
diminishing acceptance rates (Tables 5 and 6) for increasing
network depth. Similar predictive accuracies in the vicinity of
90% using Hamiltonian Monte Carlo for deep learning have
been reported in the literature (Wenzel et al. 2020; Izmailov
et al. 2021). Nonetheless, this body of relevant work relies
on chain lengths one or two orders of magnitude shorter; for
instance, Izmailov et al. (2021) have run up to 900 iterations
per chain realization. The present paper proposes to circum-
vent vanishing acceptance rates by grouping neural network
parameters into smaller blocks, thus enabling the generation
of lengthier chains.

Observation 3 Increasing the batch size inminibatchMCMC
samplingof feedforwardneural networkparameters increases
the predictive accuracy. This observation is anticipated, in
the sense that minibatchMCMCbecomes exactMCMCwhen
the batch size is equal to the training sample size. However,
the batch size can be increased up to the point that no sub-
stantial reduction in acceptance rates occurs.

5.7 Chain length and predictions

It is reminded that 110000 iterations are run per chain in the
experiments herein, of which the first 10000 are discarded as
burnin. The last v = 10000 (out of the remaining 100000)
iterations are used for making predictions via Bayesian
marginalization based on Eq. (3.6). Only 10000 iterations
are utilized in Eq. (3.6) to cap the computational cost for
predictions.

There exists a tractable solution to Bayesian marginal-
ization, since the approximate posterior predictive pmf of
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Table 3 Predictive accuracies obtained from different chain lengths

Dataset Chain length

1K 10K 20K 30K

MNIST 88.31 90.75 91.12 91.20

FMNIST 78.93 80.89 81.36 81.53

MLP(784, 10, 10, 10, 10) is fitted to MNIST and to FMNIST via mini-
batch FNBG sampling with a batch size of 3000. One chain is realized
per dataset. Subsequently, predictions are made via Bayesian marginal-
ization using chunks of different length from the end of the realized
chains

Eq. (3.6) can be computed in parallel both in terms of Monte
Carlo iterations and of test points. The implementation of
such a parallel solution is deferred to future work.

In the meantime, it is examined here how chain length
affects predictive accuracy. Along these lines, predictive
accuracies are computed from the last 1000, 10000, 20000
and 30000 iterations of the chain realized via minibatch
FNBG with a batch size of 3000 for each of MNIST and
FMNIST (see Table 3). The last 10000 and all 100000
post-burnin iterations of the same chain generate predictive
accuracies in Table 2 and acceptance rates in Tables 5 and 6,
respectively.

Table 3 demonstrates that predictive accuracy increases
(both forMNISTandFMNIST) as chain length increases. So,
as a chain traverses the parameter space of a neural network,
information of predictive importance accrues despite the lack
of convergence. It can also be seen from Table 3 that the
rate of improvement in predictive accuracy slows down for
increasing chain length.

Observation 4 Despite the lack of convergence and the
slow mixing, increasing the number of approximate MCMC
iterations upon sampling from the parameter space of a feed-
forward neural network increases the predictive accuracy.
The rate of improvement in predictive accuracy slows down
for increasing chain length.

5.8 Augmentation and predictions

To assess the effect of data augmentation on predictive
accuracy, three image transformations are performed on the
MNIST and FMNIST training sets, namely rotations by
angle, blurring, and colour inversions. Images are rotated
by angles randomly selected between −30 and 30 degrees.
Each image is blurred with probability 0.9. Blur is randomly
generated from a Gaussian kernel of size 9 × 9. The stan-
dard deviation of the kernel is randomly selected between 1
and 1.5. Each image is colour-inverted with probability 0.5.
Figure10 in “Appendix D” displays examples ofMNIST and
FMNIST training images that have been rotated, blurred or
colour-inverted according to the described transformations.

Table 4 Predictive accuracies obtained from different data augmenta-
tion schemes

Dataset Transform

None Rotation Blur Inversion

MNIST 90.75 86.19 85.66 36.87

FMNIST 80.89 6.62 7.46 8.61

MLP(784, 10, 10, 10, 10) is fitted to each of the augmented MNIST
and FMNIST training sets via minibatch FNBG sampling with a batch
size of 3000. Predictive accuracies are computed on the corresponding
non-augmented test sets. The first column reports predictive accuracies
based on the non-augmented MNIST and FMNIST training sets

Each of the three transformations is applied to the
whole MNIST and FMNIST training sets. Subsequently,
MLP(784, 10, 10, 10, 10) is fitted to each transformed train-
ing set via minibatch FNBG with a batch size of 3000 and
with proposal variances specified inTables 5 and6.One chain
is simulated per transformed training set. Predictive accu-
racies are computed on the corresponding untransformed
MNIST and FMNIST test sets and are reported in Table 4.
Moreover, predictive accuracies based on the untransformed
MNIST and FMNIST training sets are available in the first
column of Table 4, as previously reported in Table 2.

