
Statistics and Computing (2023) 33:94
https://doi.org/10.1007/s11222-023-10261-z

ORIG INAL PAPER

Generalized multiple change-point detection in the structure of
multivariate, possibly high-dimensional, data sequences

Andreas Anastasiou1 · Angelos Papanastasiou1

Received: 1 June 2022 / Accepted: 24 May 2023 / Published online: 29 June 2023
© The Author(s) 2023

Abstract
The extensive emergence of big data techniques has led to an increasing interest in the development of change-point detection
algorithms that can perform well in a multivariate, possibly high-dimensional setting. In the current paper, we propose a
new method for the consistent estimation of the number and location of multiple generalized change-points in multivariate,
possibly high-dimensional, noisy data sequences. The number of change-points is allowed to increase with the sample size
and the dimensionality of the given data sequence. Having a number of univariate signals, which constitute the unknown
multivariate signal, our algorithm can deal with general structural changes; we focus on changes in the mean vector of a
multivariate piecewise-constant signal, as well as changes in the linear trend of any of the univariate component signals. Our
proposed algorithm, labeled Multivariate Isolate–Detect (MID) allows for consistent change-point detection in the presence
of frequent changes of possibly small magnitudes in a computationally fast way.

Keywords Change-point detection · High-dimensional setting · Piecewise-constant structure · Piecewise-linear structure

1 Introduction

Change-point detection algorithms have been actively devel-
oped and investigated from the scientific community. Their
ability to segment data into smaller, homogeneous parts have
helped researchers and practitioners to develop flexible sta-
tisticalmodels that can adapt in non-stationary environments.
Due to the natural data heterogeneity in many real prob-
lems, such algorithms have been applied in a wide range of
application areas, such as bioinformatics (Picard et al. 2011;
Hocking et al. 2013), cyber security (Siris and Papagalou
2004), or finance (Lavielle and Teyssiere 2007; Schröder and
Fryzlewicz 2013). The advantages of detecting changes in the
behaviour of data fall into two main categories; interpreta-
tion and forecasting. Interpretation comes naturally since the
detected changes are usually connected with life events that
took place near the estimation time. Associating the changes
with such real-life phenomena can lead to a better under-
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standing and quantification of the effect that these events had
on the behaviour of the stochastic process. With respect to
forecasting, the role of the final segment is important because
it allows for a more accurate prediction of the future values
of the data sequence at hand.

Based onwhether we have full knowledge of the data to be
analysed, change-point detection is split into two main cate-
gories; offline detection, where the data are already obtained,
andonline detection, inwhich the observations arrive sequen-
tially at present. With respect to the dimensionality of the
data, change-point detection can be further separated into
algorithms that act only on univariate data and to those that
are suitable for change-point detection in multivariate data
sequences. In this paper, we focus on multivariate, possi-
bly high-dimensional, offline settings; our aim is to estimate
the number and locations of certain structural changes in the
behaviour of given multivariate data. The model is

Xt = ft + εt , t = 1, . . . , T , (1)

where Xt ∈ R
d×1 are the observed data and ft ∈ R

d×1 is the
d-dimensional deterministic signal with structural changes
at certain points. The signals that we treat in the current
manuscript are those that changes appear in the mean struc-
ture or in the vector of the first order derivatives. The noise
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terms εt ∈ R
d×1 are random vectors with mean the zero vec-

tor and covariance matrix, �, which is positive definite and
not necessarily diagonal. The true number, N , of the change-
points, as well as their locations r1, . . . , rN , are unknown
and our aim is to estimate them; N is free to grow with the
sample size, T , and the dimensionality, d.

The initial purpose of change-point detection algorithms
has been to detect a single change in the mean structure of
a univariate signal under the setting of Gaussian noise, but
much progress has since been made. Researchers have heav-
ily focused on the detection of multiple change-points in
the mean structure of a univariate data sequence. Towards
this purpose, optimization-based methods have been devel-
oped, in which the estimated signal is chosen based on its
fit to the data, penalized by a complexity rule. To solve
the implied penalization problem, dynamic programming
approaches, such as the Segment Neighborhood (SN) and
Optimal Partitioning (OP) methods of Auger and Lawrence
(1989) and Jackson et al. (2005), have been developed. Kil-
lick et al. (2012) and Rigaill (2015) introduce improvements
over the classical OP and SN algorithms, respectively. In
the context of regression problems, Frick et al. (2014) intro-
duced the simultaneous multiscale change-point estimator
(SMUCE) for change-point detection in exponential fam-
ily regression. Apart from optimization based algorithms, a
popularmethod in the literature is binary segmentationwhere
changes are detected one at a time through an iterative binary
splitting of the data. Recent variants of binary segmentation
with improved performance are the Wild Binary Segmenta-
tion (WBS) of Fryzlewicz (2014) and its recently developed
second version of Fryzlewicz (2020), the Narrowest-Over-
Threshold (NOT) method of Baranowski et al. (2019), and
the Seeded Binary Segmentation of Kovács et al. (2020). The
Isolate–Detect (ID) algorithm has been developed in Anasta-
siou and Fryzlewicz (2022) to detect, one by one, structural
changes in a data sequence. It is based on an isolation tech-
nique, which leads to very good accuracy on the estimated
number and locations of the change-points, particularly in
scenarios with many frequent change-points. Our proposed
method is partly based on ID; therefore we elaborate on its
important parts later. For amore thorough reviewof the litera-
ture on the detection ofmultiple change-points in themean of
univariate data sequences, see Cho and Kirch (2020) and Yu
(2020). Apart from changes in the mean of a univariate data
sequence, research has also been done for the detection of
change-points under more complex scenarios, such as detec-
tion of changes in the slope for piecewise-linear models (
Anastasiou and Fryzlewicz 2022; Baranowski et al. 2019;
Fearnhead et al. 2019; Maeng and Fryzlewicz 2019; Tibshi-
rani 2014) changes in the variance ( Inclán and Tiao 1994),
as well as for distributional changes under a non-parametric
setting ( Matteson and James 2014; Zou et al. 2014; Arlot
et al. 2019).

Even though there is an extensive literature on change-
point detection for univariate data sequences, the multivari-
ate, possibly high-dimensional setting, which is the focus of
this paper, has not been investigated in such degree. Working
under the model in (1), Vert and Bleakley (2010) proposes
a method for approximating the signal ft as the solution
of a convex optimization problem. In order to achieve this,
the problem is first reformulated to a group LASSO one
and then the group least-angle regression (LARS) proce-
dure explained in Yuan and Lin (2006) is employed. Another
interesting approach with very good behaviour has been
introduced in Wang and Samworth (2018). The algorithm,
called inspect, estimates the number and locations of the
change-points in the mean structure of ft as in (1). Firstly,
inspect applies a cumulative sum (CUSUM) transformation
to the original data matrix. Secondly, a projection direction
of the transformed matrix is computed as its leading left
singular vector, and, finally, a univariate change-point detec-
tion algorithm is applied to the projected series. It is among
the many methods that employ CUSUM-type statistics for
change-point detection in the multivariate setting. In gen-
eral, methods that belong to this category, mainly either use
CUSUM aggregations of the d component data sequences
in order to test the obtained values against a threshold or
to construct alternative test-statistics. For instance, Groen
et al. (2013) examines the asymptotic behaviour of the max-
imum absolute and average CUSUM and gives finite-sample
performance results. Focusing on testing for the existence
of a change-point in the mean structure of the multivari-
ate signal, Enikeeva and Harchaoui (2019) and Horváth and
Hušková (2012) propose tests based on the �2 aggregation of
the CUSUM statistics for each univariate component, while
Jirak (2015) employs the �∞ aggregation of the aforemen-
tioned values. In Cho (2016), the Double CUSUM (DC)
operator is introduced, which takes as input the ordered
absolute CUSUM values of each individual component and
performs a weighted �1 aggregation to construct the DC
statistic which is then compared against a test criterion.
Departing from the detection of changes in themean structure
of a multivariate signal, Cho and Fryzlewicz (2015) pro-
pose the Sparsified Binary Segmentation algorithm (SBS)
for the detection of multiple change-points in the second-
order structure of a multivariate data sequence. SBS is based
on a first, “sparsifying” step which is used to exclude indi-
vidual component data sequences from an �1 aggregation;
a pre-defined threshold is used for the exclusion. The recent
work ofAnastasiou et al. (2022) introduces Cross-covariance
isolate detect (CCID),which,motivated from the necessity of
estimating changes in time-varying functional connectivity
networks, detects multiple change-points in the second-order
(cross-covariance or network) structure of multivariate, pos-
sibly high-dimensional time series. Ombao et al. (2005)
investigates the application of smooth localized complex
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exponentials (SLEX) waveforms, to the detection of changes
in spectral characteristics ofEEGdata. Lavielle andTeyssiere
(2006) detects changes in the covariance structure of i.i.d.
multivariate time series based on theminimization of a penal-
ized Gaussian log likelihood, while Bücher et al. (2014) uses
a test statistic based on sequential empirical copula processes
to detect changes in the cross-covariance structure. For a sur-
vey of various offline change-point detection algorithms on
multivariate time series see Truong et al. (2020).

In this paper, we propose a method called Multivari-
ate Isolate–Detect (MID) for the consistent estimation of
multiple change-points under themultivariate, possibly high-
dimensional, structure of themodel in (1). Ourmethod builds
on the foundations of the ID algorithm developed in Anasta-
siou and Fryzlewicz (2022); that is, we first isolate each true
change-point within subintervals of the domain [1, . . . , T ]
and thenwe proceed to detect them. Isolation enhances detec-
tion power, especially in frameworks with frequently occur-
ring change-points.MID is explained in detail in Sect. 2; here,
we only give a brief description of its important steps. The
main idea is that for the observed data sequences xt, j t =
1, . . . , T , j = 1, . . . , d, and with λT a positive constant,
playing the role of an expansion step as in Anastasiou and
Fryzlewicz (2022), our method first creates two ordered sets
of K = �T /λT � right- and left-expanding intervals. For
i = 1, . . . , K , the i th right expanding interval is Ri =
[1,min {iλT , T }] while the i th left-expanding interval is
Li = [max {1, T − iλT + 1} , T ]. We collect these intervals
in the ordered set SRL = {R1, L1, R2, L2, . . . , RK , LK }.
The algorithm first acts on the interval R1 = [1, λT ] by cal-
culating, for every univariate component data sequence, the
contrast function value for the Q possible candidates in this
interval (details are given in Sect. 2). This process will return
Q vectors y j , j = 1, . . . , Q of length d each; for example,
the elements of y1 ∈ R

d will be the contrast function values
related to the first change-point candidate in R1, for each of
the d component data sequences, the elements of y2 ∈ R

d

will be the relevant values for the second candidate in R1, and
so on. The next step is to apply to each y j a mean-dominant
norm L : Rd → R. To be more precise, since the contrast
function values within each y j are all non-negative, in our
case L : (Rd)+ → R. The definition of mean-dominant
norms can be found in Sect. 2 of Carlstein (1988) and exam-
ples include

L2 := L2( y j ) = 1√
d

√
√
√
√

d
∑

i=1

y2j,i

L∞ := L∞( y j ) = sup
i=1,...,d

{

y j,i
}

. (2)

Applying L(·) to each y j , will return a vector v of length Q.
We identify b̃R1 := argmax j

{

v j
}

. If vb̃R1
exceeds a certain

threshold, denoted by ζT ,d , then b̃R1 is taken as a change-
point. If not, then the process tests the next interval in SRL .
Upon detection, the algorithm makes a new start from the
end-point (respectively, start-point) of the right- (respec-
tively, left-) expanding interval where the detection occurred.
Upon correct choice of ζT ,d , MID ensures that we work on
intervals with at most one change-point.

The rest of the paper is structured as follows. Section2
describes our proposed methodology and its associated the-
ory. The computational complexity ofMID, useful variants of
our algorithm and the choice of important parameter values
are explained in Sect. 3. In Sect. 4, we perform a thorough
simulation study to compare our algorithm with state-of-
the-art methods. Furthermore, we show and discuss on the
practical performance ofMID in the cases of spatially depen-
dent data (spatial independence does not need to be assumed
for the theoretical results related to the consistency of the
proposed method) and when the normality assumption for
the error terms is violated. Sect. 5 illustrates the behaviour of
MID on two examples of real data; the monthly percentage
changes in the UK house price index over a period of twenty
three years in twentyLondonBoroughs, and the daily number
of new COVID-19 cases in the four constituent countries of
the United Kingdom; England, Northern Ireland, Scotland,
and Wales. In Sect. 6, we first discuss on how we can treat
cases where the data exhibit temporal dependence, and then,
we conclude the paper with general remarks and reflections
on our proposed algorithm. The proof of Theorem 1 is given
in the Appendix.

