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Abstract
Either intentionally or unintentionally, sub-sampling is a common occurrence in image processing and can lead to aliasing if
the highest frequency in the underlying process is higher than the Nyquist frequency. Several techniques have already been
suggest in order to prevent aliasing from occurring (for example applying anti-aliasing filters), however there is little work
describing methods to detect for it. Recently, Eckley and Nason (Biometrika 105(4), 833–848, 2018) developed a test for
the absence of aliasing and/or white noise in locally stationary wavelet processes. Following Eckley and Nason (Biometrika
105(4), 833–848, 2018), we derive the corresponding theoretical consequences of sub-sampling a two-dimensional locally
stationary wavelet process and develop a procedure to test for the absence of aliasing and/or white noise confounding at a
fixed point, demonstrating its effectiveness and use through appropriate simulation studies and an example. In addition, we
outline some possibilities for extending these methods further, from images to videos.

Keywords Aliasing · Imaging · Non stationary spatial processes · Sub-sampling · Wavelet spectrum · White noise

1 Introduction

When sampling a time series at a fixed rate, if the Nyquist
frequency is lower than the highest frequency in the process,
aliasing occurs, since high frequency components cannot be
distinguished from low frequency ones due to the sampling
rate not being high enough. This can lead to unreliable analy-
ses and distorted spectral and auto-covariance estimates. For
example [see Priestley (1983)], when sampling a real valued
stationary process X(t) with corresponding non-normalised
spectral density function hX (ω) at intervals �t , we obtain
a new process Yt = X(t · �t) with corresponding non-
normalised spectral density function

hY (ω) =
∞∑

k=−∞
hX

(
ω + 2kπ

�t

)
, |ω| ≤ π

�t
. (1)
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Hence, if the sampling rate is too low, without prior knowl-
edge, high frequency information will be indistinguishable
from low frequency components in the spectrum.

Images may be intentionally down-sampled for memory
or processing purposes. For example, convolutional neural
networks often down-sample images in various layers, the
effects of which are explored in Ribeiro and Schön (2021),
Vasconcelos et al. (2021), Vasconcelos et al. (2020), with
Vasconcelos et al. (2021), Vasconcelos et al. (2020) also
describing the benefits of applying anti-aliasing filters at cer-
tain locations within the network architecture. Recently, Li
et al. (2021) even suggest applying wavelets to convolutional
neural networks in order to counteract the effects of aliasing.
Therefore, it seems that aliasing can definitely impact the
performance of these models. As another example, consider
autonomous vehicles. These systems often have to carry out
many tasks simultaneously and have a limited amount of
memory and computing power available (Liu et al. 2019,
2021). Due to these limitations, the sampling rate when col-
lecting a video feed might be set too low or one might adjust
the sampling rate in order to free computing power for other
tasks. As a result, aliasingmay be induced, which in turnmay
have a serious impact if critical high frequency information is
confounded. The ability to detect aliasing would allow these
systems to adjust their sampling rate accordingly.
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Aliasing can be prevented if one knows the highest fre-
quency in the process prior to sampling it, but this is rare in
practice. Alternatively one could apply anti-aliasing filters
(as in the convolutional neural network example above (Vas-
concelos et al. 2021, 2020)) that ensure the sampling rate is
high enough in order to capture all the high frequency infor-
mation in the process. However, this is not always applicable
and is not guaranteed to prevent aliasing from occurring.
Aliasing and possible methods to prevent it are described in
more detail in Priestley (1983), Gonzalez andWoods (2018),
Burger and Burge (2010). Since it is not always possible to
prevent aliasing, developing a test to detect for it becomes
crucial.

Some methods for detecting aliasing in images have
already been developed. For example, Hinich and Wolin-
sky (1988) use the bispectrum (Hinich and Messer 1995)
of a signal to formulate a test for aliasing by using a mod-
ified version of the Hinich bispectrum test for Gaussianity.
More recently, Coulange and Moisan (2010) suggest using
the Fourier domain of an image in order to develop an aliasing
detection algorithm.Alternatively, Patney andLefohn (2018)
and Douglas (2012) propose using deep neural networks and
non-linear factor analysis respectively to detect for aliasing
a sequence of images. Our approach differs in that we use
locally stationary wavelet processes and are not constrained
to using a sequence of images when carrying out our test.

Locally stationary wavelet processes were first introduced
in Nason (2000) and were used in order to develop a test for
the absence of aliasing and/or white noise confounding in
locally stationary wavelet time series in Eckley and Nason
(2018). In this paper, we extend these methods to two dimen-
sions with a specific application to images.

PhD thesis (Gott 2012) proposed extending (Eckley and
Nason 2018), but only did so for the case of Shannon wavelet
processes, assumed that identical dyadic sub-sampling was
carried out in both directions and also used an invalid testing
regime (which was subsequently fixed in Eckley and Nason
(2018)). Use of Shannon wavelets causes considerable sim-
plification of the mathematics underlying the problem, but
the assumption is probably far too strong in practice as the
wavelets are infinite in extent. Likewise, assuming identi-
cal sub-sampling in horizontal and vertical image directions
is strong, when one is usually uncertain on how the image
has been processed before acquisition. Our work extends the
methodology to Daubechies’ (Daubechies 1992) compactly
supported wavelets, permits different dyadic sub-sampling
in horizontal and vertical directions and provides a rigorous
testing framework inherited from Eckley and Nason (2018).

This paper is organised as follows: Sect. 2 provides a
review of the necessary background material on locally
stationary wavelet processes, Sect. 3 derives the theo-
retical consequence of sub-sampling on two-dimensional
locally stationary wavelet processes and the raw wavelet

periodogram, Sect. 4 outlines the test procedure, Sect. 5
demonstrates the test using simulation studies, Sect. 6 gives
an example and finally Sect. 7 outlines some possibilities for
extending this procedure from images to videos.

2 Locally stationary wavelet processes

We review the main concepts from the theory of locally sta-
tionary wavelet processes as described by Nason (2000).
These were later extended to two-dimensions in Eckley
(2001). For more information on locally stationary wavelet
process, please see Nason (2000), Eckley and Nason (2018),
Eckley (2001) or the book by Nason (2008).

Definition 1 (One-dimensional discrete mother and father
wavelets).Let {hn} and {gn} be the low and high-pass quadra-
ture mirror filters used in the construction of the Daubechies
(1992) compactly supported orthogonal continuous time
wavelets. The one-dimensional discrete mother and father
wavelets at scale j , denoted by ψ j = (ψ j,n)n=0,...,N j and
φ j = (φ j,n)n=0,...,N j respectively, are N j -dimensional vec-
tors obtained using the following formulae

ψ1,n =
∑

k

gn−2kδ0,k = gn, n = 0, . . . , N1 − 1, (2)

ψ j+1,n =
∑

k

hn−2kψ j,k, n = 0, . . . , N j+1 − 1, (3)

φ1,n =
∑

k

hn−2kδ0,k = hn, n = 0, . . . , N1 − 1, (4)

φ j+1,n =
∑

k

hn−2kφ j,k, n = 0, . . . , N j+1 − 1, (5)

where N j = (2 j −1)(Nh−1)+1 and Nh denotes the number
of non-zero elements of {hk}.

Definition 2 (Two-dimensional discrete wavelets). The two-
dimensional discretemotherwavelets at scale j ∈ N, denoted
by ψ�

j = (ψ�
j,u,v)u,v∈Z, for � = h, v, d corresponding to

horizontal, vertical and diagonal directions respectively, are
N j × N j dimensional matrices obtained using the following
formulae

ψh
j,n1,n2 = φ j,n1ψ j,n2 , n1, n2 = 0, . . . , N j+1 − 1, (6)

ψv
j,n1,n2 = ψ j,n1φ j,n2 , n1, n2 = 0, . . . , N j+1 − 1, (7)

ψd
j,n1,n2 = ψ j,n1ψ j,n2 , n1, n2 = 0, . . . , N j+1 − 1, (8)

where ψ j,n and φ j,n are the one-dimensional mother and
father wavelets respectively.
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Remark 1 Combining Definitions 1 and 2, we can obtain the
following relations for the two-dimensional discretewavelets

ψ�
1,n1,n2 =

⎧
⎨

⎩

hn1gn2 , � = h,

gn1hn2 , � = v,

gn1gn2 , � = d,

(9)

ψ�
j+1,n1,n2 =

∑

k,m

hn1−2khn2−2mψ�
j,k,m, (10)

for n1, n2 = 0, . . . , N j+1 − 1 for level j + 1 and N j the
same as in Definition 1.

