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Abstract
Several joint models for longitudinal and survival data have been proposed in recent years. In particular, many authors have
preferred to employ the Bayesian approach to model more complex structures, make dynamic predictions, or use model
averaging. However, Markov chain Monte Carlo methods are computationally very demanding and may suffer convergence
problems, especially for complex models with random effects, which is the case for most joint models. These issues can be
overcome by estimating the parameters of each submodel separately, leading to a natural reduction in the complexity of the
joint modelling, but often producing biased estimates. Hence, we propose a novel two-stage approach that uses the estimations
from the longitudinal submodel to specify an informative prior distribution for the random effects when estimating themwithin
the survival submodel. In addition, as a bias correction mechanism, we incorporate the longitudinal likelihood function in
the second stage, where its fixed effects are set according to the estimation using only the longitudinal submodel. Based on
simulation studies and real applications, we empirically compare our proposal with joint specification and standard two-stage
approaches considering different types of longitudinal responses (continuous, count and binary) that share information with
a Weibull proportional hazard model. The results show that our estimator is more accurate than its two-stage competitor and
as good as jointly estimating all parameters. Moreover, the novel two-stage approach significantly reduces the computational
time compared to the joint specification.

Keywords Bayesian inference · Bias reduction · Longitudinal data · Time-to-event

Mathematics Subject Classification 62F15 · 62N02

1 Introduction

Jointmodelling for longitudinal and survival data has become
very popularmedical applications (IbrahimandMolenberghs
2009; Neuhaus et al. 2009; Wu et al. 2011). This class of
models is a useful tool when it is necessary to study the asso-
ciation between repeated measurements and time until an
event of interest (Papageorgiou et al. 2019). When consider-
ing both information together (simultaneously) into a single
model, the estimates are less biased and there is an increase
in statistical efficiency, since clinical hypotheses consider in
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advance that longitudinal and survival data are connected in
some way (Muthén et al. 2009; Ibrahim et al. 2010).

The complexity of the joint modelling often entails two
critical issues. The first one is related to identification prob-
lems due to the large number of parameters (Wu 2009; Gould
et al. 2015; Papageorgiou et al. 2019). On the other hand,
the calculation of marginal likelihood and survival functions
include integrals without closed-form, so numerical integra-
tion methods are required, making the inferential process
more time-consuming (Lesaffre and Spiessens 2001; Pin-
heiro and Chao 2006; Rizopoulos et al. 2009;Wu et al. 2010;
Barrett et al. 2015).

Recently, Alvares and Rubio (Alvares and Rubio 2021)
proposed a new specification for joint models of longitu-
dinal and survival data that is flexible and does not require
numerical integrations. The proposal divides the longitudinal
linear predictor into variables that depend or not on time to
share themwith the survival submodel. This strategy leads to
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some limitations presented by the authors and which will not
be discussed here. Another incipient and very promising pro-
posal is the use of integrated nested Laplace approximation
(INLA) for joint models (van Niekerk et al. 2020). However,
this approach is not yet accessible to non-expert INLA users.

A more classic alternative is the two-stage approach (Self
and Pawitan 1992; Tsiatis et al. 1995). In this case, the lon-
gitudinal submodel is fitted separately and then the shared
parameters and random effects estimates are used into the
survival submodel. Several authors have applied this strategy
in order to circumvent the identifiability issues and reduce
processing time (Murawska et al. 2012; Guler et al. 2017;
Donnelly et al. 2018; Mauff et al. 2020). Nevertheless, the
main disadvantage of this approach is that the survival model
parameter estimates are often biased (Tsiatis and Davidian
2004; Rizopoulos 2012).

From the Bayesian perspective, some bias correction
strategies have been proposed for the two-stage approach
(Tsiatis et al. 1995; Wulfsohn and Tsiatis 1997; Viviani et al.
2014; Leiva-Yamaguchi and Alvares 2021). Still, Markov
chain Monte Carlo (MCMC) methods are quite demand-
ing and their use may be impractical (Ye et al. 2008;
Andrinopoulou et al. 2018).

In this paper, we propose a novel two-stage approach
that uses the estimations from the longitudinal submodel
to specify an informative prior distribution for the random
effects when estimating them within the survival submodel.
In addition, as a bias correction mechanism, we incorporate
longitudinal likelihood function in the second stage, where
its fixed effects are set according to the estimation using only
the longitudinal submodel.