2 Methodology and theory

2.1 Methodology

We work under the model given in (1). The objective is to
estimate both the number, N , and the locations r1, . . . , rN
where the multivariate deterministic signal ft exhibits struc-
tural changes. We note that N can possibly grow with the
sample size T and with the dimensionality d. In addition,
a change-point does not necessarily appear in all univariate
component signals; any level of sparsity is allowed. Before
providing a full, step-by-step explanation of our algorithm,
two simple examples are given to assist in ease of understand-
ing. In Fig. 1, we have a three dimensional data sequence of
length T = 200 with three change-points in the mean vector
at locations r1 = 27, r2 = 73 and r3 = 165. To be more
precise,

ft,1 =

⎧

⎪
⎨

⎪
⎩

0, t = 1, . . . , 27

6, t = 28, . . . , 165

0, t = 166, . . . , 200

,
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Fig. 1 An example of a three
dimensional data sequence that
undergoes three changes in its
mean structure at locations
r1 = 27, r2 = 73 and r3 = 165
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Fig. 2 An example with three change-points in the mean structure; r1 = 27, r2 = 73 and r3 = 165. The dashed line is the interval in which the
detection took place in each phase

ft,2 =

⎧

⎪
⎨

⎪
⎩

0, t = 1, . . . , 73

−6, t = 74, . . . , 165

0, t = 166, . . . , 200

,

ft,3 = 0, t = 1, . . . , 200. (3)

From now on, Nd(μ, �) denotes the d−variate normal
distribution with mean vector μ ∈ R

d×1 and covariance
matrix� ∈ R

d×d . For the example, we take εt ∼ N3(0, �1),
where

�1 =
⎛

⎝

9 0 0
0 1 0
0 0 4

⎞

⎠ .

The component data sequences Xt,1 and Xt,2 share a com-
mon change-point at t = 165, while they also have their own
change-points at t = 27 and t = 73, respectively. There are
no change-points in Xt,3.

Let us denote by r0 = 0, rN+1 = T . In this toy exam-
ple, we take the expansion parameter λT = 10, while ζT ,d
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is a well-chosen predefined threshold. The choice of the
aforementioned parameters is discussed in detail in Sect. 3.3;
special attention will be given to the dimensionality of the
data sequence in order to make a robust threshold choice.
Figure2 shows the steps of MID until all change-points are
detected. We will be referring to Phases 1, 2 and 3 involv-
ing five, six, and five intervals, respectively; these are clearly
indicated in Fig. 2. These phases are only related to this spe-
cific example of three change-points; in cases with a different
number of change-points we would have a different number
of such phases. At the beginning of the detection process, we
have that s = 1 and e = T = 200. As already mentioned
in Sect. 1, the proposed algorithm acts both sequentially and
interchangeably on subintervals of the full domain; this being
[1, . . . , 200] for this example. For a well-chosen threshold
ζT ,d , then r1 = 27 is the first change-point to be detected; this
occurs in the interval [1, 30] as shown in Phase 1 of Fig. 2.
We now briefly explain how the detection occurred for r1.
Let A be the 30× 3 matrix, with each column being the first
30 observations (since we are working in the interval [1, 30])
of each of the three univariate data sequences. The next step
is to compute the contrast function (in this specific case of
piecewise-constant signals, the function is the absolute value
of the widely used CUSUM statistic as given in (5)) values
for each candidate point and for all three component data
sequences. We end up with a matrix B ∈ R

29×3, with Bi, j
being the value of the contrast function for the i th data point
of the j th data sequencewhenwework in the interval [1, 30];
the last point of the interval is not among the change-point
candidates. Applying a mean-dominant norm to each row
of B gives us a vector of length 29. Figure3 (Detection 1),
illustrates these values, when we employed the L2 and the
L∞ mean-dominant norms as defined in (2). In Fig. 3, we see
that for both employed norms, t = 27 has the highest value,
which exceeds the predefined threshold value obtained as in
Sect. 3.3. Therefore, r̂1 = 27 is assigned as the estimated
location for r1. After the detection, s is updated as the end-
point of the (right-expanding) interval where the detection
occurred; therefore s = 30, and MID is, in Phase 2, applied
to the interval [30, 200]. Then, r3 = 165 gets detected at the
sixth step of Phase 2 in the interval [161, 200]. After this sec-
ond detection, MID proceeds to Phase 3, where it is applied
to the interval [30, 161] and r2 gets isolated (for the first time)
and detected in the interval [30, 80] as shown in Figs. 2 and 3.
In the end, MID is applied to the interval [80, 161], where
there will be no expanding interval that contains a point with
an aggregated CUSUM value that surpasses the threshold
ζT ,d ; therefore, the process will terminate after scanning all
the data.

In Fig. 4, we graphically provide an example of a three
dimensional data sequence of length T = 200 with three
change-points in the slope at locations r1 = 53, r2 = 100
and r3 = 124. To be more precise,

ft,1 =

⎧

⎪
⎨

⎪
⎩

−t + 1, t = 1, . . . , 53

2t − 158, t = 54, . . . , 124

−t + 214, t = 125, . . . , 200

,

ft,2 =

⎧

⎪
⎨

⎪
⎩

−t + 1, t = 1, . . . , 100

2t − 299, t = 101, . . . , 124

−t + 73, t = 125, . . . , 200

,

ft,3 = t, t = 1, . . . , 200.

We take εt ∼ N3(0, �2), with �2 = 49I3×3, where for
k ∈ Z

+, the matrix Ik×k is the k×k identity matrix. The first
two component data sequences have two change-points each;
for Xt,1 at locations t = 53 and t = 124, while for Xt,2 at
locations t = 100 and t = 124. There are no change-points
in Xt,3.

After giving two examples of structures that MID can be
employed to, our method can now be described in a general
framework. Our proposed algorithm is based on the same
isolation technique as that of the univariate change-point
detection method ID and therefore, extensive details of how
this isolation is achieved are avoided and can be found in
Section 3.1 of Anastasiou and Fryzlewicz (2022). For the
better understanding of MID, we provide its step-by-step
outline through pseudocode, followed by a succinct narra-
tive of the steps. For K = �T /λT �, let crj = min { jλT , T }
and clj = max {1, T − jλT + 1} for j = 1, . . . , K . For a
generic interval [s, e], define the sequences

Rs,e = [

crk1 , c
r
k1+1, . . . , e

]

, Ls,e =
[

clk2 , c
l
k2+1, . . . , s

]

,

(4)

where k1 := argmin j∈{1,2...,K } { jλT > s} and k2 :=
argmin j∈{1,2...,K } {T − jλT + 1 < e}. We denote by

Cb
s,e(X) = (Cb

s,e(X
(1)), . . . ,Cb

s,e(X
(d)))

the vector in (R+)d that has the contrast function values
for each one of the d component data sequences, X(i), i =
1, . . . , d, at the location bwhenwework in the interval [s, e].
Then, denoting by |A| the cardinality of any sequence A, by
A( j) its j th element, and for L(·) being any mean-dominant
norm (as those in (2)) employed for the aggregation of the
contrast function values, the pseudocode of themain function
for the proposed algorithm is as below:

Pseudocode explaining the MID algorithm
function MID(s, e, λT , ζT ,d , L)
if e − s < 1 then
STOP

else
For j ∈ {

1, . . . ,
∣
∣Rs,e

∣
∣
}

, denote

[

s2 j−1, e2 j−1
] := [

s,Rs,e( j)
]

.
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Fig. 3 CUSUM values in the
relevant detection intervals
explained in Fig. 2. The vertical
dashed line indicates the time
point with the highest value in
the corresponding interval,
while the horizontal dashed line
is the optimal threshold value.
On the left column you can see
the results when the L2
aggregation method was used,
while for the right column we
employed the L∞-based
aggregation approach
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Fig. 4 An example of a three
dimensional data sequence with
piecewise-linear structure, that
undergoes three changes in its
first derivative at locations
r1 = 53, r2 = 100 and r3 = 124

X
t, 1

X
t , 2

X
t, 3

0 50 100 150 200

−100
0

100
200

−100
0

100
200

−100
0

100
200

Time

O
bs

er
ve

d 
da

ta

Example of a three dimensional data sequence

For j ∈ {

1, . . . ,
∣
∣Ls,e

∣
∣
}

, denote

[

s2 j , e2 j
] := [

Ls,e( j), e
]

.

i = 1
(Main part)
b2i−1 := argmax

t∈[s2i−1,e2i−1)

L(Ct
s2i−1,e2i−1

(X))

if L(C
b2i−1
s2i−1,e2i−1 (X)) > ζT ,d then

add b2i−1 to the set of estimated change-points.
MID(e2i−1, e, λT , ζT ,d , L)

else
b2i := argmax

t∈[s2i ,e2i )
L(Ct

s2i ,e2i
(X))

if L(C
b2i
s2i ,e2i (X)) > ζT ,d then

add b2i to the set of estimated change-points.
MID(s, s2i , λT , ζT ,d , L)

else
i = i + 1
if i ≤ max

{|Ls,e |, |Rs,e |
}

then
Go back to (Main part) and repeat

else
STOP

end if
end if

end if

end if

end function

A brief explanation of the pseudocode follows. With K
already defined above, the intervals [s1, e1], . . . , [s2K , e2K ]
are those used for the isolation step. Notice that in the
odd intervals [s1, e1], [s3, e3], . . . , [s2K−1, e2K−1] the start-
point is fixed, unchanged, and equal to s, meaning that
s1 = s3 = . . . = s2K−1 = s. In the even intervals
[s2, e2], [s4, e4], . . . , [s2K , e2K ], it is the end-point that is
kept fixed and equal to e, meaning that e2 = e4 = . . . =
e2K = e. The process will follow until there are intervals to
check. The term “expanding intervals” that is used through-
out the paper is due to this one-sided expansion (ofmagnitude
λT ) of the intervals. As shown in Fig. 2 for the specific exam-
ple in Fig. 1, the pseudocode makes it also clear that, in
general, MID is looking for change-points interchangeably
in right- and left-expanding intervals which, with high prob-
ability, contain at most one change-point. In each of these
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intervals, MID acts in the same way as shown in the main
part of the pseudocode. The MID procedure is launched by
the call MID(1, T , λT , ζT ,d , L).

2.2 Theory

We work under the setting in (1). Denoting by r0 = 0 and
rN+1 = T , the illustration scenarios are:
(S1) Changes in the mean structure: For k = 1, . . . , N +
1, ft = μk ∈ R

d for t = rk−1 + 1, . . . , rk . In this case,
the univariate component signals ft, j , for j = 1, . . . , d are
piecewise-constant.
(S2) Changes in the first derivative: For k = 1, . . . , N +1,
ft = μ1,k +μ2,kt for t = rk−1 + 1, . . . , rk , where μ1,k and
μ2,k are vectors in R

d . In addition, we require that for j =
1, . . . , N , the equality μ1, j + μ2, jr j = μ1, j+1 + μ2, j+1r j
is satisfied. Under this framework, the change-points, rk , sat-
isfy that frk−1 + frk+1 
= 2 frk . Therefore, the univariate
component signals ft, j , for j = 1, . . . , d are continuous and
piecewise-linear.

The aforementioned scenarios are only two specific illus-
tration cases in which the proposed MID algorithm can
be applied. Due to its change-point isolation step prior to
detection, our algorithm can be applied in more compli-
cated scenarios where each univariate signal could be, for
example, piecewise-polynomial or piecewise-exponential. In
Sects. 2.2.1 and 2.2.2, we provide the main theorems for
the consistency of our method in accurately estimating the
true number and the location of the change-points in Sce-
narios (S1) and (S2), respectively. The theoretical results
presented in this section are for either the L∞ or the L2 mean-
dominant norms discussed in the paper for the aggregation of
the information from the component data sequences; under
a similar proof strategy, results can be obtained for other
mean-dominant norms as well.

2.2.1 Scenario (S1)

As already discussed, the first step of the detection pro-
cess depends on an appropriately chosen contrast function,
which, for every component data sequence, is applied to each
change-point candidate. In Scenario (S1), the contrast func-
tion applied to the component data sequences Xt, j ,∀ j ∈
{1, . . . , d} is the absolute value of the widely used CUSUM
statistic, with the latter being defined as

X̃b, j
s,e =

√

e − b

n(b − s + 1)

b
∑

t=s

Xt, j −
√

b − s + 1

n(e − b)

e
∑

t=b+1

Xt, j ,

(5)

where 1 ≤ s ≤ b < e ≤ T and n = e − s + 1. Before
proceeding with the main theoretical result for the consis-

tency of our method, and with L(·) denoting any one of the
mean-dominant norms in (2), allow us to introduce some
more notation, as below.

δT := min
j=1,...,N+1

| r j − r j−1 |,
� j :=| fr j+1 − fr j |, j = 1, . . . , N

f
T

:= inf
j=1,...,N

{

L(� j )
}

. (6)

The absolute value of the vector � j ∈ R
d in (6) is taken

component-wise. For the consistency result with respect to
the estimated number of change-points and their estimated
locations obtained by MID, we work under the assumption
(A1) as follows:

(A1) The quantities δT and f
T
, defined in (6), are connected by

√
δT f

T
≥ C

√

log
(

Td1/4
)

, for a large enough constant
C .

The number of change-points, N , is allowed to growwith the
sample size T and the dimensionality d. Theorem 1 provides
the main theoretical result for Scenario (S1) when either L∞
or L2 are employed for the aggregation of the contrast func-
tion values. The proof is given in the appendix.

Theorem 1 Let {Xt}t=1,...,T follow model (1) with ft as
in Scenario (S1) and εt ∼ Nd(0, �), where � ∈ R

d×d

is positive definite. Let N and r j , j = 1, . . . , N be the
number and locations of the change-points, while N̂ and
r̂ j , j = 1, . . . , N̂ are their estimates sorted in increasing
order. Assuming that (A1) holds, then, there exist positive
constants C1,C2,C3, and C4, which do not depend on T or

d, such that for C1

√

log
(

Td1/4
) ≤ ζT ,d < C2

√
δT f

T
, we

have:
For L(·) = L∞(·),

P

(

N̂ = N , V∞ ≤ C3 log
(

Td
1
4

))

≥ 1 − C4

T
, (7)

where V∞ := max
j=1,...,N

{

| r̂ j − r j |
(

�
q j
j

)2
}

and q j :=
argmaxk=1,...,d | X̃

r̂ j ,k
s j ,e j |, for [s j , e j ] being the interval

where r̂ j is obtained.
For L(·) = L2(·),

P

(

N̂ = N , V2 ≤ C3 log
(

Td
1
4

))

≥ 1 − C4

T
, (8)

where V2 := max
j=1,...,N

{| r̂ j − r j | L2
2(� j )

}

.