Definition 3 (Two-dimensional locally stationary wavelet
process). A two-dimensional locally stationary wavelet pro-
cess is a sequence of stochastic processes {Xr ,s}, r =
0, . . . , R, s = 0, . . . , S, with the representation

Xr ,s =
∑

�

∞∑

j=1

∑

u,v

w�
j,u,vψ

�
j,u−r ,v−sξ

�
j,u,v, (11)

where {ξ�
j,u,v} are uncorrelated mean zero random variables

with unit variance, {ψ�
j,u,v} are two-dimensional discrete

mother wavelets and {w�
j,u,v} are amplitudes satisfying the

following conditions: ∀ j ∈ N, and � = h, v, d there exists
a Lipschitz continuous function W �

j : (0, 1) × (0, 1) �→ R

such that

(i)
∑

�

∑∞
j=1 |W �

j (z)|2 uniformly in z ∈ (0, 1) × (0, 1),

(ii) the Lipschitz constants L�
j , corresponding to the func-

tions W �
j , are uniformly bounded in j and � and

∑
�

∑∞
j=1 2

j L j < ∞,

(iii) there exist {C�
j } such that

∑
�

∑∞
j=1 C

�
j < ∞ and for

each R and S,

sup
u,v

∣∣∣w�
j,u,v − W �

j

( u

R
,
v

S

)∣∣∣ ≤ C�
j

max(R, S)
, (12)

where, for each j ∈ N and � = h, v, d, the supremum
is taken over u = 0, . . . , R − 1 and v = 0, . . . , S − 1.

Definition 4 (Evolutionary Wavelet Spectrum). The evolu-
tionary wavelet spectrum of the locally stationary wavelet
process Xr ,s is defined as

S�
j (z) = |W �

j (z)|2, j ∈ N, � ∈ h, v, d (13)

and z ∈ (0, 1) × (0, 1).

Definition 5 (One-dimensional discrete autocorrelation
wavelets). The one-dimensional discrete autocorrelation
wavelet and scaling functions are given by


 j (τ ) =
∑

k

ψ j,kψ j,k−τ and

� j (τ ) =
∑

k

φ j,kφ j,k−τ , (14)

respectively, for τ ∈ Z and j ∈ N.

Definition 6 (One-dimensional inner product operators).
The inner product operators A = (A j,k) j,k∈N, B =
(Bj,k) j,k∈N and C = (C j,k) j,k∈N are J × J dimensional
matrices constructed from the autocorrelation wavelets as
follows

A j,k =
∑

r


 j (r)
k(r) = 〈
 j , 
k〉, (15)

Bj,k =
∑

r

� j (r)�k(r) = 〈� j ,�k〉, (16)

C j,k =
∑

r


 j (r)�k(r) = 〈
 j ,�k〉. (17)

Although not strictly necessary for defining for defining
two-dimensional locally stationary wavelet processes, these
inner product operators will be useful in Sect. 3 when study-
ing the effects of dyadically sampling such a process.

Remark 2 We note that, for real valued discrete wavelets,
although A = AT and B = BT , it is not generally true that
C = CT .

Definition 7 (Two-dimensional raw wavelet periodogram).
The raw wavelet periodogram of Yr ,s is defined as I �

j,u,v =
(d�

j,u,v)
2 for j ∈ N, u, v ∈ Z and � = h, v, d, where d�

j,u,v

are the non-decimated wavelet coefficients of Yr ,s given by

d�
j,u,v =

∑

r ,s

Yr ,sψ
�
j,u−r ,v−s, (18)

for j ∈ N, u, v ∈ Z and � = h, v, d.

Definition 8 (Two-dimensional discrete autocorrelation
wavelets).The two-dimensional autocorrelation wavelets are
given by


�
j (τ ) = 
�

j (τ1, τ2)

=
∑

u,v

ψ�
j,u,vψ

�
j,u−τ1,v−τ2

, (19)

where j ∈ N, and � = h, v, d.
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Definition 9 (Two-dimensional inner product operator).The
two-dimensional inner product operator A(2) is a 3J × 3J
dimensional matrix constructed from the autocorrelation
wavelets as follows

A(2)
g(�)+ j,g(i)+k = 〈
�

j , 

i
k〉, (20)

where

g(�) =
⎧
⎨

⎩

0, � = v,

J , � = h,

2J , � = d,

(21)

and 1 ≤ j, k ≤ J .

Remark 3 Note that the one-dimensional inner productmatri-
ces A, B and C are related to the two-dimensional inner
product matrix A(2) as follows

A(2) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...

. . . A j,k B j,k . . . C j,kCk, j . . . A j,kCk, j . . .
...

...
...

. . . Ck, jC j,k . . . A j,k B j,k . . . A j,kCk, j . . .
...

...
...

. . . A j,kC j,k . . . A j,kC j,k . . . A2
j,k . . .

...
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(22)

where 1 ≤ j, k ≤ J .

3 Theoretical consequences of dyadic
sub-sampling

Following the work in Eckley and Nason (2018), we now
examine the effects of dyadic sub-sampling on a two-
dimensional locally stationary wavelet process. We note that
some work on the two-dimensional case is presented in Gott
(2012), however, only processes represented using Shannon
wavelets and the effects of dyadic sub-sampling that is the
same in both directions is considered. Hence, in this work we
generalise these concepts by deriving results that are appli-
cable to any choice of wavelets and to dyadic sub-sampling
that is not necessarily the same in both dimensions. Analo-
gously to the one-dimensional case (Eckley andNason2018),
dyadic sub-sampling of a two-dimensional locally stationary
wavelet process results in a new process defined on a smaller
grid which is the sum of two separate components: a locally
stationary wavelet process and a process which is asymptot-
ically white noise. The variance of the latter depends on the
S�
1(z), which may not be constant, at the points that remain

after the sub-sampling has occurred, in essence, the informa-
tion at the finest scale that was lost. This is formalised in the
following theorem:

Theorem 1 Let Xr ,s be a two-dimensional stationarywavelet
process with evolutionary wavelet spectrum given by
{S�

j (z)}∞j=1, � = h, v, d. If (a) Yr ,s = Xr ,2s , (b) Yr ,s = X2r ,s

or (c) Yr ,s = X2r ,2 s , the {Yr ,s}r ,s∈Z can be decomposed as
Yr ,s = Lr ,s + Fr ,s where Lr ,s is a two-dimensional locally
stationarywavelet processwith the sameunderlyingwavelets
as Xr ,s , with raw wavelet periodogram expectation given by
(24), (25) and (26) for directions � = h, � = v and � = d
respectively, and Fr ,s is a zero mean process and autocovari-
ance

(a) cov(Fr ,s, Fr+τ1,s+τ2) =
{∑

� S
�
1

( r
R , 2 s

S

) + O(min(R,

S)−1)
}
δ0,τ1δ0,τ2 ,

(b) cov(Fr ,s, Fr+τ1,s+τ2) =
{∑

� S
�
1

( 2r
R , s

S

) + O(min(R,

S)−1)
}
δ0,τ1δ0,τ2 ,

(c) cov(Fr ,s, Fr+τ1,s+τ2) =
{∑

� S
�
1

( 2r
R , 2 s

S

) + O(min(R,

S)−1)
}
δ0,τ1δ0,τ2 .

If S�
1(z), � = h, v, d, is constant for z ∈ (0, 1)2, then Ft is

stationary white noise with variance
∑

� S
�
1 .

By repeatedly applying the above theorem to a process,
we obtain:

Corollary 1 Let Xr ,s be a two-dimensional stationarywavelet
process with evolutionary wavelet spectrum given by
{S�

j (z)}∞j=1, � = h, v, d. If Yr ,s = X2pr ,2q s , then it can
be decomposed as Yr ,s = Lr ,s + Fr ,s , where Lt is a two-
dimensional locally stationary wavelet process with the same
underlying wavelets as Xr ,s , with raw wavelet periodogram
expectation given by (24), (25) and (26) for directions � = h,
� = v and � = d respectively, and Fr ,s is a zeromean process
and autocovariance

cov(Fr ,s, Fr+τ1,s+τ2) =
⎧
⎨

⎩
∑

�

p∨q∑

j=1

S�
j

(
2pr

R
,
2qs

S

)

+O(min(R, S)−1)
}

δ0,τ1δ0,τ2 , (23)

where p ∨ q = max(p, q). If S�
j (z), � = h, v, d, is constant

for z ∈ (0, 1) × (0, 1), then Ft is stationary white noise with
variance

∑
�

∑p∨q
j=1 S�

j .