The rest of the paper is organised as follows. Section2
introduces a generic formulation for Bayesian joint models
of longitudinal and survival data. Section3 presents a stan-
dard two-stage approach to making the inference in joint
modelling framework. Section4 describes our two-stage pro-
posal. Sections5 and 6 compare the bias and computational
time for the three inferential strategies presented using simu-
lated and real data, respectively. Finally, Sect. 7 discusses the
results obtained and potential extensions of ourmethodology.

2 Bayesian joint model formulation

Bayesian joint models for longitudinal and survival data usu-
ally assume a full joint probability distribution given by
(Armero et al. 2018; Alvares et al. 2021):

f ( y, s, b, θ y, θ s, θb)

= f ( y, s | b, θ y, θ s) f (b | θb)π(θ y)π(θ s)π(θb), (1)

where y and s represent the longitudinal and the survival
process, respectively. Random effects are denoted by b and

have θb as their hyperparameters; θ y and θ s are the parame-
ters and hyperparameters of each process. The factors on the
right hand side of (1) are the conditional joint distribution of
the processes y and s given b, θ y , and θ s , f ( y, s | b, θ y, θ s);
the conditional distribution of b given θb, f (b | θb); and the
(independent) prior distributions of θ y , θ s and θb, π(θ y),
π(θ s) and π(θb), respectively.

Typically, the conditional joint distribution of y and s is
factorised as (Wu and Carroll 1988):

f
(
y, s | b, θ y, θ s

) = f
(
y | b, θ y

)
f
(
s | b, θ y, θ s

)
, (2)

where both processes are considered as conditionally inde-
pendent given b, θ y , and θ s . Note that if the longitudinal
parameters and hyperparameters, θ y , are not shared with the
survival process, then f (s | b, θ y, θ s) = f (s | b, θ s). In the
next subsections,wewill givemore details about components
from (1) and (2).

2.1 Longitudinal submodel

Typically, the terms f ( y | b, θ y) in (2) and f (b | θb) in (1)
for an individual i at time t are expressed through a gener-
alised linear mixed specification:

yi
(
t | bi , θ y

) ∼ EF
(
μi

(
t | bi , θ y

) )
,

(bi | θb) ∼ Normal(0,�),
(3)

where EF represents an exponential family distribution with
mean μi (t | ·); θ y contains the parameters and hyperpa-
rameters of μi (t | ·); and θb = �. The mean trajectory
function can be formulated in different ways, but the most
common corresponds to the linear mixedmodel specification
with μi (t | ·) = x�

i (t)β + z�i (t)bi , where xi (t) and zi (t)
are covariates of the individual i at time t , β is the vector
of fixed effects, and bi represents a K -dimensional vector of
individual random effects (Pinheiro and Bates 2000).

2.2 Survival submodel

We will introduce some key elements of survival analysis in
order to characterise the term f (s | b, θ y, θ s) in (2) using
a hazard function. Let T ∗

i denote the event time for individ-
ual i , Ci the censoring time, Ti = min{T ∗

i ,Ci } the observed
time, and δi = I(T ∗

i ≤ Ci ) the event indicator. The propor-
tional hazards specification is commonly used tomodel these
problems (Kumar and Klefsjö 1994) and at the same time
incorporate the longitudinal information from submodel (3).
So, the hazard function of the survival time Ti of individual
i is expressed by:
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hi (t | bi , θ y, θ s) = h0(t | θ s)

exp
{
x�
i γ + αgi (t | bi , θ y)

}
, (4)

where h0(t | θ s) represents an arbitrary baseline hazard func-
tion at time t , xi is a covariate vector with coefficients γ , and
gi (t | bi , θ y) is a temporal function of terms that comes from
the longitudinal submodel and can be specified in different
ways, such as μi (t | ·), dμi (t | ·)/dt , and ∫ t

0 μi (v | ·)dt
(Rizopoulos 2012). The component gi (t | ·) has the role of
connecting both processes, while α measures the strength
of this association. Finally, θ s includes the parameters of
h0(t | ·), γ and α.