The lower bounds for the probabilities in (7) and (8) do
not depend on the dimensionality d and their order is
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1 − O (

T−1
)

. Furthermore, the rate of convergence of
the estimated change-point locations does not depend on
the minimum distance between two change-points, δT ; the
aggregated jumpmagnitude,�

q j
j for L∞ and L2(� j ) for L2,

is the only quantity that affects the rate. We notice, though,
that to be able to match the estimated change-point loca-
tions with the true ones, then δT should be larger than the
distance between the estimated and the true change-point
locations. Therefore, based on (7) and (8), we deduce that
δT must be at leastO (

log
(

Td1/4
))

. To put the obtained rate
of convergence into perspective, it has already been proven
in the literature (see, for example Chan and Walther 2013)
that in the univariate case the smallest possible δT f 2

T
, which

allows for the detection of changes in the mean of a data
sequence, is O(log T − log(log T )). In our case, for d = 1,
theO(log T ) rate is attained, which is near-optimal up to the
rather negligible double logarithmic term.Moving now to the
case where d > 1, we will compare the consistency results
of MID to those obtained for two known recent procedures
for multiple change-point detection in multivariate settings;
the inspect algorithm of Wang and Samworth (2018) and the
kernel change-point (KCP) algorithm of Arlot et al. (2019).
The finite sample bounds like those in (7) and (8), imply a rate
of convergence in an asymptotic setting. The comparison of
the consistency results between the aforementioned methods
is carried out following a known convention in the literature
(see, for example Venkatraman (1992)). ForPT being a class
of distributions of X ∈ R

d×T , which is as in (1), we state
that the procedure under consideration is consistent for PT

with rate of convergence ρT if

inf
P∈PT

P P

(

N̂ = N , max
j=1,...,N

∣
∣r j − r̂ j

∣
∣ ≤ TρT

)

−−−→
T→∞ 1.

(9)

For MID, Theorem 1 shows that the relevant rate of con-
vergence is ρMID

T = O
(

T−1 f −2
T

log
(

Td1/4
)
)

. Theorem 2

of Wang and Samworth (2018) indicates that, apart from its
dependence on the magnitude of the changes, the rate of con-
vergence of the estimated change-point locations in inspect
is also affected by the minimum distance between consec-
utive change-points; as already mentioned, this is not the
case for MID. More specifically, employing our notation,
Wang and Samworth (2018) show that, as long as δT ≥ 14,
for inspect the rate of convergence of the estimated loca-

tions is ρ
insp
T = O

(

T 3 log(Td)ϑ−2δ−4
T

)

, where ϑ is such

that ϑ ≤ ‖θ(i)‖2,∀i ∈ {1, . . . , N }, where θ(i) ∈ R
d is the

vector of the changemagnitudes associated to the i th change-
point. Corollary 3 of Wang and Samworth (2018) explains
that if log(d) = O(log(T )), ϑ � T−α and δT � T 1−β ,
with 2α + 5β < 1, then inspect estimates all change-points
with rate of convergence ρ

insp
T = o(T−(1−2α−4β)+δ), for

any δ > 0. Under the same scenario, and since f
T

≤
‖θ(i)‖2,∀i ∈ {1, . . . , N }, meaning that we can take f

T
� ϑ ,

our method estimates the change-points with rate of conver-
gence ρMID

T = o(T−(1−2α)+δ), which is an improvement
over the rate attained by inspect. Consistency results for the
KCP algorithm of Arlot et al. (2019) have been extensively
studied in Garreau and Arlot (2018). More specifically, for
k : Rd × R

d → R a positive semidefinite kernel, and with
M a positive constant such that k(Xt , Xt) ≤ M2 < ∞,∀t ∈
{1, . . . , T }, Theorem 3.1 of Garreau and Arlot (2018) shows
that the change-points are estimated by KCP with rate of

convergence ρKCP
T = O

(

T−1 f −2
T

NM2 log(T )
)

, where N

is the true number of change-points; the order of the lower
bound for the probability is the same as in (7) and (8). To com-
pare the consistency result of KCP with that of our method,
we first highlight that an upper bound on the true number
of change-points, N , is needed in order for KCP to be able
to estimate the change-points; this is not the case in MID
since there is no prior information on N which is allowed
to grow with the sample size, T , and the dimensionality, d.
Furthermore, in our understanding the positive constant M2

appearing in the rate of convergence of KCP depends on the
dimensionality d. For example in the special case of the linear
kernel (see Arlot et al. (2019) for classical examples of ker-
nels) klin(x, y) = 〈x, y〉Rd , for x, y ∈ R

d , we deduce that

M2 = O(d), leading to ρKCP
T = O

(

NdT−1 f −2
T

log T
)

,

which is worse than ρMID
T if either d or N are allowed to

diverge with T .
Assumption (A1) requires δT ( f

T
)2 to be of order at least

O (

log
(

Td1/4
))

. Combining this with the fact that the min-
imum distance, δT , between successive change-points is at
leastO (

log
(

Td1/4
))

, means that f
T
could decrease with T

in cases where δT is of order higher than O (

log
(

Td1/4
))

.
With respect to the threshold parameter, ζT ,d , the rate of

its lower bound is O
(√

log
(

Td1/4
)
)

; this will also be used

in practice as the default rate. Therefore, we have that

ζT ,d = C
√

log
(

Td1/4
)

, (10)

where C is a positive constant. More details on the choice of
C are given in Sect. 3.3.

2.2.2 Scenario (S2)

We are under the scenario where for any j ∈ {1, . . . , d},
the underlying signal ft, j , t = 1, . . . , T has a continuous
and piecewise-linear structure as in Fig. 4. In this case, the
contrast function applied to the component data sequences
Xt, j ,∀ j ∈ {1, . . . , d} is

Cb
s,e(X j ) =|

〈

X j ,φ
b
s,e

〉

|, (11)
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where for n = e − s + 1 and

αbs,e =
√

6

n(n2 − 1)(1 + (e − b + 1)(b − s + 1) + (e − b)(b − s))

βb
s,e =

√

(e − b + 1)(e − b)

(b − s + 1)(b − s)
,

we have that the contrast vector, φb
s,e(t), is equal to

αb
s,eβ

b
s,e

[

(e + 2b − 3s + 2)t − (be + bs − 2s2 + 2s)
]

, for t ∈ [s, b]
αb
s,e

βb
s,e

[

(2e2 + 2e − be − bs) − (3e − 2b − s + 2)t
]

, for t ∈ [b + 1, e]

0, otherwise.

For more details on how this vector is constructed for (S2),
please see section B.2 in the online supplementary material
of Baranowski et al. (2019). Under Scenario (S2), we denote
by

� j :=| fr j−1 + fr j+1 − 2 fr j |, j = 1, . . . , N

f
T

:= inf
j=1,...,N

{

L(� j )
}

, (12)

whereas δT has the same expression as in (6). We are ready
to proceed with the consistency result of MID when applied
under Scenario (S2). We work under the assumption:

(A2) The quantities δT and f
T
are connected by δ

3/2
T f

T
≥

C∗
√

log
(

Td1/4
)

, where C∗ is a large enough constant.

Theorem 2 provides the main theoretical result for Scenario
(S2). The steps for its proof are similar as those employed in
the proof of Theorem 1. Therefore, the proof is given in the
supplementary material.

Theorem 2 Let {Xt}t=1,...,T follow model (1) with ft as
in Scenario (S2) and εt ∼ Nd(0, �), where � ∈ R

d×d

is positive definite. Let N and r j , j = 1, . . . , N be the
number and locations of the change-points, while N̂ and
r̂ j , j = 1, . . . , N̂ are their estimates sorted in increasing
order. Assuming that (A2) holds, then, there exist positive
constants C1,C2,C3, and C4, which do not depend on T or

d, such that for C1

√

log
(

Td1/4
) ≤ ζT ,d < C2δ

3/2
T f

T
, we

obtain that:
For L(·) = L∞(·),

P

(

N̂ = N , Ṽ∞ ≤ C3

(

log
(

Td
1
4

))1/3
)

≥ 1 − C4

T
, (13)

where Ṽ∞ := max
j=1,...,N

{

| r̂ j − r j |
(

�
q j
j

)2/3
}

and q j :=
argmaxk=1,...,d

{

C
r̂ j
s j ,e j (Xk)

}

, for [s j , e j ] denoting the inter-
val where r̂ j is obtained during MID.
For L(·) = L2(·),

P

(

N̂ = N , Ṽ2 ≤ C3

(

log
(

Td
1
4

))1/3
)

≥ 1 − C4

T
, (14)

where Ṽ2 := max
j=1,...,N

{

| r̂ j − r j | (

L2(� j )
)2/3

}

.

Similarly as in (S1), the upper bounds for the probabili-
ties in (13) and (14) do not depend on the dimensionality
of the data sequence Xt ; their rate of convergence is
1 − O (

T−1
)

. Furthermore, the rate of convergence of the
estimated change-point locations depends only on the aggre-
gated change magnitude, �

q j
j for L∞ and L2(� j ) for L2.

Under (S2), the change-points are estimated with rate of

convergence O
(

T−1 f −2/3
T

(

log
(

Td1/4
))1/3

)

. In the spe-

cial case of f
T

� T−1, the rate of convergence becomes

O
(

T−1/3
(

log
(

Td1/4
))1/3

)

. In the univariate case, it is

proven in Raimondo (1998) that the asymptotic minimax
rate for the change-point detection problem under (S2) is
O (

T−1/3
)

, which differs to the convergence rate obtained
by MID only by the logarithmic factor.

As in Scenario (S1), the lower bound for the threshold,

ζT ,d , is of order O
(√

log
(

Td1/4
)
)

; this is the default rate

that is used in practise in Sects. 4 and 5. Therefore,

ζT ,d = C∗
√

log
(

Td1/4
)

, (15)

where C∗ > 0. More details on the choice of the values for
C∗ are given in Sect. 3.3.

3 Computational complexity and
practicalities

3.1 Computational complexity

With K = �T /λT �, the total number of distinct intervals, I,
required in order to cover the whole data sequence is at most
2K (K intervals from each expanding direction). Choosing
the expansion step, λT , small enough leads to isolation with
high probability; more information on how to choose λT

in order to obtain good accuracy performance while main-
taining low computational cost can be found in Sect. 3.3.
With δT the minimum distance between consecutive change-
points, isolation is guaranteed as long as λT < δT . We use
this inequality, which leads to K > �T /δT � and there-
fore, in the worst case scenario I = 2K > 2�T /δT �.
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The lower bound is of order O(T /δT ). For generic intervals
[s, e], 1 ≤ s < e ≤ T considered throughout the MID algo-
rithm, the relevant contrast function values Cb

s,e(X j ) will be
calculated ∀b ∈ [s, e) and ∀ j ∈ {1, . . . , d} before aggrega-
tion takes place. In both scenarios studied in our paper, for
fixed j , the cost of computing Cb

s,e(X j ) is O(e − s + 1),
meaning that it is linear in time; see Section B.1 of the online
supplement in Baranowski et al. (2019). Therefore, the cal-
culation of the contrast function values for all the component
data sequences has computational cost of order O(KdT ).
Applying now the mean-dominant norms, as in (2), to the
obtained values has an orderO(d) computational cost. Com-
bining the complexities explained at each step of MID, we
conclude that the total computational complexity of the algo-

rithm is of order O(Kd2T ) = O
(

d2T 2δ−1
T

)

.

3.2 Mean-dominant norms

The proposed MID methodology is based on an aggrega-
tion step of the contrast function values obtained from each
component data sequence usingmean-dominant norms in the
way these are defined in Section 2 of Carlstein (1988). The-
orems 1 and 2 for the Scenarios (S1) and (S2), respectively,
cover the theoretical behaviour of MID under both the L∞
and L2 mean-dominant norms given in (2). Therefore, in the
remaining sections, the discussionon the choice of the param-
eter values as well as results on the practical performance of
MID will be focused when our method is combined with the
L∞ or the L2 mean-dominant norm. A data-adaptive variant
of MID that chooses the most suitable mean-dominant norm
to be used for the aggregation step will also be introduced.

3.3 Choice of parameter values

In order to choose the constants C in (10) and C∗ in (15), we
ran a large scale simulation study involving data sequences
{Xt}t=1,...,T , for T = 700, 1400 following model (1), where
ft = 0while εt are follow the d-variate standard normal dis-
tribution. Specifically, for each d ∈ {1, . . . , 50}wegenerated
500 replicates and appliedMIDunder scenarios (S1) and (S2)
to each one of those replicates using various threshold con-
stant values C and C∗, respectively, in order to estimate the
number of change-points. For each dimension, in order to
control the Type I error rate, α, of falsely detecting change-
points, we chose the default constant to be the one that its
number of times that successfully did not detect any change-
points was closer to (1 − α) ∗ 500. For d > 50, we keep
the threshold that gave the best results for the simulated 50-
dimensional data sequence. Table 1 presents the results for
α ∈ {0.05, 0.1} under Scenarios (S1) and (S2). From now
on, the obtained values for C and C∗ will be referred to as
the default constants.