Our next result shows what happens to the expectation of
the rawwavelet periodograms for the vertical, horizontal and
diagonal wavelet directions.
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Theorem 2 Let Xr ,s be a two-dimensional stationarywavelet
process with evolutionary wavelet spectrum given by
{S�

j (z)}∞j=1, � = h, v, d, with Daubechies compactly sup-
ported wavelets. Without loss of generality, let p ≤ q (the
case p ≥ q is the same but with the expectations of the hor-
izontal and vertical raw wavelet periodograms switched).
Then the expectations of the raw wavelet periodograms of
Yr ,s = X2pr ,2q s are given by

E

{(
dhj,u,v

)2} =
p∑

k=1

∑

�

S�
k

(
2pu

R
,
2qv

S

)
+

q∑

k=p+1

×
{
Bk−p, j S

h
k

(
2pu

R
,
2qv

S

)
+ Ck−p, j S

v
k

(
2pu

R
,
2qv

S

)

+ Ck−p, j S
d
k

(
2pu

R
,
2qv

S

)}

+
∞∑

k=q+1

{
Bk−p, j Ak−q, j S

h
k

(
2pu

R
,
2qv

S

)

+ Ck−p, jC j,k−q S
v
k

(
2pu

R
,
2qv

S

)

+ Ck−p, j Ak−q, j S
d
k

(
2pu

R
,
2qv

S

)}
+ O(min(R, S)−1),

(24)

E

{(
dv
j,u,v

)2} =
p∑

k=1

∑

�

S�
k

(
2pu

R
,
2qv

S

)
+

q∑

k=p+1
{
C j,k−pS

h
k

(
2pu

R
,
2qv

S

)
+ Ak−p, j S

v
k

(
2pu

R
,
2qv

S

)

+ Ak−p, j S
d
k

(
2pu

R
,
2qv

S

)}

+
∞∑

k=q+1

{
C j,k−pCk−q, j S

h
k

(
2pu

R
,
2qv

S

)

+ Ak−p, j Bk−q, j S
v
k

(
2pu

R
,
2qv

S

)

+ Ak−p, jCk−q, j S
d
k

(
2pu

R
,
2qv

S

)}

+ O(min(R, S)−1), (25)

E

{(
ddj,u,v

)2} =
p∑

k=1

∑

�

S�
k

(
2pu

R
,
2qv

S

)
+

q∑

k=p+1
{
Bk−p, j S

h
k

(
2pu

R
,
2qv

S

)
+ Ck−p, j S

v
k

(
2pu

R
,
2qv

S

)

+ Ck−p, j S
d
k

(
2pu

R
,
2qv

S

)}

+
∞∑

k=q+1

{
C j,k−p Ak−q, j S

h
k

(
2pu

R
,
2qv

S

)

+ Ak−p, jC j,k−q S
v
k

(
2pu

R
,
2qv

S

)

+ Ak−p, j Ak−q, j S
d
k

(
2pu

R
,
2qv

S

)}

+ O(min(R, S)−1), (26)

for � = h, v, d, where j ∈ N, u, v ∈ Z, A, B, C are the inner
product matrices from Definition 5, p ∧ q = min(p, q) and
p ∨ q = max(p, q).

Note that the first terms in the above expressions are equiv-
alent to the folded spectrum for stationary processes as stated
in equation (1). Due to the non-orthogonality of the auto-
correlation wavelets, we obtain additional terms consisting
of information at finer scales that has been lost due to sub-
sampling and which reappears as confounded information at
coarser scales.

Remark 4 Note that if p = q then the expectation of the raw
wavelet periodogram is given by

E

{(
dij,u,v

)2} =
∑

�

{ p∑

k=1

S�
k

(
2pu

R
,
2pv

S

)

+
∞∑

k=p+1

A(2)
g(i)+k−p,g(�)+ j S

�
k

(
2pu

R
,
2pv

S

)⎫
⎬

⎭

+O(min(R, S)−1), (27)

for i = h, v, d, which is analogous to the result for one-
dimensional locally stationary wavelet processes derived in
Eckley and Nason (2018).

To aid our comparison, we write the expectation of the
rawwavelet periodogram for the original process using inner
product operators given in Definition 5:

E

{(
dhj,u,v

)2} =
∞∑

k=1
{
Bk, j Ak, j S

h
k

( u
R

)
+ Ck, j C j,k S

v
k

( u
R

)
+ Ck, j Ak, j S

d
k

( u
R

)}

+ O(min(R, S)−1), (28)

E

{(
dv
j,u,v

)2} =
∞∑

k=1
{
C j,kCk, j S

h
k

( u
R

)
+ Ak, j Bk, j S

v
k

( u
R

)
+ Ak, j Ck, j S

d
k

( u
R

)}

+ O(min(R, S)−1), (29)

E

{(
ddj,u,v

)2} =
∞∑

k=1
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{
C j,k Ak, j S

h
k

( u
R

)
+ Ak, jC j,k S

v
k

( u
R

)
+ Ak, j Ak, j S

d
k

( u
R

)}

+ O(min(R, S)−1), (30)

where

S�
k

( u
R

)
= S�

k

( u

R
,
v

S

)
, � = h, v, d. (31)

Comparing these to the expectations of the raw wavelet
periodograms for processes that have undergone dyadic sub-
sampling, we note a few key differences. The first term on
the right hand side of (24), (25) and (26) appears at all scales
and locations and is the same for all directions. This corre-
sponds to power at finer scales from all wavelet directions
re-appering at coarser scales due to dyadic sub-sampling in
both dimensions at the same rate. The second term in each of
(24), (25) and (26) is also surplus, however in this case it dif-
fers between directions - the terms in the sum areweighted by
the one-dimensional inner product operators fromDefinition
5. Note also that these are shifted by p. This corresponds to
power at finer scales being redistributed to coarser scales due
to additional dyadic sub-sampling in only one dimension (in
this case the first dimension, since p ≥ q). Finally, similarly
to the one-dimensional case (Eckley and Nason 2018), the
terms on the right hand sides of (24), (25) and (26) have their
inner productmatrices shifted by p in one dimension and q in
the other and now lie on the grid defined by (2pu/R, 2q/S).

As described in Eckley and Nason (2018), a locally sta-
tionary wavelet process that is white noise with variance
σ 2 has a raw wavelet periodogram expectation of σ 2 at all
scales and locations, which means that we cannot distinguish
between white noise or aliasing. In essence, if spectral power
appears at all scales at a given location than white noise con-
founding or aliasing has occurred, althoughwe can’t tell them
apart. We formalise this in the next section.

4 Test procedure

4.1 Testing for the absence of aliasing or white noise
confounding

Let’s assume that we would like to test whether there is
evidence of aliasing or white noise confounding at a point
z0 = (r0, s0) ∈ [0, R] × [0, S]. We test whether aliasing
occurred in eachwavelet direction � = h, v, d independently.
In an ideal situation, we would have access to the true under-
lying evolutionary wavelet spectrum S�

j at all scales and so
we would test null hypothesis

H (I )
0 : ∃ j ∈ N s.t. S�

j (z0) = 0, (32)

against the alternate hypothesis

H (I )
A : S�

j (z0) > 0 ∀ j ∈ N, (33)

for � ∈ {h, v, d}. However, as described byEckley andNason
(2018), we have to estimate S�

j from the realisation of the
process and, due to boundary effects, only obtain reliable
estimates for a finite set of scales j ≤ J † < J . Therefore,
we would have to test the null hypothesis

H0 : ∃ j ∈ {1, . . . , J †}, s.t. S�
j (z0) = 0, (34)

against the alternate hypothesis

HA : S�
j (z0) > 0 ∀ j ∈ {1, . . . , J †}, (35)

where in this case, S�
j is the estimated wavelet spectrum of

the process. As noted in Eckley and Nason (2018), if H0 is
true then automatically

H (I )
0 is true as well. The same cannot be said for the alter-

nate hypothesis, since there could exist a scale j > J † such
that S�

j (z0) = 0. For this reason, the test becomes a test
for the absence of aliasing or white noise confounding in a
locally stationary wavelet process.

Following Eckley and Nason (2018), we describe how the
test can be carried out in practice. Let b ∈ N>0, define the
set

� =
{(

r + u

R
,
s + v

S

)
: |u|, |v| ≤ b

}
, (36)

and collect the sample {Ŝ�
j (z)}z∈�, where Ŝ�

j (z) denotes the
estimate of the wavelet evolutionary spectrum at the point z
computed as described in Eckley (2001). In order to do so,
we first obtain an estimate of the raw wavelet periodogram
Î �
j (z), which is a biased estimate of the evolutionary wavelet

spectrum. We then use the inner product operator A from
Definition 9 to correct for this bias, obtaining the unbiased
estimator Ŝ�

j (z). Note that the above set corresponds to the
set of spectral estimates lying on a 2b + 1 × 2b + 1 square
grid centred at z0. From the Lipschitz continuity assumption
on S j (z), we have that

E

[
Ŝ�
j

(
r + u

R
,
s + v

S

)]

= S�
j

( r

R
,
s

S

)
+ O

(
max

( u

R
,
v

S

))
(37)

and so under H0 we have that ∃ j ∈ {1, . . . , J †} such that

E

[
Ŝ�
j

(
r + u

R
,
s + v

S

)]

= O
(
max

( u

R
,
v

S

))
, (38)
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which is approximately zero for small u and v and large R
and S. Therefore we would like to test whether the mean of
the sample {Ŝ�

j (z)}z∈� is equal to zero for each scale j ∈
{1, . . . , J †}. To do this we can use a Student’s t-test on the
sample {Ŝ�

j (z)}z∈� with test statistic

t = (2b + 1)S
�

j,z0

σ̂ �
j,z0

, (39)

where S
�

j,z0 and σ̂ �
j,z0

are the sample mean and standard
deviation respectively. Sincewe are testingmultiple hypothe-
ses simultaneously, we use Holm’s method (Holm 1979) to
ensure that the family-wise error rate is not too high.