2.3 Prior distributions

We assume independent and diffuse marginal prior distribu-
tions (Gelman et al. 2013).More specifically, all longitudinal
and survival regression coefficients (including the associa-
tion parameter) follow Normal distributions with mean at
zero and large variance; σ follows a weakly-informative
half-Cauchy(0, 5) (Gelman 2006); and� follows an inverse-
Wishart(V , r ), where V is a K ×K identity matrix, r = K is
the degrees-of-freedom parameter (Schuurman et al. 2016).
Once the baseline hazard function h0(t | θ s) is defined, dif-
fuse priors are also specified for its parameters.

3 Standard two-stage (STS) approach

As a potential competitor, we use Tsiatis, De Gruttola and
Wulfsohn (Tsiatis et al. 1995) approach adapted to the
Bayesian framework (Leiva-Yamaguchi and Alvares 2021).
Specifically, in the first stage, we calculate the maximum a
posteriori (MAP) of the random effects b and parameters θ y

estimated from longitudinal submodel fit separately. Poste-
rior mean or median can also be used instead. In the second
stage, we incorporate the temporal function into the survival
submodel considering gi (t | b̂i , θ̂ y), where b̂i and θ̂ y are the
MAP of bi and θ y , and then the posterior distribution of θ s
is calculated.

4 Novel two-stage (NTS) approach

Like all two-stage methods for joint models, the first stage
is to fit the longitudinal submodel separately. So, we calcu-
late the MAP of longitudinal and random effects parameters,
which will be denoted by θ̂ y and θ̂b, respectively. Note that
it is not necessary to estimate the random effects b and there-
fore, we can run a Bayesian estimation algorithm using the
marginalised likelihood function (integrating out the random
effects) of the longitudinal submodel (3).

In the second stage, we estimate the random effects b and
parameters θ s replacing the full joint probability distribution
(1) with:

f ( y, s, b, θ s | θ̂ y, θ̂b) = f ( y, s | b, θ̂ y, θ s) f (b | θ̂b)π(θ s)

(2)= f ( y | b, θ̂ y) f (s | b, θ̂ y, θ s) f (b | θ̂b)π(θ s),
(5)

where the f (·)’s and π(·) have the same functional form as
in (1) and (2), except that the parameters θ y and θb are now
assumed to be knownand so it is not necessary to include their
prior distributions in (5). Note that when using θb estimated
from the longitudinal submodel (i.e., θ̂b), random effects b
become fixed effects, further reducing the complexity of (5)
with respect to the full joint probability distribution (1).

Essentially, our proposal simplifies/approximates the like-
lihood function from the joint approach by assuming that the
shared parameters can be satisfactorily estimated from their
MAP using the longitudinal submodel separately. In partic-
ular, as ni grows, the longitudinal submodel f ( y | b, θ y)

becomes the dominating part in the conditional joint like-
lihood function (see Eq. (2)), implying that the survival
submodel is of minimal importance to obtain the MAP of
θ y . Then, the MAP of θ s is estimated considering θ y as a
nuisance parameter (Murphy and van der Vaart 2000) and
assuming that the contribution from random effects and pri-
ors in the posterior distribution is similar using either JS or
NTS. See Appendix 1 for technical details.

5 Simulation studies

Simulation studies were performed to empirically corrobo-
rate that our methodological proposal (see Sect. 4) presents
improvements to the dual problem “biased estimation versus
high computational time” when compared to the joint spec-
ification (JS, see Sect. 2) and standard two-stage (STS, see
Sect. 3) approaches. Algorithm 1 summarises a simulation
scheme for joint models of longitudinal and survival data
(Rizopoulos 2022; Austin 2012).

Algorithm 1 Simulation scheme for joint models.
1: Initialisation: Set θ y , θ s , θb, n, �, and tmax.

2: Simulating survival data:
3: – Simulate xi ∼ Bernoulli(0.5) and bi ∼ Normal(0,�) ∀i .
4: – Calculate T ∗

i ∀i based on the survival submodel (4).
5: – Simulate Ci ∼ Uniform(0, tmax) ∀i .
6: – Set Ti = min{T ∗

i ,Ci } and δi = I(T ∗
i ≤ Ci ) ∀i .