Regarding the expansion parameter, λT , we have already
discussed that isolation of the change-points is guaranteed
in theory, as long as we take λT < δT . More specifically,
in the proofs of Theorems 1 and 2, we show change-point
isolation and detection for λT ≤ δT /3. However, any value
of λT ≤ δT /m, for m > 1 suffices; the adjustments to be
made in the proof in such a case, as well as why m = 3
leads to a more symmetric approach for the intervals where
detection occurs, are explained in Remark 1 of the online
supplement of Anastasiou and Fryzlewicz (2022). In prac-
tice, δT is unknown, and to ensure isolation, λT can be taken
to be as small as equal to 1. If λT > 1, then isolation is guar-
anteed with high probability. Now, the computational cost of
running our algorithm is inversely proportional to the size
of λT because the smaller the λT the larger the number of
the created intervals, which are examined for change-points.
However, the computational speed of MID provides flexibil-
ity in the choice of the expansion parameter; in all practical
examples in Sects. 4 and 5 we take λT = 3. Tables 2, 3 and
4 indicate the high accuracy of our method even in quite
complex scenarios that exhibit low sparsity (see (16) for the
relevant definition) and/or a large number of regularly occur-
ring change-points.

3.4 Decision on the aggregationmethod

In Cho (2016), Cho and Fryzlewicz (2015), and Anastasiou
et al. (2022), it has been explained that the L∞-based aggre-
gation of the contrast functions for each component data
sequence tends to exhibit a better behaviour (compared to the
L2-based aggregation) in scenarios where the true change-
points appear only in a small number of the component data
sequences. In contrast, due to spuriously large contrast func-
tion values, the L∞ approach could suffer in situations where
the change-points are not sparse across the panel of the data
sequences.

This difference in the behaviour between the L2 and the
L∞ mean-dominant norms examined in our paper is what
has motivated us to introduce an introductory step in MID,
where the sparsity in a given d-dimensional data sequence,
Xt , is first estimated. For r1, . . . , rN being the N true change-
points, allow us, for any j ∈ {1, . . . , N }, to define by A j ⊆
{1, . . . , d} the set of indices for the univariate component
data sequences that contain the change-point r j . Then, for
Xt , the sparsity is given by

sp = max
j=1,...,N

{| A j |} /d, (16)

where | A j | is the cardinality of the set A j . It is straightfor-
ward that sp ∈ [0, 1]. Our proposed hybrid approach aims to
data-adaptively decide on the aggregation method to be used
and eliminates the necessity of choosing between the L2 and
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Table 1 The optimal values for the threshold constants, C and C∗, which control the Type I error rate α under the Scenarios (S1) and (S2),
respectively, for d = 1, . . . , 50. Results are presented for the L2 and the L∞ norms

Mean-dominant norm Results for the (S1) scenario Results for the (S2) scenario

d C (α = 0.05) C (α = 0.1) d C∗ (α = 0.05) C∗ (α = 0.1)

1 1.7 1.55 1 1.65 1.55

2 1.25 1.25 2 1.25 1.2

3 1.1 1.05 3 1.05 1.05

4 1.05 0.95 4 0.95 0.95

5 0.95 0.9 5 0.9 0.9

6 0.9 0.9 6 0.9 0.85

L2 7 0.9 0.8 7 0.8 0.8

8 0.8 0.8 8 0.8 0.75

9 0.8 0.75 9–11 0.75 0.75

10–13 0.75 0.75 12–16 0.7 0.7

14 0.75 0.65 17–19 0.65 0.6

15–20 0.7 0.65 20–22 0.6 0.6

21–23 0.65 0.6 24–42 0.6 0.55

24–39 0.6 0.6 43–50 0.55 0.55

40–50 0.6 0.55

1 1.7 1.55 1 1.65 1.55

2–3 1.75 1.7 2 1.7 1.6

4–6 1.8 1.7 3 1.75 1.6

L∞ 7–13 1.85 1.75 4–5 1.75 1.65

14–25 1.9 1.8 6–13 1.75 1.7

26–28 1.9 1.85 14–25 1.8 1.75

29–50 1.95 1.85 26–38 1.85 1.8

39–50 1.9 1.85

L∞ mean-dominant norms. The steps to achieve our purpose
are as follows.
Step 1We applyMID paired with the L∞ aggregation rule in
order to obtain r̂1, . . . , r̂M . It has already been explained that
the L∞ norm is preferable and provides very good results
in cases with sparse change-points, while it tends to over-
estimate the number of change-points (due to the contrast
function taking spuriously large values) under the scenario
of dense change-points. Therefore, M ≥ N .
Step 2 We will now estimate the sparsity in the given data
as defined in (16). With r̂0 = 0 and r̂M+1 = T , we first
collect the triplets (r̂m−1 + 1, r̂m, r̂m+1),∀m ∈ {1, . . . , M}.
After this, ∀i ∈ {1, . . . , d}, we calculate CS(i)(r̂m) :=
Cr̂m
r̂m−1+1,r̂m+1

(Xi ), with Cb
s,e(Xi ) being the relevant contrast

function (based on whether we are under Scenario (S1) of
Sect. 2.2.1 or Scenario (S2) of Sect. 2.2.2) value for the point
b, when we are in the interval [s, e], for the univariate com-
ponent data sequence Xi . The d contrast function values for
each r̂m are collected in the sets

Sm =
{

CS(1)(r̂m), . . . ,CS(d)(r̂m)
}

, j = 1, . . . , M . (17)

Step 3 For each m = 1, . . . , M , all the elements of
Sm are tested against the relevant threshold value, ζT , for
univariate change-point detection which is of the order
O(

√
log T ) in both scenarios of piecewise-constant and

continuous piecewise-linear signals (representing scenar-
ios (S1) and (S2), respectively, covered in this paper).
In terms of the threshold constants, we employ those of
Anastasiou and Fryzlewicz (2022). We denote by ˆspm :=
#

{

i : CS(i)(r̂m) > ζT
}

/d. The estimated sparsity is then
ˆsp = maxm∈{1,...,M}

{ ˆspm
}

.

Step 4 For cases where ˆsp ≤ 0.4, we accept the result from
Step 1, where MID has been paired with the L∞ mean-
dominant norm,whereas if ˆsp ≥ 0.6, thenMID is pairedwith
the L2 mean-dominant norm. Extensive simulations have
shown that there is no significant difference on the MID’s
practical performance with respect to accuracy (on both the
estimated number of change-points and the estimated loca-
tions) when ˆsp ∈ (0.4, 0.6). Therefore, MID could be paired
with any of the aforementioned two norms and give very
good results. For computational cost reasons, in such cases
we accept the result of Step 1. From now on, we denote by
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Table 2 Distribution of N̂ − N
over 100 simulated multivariate
data sequences with 3
change-points under Scenario
(S1) of Sect. 2.2.1. The signal
strength, as defined in (18), is
equal to 2 for each
change-point. The average ARI,
dH , and computational times are
also given

Method sp d N̂ − N ARI dh Time (s)

≤ −2 −1 0 1 2 3

MIDopt 0.2 30 0 0 98 2 0 0 0.991 0.015 1.63

MIDPERL2 0.2 30 0 2 82 14 0 2 0.962 0.047 330.81

MIDPERL∞ 0.2 30 0 0 79 18 2 1 0.956 0.049 172.72

DC 0.2 30 0 0 93 5 2 0 0.993 0.042 19.84

INSPECT 0.2 30 0 0 95 4 1 0 0.992 0.030 1.08

KCP_Grid 0.2 30 88 10 2 0 0 0 0.422 1.615 34.29

KCP_Scree 0.2 30 0 3 97 0 0 0 0.990 0.008 34.29

SBS 0.2 30 0 0 95 5 0 0 0.986 0.022 3.56

MIDopt 0.2 100 0 0 97 2 1 0 0.981 0.028 4.21

MIDPERL2 0.2 100 0 4 85 7 4 0 0.971 0.042 1098.40

MIDPERL∞ 0.2 100 0 1 82 13 4 0 0.954 0.071 615.85

DC 0.2 100 0 0 94 6 0 0 0.993 0.029 32.30

INSPECT 0.2 100 0 0 96 3 1 0 0.991 0.025 4.18

KCP_Grid 0.2 100 92 8 0 0 0 0 0.438 1.458 41.94

KCP_Scree 0.2 100 0 4 96 0 0 0 0.988 0.009 41.94

SBS 0.2 100 1 4 81 14 0 0 0.942 0.149 6.38

MIDopt 0.5 30 0 0 98 1 1 0 0.985 0.020 1.68

MIDPERL2 0.5 30 0 1 89 9 1 0 0.972 0.056 331.91

MIDPERL∞ 0.5 30 0 1 82 15 2 0 0.959 0.061 161.49

DC 0.5 30 0 0 97 3 0 0 0.994 0.009 20.42

INSPECT 0.5 30 0 0 95 5 0 0 0.993 0.016 1.14

KCP_Grid 0.5 30 96 0 4 0 0 0 0.428 1.499 34.07

KCP_Scree 0.5 30 0 5 95 0 0 0 0.988 0.015 34.07

SBS 0.5 30 0 0 90 10 0 0 0.980 0.042 3.60

MIDopt 0.5 100 0 1 98 1 0 0 0.954 0.075 4.56

MIDPERL2 0.5 100 0 0 93 7 0 0 0.972 0.041 1069.54

MIDPERL∞ 0.5 100 0 0 93 7 0 0 0.973 0.042 751.34

DC 0.5 100 0 0 94 6 0 0 0.993 0.015 32.06

INSPECT 0.5 100 0 0 98 2 0 0 0.993 0.012 4.09

KCP_Grid 0.5 100 88 12 0 0 0 0 0.492 1.182 41.79

KCP_Scree 0.5 100 0 5 95 0 0 0 0.990 0.010 41.79

SBS 0.5 100 0 7 78 15 0 0 0.939 0.159 6.41

MIDopt 0.8 30 0 0 97 3 0 0 0.988 0.022 2.36

MIDPERL2 0.8 30 0 1 92 5 2 0 0.983 0.043 324.60

MIDPERL∞ 0.8 30 0 0 85 14 1 0 0.971 0.076 161.49

DC 0.8 30 0 0 96 3 1 0 0.993 0.023 20.60

INSPECT 0.8 30 0 0 93 6 1 0 0.991 0.023 1.17

KCP_Grid 0.8 30 88 10 2 0 0 0 0.462 1.380 33.53

KCP_Scree 0.8 30 0 10 90 0 0 0 0.989 0.10 33.53

SBS 0.8 30 0 2 94 6 0 0 0.980 0.035 3.68

MIDopt 0.8 100 0 4 91 5 0 0 0.933 0.133 5.01

MIDPERL2 0.8 100 0 0 94 4 1 1 0.976 0.036 1085.59

MIDPERL∞ 0.8 100 0 0 91 8 1 0 0.971 0.042 602.87

DC 0.8 100 0 0 96 3 1 0 0.993 0.014 32.26

INSPECT 0.8 100 0 0 95 5 0 0 0.990 0.023 3.72
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Table 2 continued
Method sp d N̂ − N ARI dh Time (s)

≤ −2 −1 0 1 2 3

KCP_Grid 0.8 100 82 18 0 0 0 0 0.511 0.142 41.99

KCP_Scree 0.8 100 0 4 96 0 0 0 0.989 0.009 41.99

SBS 0.8 100 0 7 83 10 0 0 0.926 0.160 6.47

MIDopt to be the data-adaptive, sparsity-based MID version
explained in this section, where an aggregation method is
chosen based on the estimated sparsity of the change-points
in the given data.

3.5 A permutation-based approach

MID is a threshold-based algorithm because at each step, the
largest aggregated contrast function value is tested against
a predefined threshold in order to decide whether there is
a change-point at the corresponding location. In Sect. 3.3
we have explained how the threshold constant is carefully
chosen to control the Type I error taking into account the
dimensionality of the data. However, misspecification of the
threshold can possibly lead to the misestimation of the num-
ber of change-points. To solve such issues, we propose a
variant of MID based on permutation.

The idea of a “data-adaptive threshold” through permuta-
tions or bootstrapping is not new. In Cho (2016), a bootstrap
procedure is proposed, which is motivated by the represen-
tation theory developed for the Generalised Dynamic Factor
Model, in order to approximate the quantiles of the devel-
oped double CUSUM test statistic under the null hypothesis
of no change-points; the obtained quantiles are used as
a test criterion for detection. In Cabrieto et al. (2018), a
permutation-based approach is used to test the presence
of correlation changes in multivariate time series. Under
a univariate framework, in Antoch and Hušková (2001) a
permutation scheme is proposed for deriving critical values
for test statistics based on functionals of the partial sums
∑k

i=1(Xi − X̄n), k = 1, . . . , n, where Xi are the observed
data and X̄n their mean value. The proposed scheme consists
of three steps: a) compute the test statistic using the original
data, b) construct the permutation distribution by computing
the relevant test statistic on permuted versions of the data,
and c) reject the null hypothesis of no change-points if the
test statistic lies in the tails of the distribution.

Wepropose a variant that combines the isolation technique
of MID with an extension of the permutation procedure used
inAntoch andHušková (2001) to themultivariate framework.