As the size of the image increases,we can estimate the evo-
lutionary wavelet spectrummore reliably for a larger number
of scales and so it is only natural to increase the number of
scales J † to consider in the test. The choice of b also varies
with the size of the image. As the latter increases, a con-
stant value of b means that the sample becomes increasingly
localised around the point z0. In essence, there is a trade-off
between size and localisation of the sample—a larger sample
(and b) loses local information. Hence, with larger images
one can choose a larger value of b if desired.

As previously noted, rejecting the null hypothesis does not
guarantee that aliasing or white noise confounding definitely
occurred, but rather suggests that this may have happened.
Furthermore, the test does not distinguish between the two
cases. Hence, further investigation would need to be carried
out. For example, one could sample the process at a higher
rate and check the finer scales of the corresponding wavelet
spectrum, however, it is not always possible to carry this out
in practice.

4.2 Dealing with correlation in the samples

As noted in Eckley and Nason (2018), due to the Lipschitz
continuity assumption, the samples at each individual scale
are likely to contain high autocorrelation between obser-
vation in close proximity to one another. In this case, the
Student’s t test will perform poorly as the independence
assumption is violated. Some possible solutions to this prob-
lem are discussed in Zwiers and Storch (1995) and Thiebaux
and Zwiers (1984). A very simple solution is to sub-sample
the data; Zwiers and Storch (1995) argue that, in the case of
temperature data, observations separated by 5 days from one
another could be assumed to be independent. The Student’s
t test would then be carried out on this smaller sample. Since
we are testing data that lies on a regularly spaced square grid,
this method can be easily adapted by choosing observations
that lie a certain distance from one another on this grid. How-
ever, this requires that a significant proportion of the data be
discarded, resulting in a loss of information, a concern that

was also raised in Zwiers and Storch (1995). Furthermore,
onewould have to determine an appropriate distance between
observations that are kept for the test.

Another approach is to compute the equivalent sample
size (ESS) (Zwiers and Storch 1995; Thiebaux and Zwiers
1984). This can be interpreted as the number of effectively
independent observations in the sample. For spatial data lying
on an n × n grid, the equivalent sample size is defined as

n−1
e = n−2

n−1∑

τ1,τ2=−(n−1)

(
1 − |τ1|

n

)

(
1 − |τ2|

n

)
ρ(τ1, τ2), (40)

where ρ(τ1, τ2) is the spatial autocorrelation function with
lags τ1 and τ2 (a full derivation of this result, following the
one-dimensional one inThiebaux andZwiers (1984), is avail-
able in the appendix). However, in most cases, this cannot be
reliably estimated from the data. Some improvements can
be obtained by truncating the sum in (40) after a certain
number of terms (Zwiers and Storch 1995; Thiebaux and
Zwiers 1984). Further improvements to the estimate can also
be obtained by constraining the equivalent sample size to val-
ues that are deemed to be realistic, as suggested by Zwiers
and Storch (1995), and so for an n × n grid,

ne =
⎧
⎨

⎩

2, if ne < 2,
ne, if 2 ≤ ne ≤ n2,
n2, if ne > n2.

(41)

Since we are testing a small region of the spectrum at each
scale, we have a few possible ways for estimating the ESS.
The natural way of doing so, is to estimate the ESS directly
from the sample we are testing. Alternatively we could esti-
mate the ESS for the entire spectrum at a given scale and
then re-scale this to the number of observations contained
in our sample. Since we are now using a significantly larger
number of observations, our estimate of the spatial autocor-
relation function (and hence the ESS) will be more robust.
The cost of doing so is that regardless of the region we are
testing, the ESS will be the same and hence we may lose
some local information.

4.3 Computational feasibility, parallelisation and
speed up

In this subsection, we first address the estimation of the
evolutionary wavelet spectrum, focusing on the number of
computations required to perform this operation and ways in
which this can be parallelised. Consider the two-dimensional
process {Xm,n}, defined on the square gridm, n = 0, . . . , N .
To compute an estimate of the evolutionary wavelet spec-
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trum, several steps are involved. Firstly, the non-decimated
wavelet transform of the data {Xm,n} needs to be computed,
as explained in greater detail in Nason (2008) and Eckley
(2001). Using the pyramid scheme due to Mallat (1989), this
can be performed in O(N 3 log N ) operations. The result-
ing transform is then squared to obtain the raw wavelet
periodogram, requiring a further O(N 2 log(N )) operations.
However, due to the inherent bias of thewavelet periodogram,
it is necessary to correct it using the inner product oper-
ator from Definition 9. This correction yields an unbiased
estimate of the evolutionary wavelet spectrum and has a
computational complexity of O(N 3 log N ), since we are per-
forming a matrix multiplication at each scale. For further
information, please refer to Nason (2000), Nason (2008) or
Eckley (2001). Therefore, overall, the computational com-
plexity of this procedure is O(N 3 log N ).

Now we turn to the possibility for parallelisation. We
can parallelise the non-decimated discrete wavelet trans-
form.As the two-dimensionalwavelet transform is composed
of sequences of one-dimensional transforms performed on
the rows and columns of the data, these sequences can be
distributed across multiple processing units, allowing for
simultaneous computation. A more comprehensive descrip-
tion of this approach can be found in Marino et al. (1999)
and Chaver et al. (2002). Additionally, Nielsen (1998) pro-
vides insights into this approach and discusses methods for
parallelising the one-dimensional wavelet transform as well.

Following this, parallelising the computation of the
wavelet periodogram is quite simple. As it involves squar-
ing the non-decimated wavelet coefficients, this operation
can be easily divided among multiple processors.

We now turn our attention to the correction of the raw
wavelet periodogram, which involves multiple matrix multi-
plications, specifically the inverses of the inner product oper-
ators with the wavelet periodogram. This is quite straight-
forward, as matrix multiplications are simply sequences of
inner products between the rows of the first matrix and the
columns of the second, which can easily be distributed over
multiple processors. Numerous existing procedures already
address this step, and a detailed discussion is beyond the
scope of this section. Comprehensive coverage can be found
in Schatz et al. (2016) and Gunnels et al. (1998), for exam-
ple. By parallelising each step involved in the estimation of
the evolutionary wavelet spectrum, notable advancements in
computational speed can be achieved.

When testing for aliasing in a two-dimensional locally
stationary wavelet process, the natural approach would be to
apply the test at each point. However, in the case of images,
conducting such tests on every individual pixel can be com-
putationally infeasible, especially for large-scale data sets.

To mitigate this computational burden, an alternative
approach is to test regions or specific pixels in the image
instead of individually testing every pixel. This approach

Fig. 1 Test spectrum for S�
1(z1, z2), � = h, v, d

takes advantageof the fact that testing for the absenceof alias-
ing and/or white noise confounding at a point necessitates
analysing the entire region around it. By selecting represen-
tative regions or points, the computational workload can be
significantly reduced while still providing reliable insights
into the presence or absence of aliasing and/or white noise.
This sampling strategy enables faster computation, making
the test more feasible for practical applications involving
large data sets. Additionally, parallelisation techniques can
be applied to the testing process itself by distributing the test
computations across multiple pixels at the same time.

5 Simulation study

The test-bed spectrum used in our simulation study is defined
in Eq. (42) and Fig. 1.

S�
j (z1, z2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Figure 1, j = 1,
1/2, j = 2,
1/4, j = 3,
1/8, j = 4,
0, otherwise.

(42)

We begin by conducting the experiment on realisations
without sub-sampling and test the points z0 = (1/2, 1/2)
and z0 = (1/4, 1/4). For the true spectrum defined above,
at these points, we expect to accept H0 and reject H0 in
favour of HA respectively for all directions. We drew 1000
realisations of size 1024 × 1024 from the test-bed spectrum
using Daubechies D5 wavelets and test each wavelet direc-
tion l = h, v, d independently for scales j = 1, . . . , 4 using
the method described above and a nominal size of 5%. The
results are displayed in Tables 1 and 2. As we can see, for
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Table 1 Empirical rejections
rates when testing Xr ,s for
z = (1/2, 1/2) (see Appendix
B for rejection rates by level)

b � = v � = h � = d

8 0.0 0.0 0.0

16 0.0 0.0 0.3

32 1.2 1.0 5.3

64 1.3 2.1 4.0

128 1.4 1.9 5.1

Table 2 Empirical rejections
rates when testing Xr ,s for
z = (1/4, 1/4) (see Appendix
B for rejection rates by level)

b � = v � = h � = d

8 0.0 0.0 0.0

16 3.5 3.6 2.1

32 90.1 90.3 76.0

64 100.0 100.0 99.9

128 100.0 100.0 100.0

appropriately chosen window widths b (b ≥ 32), the tests
accept and reject the null hypothesis as expected. For smaller
values of b, the test is unreliable as it never rejects the null
hypothesis. We also note that in Table 2, our rejection rates
for large window widths could be viewed as being too high,
and we attribute this to the difficulty in correcting for sample
correlations when running the tests.