7: Simulating longitudinal data:
8: – Set 0 = t1, . . . , tni ≤ Ti ∀i such that t j+1 − t j = �.
9: – Compute yi (t1), . . . , yi (tni ) ∀i based on the longitudinal sub-

model (3).
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In this algorithm, xi denotes a binary covariate, bi the
vector of random effects, T ∗

i the event time (not always
observed), Ci the censoring time, Ti the observed time, and
δi the event indicator. Additionally, n, �, and tmax represent
number of individuals, interval between longitudinal obser-
vations, and maximum observational time, respectively.

We analysed the joint formulation based on submodels
(3) and (4) considering longitudinal continuous, count and
binary responses, where the mean of the longitudinal sub-
model, μi (t | ·), was shared with the survival submodel.

5.1 Longitudinal continuous response

The longitudinal continuous process for an individual i at
time t is written as a linear mixed-effects model:

yi (t | bi , θ y) ∼ Normal
(
μi (t | bi , θ y), σ

2),

μi (t | bi , θ y) = β0 + b0i + (β1 + b1i )t + β2xi ,

(bi | θb) = (b0i , b1i | θb)
� ∼ Normal(0,�),

(6)

where θ y = (β0, β1, β2, σ
2)� and θb = �. The covariate

xi is a binary group indicator. The hazard function of the
survival time Ti of individual i is specified as follows:

hi (t | b, θ y , θ s ) = φ tφ−1 exp
{
γ0 + γ1xi + αμi (t | bi , θ y)

}
, (7)

where h0(t | θ s) is a Weibull baseline hazard with φ and
exp(γ0) being shape and scale parameters, respectively, and
θ s = (φ, γ0, γ1, α)�.

5.2 Longitudinal count response

The longitudinal count process for an individual i at time t
is written as a Poisson mixed-effects model:

yi (t | bi , θ y) ∼ Poisson
(
μi (t | bi , θ y)

)
,

log
(
μi (t | bi , θ y)

) = β0 + b0i + (β1 + b1i )t + β2xi ,
(8)

where θ y = (β0, β1, β2)
�, random effects are defined as in

(6), and the survival submodel is specified as in (7).

5.3 Longitudinal binary response

Similar to the previous case, the longitudinal binary process
for an individual i at time t is also written as a Bernoulli
mixed-effects model:

yi (t | bi , θ y) ∼ Bernoulli
(
μi (t | bi , θ y)

)
,

logit
(
μi (t | bi , θ y)

) = β0 + b0i + (β1 + b1i )t + β2xi ,
(9)

where θ y = (β0, β1, β2)
�, random effects are defined as in

(6), and the survival submodel is specified as in (7).

5.4 Simulation settings

For each scenario (Normal, Poisson, and Bernoulli), we sim-
ulated 300 datasets with n = 500, � = 1, and tmax = 20.
Table 1 presents the specified parameter values for each sce-
nario.

Figure 1 shows the proportion of the number of longitudi-
nal observations per individual from the simulated data using
the parameter values from Table 1. The resulting censoring
rates varied between 26% and 40% (Normal), 22% and 35%
(Poisson), and 16% and 27% (Bernoulli).

5.5 Results

The longitudinal submodels for continuous, count and binary
responses were set as in (6), (8) and (9), respectively, and the
survival submodels as in (7). Prior distributions were speci-
fied as in Sect. 2.3. The MCMC configuration was defined as
follows: 2000 iterations with warm-up of 1000 for the joint
model using the joint specification (JS) and for the longitudi-
nal submodel from the novel two-stage (NTS) and standard
two-stage (STS) approaches. Additionally, 1000 iterations
with warm-up of 500 were set to run the survival submodel
from both two-stage approaches. All models were imple-
mented using the rstan R-package version 2.21.7 (Stan
Development Team 2022). Simulations were performed on
a Dell laptop with 2.2 GHz Intel Core i7, 32 GB RAM, OS
Windows.

Table 2 displays the running times of each estimation
approach.

Unsurprisingly, STS had the lowest computational time,
while the NTS required less processing time than the JS
approach.

From an inferential perspective, we analysed the poste-
rior mean for the group (γ1) and association (α) parameters
in order to study the (potential) bias produced by two-stage
approaches by ignoring the joint nature between the lon-
gitudinal and survival processes. Figure2 shows the bias
(posterior mean - true parameter value) and standard devi-
ation for the group parameter using the JS, NTS and STS
estimation approaches in each simulated scenario.