Although this permutation procedure tends to be computa-
tionally expensive, it has a straightforward implementation.
As generally holds for permutation procedures, the test-
statistic obtained from the original data is compared to those
obtained when applying the same steps to several permuted
versions of the data. For our proposed permutation scheme all
steps remain the same as MID with the only difference being
the way the algorithm chooses to accept or reject a change-
point within each interval. To be more precise, suppose that,
for a given data sequence {Xt}t=1,...,T , the MID algorithm
is at a step where it looks for a change-point in the inter-
val I = [s∗, e∗], where 1 ≤ s∗ < e∗ ≤ T . As described in
Sect. 2.1,MID returns a vectorv ∈ R

J ,where J is the amount
of all change-point candidates. The elements of v correspond
to the aggregated contrast function values for each candidate
point in I . The next step is to store TImax = max

i∈{1,...,J } {vi }
and repeat the following procedure a prespecified amount,
denoted by K , of times:

1. Generate a random permutation from (s∗, . . . , e∗).
2. Reorder the data according to the permutation.
3. Calculate and store the maximum aggregated contrast

function value for each permutation.

The empirical distribution obtained from the maximum val-
ues is used to construct our test. More precisely, we identify
b̂I = argmaxt {vt } as a change-point if, for given α ∈ (0, 1),
TImax > q1−α , where q1−α is the 100(1 − α)% quantile of
the empirical distribution.

The parameter α controls the probability of false detec-
tions. Small values of α will make it harder for the algorithm
to reject the null hypothesis of no change-points, whereas
large values can reduce the probability of a Type II error.
For the simulations in Sect. 4, we take α = 0.01. Regarding
the parameter K , the simulation results provided in Antoch
andHušková (2001)—although for a univariate framework—
suggest that the empirical quantiles get stabilised quickly.
Therefore, for our simulations, we take K = 1000.
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4 Numerical studies

4.1 Comparative simulation study

In this section, we investigate the performance of our method
in Scenarios (S1) and (S2) covered in Sects. 2.2.1 and 2.2.2,
respectively. Furthermore, in (S1), MID is compared with
state-of-the-artmethods through a comprehensive simulation
study. The competitors are the Double Cusum (DC) method
of Cho (2016), the Sparsified Binary Segmentation (SBS)
algorithm of Cho and Fryzlewicz (2015), the INSPECT algo-
rithm of Wang and Samworth (2018), and the KCP method
of Arlot et al. (2019). DC and SBS are implemented in
the hdbinseg R package. For INSPECT we have used the
InspectChangepoint R package, while KCP is implemented
in the kcpRS R package. SBS and INSPECTwere called with
their default arguments. For DC, the parameters used were
the ones that gave the best results in the simulation study car-
ried out in the relevant paper ( Cho 2016). Regarding KCP,
an upper bound, Kmax, for the true number, N , of change-
points needs to be provided in order for the method to work.
In the simulations carried out in this section, the true number
of change-points is no more than 50; we take Kmax = 100.
Furthermore, in the kcpRS R package, the KCP-based esti-
mated number of change-points is selected either through a
model selection procedure where the penalty constants are
decided through an extensive grid search, or through a scree
test. In our simulation results that follow, the grid-based pro-
cedure is denoted by KCP_Grid, while the scree-test-based
estimation result is denoted by KCP_Scree. With respect to
our algorithm, we give results for the data-adaptive, sparsity-
based MID version of Sect. 3.4, denoted by MIDopt, where
the threshold values are taken from Table 1 for α = 0.05. In
addition, results are presented for the permutation-basedvari-
ants explained in Sect. 3.5; these are denoted by MIDPERL2

and MIDPERL∞ for the L2 and L∞ mean-dominant norms,
respectively.
Simulation setup We considered the settings where T =
1500, d ∈ {30, 100} and N ∈ {3, 20, 50}. With the definition
of sparsity as in (16), we took sp ∈ {0.2, 0.5, 0.8}, meaning
that at least one true change-point appears in d × sp data
sequences. In an attempt to increase the difficulty in the sim-
ulations the remaining true change-points appear in only few
data sequences. The signal strength at the i th change-point
is defined as

ss(S1)
i := ‖ fri − fri+1‖2 (18)

in the case of Scenario (S1) and as

ss(S2)
i := ‖ fri−1 + fri+1 − 2 fri ‖2, (19)

with ‖ · ‖2 being the known Euclidean norm. For our sim-
ulation study, for Scenario (S1), we take ss(S1)

i = s1,∀i ∈
{1, . . . , N } and we test the performance of all methods on
two signal strength settings with s1 ∈ {2, 2.5}. Regarding
Scenario (S2), where changes in the vector of the first order
derivatives are treated, we have ss(S2)

i = s2,∀i ∈ {1, . . . , N }
and we test the performance of MID on two signal strength
settings with s2 ∈ {0.3, 0.5}. Standard Gaussian noise was
added to the signals. In total, we tested the methods in
36 different setups covering a range of different multivari-
ate sequences regarding dimensionality, sparsity, number of
change-points, and signal strength.

We ran 100 replications for each setup. The frequency
distribution of N̂ − N is provided, while the accuracy of the
estimated locations is evaluated through the Adjusted Rand
Index (ARI) of the estimated segmentation against the true
one ( Hubert and Arabie 1985), and the scaled Hausdorff
distance,

dH = n−1
s max

{

max
j

min
k

| r j − r̂k |,max
k

min
k

| r j − r̂k |,
}

,

where ns is the length of the largest segment. The aver-
age computational times, in seconds, are also provided. The
results, for MID and the competing methods under Scenario
(S1) and for the signal strength, s1, being equal to 2, are given
in Tables 2, 3, and 4; the results for s1 = 2.5 are given in
the online supplement. For each simulation setup, themethod
with the highest empirical frequency of N̂−N being equal to
zero (or close to zero, depending on the example) and those
within 5% off the highest are given in bold. For Scenario (S2)
with s2 = 0.5, the results are presented in Table 5, while for
s2 = 0.3 the results can be found in the online supplement.

As the tables show, MID performs extremely well in all
setups in both (S1) and (S2). More specifically, for (S1)
our method is either the best method overall or within 5%
off the best method with respect to the estimated number
of change-points in all signals. Furthermore, in all cases,
MID attains very high values for the ARI, and quite small (in
most cases it actually attains the smallest value) ones for the
scaledHausdorff distance; such results justify that apart from
being extremely accurate in estimating the correct number of
change-points, MID is also very accurate regarding the esti-
mated change-point locations. We highlight that there seems
to be a significant advantage in the performance ofMID com-
pared to the rest of the methods in cases with a large number
of regularly occurring change-points; see, more specifically,
Tables 3 and 4. Regarding the permutation-based variants
of MID, both MIDPERL2 and MIDPERL∞ show a very
good behaviour in all different scenarios in terms of accuracy
with respect to both the estimated number and the estimated
change-point locations. Although these permutation-based
variants do not require specification of the threshold, their
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Table 3 Distribution of N̂ −N over 100 simulated multivariate data sequences with 20 change-points under Scenario (S1) of Sect. 2.2.1. The signal
strength, as defined in (18), is equal to 2 for each change-point. The average ARI, dH , and computational times are also given

Method sp d N̂ − N ARI dh Time (s)

≤ −10 (−10,−1) [−1, 1] (1, 10) ≥ 10

MIDopt 0.2 30 0 0 100 0 0 0.968 0.101 1.68

MIDPERL2 0.2 30 0 16 84 0 0 0.942 0.254 476.36

MIDPERL∞ 0.2 30 0 5 95 0 0 0.957 0.167 110.60

DC 0.2 30 0 60 40 0 0 0.877 0.849 16.73

INSPECT 0.2 30 0 0 64 36 0 0.948 0.246 0.99

KCP_Grid 0.2 30 100 0 0 0 0 0.093 9.128 33.17

KCP_Scree 0.2 30 64 2 30 0 4 0.382 5.411 33.17

SBS 0.2 30 79 21 0 0 0 0.495 1.887 3.21

MIDopt 0.2 100 0 0 100 0 0 0.932 0.761 4.27

MIDPERL2 0.2 100 0 5 95 0 0 0.953 0.241 1488.64

MIDPERL∞ 0.2 100 0 1 99 0 0 0.969 0.157 427.60

DC 0.2 100 0 56 44 0 0 0.875 0.833 26.99

INSPECT 0.2 100 0 2 81 17 0 0.933 0.306 3.12

KCP_Grid 0.2 100 100 0 0 0 0 0.093 9.208 41.81

KCP_Scree 0.2 100 100 0 0 0 0 0.120 7.974 41.81

SBS 0.2 100 38 62 0 0 0 0.542 1.532 5.68

MIDopt 0.5 30 0 0 100 0 0 0.939 0.608 1.61

MIDPERL2 0.5 30 0 1 99 0 0 0.952 0.183 461.75

MIDPERL∞ 0.5 30 0 0 99 1 0 0.956 0.163 103.31

DC 0.5 30 0 57 43 0 0 0.864 0.873 16.85

INSPECT 0.5 30 0 0 54 46 0 0.945 0.263 0.96

KCP_Grid 0.5 30 100 0 0 0 0 0.095 9.001 33.06

KCP_Scree 0.5 30 100 0 0 0 0 0.257 6.243 33.06

SBS 0.5 30 73 27 0 0 0 0.497 1.936 3.22

MIDopt 0.5 100 0 0 100 0 0 0.927 0.843 4.06

MIDPERL2 0.5 100 0 0 100 0 0 0.957 0.163 1471.95

MIDPERL∞ 0.5 100 0 0 100 0 0 0.946 0.151 450.34

DC 0.5 100 0 68 32 0 0 0.870 0.866 27.01

INSPECT 0.5 100 0 0 77 23 0 0.935 0.278 3.10

KCP_Grid 0.5 100 100 0 0 0 0 0.093 9.005 41.80

KCP_Scree 0.5 100 100 0 0 0 0 0.108 8.301 41.80

SBS 0.5 100 31 69 0 0 0 0.546 1.581 5.72

MIDopt 0.8 30 0 0 100 0 0 0.930 0.783 1.58

MIDPERL2 0.8 30 0 1 99 0 0 0.961 0.199 417.58

MIDPERL∞ 0.8 30 0 0 100 0 0 0.954 0.177 95.89

DC 0.8 30 0 62 38 0 0 0.873 0.835 16.96

INSPECT 0.8 30 0 0 61 39 0 0.943 0.257 1.01

KCP_Grid 0.8 30 100 0 0 0 0 0.097 9.137 32.27

KCP_Scree 0.8 30 50 0 42 0 8 0.483 4.207 32.27

SBS 0.8 30 78 22 0 0 0 0.497 1.846 3.24

MIDopt 0.8 100 0 0 100 0 0 0.927 0.875 4.09

MIDPERL2 0.8 100 0 0 100 0 0 0.958 0.072 1467.22

MIDPERL∞ 0.8 100 0 0 100 0 0 0.951 0.141 459.46
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Table 3 continued

Method sp d N̂ − N ARI dh Time (s)

≤ −10 (−10,−1) [−1, 1] (1, 10) ≥ 10

DC 0.8 100 0 63 37 0 0 0.880 0.876 26.93

INSPECT 0.8 100 0 0 80 20 0 0.931 0.257 3.12

KCP_Grid 0.8 100 100 0 0 0 0 0.092 9.140 41.78

KCP_Scree 0.8 100 100 0 0 0 0 0.102 8.677 41.78

SBS 0.8 100 42 58 0 0 0 0.537 1.576 5.70

Table 4 Distribution of N̂ −N over 100 simulated multivariate data sequences with 50 change-points under Scenario (S1) of Sect. 2.2.1. The signal
strength, as defined in (18), is equal to 2 for each change-point. The average ARI, dH , and computational times are also given

Method sp d N̂ − N ARI dh Time (s)

< −20 [−20,−6) [−6, 6] (6, 20] > 20

MIDopt 0.2 30 0 6 94 0 0 0.869 0.584 2.79

MIDPERL2 0.2 30 0 7 93 0 0 0.849 0.612 650.05

MIDPERL∞ 0.2 30 0 7 93 0 0 0.835 0.634 101.91

DC 0.2 30 96 4 0 0 0 0.547 1.291 17.21

INSPECT 0.2 30 0 5 95 0 0 0.844 0.547 1.03

KCP_Grid 0.2 30 100 0 0 0 0 0.039 15.570 32.43

KCP_Scree 0.2 30 65 0 5 26 4 0.324 8.616 32.43

SBS 0.2 30 100 0 0 0 0 0.225 3.662 3.31

MIDopt 0.2 100 0 14 86 0 0 0.862 0.588 5.93

MIDPERL2 0.2 100 0 17 83 0 0 0.851 0.592 2188.56

MIDPERL∞ 0.2 100 0 15 85 0 0 0.847 0.585 530.94

DC 0.2 100 88 12 0 0 0 0.558 1.300 27.06

INSPECT 0.2 100 0 85 15 0 0 0.732 0.618 3.25

KCP_Grid 0.2 100 100 0 0 0 0 0.039 14.968 42.37

KCP_Scree 0.2 100 100 0 0 0 0 0.047 13.753 42.37

SBS 0.2 100 100 0 0 0 0 0.287 2.557 5.82

MIDopt 0.5 30 0 10 90 0 0 0.866 0.583 2.62

MIDPERL2 0.5 30 0 11 89 0 0 0.861 0.591 576.55

MIDPERL∞ 0.5 30 0 9 91 0 0 0.879 0.542 85.13

DC 0.5 30 85 15 0 0 0 0.539 1.401 16.91

INSPECT 0.5 30 0 13 87 0 0 0.834 0.555 1.03

KCP_Grid 0.5 30 100 0 0 0 0 0.043 14.641 32.29

KCP_Scree 0.5 30 72 0 2 15 11 0.256 8.618 32.29

SBS 0.5 30 100 0 0 0 0 0.227 3.648 3.28

MIDopt 0.5 100 0 8 92 0 0 0.865 0.585 7.02

MIDPERL2 0.5 100 0 5 95 0 0 0.873 0.538 2147.27

MIDPERL∞ 0.5 100 0 7 93 0 0 0.868 0.552 524.08

DC 0.5 100 0 92 8 0 0 0.566 1.241 34.90

INSPECT 0.5 100 0 90 10 0 0 0.723 0.614 3.74

KCP_Grid 0.5 100 100 0 0 0 0 0.038 14.939 51.25

KCP_Scree 0.5 100 88 0 0 0 12 0.105 12.443 51.25

SBS 0.5 100 100 0 0 0 0 0.283 2.567 7.08
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Table 4 continued