Our next experiment uses the same test-bed spectrum as
before, except that in this case the entire spectrum in the
horizontal direction is set to zero as well as the spectrum at
scale j = 3 in the diagonal direction. We again drew 1000
realisations of size 1024×1024, however in this case we sub-
sample in both dimensions, reducing these to processes of
size 512×512. As before, we test the points z0 = (1/2, 1/2)
and z0 = (1/4, 1/4) and for each wavelet direction inde-
pendently, with the only difference being that we only test
j = 1, 2, 3 (since we lost a scale due to sub-sampling). In
this case for the true underlying spectrumwewould reject H0

for � = v and accept H0 for � = h and d at z0 = (1/2, 1/2)
and reject H0 for all wavelet directions at z0 = (1/4, 1/4).
The results are summarised in Tables 3 and 4.

When testing the point z0 = (1/2, 1/2), we see that in
most cases our test does not reject the null hypothesis in the
horizontal and diagonal directions. This is to be expected, as
the true spectrum for � = h is set to zero for all scales j and
for � = d it is set to zero for j = 3. Since in all directions
there is no spectral power at z0 = (1/2, 1/2) for j = 1, we
expect no power to be redistributed at finer scales due to sub-
sampling. On the other hand, since there is spectral power
at z0 = (1/4, 1/4) for � = v and d at the finest scale prior
to sub-sampling, power is redistributed at all coarser scales
including all scales in the horizontal direction which used to
have no spectral power. Although for b = 32 and b = 64
we would reject H0, further investigating would need to be
carried out in order to conclude that aliasing occurred with

Table 3 Empirical rejections
rates when testing Yr ,s = X2r ,2 s
for z = (1/2, 1/2) (see
Appendix B for rejection rates
by level)

b � = v � = h � = d

8 1.1 0.0 0.0

16 41.9 0.1 0.6

32 99.5 0.6 1.6

64 100.0 0.8 3.2

Table 4 Empirical rejections
rates when testing Yr ,s = X2r ,2 s
for z = (1/4, 1/4) (see
Appendix B for rejection rates
by level)

b � = v � = h � = d

8 1.1 0.1 0.2

16 36.4 2.5 5.1

32 99.2 48.8 40.6

64 100.0 95.8 76.6

certainty. Furthermore, we note that our rejection rates for
b = 32 in the horizontal and diagonal directions are signif-
icantly lower than in the vertical direction, which is due to
power already being present in this direction, as well as dif-
ficulties in correcting the test for correlation in the samples.

6 A real world example

In this section we demonstrate the use of the test on a real
image of size 2048×2048.We tested for the absence of alias-
ing/white noise confounding at each pixel for J † = 5 using
Daubechies D6 wavelets. Computational time overall was
quite long, taking approximately a week in total. However
a significant amount of that computational time was used to
compute the evolutionary wavelet spectrum (which we did
only once) since the software we used was not parallelised.
We note therefore that efficient parallelisation of the software
would reduce computational times significantly, for example
by following the suggestions outlined in Sect. 4.3.

The image and results are displayed in the top rowofFig. 2,
corresponding to vertical, horizontal and diagonal directions
respectively. Pixelswherewewould reject the null hypothesis
H0 are displayed in gray. We note that this is rejected more
frequently at pixels located in rougher region of the image,
for example the trees at the center, compared to the smother
regions such as parts of the sky and ground. If aliasing did
occur, then this is to be expected, as rougher patches of the
image contain more information, making them susceptible to
aliasing, whereas smooth regions are constant in value and
therefore do not lose information when down-sampled.

As pointed out in previous sections, although we can con-
clude that aliasing/white noise confounding did not occur
in the white regions of the image, we cannot conclude with
certainty that it did occur in the gray regions. Further inves-
tigation would be required to reach such a conclusion and,
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if reached, to determine which of the two (aliasing or white
noise confounding) occurred.

We now sub-sample the original image twice in both the
horizontal and vertical dimensions, reducing it to an image
of size 512×512. We carry the test out again using the same
underlying wavelets and for J † = 3. Due to the smaller
size of the image, the computational times are significantly
lower, taking only a few hours. The sub-sampled image and
the corresponding results are displayed in the lower row of
Fig. 2, where again pixels for which the null hypothesis H0

was rejected are coloured in gray.
The test is rejected for a proportionally larger number of

pixels which correspond to rougher patches containing more
information. Since we have access to the original version of
the image, we can conclude that aliasing occurred in areas
that were not previously coloured in gray.

7 Extension to videos

A natural extension to the work in this paper is to develop a
similar procedure for testing for the absence of aliasing/white
noise confounding in videos. We can distinguish between
two scenarios: the first involves a fixed camera and light-
ing, while the second assumes variability in both. In the
former case, each pixel in the video consistently represents
the same object throughout the entire duration, eliminating
the need for specific modifications. Conversely, in the latter
case, while each pixel may potentially correspond to a dif-
ferent object across different frames, it is worth noting that
it may not be strictly necessary to perform adjustments in all
cases. This presents a more intricate challenge in determin-
ing the pixel-to-object correspondence. One possible avenue
for addressing this situation is to explore methods that com-
pensate for camera movements relative to its initial position
and adapt to changes in lighting. However, it is important to
note that such an approach would require precise informa-
tion about cameramovements and lighting conditions, which
may not always be readily available, and therefore alternative
solutions will need to be explored. Consequently, it becomes
evident that the challenge of handling a moving camera with
changing lighting requires careful consideration.

We now briefly outline two possibilities for going from
images to videos. The first is to treat videos as three-
dimensional processes and therefore treat them as three-
dimensional locally stationary wavelet processes. Testing
for the absence of aliasing/white noise confounding would
require extending the methods outlined in Eckley and Nason
(2018) and this paper to three-dimensional processes.

Unlike time series or images, the dimensions in a video
are not all of the same kind and instead consist of one
temporal and two spatial dimensions. When dealing with
spatio-temporal data, it is common practice to handle the

spatial and temporal components as distinct entities, assum-
ing that this separability is valid. For further insights into
spatio-temporal statistics, please refer to Cressie and Wikle
(2011) for example. This leads naturally to our second sug-
gestion, which is to apply both the one-dimensional and
two-dimensional tests to a given pixel at a given time.

More formally, given a point z0 in the video, this can be
viewed as both a point in the time series of a pixel and as a
pixel in an image corresponding to that frame. Hence, one
could apply the one-dimensional version of the test devel-
oped in Eckley and Nason (2018) to the point in time series
and the two-dimensional version of the test to the point in
the image simultaneously, obtaining results (i.e. whether to
accept or reject the null hypothesis) in time and in the tree
wavelet directions. To then determine whether there is evi-
dence for aliasing or white noise confounding at that point,
one could then apply a multiple hypothesis scheme. This and
other possibilities are left for future work.

8 Closing remarks

In this paper we have extended the absence of aliasing
or white noise confounding test developed in Eckley and
Nason (2018) to two-dimensional locally stationary wavelet
processes and demonstrated it’s application to images. Addi-
tionally, we gave some suggestions for extending these
methods further and, in particular, a procedure for applying
the test to videos.

A clear avenue for future work would be to investigate
solutions for dealing with correlation in the samples in more
detail. Although themethods outline in thiswork are able cor-
rect the Student’s t test for correlation, they are still unreliable
at times. Further work could also be conducted on choosing
an appropriate window width in which to conduct the test.
Finally, it would also be interesting to see these methods
being applied to videos as well, as this is a natural extension
to the work developed here.
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Fig. 2 Top left - original image. Bottom left - original image sub-
sampled twice in both dimensions. For each pixel we test H0 against
HA. Pixels for which we would reject H0 are displayed in gray. From

left to right (excluding first column) - results for vertical, horizontal and
diagonal wavelet directions. Top left image borrowed from Koentjoro
(2018)

intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A - Proofs

Proof of Theorem 1
The proof is similar to the one-dimensional case in Eckley

and Nason (2018), although it requires some adaptations to
two-dimensions.

(a) We begin by substituting s with 2s into Eq. (11) to
obtain

Yr ,s = Xr ,2s =
∑

�

∞∑

j=1

∑

u,v

w�
j,u,vψ

�
j,u−r ,v−2sξ

�
j,u,v

= Lr ,s + Fr ,s, (43)

where Lr ,s corresponds to the j > 1 terms and Fr ,s to the
j = 1 term, i.e.