The group parameter was robustly estimated by the three
approaches in all scenarios. However, as expected, the stan-
dard deviation from the STS estimators is smaller than the
competitors. This happens because sharing the MAP of ran-
dom effectswithout correction causes losses in the variability
of such components, leading to an artificial andwrong reduc-
tion in the uncertainty of survival parameter estimators.
Furthermore, it is important to note that NTS and JS pro-
duced nearly equivalent standard deviations. Figure3 shows
the bias and standard deviation for the association parameter
using the JS, NTS and STS estimation approaches in each
simulated scenario.
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Table 1 Setting true parameter
values for each scenario

Scenario β0 β1 β2 σ 
11 
22 γ0 γ1 φ α

Normal −1.00 −0.10 −0.30 0.30 0.10 0.01 −1.00 −0.50 2.50 2.00

Poisson −1.00 0.03 0.50 – 0.05 0.01 −7.00 −0.50 5.00 −2.00

Bernoulli −3.00 2.00 −5.00 – 10.00 2.00 −3.00 −1.00 1.50 3.00

Fig. 1 Proportion of the number of longitudinal observations per individual from 300 simulated datasets for each scenario

Table 2 Average computational
time (in minutes) from each
estimation approach by
simulated scenario

Scenario JS NTS STS

Normal 5.65 2.70 1.65

Poisson 7.68 5.90 2.10

Bernoulli 8.45 4.25 1.38

The association parameter was unbiased using JS and
NTS, while the STS approach underestimated the positive
associations (α = 2 for Normal and α = 3 for Bernoulli)
and overestimated the negative one (α = −2 for Poisson).
Also, our proposal presented standard deviations for the asso-
ciation parameter with insignificant differences in relation to
those from the JS estimator, while STS again reduced such
standard deviations.

The reduction of complexity of the inferential process by
using two-stage strategies was quite clear when analysing
computational times. However, only our proposal corrected
the estimation bias without affecting the estimator variance,
producing results equivalent to the JS approach.

Appendix 1 shows complementary results using the same
scenarios as in Table 1, but increasing the number of repeated
measurements per individual (30 ≤ ni ≤ 50). Once again,
our two-stage strategy corrected the estimation bias as well
as kept the standard deviation of the estimator equivalent to
that from the JS approach.

6 Applications

We used three real datasets, which are available in the JM
R-package version 1.5-2 (Rizopoulos 2022), in order to

illustrate the performance of the novel two-stage (NTS, see
Sect. 4) against the joint specification (JS, see Sect. 2) and
the standard two-stage (STS, see Sect. 3) approach. A brief
description of each dataset is presented below:

• Acquired immunodeficiency syndrome (aids): This
dataset includes information about 467 patients with
advanced human immunodeficiency virus infection dur-
ing antiretroviral treatment who had failed or were
intolerant to zidovudine therapy (Goldman et al. 1996).
The longitudinal variable “CD4” was transformed by
applying the square root; and “drug” was set as a group
variable (zalcitabine = 0 and didanosine = 1).

• Liver cirrhosis (prothro): This dataset includes 488
patients with histologically verified liver cirrhosis, with
237 patients randomised to treatment with prednisone
and the remaining received placebo (Andersen et al.
1993). The longitudinal variable “pro” was divided by
10 and truncated to the nearest integer; and “treat” was
set as a group variable (placebo= 0 and prednisone= 1).

• Primary biliary cirrhosis (pbc): This dataset includes
312 patients with primary biliary cirrhosis, a rare autoim-
mune liver disease, at Mayo Clinic, where 158 patients
were randomised to D-penicillamine and 154 to placebo
(Murtaugh et al. 1994). The longitudinal variable “ser-
Bilir” was dichotomised into ≤ 2 (0, control group) or
> 2 (1, late stage of PBC); and “drug” was set as a group
variable (placebo = 0 and D-penicil = 1).

Figure 4 shows the frequency of the number of longi-
tudinal observations per individual from the three datasets.
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Fig. 2 Simulation results from 300 datasets comparing the joint specification (JS), the novel two-stage (NTS), and the standard two-stage (STS)
for longitudinal continuous, count, and binary responses. The panels show a bias and b standard deviation for the group parameter

Censoring rates are 59.74% (aids), 40.16% (prothro), and
55.13% (pbc).