According to Table 4, if data augmentation is performed,
then predictive accuracy deteriorates drastically. Notably,
data augmentation has catastrophic predictive consequences
for FMNIST. These empirical findings agree with the ‘dirty
likelihood hypothesis’ of Wenzel et al. (2020), according to
which data augmentation violates the likelihood principle.

Observation 5 Approximate MCMC sampling of feedfor-
ward neural network parameters in the presence of aug-
mented data remains an open problem. Data augmentation
violates the likelihood principle and consequently reduces
drastically the predictive accuracy.

5.9 Uncertainty quantification

Approximate MCMC enables predictive uncertainty quan-
tification (UQ) via Bayesian marginalization. Such a princi-
pled approach toUQconstitutes an advantage of approximate
MCMC over stochastic optimization in deep learning. This
subsection showcases how predictive uncertainty is quanti-
fied for neural networks via minibatch FNBG sampling.

Recall that one chain has been simulated for each of
MNIST and FMNIST to compute the predictive accuracies of
column 3 in Table 2 (see Sect. 5.6). Those chains are used to
estimate posterior predictive probabilities for some images
in the corresponding test sets, as shown in Fig. 8. All test
images in Fig. 8 have been correctly classified via Bayesian
marginalization.
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Fig. 8 Demonstration of UQ for some correctly classified MNIST and
FMNIST test images. The highest posterior predictive probability is
displayed for each image associated with low uncertainty, whereas the
two highest posterior predictive probabilities are displayed for each
image associated with high uncertainty

The first and second MNIST test images in Fig. 8a show
numbers 0 and 7, with corresponding posterior predictive
probabilities 0.98 and 0.97 that indicate near-certainty about
the classification outcomes. The third MNIST test image in
Fig. 8a shows number 9. Attempting to classify this image
by eye casts doubt as to whether the number in the image
is 9 or 4. While Bayesian marginalization correctly clas-
sifies the number as 9, the posterior predictive probability
p̂(y = 9|x,D1:s) = 0.35 is relatively low, indicating
uncertainty in the prediction. Moreover, the second highest
posterior predictive probability p̂(y = 4|x,D1:s) = 0.28
identifies number 4 as a probable alternative, in agreement
with human perception. All in all, posterior predictive prob-
abilities and human understanding are aligned in terms of
perceived predictive uncertainties and in terms of plausible
classification outcomes. Image 4 is aligned with image 3 of
Fig. 8a regarding UQ conclusions.

Figure 8b, which entails FMNIST test images, is analo-
gous to Fig. 8a from a UQ point of view. In Fig. 8b, FMNIST
test images 1 and 2 show trousers and a bag, with corre-
sponding posterior predictive probabilities 0.99 and 0.96
that indicate near-certainty about the classification outcomes.
The third FMNIST test image of Fig. 8b shows a shirt. It is
not visually clear whether this image depicts a shirt or a
pullover. While Bayesian marginalization correctly identi-
fies the object as a shirt, the posterior predictive probabilities
p̂(y = shirt|x,D1:s) = 0.33 and p̂(y = pullover|x,D1:s) =
0.32 capture human uncertainty and identify the two most
plausible classification outcomes. Image 4 is analogous to
image 3 of Fig. 8b in terms of UQ conclusions.

Observation 6 Anon-convergent chain realization viaapprox-
imate MCMC sampling of feedforward neural network
parameters can help with the assessment of predictive uncer-
taintymeaningfully, that is in agreementwith human insights.

6 Future work

Several future research directions emerge from this paper;
three software engineering extensions are planned, three
methodological developments are proposed, and one theo-
retical question is posed.

To startwith possible software engineeringwork,Bayesian
marginalization can be parallelized across test points and
across FNBG iterations per test point. Additionally, an adap-
tive version of FNBG sampling can be implemented based
on existing Gibbs sampling methods for proposal variance
tuning (Andrieu and Thoms 2008), thus automating tuning
and reducing tuning computational requirements. Moreover,
FNBG sampling can be implemented with a subsampling
mechanism that sets the batch size adaptively (Bardenet et al.
2014).