Lr ,s =
∑

�

∞∑

j=2

∑

u,v

w�
j,u,vψ

�
j,u−r ,v−2sξ

�
j,u,v (44)

and

Fr ,s =
∑

�

∑

u,v

w�
1,u,vψ

�
1,u−r ,v−2sξ

�
1,u,v. (45)

We focus first on the term Lr ,s , which we can decompose
as

Lr ,s = L(e,e)
r ,s + L(e,o)

r ,s + L(o,e)
r ,s + L(o,o)

r ,s , (46)

where (e, e) denotes terms that are evenly-indexed in both
components, (e, o) denotes terms that are evenly-indexed in
the first component and oddly-indexed in the second, and so
on. Consider

L(e,e)
r ,s =

∑

�

∞∑

j=2

∑

u,v

w�
j,2u,2vψ

�
j,2u−r ,2v−2sξ

�
j,2u,2v, (47)

where we assume, without loss of generality, that r is even.
Note that if r was odd, then the expression on the right hand
side of (47) would simply equal L(o,e)

r ,s . Now, using the defi-
nition of the two-dimensional mother wavelet, we have

ψ�
j,2u−r ,2v−2s =

∑

a,b

h2u−r−2ah2v−2s−2bψ
�
j−1,a,b (48)

=
∑

a,b

h2u−2r−2a+r h2v−2s−2bψ
�
j−1,a,b (49)

=
∑

m,n

h2u−2m+r h2v−2nψ
�
j−1,m−r ,n−s (50)

=
∑

p,q

h2p+r h2qψ
�
j−1,u−p−r ,v−q−s, (51)
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where in (50) we summed over m = r + a and n = s + b
instead of a and b and in (51) we summed over p = u − m
and q = v − n instead of m and n. Substituting (51) back
into (47), we obtain

L(e,e)
r ,s =

∑

l

∞∑

j=2

∑

u,v

w�
j,2u,2vξ

�
j,2u,2v

×
∑

p,q

h2p+r h2qψ
�
j−1,u−p−r ,v−q−s (52)

=
∑

p,q

h2p+r h2q
∑

l

∞∑

j=2

×
∑

u,v

w�
j,2u,2vψ

�
j−1,u−p−r ,v−q−sξ

�
j,2u,2v (53)

=
∑

p,q

h2p+r h2qU
(p,q)
r ,s , (54)

where

U (p,q)
r ,s =

∑

l

∞∑

j=2

∑

u,v

w�
j,2u,2vψ

�
j−1,u−p−r ,v−q−sξ

�
j,2u,2v.

(55)

Summing over a = u − p and b = v − q instead of p and q
we have

U (p,q)
r ,s =

∑

l

∞∑

j=2

∑

a,b

w�
j,2(a+p),2(b+q)ψ

�
j−1,a−r ,b−sξ

�
j,2(a+p),2(b+q). (56)

Define ξ∗�
j−1,a+p,b+q = ξ�

j,2(a+p),2(b+q), W
∗
j−1(z) = Wj (z)

and w∗�
j−1,a+p,b+q = w�

j,2(a+p),2(b+q) for j = 2, 3, . . .

a, b ∈ Z and z ∈ (0, 1)2. Then

U (p,q)
r ,s =

∑

l

∞∑

j=2

∑

a,b

w�∗
j−1,a+p,b+q

ψ�
j−1,a−r ,b−sξ

�∗
j−1,a+p,b+q . (57)

From assumption (iii) in Definition 3, we have

sup
a,b

∣∣∣∣w
�∗
j,a+p,b+q − W �∗

j

(
a + p

R
,
b + q

S

)∣∣∣∣

= sup
a,b

∣∣∣∣w
�∗
j,2(a+p),2(b+q) − W �∗

j

(
2(a + p)

R
,
2(b + q)

S

)∣∣∣∣

≤ C j

R ∧ S
(58)

and so U (p,q)
r ,s is itself a two-dimensional locally stationary

wavelet process. Since only a finite number of the h2p+r and

h2q terms are non-zero, L(e,e)
r ,s is equivalent to the sum of a

finite number of two-dimensional locally stationary wavelet
processes with constant coefficients, which does not depend
on r or s, and so is a two-dimensional stationary wavelet
process aswell.Wecanproceed in a similarmanner for L(e,e)

r ,s ,
L(e,e)
r ,s and L(e,e)

r ,s to conclude that Lr ,s is a two-dimensional
locally stationary wavelet process with the same underlying
wavelets as Xr ,s .

We now compute the covariance of Fr ,s . This process has
mean zero since ξ�

j,u,v has mean zero for all j, u, v and �.
Now,

cov(Fr ,s , Fr+τ1,s+τ2 ) = cov
( ∑

�,u,v

w�
1,u,vψ�

1,u−r ,v−2sξ
�
1,u,v ,

∑

k,m,n

wk
1,m,nψ

k
1,m−r−τ1,n−2s−2τ2

ξk1,m,n

)
(59)

=
∑

�,u,v

∑

k,m,n

w�
1,u,vψ�

1,u−r ,v−2sw
k
1,m,nψ

k
1,m−r−τ1,n−2s−2τ2

cov
(
ξ�
1,u,v , ξk1,m,n

)

︸ ︷︷ ︸
=δ�,kδu,mδv,n

(60)

=
∑

�,u,v

(
w�
1,u,v

)2
ψ�
1,u−r ,v−2sψ

�
1,u−r−τ1,v−2s−2τ2 (61)

=
∑

�

cov(F�
r ,s , F

�
r+τ1,s+τ2

). (62)

We include the last step, namely (62) to show that we can
consider each wavelet direction separately. We begin by
considering the horizontal component � = h of the auto-
covariance of Fr ,s and so

cov(Fh
r ,s, F

h
r+τ1,s+τ2

)

=
∑

u,v

(
wh
1,u,v

)2
ψh
1,u−r ,v−2sψ

h
1,u−r−τ1,v−2s−2τ2 (63)

=
∑

u,v

(
wh
1,u,v

)2
hu−r gv−2shu−r−τ1gv−2s−2τ2 (64)

=
∑

u

hu−r hu−r−τ1

∑

v

gv−2sgv−2s−2τ2

(
wh
1,u,v

)2
, (65)

where in (64) we used the fact that ψh
1,u,v = hugv . We can

obtain similar expressions for the vertical � = v and diagonal
� = d directions as well.

We now consider two cases: firstly, if w�
1,u,v = w�

1 = is
constant, then, for � = h, we have

cov(Fh
r ,s, F

h
r+τ1,s+τ2

)

=
(
wh
1

)2 ∑

u

hu−r hu−r−τ1

∑

v

gv−2sgv−2s−2τ2 (66)
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=
(
wh
1

)2
δ0,τ1δ0,τ2 = Sh1 δ0,τ1δ0,τ2 . (67)

We obtain analogous results for � = v and � = d, and so

cov(Fr ,s, Fr+τ1,s+τ2) =
(
Sh1 + Sv

1 + Sd1

)
δ0,τ1δ0,τ2 (68)

Now, if w�
1,u,v is not constant, then

cov(Fh
r ,s, F

h
r+τ1,s+τ2

)

=
∑

u

hu−r hu−r−τ1

∑

v

gv−2sgv−2s−2τ2

(
wh
1,u,v

)2

(m = u − r , n = v − 2s) (69)

=
∑

m

hmhm−τ1

∑

n

gngn−2τ2

(
wh
1,m+r ,n+2s

)2
(70)

=
∑

m

hmhm−τ1

∑

n

gngn−2τ2

{
Wh

1

(
m + r

R
,
n + 2s

S

)2

+O

(
1

R ∨ S

)}
(71)

=
∑

m

hmhm−τ1

∑

n

gngn−2τ2

{
Sh1

(
r

R
,
2s

S

)

+O
(
Lh
1

∣∣∣
(m
R

,
n

S

)∣∣∣
)

+ O

(
1

R ∨ S

)}
(72)

=
{
Sh1

(
r

R
,
2s

S

)

+O

(
1

R ∧ S

)}
δ0,τ1δ0,τ2 , (73)

where in (70), we sum overm = u−r and n = v−2s instead
of u and v. (71) follows from assumption (iii) in Definition 3
and in (72) we used the Lipschitz continuity of the process.
Again, this is analogous for � = v and � = d, and so

cov(Fr ,s, Fr+τ1,s+τ2) =
{
Sh1

(
r

R
,
2s

S

)
+ Sv

1

(
r

R
,
2s

S

)

+Sd1

(
r

R
,
2s

S

)
+ O

(
1

R ∧ S

)}
δ0,τ1δ0,τ2 . (74)

(b) Analogous to (a)
(c) Almost identical to (a) and (b) and the proof for the one-
dimensional case in Eckley and Nason 2018.

Proof of Corollary 1
Apply Theorem 1(c) for min(p, q) times and then apply
either (a) or (b) for max(p, q) − min(p, q) times (i.e. (a)
if q > p and (b) if p > q).

Proof of Theorem 2

We begin by computing the expectation of the wavelet peri-
odogram of the process Yr ,s = X2pr ,2q s , for i = h, v, d.