Based on the nature of the longitudinal response type of
each dataset, the joint models are specified as follows: (6)
and (7) for aids dataset; (8) and (7) for prothro dataset; and
(9) and (7) for pbc dataset. Prior distributions and MCMC
configuration were defined as in Sect. 5.5. We provide the
code for reproducibility at www.github.com/daniloalvares/
BJM-NTS2.

Table 3 shows the posterior summary of the group (γ1)
and association (α) parameters estimated from JS, NTS and
STS approaches for each dataset as well as the average com-
putational time.

In the three applications, the group parameters (γ1) are
quite equivalent, except for small differences in the poste-
rior mean using the STS approach, but their 95% credible
intervals are similar to those of the other approaches. On the
other hand, the biased estimation using the STS approach is
more notorious for the association parameter (α).Whenusing
the Normal submodel (aids dataset), JS and NTS are almost
identical, while STS has a slightly higher point estimate and a
narrower 95% credible interval. Equivalence between JS and
NTS is maintained for the joint models for count (prothro)

and binary (pbc) data, and in both cases the estimation bias
using STS is more prominent, in which the credible inter-
vals do not include the posterior mean of α calculated by the
JS approach (reference estimation). Again, STS remains the
fastest option, while NTS has reasonable average times and
significantly lower than those of the JS approach.

7 Discussion

We have proposed a novel two-stage (NTS) approach that
can be used in a Bayesian joint analysis of longitudinal and
survival data. We have simplified the complex nature of the
joint specification (JS) by using a two-stage strategy that at
the same time corrects the well-known bias from a standard
two-stage (STS) approach.

NTS was shown to be successful, producing satisfactory
results both in simulated scenarios and in real applications
considering different types of longitudinal responses (contin-
uous, count and binary) that share informationwith aWeibull
proportional hazard model.

In practical terms, the group parameter (γ1) has not been
significantly affected by the use of two-stage approaches.
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Fig. 3 Simulation results from 300 datasets comparing the joint specification (JS), the novel two-stage (NTS), and the standard two-stage (STS)
for longitudinal continuous, count, and binary responses. The panels show a bias and b standard deviation for the association parameter

Fig. 4 Frequency of the number of longitudinal observations per individual for each dataset

However, we have once again observed that the association
parameter (α) is biased when the STS is used. This issue
is mitigated by replacing STS with NTS. Furthermore, we
highlight that the strength of the association does not affect
the NTS estimation, even with few longitudinal observations
per individual. In particular, the strong association presented
in the simulation studies and also observed in the pbc dataset
modelling did not produce bias, as typically happens with

regression calibration approaches (Nevo et al. 2020). More-
over, our proposal had amuch lower computational time than
the JS approach in all scenarios.

Theoretically, the correction of shared information should
be enough so that all other characteristics of the survival
model (baseline hazard and coefficients of baseline variables)
do not suffer estimation bias compared to the JS. However, in
this paper, we have not investigated different baseline hazard
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Table 3 Posterior summary (posterior mean and 95% credible interval) and average computational time (in minutes) from each estimation approach
by dataset (and longitudinal response type)

Dataset Longitudinal Approach γ1 (Group) α (Association) Time

JS 0.34(0.04, 0.63) −0.29(−0.36,−0.22) 4.20

Aids Normal NTS 0.34(0.07, 0.67) −0.28(−0.35,−0.21) 3.24

STS 0.33(−0.01, 0.66) −0.24(−0.30,−0.19) 1.37

JS −0.26(−0.53, 0.03) −0.50(−0.61,−0.39) 7.11

Prothro Poisson NTS −0.23(−0.47, 0.05) −0.45(−0.57,−0.34) 3.92

STS −0.16(−0.41, 0.09) −0.35(−0.42,−0.27) 2.15

JS −0.03(−0.39, 0.34) 3.67(2.89, 4.60) 5.30

pbc Bernoulli NTS −0.03(−0.37, 0.28) 3.65(2.91, 4.45) 4.14

STS −0.01(−0.33, 0.32) 3.04(2.46, 3.60) 1.31

specifications to corroborate such behaviour, but we hope to
do so in future works.