Method sp d N̂ − N ARI dh Time (s)

< −20 [−20,−6) [−6, 6] (6, 20] > 20

MIDopt 0.8 30 0 9 91 0 0 0.865 0.585 2.17

MIDPERL2 0.8 30 0 7 93 0 0 0.874 0.519 513.94

MIDPERL∞ 0.8 30 0 10 90 0 0 0.861 0.575 77.26

DC 0.8 30 93 7 0 0 0 0.539 1.366 16.67

INSPECT 0.8 30 0 7 92 1 0 0.839 0.544 1.03

KCP_Grid 0.8 30 100 0 0 0 0 0.039 15.598 32.15

KCP_Scree 0.8 30 78 0 0 20 2 0.207 10.733 32.15

SBS 0.8 30 100 0 0 0 0 0.221 3.938 3.25

MIDopt 0.8 100 0 10 90 0 0 0.865 0.584 6.76

MIDPERL2 0.8 100 0 7 93 0 0 0.901 0.512 1723.12

MIDPERL∞ 0.8 100 0 12 88 0 0 0.853 0.580 511.36

DC 0.8 100 87 13 0 0 0 0.567 1.253 34.65

INSPECT 0.8 100 0 90 10 0 0 0.725 0.629 3.56

KCP_Grid 0.8 100 100 0 0 0 0 0.038 15.282 46.38

KCP_Scree 0.8 100 94 0 0 0 6 0.074 13.438 46.38

SBS 0.8 100 100 0 0 0 0 0.284 2.634 6.99

computational cost seems to be quite large (see Tables 2, 3,
4).

In regards to the competingmethods, INSPECT has a very
accurate behaviour in Table 2which concerns the case of hav-
ing three change-points. Even though themethod’s behaviour
is not very bad in all different combinations examined,
Tables 3 and 4 show that INSPECT struggles to accurately
estimate the change-points in cases where N is relatively
high. DC’s, KCP_Scree’s, and SBS’ performances are also
very good in those cases where we have three change-points,
but they seem to underestimate (SBS more prominently)
N in cases with more, regularly occurring change-points.
KCP_Grid does not have a good performance in any of the
scenarios tested.

With respect to Scenario (S2) as in Sect. 2.2.2, the results
in Table 5 exhibit MID’s very strong performance in accu-
rately estimating both the number, and the locations of the
change-points. In conclusion, taking into account its low
computational time,we can deduce that our proposedmethod
is reliable and quick in accurately detecting change-points
under various different (with respect to the number of change-
points, the sparsity, the dimensionality of the data, the signal
strength, and the structure of the changes) multivariate set-
tings. R code and instructions to replicate the results in
this section are available on https://github.com/apapan08/
Simulations-MID.

4.2 Spatially dependent data

It has already been shown in the proofs of Theorems 1 and 2
that the covariance matrix, �, of the noise terms, εt , does
not need to be diagonal. This means that MID allows for the
detection of changes in data structures that exhibit spatial
dependence. Apart from the theoretical justification, through
the relevant proofs, of the aforementioned statement, in this
section we investigate the practical performance of MID for
data following two spatial dependence structures under both
scenarios (S1) and (S2). In the first case, the covariance
matrix is �

(1)
i, j = 2−|i− j |, while in the second one, the spa-

tial dependence is much stronger, with the covariance matrix
being �(2) = 1d1

ᵀ
d , where 1d = (1, 1, . . . , 1)ᵀ ∈ R

d×1.
With the notation as in Sect. 4.1, we take T = 1500, d ∈
{30, 100} , sp ∈ {0.2, 0.5} , N ∈ {3, 20}, and the signal
strength for the scenarios (S1) and (S2) is taken to be equal
to 2 and 0.5, respectively, for each one of the change-points.
The results over 100 simulations are given in Table 6 for
Scenario (S1) and in the online supplement for (S2).

Table 6 indicates the great practical behaviour of MID
in such spatial dependence structures. More specifically, for
the case of having 3 change-points, when the covariance
matrix is �(1), MID succeeds in returning N̂ = 3 in at
least 92 out of the 100 replications for all different scenarios
regarding the dimensionality of the data sequence and the
sparsity level employed. For the case where the covariance
matrix is �(2), MID exhibits excellent behaviour in all set-
tings apart from the one where d = 100 and sp = 0.5, in
which our method accurately estimates the correct number
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Table 5 Distribution of N̂ − N
over 100 simulated multivariate
data sequences under Scenario
(S2) of Sect. 2.2.2. We present
the results of MID for different
levels of sparsity and of
dimensionality of the data
sequence. The number of
change-points is equal to 3, 20,
or 50 and the signal strength, as
defined in (19), is equal to 0.5.
The average ARI, dH , and
computational times are also
given

N sp d N̂ − N ARI dh Time (s)

−2 −1 0 1 2

3 0.2 30 0 0 100 0 0 0.992 0.008 1.23

3 0.5 30 0 0 97 3 0 0.991 0.010 1.26

3 0.8 30 0 0 99 1 0 0.995 0.005 2.01

3 0.2 100 0 0 99 1 0 0.990 0.012 5.74

3 0.5 100 0 0 91 9 0 0.982 0.025 5.78

3 0.8 100 0 0 98 2 0 0.994 0.007 9.42

N sp d N̂ − N ARI dh Time (s)

≤ −10 (−10,−1) [−1, 1] (1, 10) ≥ 10

20 0.2 30 0 0 100 0 0 0.967 0.055 1.99

20 0.5 30 0 0 99 1 0 0.965 0.071 2.04

20 0.8 30 0 0 100 0 0 0.968 0.047 3.84

20 0.2 100 0 0 100 0 0 0.959 0.071 5.75

20 0.5 100 0 0 99 1 0 0.953 0.088 6.16

20 0.8 100 0 0 100 0 0 0.969 0.053 9.26

N sp d N̂ − N ARI dh Time (s)

≤ −40 (−40,−1) [−1, 1] (1, 40) ≥ 40

50 0.2 30 0 0 100 0 0 0.921 0.099 3.05

50 0.5 30 0 0 97 3 0 0.918 0.180 2.94

50 0.8 30 0 0 99 1 0 0.898 0.291 3.94

50 0.2 100 0 0 100 0 0 0.904 0.266 7.62

50 0.5 100 0 0 97 3 0 0.877 0.471 7.98

50 0.8 100 0 0 99 1 0 0.868 0.521 11.74

of change-points in 78% of the replications; however, this is
still considered to be a good performance level. Moving now
to the scenario of 20 change-points, we see in Table 6 that
for either �(1) or �(2) and for any combination of d and sp,
the estimated number of change-points by MID satisfies that
N̂ ∈ {19, 20, 21} in at least 98 out of the 100 replications. In
addition to the outstanding behaviour of MID with respect
to the accuracy on the estimated number of change-points,
both theAdjustedRand Index and theHausdorff distance val-
ues indicate the method’s accuracy regarding the estimated
change-point locations in all settings studied.

4.3 Non-Gaussian noise

In this section, we investigate the practical performance of
MID in cases where we deviate from the Gaussianity of the
error terms, an assumption made in Theorems 1 and 2 in
order to prove the consistency of our method in accurately
estimating the true number and the location of the change-
points. The simulation setup of Sect. 4.1 is repeated forMID;
however, instead of standard Gaussian noise being added
to each one of the d component signals, we now explore

the performance of our method in the following two noise
structures:
SUnif : εt, j ∼iid Unif(−√

3,
√
3),

St8 : εt, j ∼iid √
6/8t8,

where Unif(a, b) denotes the continuous Uniform distribu-
tion in the interval [a, b], while tv is the Student-t distribution
with v degrees of freedom. The performance of MID in
the case of SUni f is very good and there are no significant
deviations to themethod’s performanceobtainedunderGaus-
sianity. However, preliminary simulations have shown that
MID could lead to moderate overestimation on the number
of change-points in the case of heavy-tailed distribution, such
as the Student-t covered in the St8 scenario. Therefore, in such
cases of heavy-tailed noise, we could take advantage of the
Central Limit Theorem and pre-average the data over time in
order to obtain a noise structure that is closer to Gaussianity;
this is a technique also followed in Section 4.5 of Anastasiou
and Fryzlewicz (2022). MID is then applied to the obtained,
pre-averaged data in order to estimate the change-points. The
results over 100 simulations for Scenario (S1) (changes in the
mean structure) are given in Tables 7 and 8 for the cases of
uniformly or Student-t distributed error terms, respectively.
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Table 6 Distribution of N̂ − N when MID was employed for change-
point detection over 100 simulated multivariate data sequences under
Scenario (S1), with the multivariate data exhibiting two settings of
spatial dependence. We take T = 1500, d ∈ {30, 100} , sp ∈
{0.2, 0.5} , N ∈ {3, 20} and the signal strength is taken to be equal
to 2. The average ARI, dH , and computational times are also given

� N sp d N̂ − N ARI dh Time (s)

−1 0 1 ≥ 2

3 0.2 30 0 99 1 0 0.994 0.008 1.45

3 0.2 100 0 92 5 3 0.985 0.038 4.53

3 0.5 30 0 99 1 0 0.990 0.013 1.49

�(1) 3 0.5 100 0 95 3 2 0.973 0.045 4.86

20 0.2 30 0 98 2 0 0.987 0.050 1.61

20 0.2 100 49 50 1 0 0.957 0.479 4.76

20 0.5 30 29 69 2 0 0.972 0.305 1.63

20 0.5 100 76 21 3 0 0.932 0.764 4.78

3 0.2 30 0 98 2 0 0.996 0.005 1.27

3 0.2 100 0 95 5 0 0.986 0.020 4.67

3 0.5 30 0 98 2 0 0.988 0.018 1.25

�(2) 3 0.5 100 19 78 2 1 0.921 0.230 5.79

20 0.2 30 0 99 0 1 0.982 0.053 1.35

20 0.2 100 74 21 5 0 0.942 0.790 5.19

20 0.5 30 79 21 0 0 0.952 0.714 1.39

20 0.5 100 73 23 2 2 0.923 0.878 5.03

Similar results for Scenario (S2) (changes in the vector of
the first order derivatives) are provided and discussed in the
online supplement. FromTables 7 and8wecan conclude that,
with relatively minor overestimation in the case of Student-t
noise when d = 100 and N = 3, MID maintains its strong
practical performance under non-Gaussian noise and for var-
ious different scenarios involving the dimensionality of the
given data, the sparsity level, and the true number of change-
points.

5 Real data examples

5.1 UK House Price Index

In this section, the performance of our method is studied on
monthly percentage changes in the UK house price index
for all property types from January 2000 to January 2023
in twenty London Boroughs. The data are available from
http://landregistry.data.gov.uk/app/ukhpi and they were last
accessed in March 2023. We have a multivariate data
sequence Xt = (

Xt,1, . . . , Xt,20
)ᵀ, with t = 1, . . . , 276.

The boroughs used are: Barnet (Ba), Bexley (Be), Brom-
ley (Br), Camden (Ca), Croydon (Cr), Ealing (Ea), Enfield
(En), Greenwich (Gr), Hackney (Ha), Hammersmith and

Fulham (HF), Harrow (Har), Islington (Is), Kensington and
Chelsea (KC), Lambeth (La), Merton (Me), Newham (Ne),
Richmond upon Thames (RuT), Sutton (Su), Tower Ham-
lets (TH), and Wandsworth (Wa). Similar data have been
investigated in Baranowski et al. (2019), Fryzlewicz (2014),
Fryzlewicz (2020), and Anastasiou and Fryzlewicz (2022);
however under a univariate setting. Figure5 indicates the
results whenMIDopt of Sect. 3.4 was employed for the detec-
tion of changes under Scenario (S1) as explained in Sect. 2.2;
with respect to the threshold constant, we used the optimal
values as in Table 1 for α = 0.05.

Our method identifies 27 change-points in the mean struc-
ture of the multivariate data sequence at hand. We have
analysed the same data using the competing methods of
Sect. 4. INSPECT detects 26 change-points at locations very
similar to those detected by our method, DC detects one
change-point at location 41, while SBS does not detect
any change-points. We need to highlight, though, that in
INSPECT, multiple change-points are estimated using a wild
binary segmentation scheme, which, due to the randomness
involved, does not necessarily detect the same change-points
when it is employed more than once over the same data set.

5.2 The COVID-19 outbreak

The performance of our method is also investigated on data
from the COVID-19 pandemic. In this case, we focus though
on the detection of changes under Scenario (S2) as described
in Sect. 2.2. The data under consideration consist of the daily
number of new lab-confirmed COVID-19 cases in the four
constituent countries of UnitedKingdom; England, Northern
Ireland, Scotland, andWales. The period under investigation
is from 01/04/2020 until 30/04/2022; there are no data for
Northern Ireland after the 15th of May, 2022. The data are
available from https://coronavirus.data.gov.uk and they were
last accessed on the 7th ofMarch 2023. Based on the descrip-
tion, in this example we have a multivariate data sequence
Xt = (

Xt,1, . . . , Xt,4
)ᵀ, with t = 1, . . . , 760. Due to the

fact that the data are positive integer numbers, we perform the
Anscombe transform, a : N → R, with a(x) = 2

√
x + 3/8,

to each Xt, j ; this transform brings the distribution of the
component data sequences closer to the Gaussian one with
constant variance.