In terms of methodological developments, alternative
ways of grouping parameters in FNBG samplingmay be con-
sidered. For example, parameters may be grouped according
to their covariance structure, as estimated from pilot FNBG
runs. Furthermore, functional priors proposed by Tran et al.
(2022) or adaptations of themmay be utilized in conjunction
with FNBG. Moreover, FNBG sampling may be developed
for neural network architectures other than MLPs. To this
end, DAG representations of other neural network archi-
tectures will be devised and fine parameter blocks will be
identified from the DAGs.

A theoretical question of interest is how to construct lower
bounds of predictive accuracy for minibatch FNBG (and
for minibatch MCMC more generally) as a function of the
distance between the exact and approximate parameter poste-
rior density. It has been observed empirically that minibatch
FNBG has predictive capacity, yet theoretical guarantees for
predictive accuracy have not been established.

Theproposed sampling approach and future developments
face twomain limitations. Firstly, it remains an open question
how to sample neural network parameters given augmented
training data, as previously pointed out by the ‘dirty likeli-
hood hypothesis’ of Wenzel et al. (2020). Secondly, as the
depth of a feedforward neural network increases, the pro-
posal variance of FNBG is reduced for deeper layers. Thus,
the proposal variance for deeper layers may be set to a value
too close to zero from a practical point of view.
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Software and data

The FNBG sampler for MLPs has been implemented
under the eeyore package using Python and PyTorch.
eeyore is available at https://github.com/papamarkou/
eeyore. Source code for the examples of Sect. 5 can be found
in dmcl_examples, forming a separate Python package
based on eeyore. dmcl_examples can be downloaded
from https://github.com/papamarkou/dmcl_examples.
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Appendix A: Blocked Gibbs

Algorithm 2 summarizes blocked Gibbs sampling in the con-
text of sampling MLP parameters, as set out in Sect. 3.2.
Remarks 1 and 2 provide expressions for the acceptance
probability of candidate state θ�

z(q) of Algorithm 1 (MWBG
sampling), as stated in Eq. (4.1) of Sect. 4.1.

Remark 1 Consider an MLP(κ0:ρ) with likelihood function
L(y1:s |x1:s, θ) specified by Eq. (3.3), where {(xi , yi ) : i =
1, 2, . . . , s} is a training dataset related to a supervised
classification problem and θ are the MLP parameters. Let
π(θ) = ∏m

q=1 π(θz(q)) be a parameter prior density based
on a partition {θz(1), θz(2), . . . , θz(m)} of θ . A MWBG ver-

Algorithm 2 Blocked Gibbs sampling
1: Input: training dataset D1:s
2: Input: initial state θ

(0)
z(1):z(m)

3: Input: number of sampling iterations v

4: for t = 1, . . . , v do
5: Draw θ

(t)
z(1) ∼ p(θz(1)|θ(t−1)

z(2):z(m),D1:s)
6: Draw θ

(t)
z(2) ∼ p(θz(2)|θ(t)

z(1), θ
(t−1)
z(3):z(m),D1:s)

.

.

.

7: Draw θ
(t)
z(q) ∼ p(θz(q)|θ(t)

z(1):z(q−1), θ
(t−1)
z(q+1):z(m),D1:s)

.

.

.

8: Draw θ
(t)
z(m) ∼ p(θz(m)|θ(t)

z(1):z(m−1),D1:s)
9: end for

sion of Algorithm 2 is used for sampling from the target
density p(θ |x1:s, y1:s). At iteration t , a candidate state θ�

z(q)

for parameter block θz(q) is drawn from the isotropic normal

proposal densityN (θ
(t−1)
z(q) , σ 2

q Iq). The acceptance probabil-

ity a(θ�
z(q), θ

(t−1)
z(q) ) of θ�

z(q) is given by

a(θ�
z(q), θ

(t−1)
z(q) )

= min

{ L(y1:s |x1:s, θ�)π(θ�
z(q))

L(y1:s |x1:s, θ(t−1))π(θ
(t−1)
z(q) )

, 1

}

,
(A1)

where θ(t−1) and θ� denote the values of θ obtained by invert-
ing the permutations

(θ
(t)
z(1):z(q−1), θ

(t−1)
z(q):z(m)) and (θ

(t)
z(1):z(q−1), θ

�
z(q), θ

(t−1)
z(q+1):z(m)),

respectively.

Remark 2 Consider an MLP(κ0:ρ) with cross-entropy loss
function E(θ,D1:s), where D1:s = {(xi , yi ) : i =
1, 2, . . . , s} is a training dataset related to a supervised classi-
fication problem and θ are theMLP parameters. It is assumed
that E is unnormalized, which means that it is not scaled by
batch size. Under the sampling setup of Remark 1, the accep-
tance probability of θ�

z(q), expressed in terms of cross-entropy
loss function E , is given by

a(θ�
z(q), θ

(t−1)
z(q) )

= min

⎧
⎨

⎩

π(θ�
z(q)) exp

(E(θ(t−1),D1:s)
)

π(θ
(t−1)
z(q) ) exp (E(θ�,D1:s))

.1

⎫
⎬

⎭
.