Another advantage of the proposed two-stage approach is
that it can be easily generalised tomore complex longitudinal
(e.g., skewed ormultiple longitudinal data) and survival (e.g.,
competing-risks or multistate data) submodels.
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Appendix A

Let f ( yi | bi , θ y) and f (si | bi , θ y, θ s) be the longitudinal
and survival likelihood functions for individual i , respec-
tively, where yi = {yiti j : ti j = 1, . . . , ni }. We will analyse
the behaviour of themaximuma posteriori (MAP) of θ y from
the conditional joint log-likelihood function of individual i ,
as ni grows:

lni (θ y) = log

⎛

⎝
ni∏

j=1

f (yiti j | bi , θ y)

⎞

⎠

+ log
(
f (si | bi , θ y, θ s)

)

=
ni∑

j=1

log
(
f (yiti j | bi , θ y)

)

+ log
(
f (si | bi , θ y, θ s)

)
. (A1)

Calculating limni→∞
[
lni (θ y)/ni

]
, we note that the lon-

gitudinal term is Op(1), while the survival one is op(1).
Extending this result to the joint likelihood for all individuals
is straightforward. In summary, as ni grows, the MAP of θ y

(let’s say θ̂ y) depends only on the longitudinal submodel. In
this sense, we can calculate θ̂ y both from the JS and from the
NTS first stage equivalently. It is noteworthy that this result
only applies to θ̂ y , i.e., there are no guarantees of equivalence
for the MAP of bi (let’s say b̂i ) from the first stage. This is
a key difference between our proposal and STS. While NTS
needs the MAP of θ y and θb from the first stage to then
correct the random effects in the second one, STS uses θ̂ y

and b̂i (both calculated from the longitudinal submodel) in
the second stage. Therefore, the bias produced by STS when
estimating θ s is mainly due to uncorrected random effects.

Taking the MAP of θ y from the NTS approach, our next
goal is to calculate theMAPof θ s . Hence, similar to a profiled
likelihood strategy (Murphy and van der Vaart 2000), we
can consider θ̂ y as a vector of nuisance parameters and then
estimate the MAP of θ s from the the conditional joint log-
likelihood function:

l(θ s) = log
(
f ( y | b, θ̂ y)

)
+ log

(
f (s | b, θ̂ y, θ s)

)
. (A2)

The MAP of (θ y, θ s) jointly estimated from the condi-
tional joint log-likelihood function is equivalent to calculat-
ing theMAP of θ y from lni (θ y) (assuming that ni → ∞) and
then obtaining the MAP of θ s from l(θ s). Note that Eq. (A2)
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is specified as the log-likelihood function in NTS second
stage.

So far we have omitted the specification of random effects
and priors for the estimation of the MAP of θ y and θ s . We
assume that the distribution of b, f (b | θb), from the JS
approach is the same as the prior distribution of fixed effects
b, π(b | θ̂b), from the NTS approach. So, the contribution of
random effects to calculate the MAP of θ y and θ s from both
approaches is the same. Additionally, even if the random
effects distributions are misspecified, Rizopoulos, Verbeke
and Molenberghs’ Theorem 1 (Rizopoulos et al. 2008)
demonstrates that, as ni grows, the estimates of θ y and θ s
will beminimally affected.On the other hand,we assume that
the prior distributions are proper and weakly-informative, so

they must have an irrelevant role in calculating the MAP of
θ y and θ s . Furthermore, as the sample size increases, the
choice of prior distributions have a minimal impact.

Appendix B

See Figs. 5 and 6

Fig. 5 Simulation results from 300 datasets comparing the joint spec-
ification (JS), the novel two-stage (NTS), and the standard two-stage
(STS) for longitudinal continuous, count, and binary responses. The

panels show a bias and b standard deviation for the group parameter.
Number ni of repeated measurements per individual varying between
30 and 50

123
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Fig. 6 Simulation results from 300 datasets comparing the joint spec-
ification (JS), the novel two-stage (NTS), and the standard two-stage
(STS) for longitudinal continuous, count, and binary responses. The

panels show a bias and b standard deviation for the association param-
eter. Number ni of repeated measurements per individual varying
between 30 and 50
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