E

{(
dij,u,v

)2}

= E

⎧
⎨

⎩

(
∑

r ,s
Yr ,sψ

i
j,u−r ,v−s

)2
⎫
⎬

⎭ (75)

= E

⎧
⎨

⎩

(
∑

r ,s
X2pr ,2q sψ

i
j,u−r ,v−s

)2
⎫
⎬

⎭ (76)

= E

{(∑

r ,s

∑

�

∞∑

k=1

∑

a,b

w�
k,a,b

ψ�
k,a−2pr ,b−2q sξ

�
k,a,bψ

i
j,u−r ,v−s

)2}
(77)

=
∑

r ,s,x,y

∑

�

∞∑

k=1

∑

a,b

(
w�
k,a,b

)2

ψ�
k,a−2pr ,b−2q sψ

i
j,u−r ,v−sψ

�
k,a−2px,b−2q yψ

i
j,u−x,v−y

(78)

=
∑

�

∞∑

k=1

∑

a,b
(

w�
k,a,b

∑

r ,s
ψ�
k,a−2pr ,b−2q sψ

i
j,u−r ,v−s

)2

(79)

=
∑

�

∞∑

k=1

∑

a,b

(
w�
k,a,b

)2
P(�, k, a, b, j, u, v, i, p, q) (80)

=
∑

�

∞∑

k=1

∑

m,n

(
w�
k,m+2pu,n+2qv

)2

P(�, k,m + 2pu, n + 2qv, j, u, v, i, p, q) (81)

=
∑

�

∞∑

k=1

∑

m,n

{
S�
k

(
m + 2pu

R
,
n + 2qv

S

)
+ O

(
1

R ∧ S

)}

P(�, k, . . . , p, q) (82)

=
∑

�

∞∑

k=1

∑

m,n

{
S�
k

(
2pu

R
,
2qv

S

)
+ O

(∣∣∣
(m
R

,
n

S

)∣∣∣
)

+O

(
1

R ∧ S

)}

P(�, k, . . . , p, q) (83)

=
∑

�

∞∑

k=1

S�
k

(
2pu

R
,
2qv

S

)

∑

m,n
P(�, k,m + 2pu, n + 2qv, j, u, v, i, p, q)

+ O

(
1

R ∧ S

)
, (84)

where in (77) we substitute in the definition of the two-
dimensional locally stationary wavelet process, in (80) we
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set

P(�, k, a, b, j, u, v, i, p, q)

=
(
∑

r ,s

ψ�
k,a−2pr ,b−2q sψ

i
j,u−r ,v−s

)2

(85)

and in (81) we sum over m = a − 2pu and n = b − 2qv
instead of a and b. In (82) we use assumption (iii) from Def-
inition 3 and in (83) we make use of the Lipschitz continuity
assumption. Now,

∑

m,n

P(�, k,m + 2pu, n + 2qv, j, u, v, i, p, q)

=
∑

m,n

(
∑

r ,s

ψ�
k,m+2p(u−r),n+2q (v−s)ψ

i
j,u−r ,v−s

)2

(86)

=
∑

r ,s

∑

x,y

ψ i
j,u−r ,v−sψ

i
j,u−x,v−y (87)

×
∑

m,n

ψ�
k,m+2p(u−r),n+2q (v−s)ψ

�
k,m+2p(u−x),n+2q (v−y)

(88)

=
∑

r ,s,x,y

ψ i
j,u−r ,v−sψ

i
j,u−x,v−y


�
k (2

p(x − r), 2q(y − s))

(89)

=
∑

r ,s,a,b

ψ i
j,u−r ,v−sψ

i
j,u−r−a,v−s−b


�
k (2

pa, 2qb) (90)

=
∑

a,b


�
k (2

pa, 2qb)
∑

r ,s

ψ i
j,u−r ,v−sψ

i
j,u−r−a,v−s−b (91)

=
∑

a,b


�
k (2

pa, 2qb)
 i
j (a, b), (92)

where in (89) we used the definition of the two-dimensional
autocorrelation wavelet and in (90), we sum over a = x − r
and b = y − s instead of x and y. Therefore

E

{(
dij,u,v

)2}

=
∑

�

∞∑

k=1

S�
k

(
2pu

R
,
2qv

S

)∑

a,b


�
k (2

pa, 2qb)
 i
j (a, b)

+ O

(
1

R ∧ S

)
. (93)

Assuming without loss of generality that p < q and con-
sidering the case i = h, we have


h
k (2pa, 2qb)

=
⎧
⎨

⎩

�k−p(a)
k−q(b), k > q,

�k−p(a)
1(2q−kb) = �k−p(a)δ0,b, p < k ≤ q,

�1(2p−ka)
1(2q−kb) = δ0,aδ0,b, k ≤ p.

(94)

Note that herewe used the result derived in Eckley andNason
(2005) that 
k(2qb) = 
k−q(b) for k > q and 
k(2qb) =
δ0,b for k ≤ q. An analogous property can be derived for
the father autocorrelation wavelet � j , which we also used
above.

Furthermore, we can decompose the expectation as fol-
lows

E

{(
dhj,u,v

)2} = E

{(
dhj,u,v

)2}h

+ E

{(
dhj,u,v

)2}v

+ E

{(
dhj,u,v

)2}d

+ O

(
1

R ∧ S

)
,

(95)

where

E

{(
dhj,u,v

)2}�

=
∞∑

k=1

S�
k

(
2pu

R
,
2qv

S

)∑

a,b


�
k (2

pa, 2qb)
h
j (a, b) (96)

and so

E

{(
dhj,u,v

)2}h

=
p∑

k=1

Shk

(
2pu

R
,
2qv

S

)∑

a,b


h
k (2pa, 2qb)
h

j (a, b) (97)

+
q∑

k=p+1

Shk

(
2pu

R
,
2qv

S

)∑

a,b


h
k (2pa, 2qb)
h

j (a, b)

(98)

+
∞∑

k=q+1

Shk

(
2pu

R
,
2qv

S

)∑

a,b


h
k (2pa, 2qb)
h

j (a, b)

(99)

=
p∑

k=1

Shk

(
2pu

R
,
2qv

S

)∑

a,b

δ0,aδ0,b

h
j (a, b) (100)

+
q∑

k=p+1

Shk

(
2pu

R
,
2qv

S

)∑

a,b

�k−p(a)δ0,b

h
j (a, b)

(101)

+
∞∑

k=q+1

Shk

(
2pu

R
,
2qv

S

)∑

a,b

�k−p(a)
k−q(b)

h
j (a, b)

(102)

=
p∑

k=1

Shk

(
2pu

R
,
2qv

S

)

h

j (0, 0) +
q∑

k=p+1
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Shk

(
2pu

R
,
2qv

S

)∑

a

�k−p(a)
h
j (a, 0) (103)

+
∞∑

k=q+1

Shk

(
2pu

R
,
2qv

S

)∑

a,b

�k−p(a)
k−q(b)

h
j (a, b)

(104)

=
p∑

k=1

Shk

(
2pu

R
,
2qv

S

)

+
q∑

k=p+1

Shk

(
2pu

R
,
2qv

S

)∑

a

�k−p(a)� j (a) (105)

+
∞∑

k=q+1

Shk

(
2pu

R
,
2qv

S

)

∑

a

�k−p(a)� j (a)
∑

b


k−q(b)
 j (b) (106)

=
p∑

k=1

Shk

(
2pu

R
,
2qv

S

)
+

q∑

k=p+1

Shk

(
2pu

R
,
2qv

S

)
Bk−p, j

(107)

+
∞∑

k=q+1

Shk

(
2pu

R
,
2qv

S

)
Bk−p, j Ak−q, j (108)

Using similar arguments, we can obtain corresponding

expressions for E

{(
dhj,u,v

)2}v

and E

{(
dhj,u,v

)2}d

and so

E

{(
dhj,u,v

)2}

=
p∑

k=1

∑

�

S�
k

(
2pu

R
,
2qv

S

)

+
q∑

k=p+1

{
Bk−p, j S

h
k

(
2pu

R
,
2qv

S

)

+ Ck−p, j S
v
k

(
2pu

R
,
2qv

S

)
(109)

+ Ck−p, j S
d
k

(
2pu

R
,
2qv

S

)}

+
∞∑

k=q+1

{
Bk−p, j Ak−q, j S

h
k

(
2pu

R
,
2qv

S

)
(110)

+ Ck−p, jC j,k−q S
v
k

(
2pu

R
,
2qv

S

)

+ Ck−p, j Ak−q, j S
d
k

(
2pu

R
,
2qv

S

)}

+ O

(
1

R ∧ S

)
(111)

Similarly we can compute the expectations of
(
dv
j,u,v

)2

and
(
ddj,u,v

)2
. As we noted previously, the case where

p > qsimply results in the expectations for the vertical and
horizontal directions being switched.