(A2)

The relation between the cross-entropy loss function

E(θ,D1:s) =

−
s∑

i=1

κρ∑

k=1

1{yi=k} log (hρ,k(xi , θ))
(A3)
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and the likelihood function of Eq. (3.3) is given by

L(y1:s |x1:s, θ) = exp (−E(θ,D1:s)). (A4)

Combining Eqs. (A1) and (A4) yields Eq. (A2).
Remark 1 states the acceptance probability in statistical

terms using the likelihood function, whereas Remark 2 states
it in deep learning terms using the cross-entropy loss func-
tion.Remark 2 is practical in the sense that deep learning soft-
ware frameworks, being geared towards optimization, pro-
vide implementations of cross-entropy loss. For example, the
unnormalized cross-entropy loss E , as stated in Eq. (A3), can
be computed in PyTorch via the CrossEntropyLoss
class initialized with reduction=‘sum’.

Appendix B: Noisy XOR

Figure 9 shows the noisy XOR training and test datasets used
in Sect. 5. Information about how these noisy XOR datasets
have been simulated is available in Papamarkou et al. (2022).

Fig. 9 Noisy XOR training set (left) and test set (right) consisting of
5000 and 1200 data points, respectively

Appendix C: Tuning

Tables 5 and 6 show that acceptance rates obtained from
minibatch FNBG sampling can be retained at non-vanishing
levels in deeper layers by reducing the proposal variances
corresponding to these layers. MLP(784, 10, 10, 10, 10) is
fitted to MNIST and to FMNIST via minibatch FNBG sam-
plingwith different batch sizes. The acceptance rate per layer
is computed from one chain for each batch size. Tables 5
and 6 report the obtained acceptance rates for MNIST and
for FMNIST, respectively.

Table 5 Acceptance rate per layer obtained by fitting
MLP(784, 10, 10, 10, 10) to MNIST via minibatch FNBG sampling
with different batch sizes

Layer σ Rate

Batch size = 600 (1%)

Hidden 1st 5 · 10−2 45.56

2nd 5 · 10−4 26.43

3rd 5 · 10−4 26.28

Output 5 · 10−5 29.18

Batch size = 1800 (3%)

Hidden 1st 2 · 10−2 41.41

2nd 2 · 10−4 30.68

3rd 2 · 10−4 31.92

Table 5 continued

Layer σ Rate

Output 2 · 10−5 35.66

Batch size = 3000 (5%)

Hidden 1st 10−2 54.95

2nd 10−4 45.73

3rd 10−4 44.98

Output 10−5 51.54

Batch size = 4200 (7%)

Hidden 1st 10−2 31.68

2nd 10−4 20.17

3rd 10−4 19.76

Output 10−5 22.22

σ denotes the proposal standard deviation

Appendix D: Augmentation

Figure 10 shows examples of images from the MNIST
and FMNIST training sets transformed by rotation, blur-
ring and colour inversion. These transformations are used in
Sect. 5.8 to assess the effect of data augmentation on predic-
tive accuracy. Details about the performed transformations
are available in Sect. 5.8.
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Table 6 Acceptance rate per layer obtained by fitting
MLP(784, 10, 10, 10, 10) to FMNIST via minibatch FNBG sam-
pling with different batch sizes

Layer σ Rate

Batch size = 600 (1%)

Hidden 1st 5 · 10−2 47.86

2nd 5 · 10−4 34.61

3rd 5 · 10−4 32.99

Output 5 · 10−5 37.73

Batch size = 1800 (3%)

Hidden 1st 2 · 10−2 60.34

2nd 2 · 10−4 46.78

3rd 2 · 10−4 45.91

Output 2 · 10−5 52.07

Batch size = 3000 (5%)

Hidden 1st 10−2 66.94

2nd 10−4 57.40

3rd 10−4 58.48

Output 10−5 64.64

Batch size = 4200 (7%)

Hidden 1st 10−2 55.28

2nd 10−4 47.10

3rd 10−4 47.19

Output 10−5 52.75

σ denotes the proposal standard deviation

Fig. 10 Examples of MNIST and of FMNIST training images trans-
formed by rotation, blurring and colour inversion. Such transformations
are deployed in the data augmentation experiments of Sect. 5.8. Exam-
ples of untransformed MNIST and FMNIST training images are also
displayed
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