Our method has detected 32 change-points in the vector
of the first partial derivatives (changes in the slope for the
component univariate data sequences) which seem to capture
the important movements in the data.
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Table 7 Distribution of N̂ − N
when MID was employed for
change-point detection over 100
simulated multivariate data
sequences under Scenario (S1).
The signal strength, as defined
in (18), is equal to 2 for every
change-point, and we present
the results for different
combinations involving the true
number of change-points, the
sparsity level, and the
dimensionality of the data
sequence at hand. The added
noise at each component signal
follows the Unif(−√

3,
√
3)

distribution. The average ARI,
dH , and computational times are
also given

N sp d N̂ − N ARI dh Time (s)

−2 −1 0 1 2

3 0.2 30 0 0 99 1 0 0.993 0.009 1.48

3 0.5 30 0 0 98 2 0 0.988 0.017 1.58

3 0.8 30 0 0 100 0 0 0.997 0.004 2.31

3 0.2 100 0 0 100 0 0 0.987 0.018 5.26

3 0.5 100 0 0 97 3 0 0.973 0.039 4.47

3 0.8 100 0 1 99 0 0 0.951 0.079 5.35

N sp d N̂ − N ARI dh Time (s)

≤ −10 (−10,−2) [−2, 2] (2, 10) ≥ 10

20 0.2 30 0 0 100 0 0 0.987 0.048 1.41

20 0.5 30 0 0 100 0 0 0.968 0.369 1.49

20 0.8 30 0 0 100 0 0 0.944 0.709 1.62

20 0.2 100 0 0 100 0 0 0.947 0.644 4.87

20 0.5 100 0 0 100 0 0 0.925 0.869 5.10

20 0.8 100 0 0 100 0 0 0.922 0.858 4.74

Table 8 Distribution of N̂ − N
when MID was employed for
change-point detection over 100
simulated multivariate data
sequences under Scenario (S1).
The signal strength, as defined
in (18), is equal to 2 for every
change-point, and we present
the results for different
combinations involving the true
number of change-points, the
sparsity level, and the
dimensionality of the data
sequence at hand. The added
noise at each component signal
follows the t8 distribution and
before applying MID we
pre-average the data at every 5
observations. The average ARI,
dH , and computational times are
also given

N sp d N̂ − N ARI dh Time (s)

−2 −1 0 1 ≥ 2

3 0.2 30 0 0 91 6 3 0.976 0.051 0.38

3 0.5 30 0 0 75 21 4 0.968 0.129 0.31

3 0.8 30 0 0 81 16 3 0.971 0.065 0.41

3 0.2 100 0 0 65 18 17 0.946 0.175 0.94

3 0.5 100 0 0 61 26 13 0.934 0.222 0.96

3 0.8 100 0 0 63 21 16 0.940 0.170 0.95

N sp d N̂ − N ARI dh Time (s)

≤ −10 (−10,−2) [−2, 2] (2, 10) ≥ 10

20 0.2 30 0 0 100 0 0 0.917 0.097 0.61

20 0.5 30 0 0 99 1 0 0.910 0.156 0.46

20 0.8 30 0 0 99 1 0 0.901 0.330 0.47

20 0.2 100 0 0 96 4 0 0.902 0.302 1.56

20 0.5 100 0 0 100 0 0 0.885 0.562 1.34

20 0.8 100 0 0 100 0 0 0.883 0.680 1.41
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Fig. 5 The monthly percentage changes in the UK house price index for the twenty London boroughs under consideration. The estimated change-
point locations when MIDopt was employed can be seen with red, vertical lines

6 Further discussion

6.1 Temporal dependence

In this section, we explore how our method can be employed
for change-point detection in cases where the data exhibit
temporal dependence. For d = 1, MID has already man-
aged to earn independent praise regarding its robustness on
moderate deviations from serial indepence situations; see, for
example, Fearnhead andRigaill (2020)whereMID’s univari-
ate analogue (the Isolate–Detect algorithm) is shown through
an extensive simulation study to have very strong perfor-
mance for a number of scenarios when either auto-correlated
or heavy-tailed noise is added to the signals. Heuristically,
such a good behaviour is expected because of the isolation
aspect of MID, which ensures that the change-points will
be detected one-by-one while they are still in intervals that
contain no other change-points.

Practical ways that can be used in order to enhance MID’s
performance in cases of very high serial correlation in the
data, are the subsampling and pre-averaging techniques,
which have already been described in detail in Section 5.1
of Anastasiou et al. (2022); here, we only give a brief idea
of the steps involved. Starting with subsampling, the strat-
egy is to choose a positive integer s and subsample every
s data points from our original multivariate data sequence
Xt , this will create s mutually exclusive (sub-sampled) data
sequences; the autocorrelation in these new data sequences
is expected to be lower than that in the original data. The

next step is to apply MID on each one of the s created data
sequences. This will give back s different sets of estimated
change-points. A majority voting rule is applied to these sets
and we keep only those estimation values that appear at least
a pre-decided amount of times, η, with η ≤ s. Once the
estimated change-point values, based on this majority voting
rule, are extracted, the change-points are then transformed to
represent the change-point locations with respect to the orig-
inal data sequence. Regarding pre-averaging, which we have
already applied in Sect. 4 in order to deal with heavy-tailed
noise structures, the data are uniformly averaged over pre-
specified, short time periods; this can significantly reduce
autocorrelation. After the aforementioned pre-processing,
MID is applied to the new, pre-averaged data.

6.2 Concluding reflections

In this paper, the MID methodology has been proposed for
multiple generalized change-point detection in multivari-
ate, possibly high-dimensional, data sequences, which could
exhibit spatial dependence. Mean-dominant norms (see (2))
are employed for the aggregation of the information across
the different components of the multivariate data sequence.
The aggregated values for the relevant contrast function
(depending on the structure of the changes) are collected and
compared to a threshold value, ζT ,d . The rate of ζT ,d with
respect to both the length, T , of the data sequence and its

dimensionality, d, has been proven to beO
(√

log(Td1/4)
)

.

The optimal multiplicative threshold constant, C , so that
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Fig. 6 The daily number of COVID-19 cases for England, Northern Ireland, Scotland, and Wales. The estimated change-point locations in the
trend of each component data sequence when our proposed MIDopt method was employed can be seen with red, vertical lines

ζT ,d = C
√

log(Td1/4) has been derived through a large
scale simulation study, with special attention in controlling
the Type I error rate, α, of falsely detecting change-points
for various values regarding the dimensionality of the data
sequence.

Misspecification of the threshold is possible and could
lead to misestimation of the underlying signal. To solve
such issues, in Sect. 3.5, a permutation-based variant of our
MID algorithm has been proposed with no threshold choice
requirement. The algorithmic steps of MID remain the same;
the difference lies in the way the method chooses to accept
or reject a change-point within the interval under consid-
eration, suppose this is denoted by I = [s∗, e∗], where
1 ≤ s∗ < e∗ ≤ T . In Sect. 2.1, we provide pseudocode
for the better understanding of the method and it has been
explained in detail that MIDwill first return a vector v ∈ R

J ,
where J is the amount of all change-point candidates. The
elements of v correspond to the aggregated contrast function
values for each candidate point in the interval I . The next step
is to store the maximum value of v as obtained from the orig-
inal data and compare it to the appropriate quantiles of the
empirical distribution of the values obtained when applying
the same steps to several permuted versions of the data; see
the exact steps in Section 3.5. The proposed permutation-
based variant of MID, though computationally expensive,
performs very well in terms of accuracy with respect to the
estimated number and locations of the change-points; see the
results in Sect. 4.

The choice of the mean-dominant norm to be employed
in the aggregation step of MID has already been discussed
in the current paper, more specifically in Sect. 3.4. Our aim
has been to provide a method that in practice would require
minimal parameter choice to the user; towards this purpose,
a data-adaptive variant, named MIDopt, of the method has
been constructed. We first estimate the sparsity level in the
given multivariate data; the steps are explained in detail in
Sect. 3.4. Depending on the value of the estimated sparsity,
MIDopt estimates the change-points employing either the L∞
or the L2 mean-dominant norm as defined in (2).

Through simulated and real-life data examples presented
in Sects. 4 and 5, respectively, it has been shown that
MID has very good performance in terms of accuracy and
speed. Specifically, MID lies in the top 5% (in terms of
the accurate estimation of the number and the location of
the change-points) of the best methods when compared to
the state-of-the-art competitors. In addition, MIDopt is a
very quick detection method which in a few seconds can
analyse signals with length in the range of thousands and
dimensionality in the range of hundreds; this is carried out
automatically with minimal decision making from the user
on the aggregation method to be employed; more details on
the computational complexity of our proposed algorithm can
be found in Sect. 3.1.

MID has been proven to be a consistent method, with
near-optimal rate, in accurately estimating the true number
and the locations of the change-points. The consistency result
also holds at the presence of spatial dependence between the
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component data sequences; the very good practical perfor-
mance of the proposed algorithm (without any modification)
in scenarios of multivariate data sequences that exhibit spa-
tial dependence can be found in Table 6. Regarding temporal
dependence, the method of proof for the consistency result
requires that the data are independent over time. In the uni-
variate case, the method has already been shown (and has
acquired independent praise on the matter) to be robust in
the presence of auto-correlated data. In order to reduce the
effect that, possibly strong, temporal dependence can have
on ourmethod’s accuracy in practice, in Sect. 6.1, we provide
an explanation of two different approaches that can be fol-
lowed prior to applyingMID to the data; the first one is based
on a sub-sampling scheme, while the second one requires to
pre-average the given data.

No algorithm is perfect and we are now at the point to
present limitations of MID regarding its practical behaviour.
Firstly, the method can be slow in situations of long sig-
nals that do not exhibit any changes. The reason behind this
behaviour is that, due to its expanding intervals characteris-
tic, in such scenariosMIDwill keep testing for change-points
in growing, overlapping intervals pushing the method to be
slower than usual. In these settings one can eliminate the
aforementioned MID weakness by splitting the data uni-
formly into smaller windows and then separately detect the
change-points within each window. Even though MID has
been shown to be quite robust in moderate deviations from
Gaussianity (see, for example Table 7), the method seems to
require some light data pre-processing in cases of heavy-
tailed noise (see Table 8) or in the presence of temporal
dependence.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-023-10261-
z.
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Appendix A Proof of Theorem 1

For s ≤ b < e,wedenote by X̃ b
s,e := (X̃b,1

s,e , X̃b,2
s,e , . . . , X̃b,d

s,e ),

where X̃b, j
s,e is as in (5). Furthermore, f̃ bs,e := ( f̃ b,1s,e , f̃ b,2s,e ,

. . . , f̃ b,ds,e ), where f̃ b, js,e =
√

e−b
n(b−s+1)

∑b
t=s ft, j −

√
b−s+1
n(e−b)

∑e
t=b+1 ft, j is the value of the CUSUM statistic for the

j th underlying component signal. Furthermore, for L(·) any
mean-dominant norm as those in (2), and for |x| being the
vector of the absolute value of the elements of an x ∈ R

d

Cb
s,e = L

(∣
∣
∣X̃ b

s,e

∣
∣
∣

)

, Db
s,e = L

(∣
∣
∣ f̃ bs,e

∣
∣
∣

)

,

A∗
T =

{

max
1≤s≤b<e≤T

L
(∣
∣
∣X̃ b

s,e − f̃ bs,e
∣
∣
∣

)

≤
√

8 log
(

Td
1
4

)
}

,

AT =
{

max
1≤s≤b<e≤T

∣
∣
∣Cb

s,e − Db
s,e

∣
∣
∣ ≤

√

8 log
(

Td
1
4

)
}

. (A1)

Proof STEP 1: For any mean-dominant norm L(·), using
the mean dominance property as given in p.190 of Carlstein
(1988), it holds that

0 ≤ L1(x) ≤ L(x) ≤ L∞(x), ∀x ∈ (Rd)+.
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Furthermore,

∣
∣
∣Cb

s,e − Db
s,e

∣
∣
∣ =

∣
∣
∣
∣
L

(∣
∣
∣X̃ b

s,e

∣
∣
∣

)

− L
(∣
∣
∣ f̃ bs,e

∣
∣
∣

)
∣
∣
∣
∣

≤
∣
∣
∣L

(∣
∣
∣X̃ b

s,e − f̃ bs,e
∣
∣
∣

)∣
∣
∣ .

and it is straightforward to see that P (AT ) ≥ P (A∗
T ). We

will first show that

P
(

A∗
T

) ≥ 1 − 1/(12
√

πT ).