Derivation of the Spatial Equivalent Sample Size
Let Xi, j , i, j = 1, . . . , n be observations on an n×n equally
spaced grid, with mean μ and variance σ 2. Following the
derivation in Thiebaux and Zwiers (1984),
σ 2
X

= E

[
(X − μ)2

]
(112)

= 1

n4
E

⎡

⎢⎣

⎛

⎝
n∑

i, j=1

(Xi, j − μ)

⎞

⎠
2
⎤

⎥⎦ (113)

= 1

n4
E

⎡

⎣
n∑

i,k=1

n∑

j,�=1

(Xi, j − μ)(Xk,� − μ)

⎤

⎦ (114)

= 1

n4

n∑

i,k=1

n∑

j,�=1

E
[
(Xi, j − μ)(Xk,� − μ)

]
(115)

= 1

n4

n∑

i,k=1

n∑

j,�=1

C(i − k, j − �) (116)

= σ 2

n4

n−1∑

τ1,τ2=−(n−1)

(n − |τ1|) (n − |τ2|) ρ(τ1, τ2) (117)

= σ 2

n2

n−1∑

τ1,τ2=−(n−1)(
1 − |τ1|

n

)(
1 − |τ2|

n

)
ρ(τ1, τ2), (118)

where C(τ1, τ2) and ρ(τ1, τ2) are the symmetric spatial
covariance and autocovariance functions, respectively, at lags
τ1 and τ2. In the case where we have ne independent obser-
vations, we would have σ 2

X
= σ 2/ne. Equation the two, we

obtain the following expression for the equivalent sample
size

n−1
e = n−2

n−1∑

τ1,τ2=−(n−1)

(
1 − |τ1|

n

)

(
1 − |τ2|

n

)
ρ(τ1, τ2) (119)

Appendix B - Additional tables of results

See Tables 5, 6, 7 and 8.
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Table 5 Empirical rejections rates by level when testing Xr ,s for z = (1/2, 1/2)

b � = v � = h � = d
j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

8 1.1 7.4 13.2 40.9 0.7 8.3 12.0 40.2 2.7 11.1 8.3 15.7

16 1.0 44.7 47.1 73.6 1.0 44.2 47.9 72.6 4.6 60.3 34.4 42.8

32 1.6 98.4 97.1 99.0 1.1 98.3 97.0 98.5 7.2 99.8 94.9 88.3

64 1.3 100.0 100.0 100.0 2.1 100.0 100.0 100.0 4.0 100.0 100.0 100.0

128 1.4 100.0 100.0 100.0 1.9 100.0 100.0 100.0 5.1 100.0 100.0 100.0

Table 6 Empirical rejections rates by level when testing Xr ,s for z = (1/4, 1/4)

b � = v � = h � = d
j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

8 6.5 5.5 13.1 40.3 7.9 5.9 13.6 39.6 12.5 4.4 4.3 14.7

16 55.8 35.7 45.5 74.2 53.5 36.5 47.6 73.8 73.4 25.8 29.5 45.2

32 100.0 95.8 95.8 98.3 99.9 95.6 96.0 98.6 100.0 93.7 92.3 87.5

64 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9

128 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 7 Empirical rejections
rates by level when testing
Yr ,s = X2r ,2 s for
z = (1/2, 1/2)

b l = v l = h l = d
j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

8 – 21.3 20.9 36.8 – 0.7 3.2 3.9 – 35.6 1.0 21.8

16 – 82.2 66.5 83.1 – 2.6 3.3 5.2 – 92.7 0.9 70.1

32 – 100.0 99.6 99.9 – 1.6 3.6 6.5 – 100.0 1.6 99.9

64 – 100.0 100.0 100.0 – 3.2 4.1 7.2 – 100.0 3.2 100.0

Table 8 Empirical rejections
rates by level when testing
Yr ,s = X2r ,2 s for
z = (1/4, 1/4)

b l = v l = h l = d
j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

8 – 2.5 21.5 31.9 – 13.9 7.2 8.4 – 31.1 2.5 11.8

16 – 83.4 63.0 76.9 – 66.9 27.4 22.1 – 92.7 9.4 55.2

32 – 100.0 99.2 100.0 – 99.9 80.1 65.6 – 100.0 40.9 99.2

64 – 100.0 100.0 100.0 – 100.0 99.1 96.7 – 100.0 76.6 100.0

References

Burger, W., Burge, M.: Principles of Digital Image Processing: Core
Algorithms. Springer (2010)

Chaver, D., Prieto, M., Pinuel, L., Tirado, F.: Parallel wavelet transform
for large scale image processing. In: Proceedings 16th Interna-
tional Parallel and Distributed Processing Symposium (2002)

Coulange, B., Moisan, L.: An aliasing detection algorithm based on
suspicious colocalizations of Fourier coefficients. In: 2010 IEEE
International Conference on Image Processing, pp. 2013–2016
(2010)

Cressie, N., Wikle, C.K.: Statistics for Spatio-Temporal Data. Wiley
Series in Probability and Statistics, Wiley (2011)

Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)
Douglas, S.C.: Detection of Aliasing in Image Sequences Using Non-

linear Factor Analysis. Springer (2012)
Eckley, I.A.: Wavelet methods for time series and spatial data. Ph.D

Thesis, University of Bristol (2001)

Eckley, I.A., Nason, G.P.: Efficient computation of the discrete auto-
correlation wavelet inner product matrix. Stat. Comput. 15, 83–92
(2005)

Eckley, I.A., Nason, G.P.: A test for the absence of aliasing or local
white noise in locally stationary wavelet time series. Biometrika
105(4), 833–848 (2018)

Gonzalez, R., Woods, R.: Digital Image Processing. Pearson (2018)
Gott, A.N.: Wavelet methods for locally stationary data. Ph.D Thesis,

Lancaster University (2012)
Gunnels, J., Lin, C., Morrow, G., van de Geijn, R.: A flexible class

of parallel matrix multiplication algorithms. In: Proceedings of
the FirstMerged International Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing, pp. 110–116
(1998)

Hinich, M.J., Messer, H.: On the principal domain of the discrete bis-
pectrum of a stationary signal. IEEE Trans. Signal Process. 43(9),
2130–2134 (1995)

123



Statistics and Computing (2023) 33 :108 Page 17 of 17 108

Hinich, M.J., Wolinsky, M.A.: A test for aliasing using bispectral anal-
ysis. J. Am. Stat. Assoc. 83(402), 499–502 (1988)

Holm, S.: A simple sequentially rejective multiple hypothesis test pro-
cedure. Scand. J. Stat. 6(2), 65–70 (1979)

Koentjoro, H.: Monochromatic Minimalism with the X1D. (2018)
Li, Q., Shen, L., Guo, S., Lai, Z.: WaveCNet: wavelet integrated CNNs

to suppress aliasing effect for noise-robust image classification.
IEEE Trans. Image Process. 30, 7074–7089 (2021)

Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., Shi, W.: Edge computing
for autonomous driving: opportunities and challenges. Proc. IEEE
107(8), 1697–1716 (2019)

Liu, L., Lu, S., Zhong, R., Wu, B., Yao, Y., Zhang, Q., Shi, W.: Comput-
ing systems for autonomous driving: state of the art and challenges.
IEEE Internet Things J. 8(8), 6469–6486 (2021)

Mallat, S.G.: A theory for multiresolution signal decomposition: the
wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell.
11(7), 674–693 (1989)

Marino, F., Piuri, V., Swartzlander, E.E.: A parallel implementation of
the 2-d discrete wavelet transform without interprocessor commu-
nications. IEEE Trans. Signal Process. 47(11), 3179–3184 (1999)

Nason, G.P., et al.: Wavelet processes and adaptive estimation of the
evolutionary wavelet spectrum. J. R. Stat. Soc. Ser. B 62(2), 271–
292 (2000)

Nason, G.P.: Wavelet Methods is Statistics with R. Springer, New York
(2008)

Nielsen, O.: Parallel wavelet transforms. pp. 385–389 (1998)
Patney, A., Lefohn, A.: Detecting aliasing artifacts in image sequences

using deep neural networks.NewYork.Association forComputing
Machinery (2018)

Priestley, W.B.: Spectral Analysis and Time Series, Volumes I and II.
Academic Press, London (1983)

Ribeiro, A.H., Schön, T.B.: How convolutional neural networks deal
with aliasing. In: ICASSP 2021—2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
pp 2755–2759 (2021)

Schatz, M.D., van de Geijn, R.A., Poulson, J.: Parallel matrix mul-
tiplication: a systematic journey. SIAM J. Sci. Comput. 38(6),
C748–C781 (2016)

Thiebaux,H.J., Zwiers, F.W.: The interpretation and estimation of effec-
tive sample size. J. Clim. Appl. Meteorol. 23, 800–811 (1984)

Vasconcelos, C., et al.: An effective anti-aliasing approach for residual
networks (2020)

Vasconcelos, C., et al.: Impact of aliasing on generalization in deep
convolutional neural networks. In: International Conference on
Computer Vision ICCV 2021. IEEE/CVF (2021)

Zwiers, F.W., Storch, H.V.: Taking serial correlation into account in
tests of the mean. J. Clim. 8, 336–351 (1995)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	A test for the absence of aliasing or white noise in two-dimensional locally stationary wavelet processes
	Abstract
	1 Introduction
	2 Locally stationary wavelet processes
	3 Theoretical consequences of dyadic sub-sampling
	4 Test procedure
	4.1 Testing for the absence of aliasing or white noise confounding
	4.2 Dealing with correlation in the samples
	4.3 Computational feasibility, parallelisation and speed up

	5 Simulation study
	6 A real world example
	7 Extension to videos
	8 Closing remarks
	Appendix A - Proofs
	Appendix B - Additional tables of results
	References