It suffices to show that P
(

(A∗
T )c

) ≤ 1/(12
√

πT ). From
the definition of our model in (1), we have that εt ∼
Nd(0, �),∀t ∈ {1, . . . , T }. Denoting by σ 2

j := � j, j ,∀ j ∈
{1, . . . , d}, it is straightforward that εt, j ∼ N (0, σ 2

j ). The
elements σ j , j = 1, . . . , d, are of course, not assumed to
be known; whenever they are unknown, then in the case
of temporally independent errors with the univariate sig-
nal ft, j being piecewise-constant or piecewise linear (the
scenarios covered in this work) then σ j , j = 1, . . . , d,

are estimated using the Median Absolute Deviation method
explained in Hampel (1974). For simplicity, and without
loss of generality, let σ j = 1, j = 1, . . . , d. Then, from
the equation of our model in (1), we have that for any j ∈
{1, . . . , d}, X̃b, j

s,e − f̃ b, js,e = ε̃
b, j
s,e , and simple calculations lead

to ε̃
t, j
s,e ∼ N (0, 1). Therefore, for Z = (Z1, Z2, . . . , Zd),

with Z j ∼ N (0, 1), the Bonferroni inequality yields

P
(

(A∗
T )c

) = P

(

max
1≤s≤b<e≤T

L
(∣
∣
∣X̃ b

s,e − f̃ bs,e
∣
∣
∣

)

>

√

8 log
(

Td
1
4

)
)

= P

(

max
1≤s≤b<e≤T

L
(∣
∣
∣ε̃

b
s,e

∣
∣
∣

)

>

√

8 log
(

Td
1
4

)
)

= P

(

max
1≤s≤b<e≤T

L (|Z|) >

√

8 log
(

Td
1
4

)
)

≤ P

(

max
1≤s≤b<e≤T

L∞ (|Z|) >

√

8 log
(

Td
1
4

)
)

≤
∑

1≤s≤b<e≤T

P

(

max
1≤ j≤d

|Z j | >

√

8 log
(

Td
1
4

)
)

≤ T 3

6
P

(

max
1≤ j≤d

|Z j | >

√

8 log
(

Td
1
4

)
)

≤ T 3

6

d
∑

j=1

P

(

|Z j | >

√

8 log
(

Td
1
4

)
)

= T 3

3

d
∑

j=1

P

(

Z j >

√

8 log
(

Td
1
4
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)

= dT 3

3

φ

(√

8 log
(

Td
1
4

)
)

√

8 log
(

Td
1
4

)
= 1

3T
√
2π

√

8 log(Td
1
4 )

≤ 1

12
√

πT
, (A2)

where φ(x), x ∈ R is the probability density function of the
standard normal distribution. We conclude that P (A∗

T ) ≥
1 − 1/(12

√
πT ).

STEP 2: Let us denote by ψ b
s,e = (ψb

s,e(1), . . . , ψ
b
s,e(T ))

the contrast vector, where

ψb
s,e(t) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

√
e−b

n(b−s+1) , t = s, . . . , b,

−
√

b−s+1
n(e−b) , t = b + 1, . . . , e,

0, otherwise,

,

for n = e− s + 1. With fk = (

f1,k, . . . , fT ,k
)

and for [s, e]
being any interval that contains only one true change-point,
namely r j , allow us for ease of presentation to introduce the
notation

Ab
s,e(k, r j ) :=

〈

ψ b
s,e

〈

fk,ψ b
s,e

〉 − ψ
r j
s,e

〈

fk,ψ
r j
s,e

〉

, ε
〉

∥
∥
∥ψ b

s,e
〈

fk,ψ b
s,e

〉 − ψ
r j
s,e

〈

fk, ψ
r j
s,e

〉∥
∥
∥
2

. (A3)

In (A3) above, k ∈ {1, . . . , d}, while ‖ · ‖2 is the Euclidean
norm. Due to εt,k, t = 1, . . . , T following the standard nor-
mal distribution for all k ∈ {1, . . . , d} (with the univariate
error terms being independent over time, but possibly spa-
tially dependent), then straightforward calculations lead to

Ab
s,e(k, r j ) ∼ N (0, 1),∀k ∈ {1, . . . , d} . (A4)

For

BT =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

max
j=1,...,N
k=1,...,d

max
r j−1<s≤r j
r j<e≤r j+1

s≤b<e

∣
∣
∣Abs,e(k, r j )

∣
∣
∣ ≤

√

8 log

(

Td
1
4

)

⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎭

, (A5)

we will show that P (BT ) ≥ 1 − 1/(12
√

πT ). Using (A4)
and the Bonferroni inequality, then similar steps as in (A2)
yield

P
(

Bc
T

) ≤ 1

12
√

πT
. (A6)

From (A2) and (A6) in STEPS 1 and 2, respectively, we
conclude that P

(

A∗
T ∩ BT

) ≥ 1 − 1
6
√

πT
.

STEP 3: This is the main part of our proof, where we explain
in detail how to get the results in (7) and (8). For ease of
understanding, we split this step into two smaller parts. From
now on, we assume that A∗

T (and therefore also AT ) and BT
both hold. The constants we use are

C1 = √

C3 + √
8, C2 = 1√

6
− 2

√
2

C
, C3 = 2(2

√
2 + 4)2,

where C is as in condition (A1).
STEP 3.1: In this step, we will show that there exists an
interval where each change-point is isolated and detected.
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For ease of presentation, we take λT ≤ δT /3; for more infor-
mation on the general case of λT ≤ δT /m, for anm > 1, see
Remark 1 in the online supplementary material of Anasta-
siou and Fryzlewicz (2022). Allow us now ∀ j ∈ {1, . . . , N },
to define the intervals

I Rj =
[

r j + δT

3
, r j + 2

δT

3

)

I Lj =
(

r j − 2
δT

3
, r j − δT

3

]

. (A7)

It is apparent that in order for I Rj and I Lj to have at least
one point, then we actually implicitly require that δT > 3,
which is the case for sufficiently large T . Since the length of
the intervals in (A7) is equal to δT /3 and λT ≤ δT /3, then
MID ensures that for K = �T /λT � and k,m ∈ {1, . . . , K },
there exists at least one crk = kλT and at least one clm = T −
mλT +1 that are in I Rj and I Lj , respectively, ∀ j = 1, . . . , N .

At the beginning of our algorithm, s = 1, e = T (see,
for example, Fig. 2) and depending on whether r1 ≤ T − rN
then r1 or rN will get isolated in a right- or left-expanding
interval, respectively. W.l.o.g., assume that r1 ≤ T − rN
and, as already mentioned, our algorithm naturally ensures
that ∃k ∈ {1, . . . , K } such that crk ∈ I R1 . We highlight
that there is no other change-point in [1, crk] apart from
r1. With Cb

s,e and Db
s,e as in (A1), we will show that for

b̃ = argmax1≤t<crk
Ct
1,crk

, then Cb̃
1,crk

> ζT ,d . Using (A1), we

have that

Cb̃
1,crk

≥ C
r1
1,crk

≥ D
r1
1,crk

−
√

8 log

(

Td
1
4

)

= L

(∣
∣
∣
∣
∣

√

r1(c
r
k − r1)

crk

(

fr1 − fr2

)
∣
∣
∣
∣
∣

)

−
√

8 log

(

Td
1
4

)

=
√

r1(c
r
k − r1)

crk
L(�1) −

√

8 log

(

Td
1
4

)

≥

√
√
√
√min

{

crk − r1, r1
}

2
L(�1) −

√

8 log

(

Td
1
4

)

, (A8)

with� j , j = 1, 2, . . . , N defined in (6). For δT as in (6), we
notice that r1 ≥ δT . Furthermore, since crk ∈ I R1 as in (A7),
then crk − r1 ≥ δT /3, meaning that min

{

crk − r1, r1
} ≥ δT

3 .
Therefore, using assumption (A1),

Cb̃
1,crk

≥
√

δT
6

L(�1) −
√

8 log

(

Td
1
4

)

≥
√

δT
6

f T −
√

8 log

(

Td
1
4

)

=
⎛

⎝
1√
6

−
√

8 log
(

Td1/4
)

√
δT f T

⎞

⎠
√

δT f T

≥
⎛

⎝
1√
6

−
√

8 log
(

Td1/4
)

C
√

log
(

Td1/4
)

⎞

⎠
√

δT f T

=
(

1√
6

− 2
√
2

C

)

√

δT f T = C2
√

δT f T > ζT ,d . (A9)

Therefore, there will be an interval of the form [1, crk],
with crk > r1, such that [1, crk] contains only r1 and

max1≤b<crk

{

Cb
1,crk

}

> ζT ,d .

STEP 3.2: Let us, for k∗ ∈ {1, . . . , K }, to denote by
crk∗ ≤ crk the first right-expanding point where isolation
and detection of r1 as in STEP 3.1 occurs, and let b1 =
argmax1≤t<crk∗

{

Ct
1,crk∗

}

with
{

Cb1
1,crk∗

}

> ζT ,d . In STEP 3.2,

wewill show that the estimated change-point iswithin a close
neighbourhoodof the true change-point location.We split our
proof into two scenarios, depending on the mean-dominant
norm used.

Scenario 1, L(·) = L∞(·): For ease of presentation,

allow us to denote by q1 := argmax j=1,...,d

∣
∣
∣X̃

b1, j
1,crk∗

∣
∣
∣; this

is the univariate component data sequence where the con-
trast function value got maximised at location b1. We will
find γT > 0 such that for any b∗ ∈ {

1, . . . , crk∗ − 1
}

with

|b∗ − r1|
(

�
q1
1

)2
> γT , it holds that

(

X̃r1,q1
1,crk∗

)2
>

(

X̃b∗,q1
1,crk∗

)2
. (A10)

Proving (A10) and using the definition of b1 we can conclude
that |b1 − r1|

(

�
q1
1

)2 ≤ γT . Now, since in our model, Xt, j =
ft, j + εt, j , then (A10) can be expressed as

(

f̃
r1,q1
1,cr

k∗

)2
−

(

f̃
b∗,q1
1,cr

k∗

)2

>

(

ε̃
b∗,q1
1,cr

k∗

)2
−

(

ε̃
r1,q1
1,cr

k∗

)2

+ 2

〈

ψb∗
1,cr

k∗
〈 fq1 ,ψb∗

1,cr
k∗

〉 − ψ
r1
1,cr

k∗
〈 fq1 ,ψ

r1
1,cr

k∗
〉, εq1

〉

. (A11)

W.l.o.g. assume that b∗ ≥ r1 and a similar approach as
below holds when b∗ < r1. Using Lemma 4 in the online
supplementary material of Baranowski et al. (2019), gives
for the left-hand side of the inequality in (A11) that

(

f̃ r1,q11,crk∗

)2 −
(

f̃ b
∗,q1

1,crk∗

)2 = |b∗ − r1| r1
|b∗ − r1| + r1

(

�
q1
1

)2 := �.

(A12)

For the terms on the right-hand side of (A11), since we are
working under A∗

T as in (A1), we obtain that

(

ε̃
b∗,q1
1,cr

k∗

)2
−

(

ε̃
r1,q1
1,cr

k∗

)2
≤

(

max
s≤b<e

{

max
1≤ j≤d

∣
∣
∣ε̃
b, j
s,e

∣
∣
∣

})2

−
(

ε̃
r1,q1
1,cr

k∗

)2

≤
(

max
s≤b<e

{

max
1≤ j≤d

∣
∣
∣ε̃
b, j
s,e

∣
∣
∣

})2

≤ 8 log

(

Td
1
4

)

,
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while from (A5) and Lemma 4 from the online supplemen-
tary material of Baranowski et al. (2019),

2
〈

ψ b∗
1,crk∗

〈 fq1 ,ψ b∗
1,crk∗

〉 − ψ
r1
1,crk∗

〈 fq1,ψ r1
1,crk∗

〉, εq1
〉

≤ 2‖ψ b∗
1,crk∗

< fq1,ψ
b∗
1,crk∗

> −ψ
r1
1,crk∗

< fq1,ψ
r1
1,crk∗

> ‖2

×
√

8 log
(

Td
1
4

)

= 2

√

8� log
(

Td
1
4

)

.

Therefore (A11) is satisfied if the stronger inequality � >

8 log
(

Td1/4
) + 2

√

8� log
(

Td1/4
)

is satisfied, which has
solution

� > (2
√
2 + 4)2 log

(

Td
1
4

)

.

From (A12) and since

|b∗ − r1| r1
|b∗ − r1| + r1

≥ 1

2
min

{∣
∣b∗ − r1

∣
∣ , r1

}

,

we deduce that (A10) is implied by

min
{∣
∣b∗ − r1

∣
∣ , r1

}

>
2(2

√
2 + 4)2 log

(

Td
1
4

)

(

�
q1
1

)2

=
C3 log

(

Td
1
4

)

(

�
q1
1

)2 . (A13)

However,

min
{

r1, c
r
k∗ − r1

}

> C3

log
(

Td
1
4

)

(

�
q1
1

)2 (A14)

and this is because if we assume that min
{

r1, crk∗ − r1
} ≤

C3 log
(

Td
1
4

)

/
(

�
q1
1

)2
, then

Cb1
1,crk∗

=
∣
∣
∣X̃

b1,q1
1,crk∗

∣
∣
∣ =

∣
∣
∣X̃

b1,q1
1,crk∗

− f̃ b1,q11,crk∗
+ f̃ b1,q11,crk∗

∣
∣
∣

≤
√

8 log
(

Td
1
4

)

+
∣
∣
∣ f̃

b1,q1
1,crk∗

∣
∣
∣ ≤

√

8 log
(

Td
1
4

)

+
∣
∣
∣ f̃

r1,q1
1,crk∗

∣
∣
∣

=
√

8 log
(

Td
1
4

)

+
√

r1(crk∗ − r1)

crk∗
�

q1
1

≤
√

8 log
(

Td
1
4

)

+
√

min
{

crk∗ − r1, r1
}

�
q1
1

≤
(√

C3 + √
8
)

√

log
(

Td
1
4

)

= C1

√

log
(

Td
1
4

)

≤ ζT ,d .

This comes to a contradiction to Cb1
1,crk∗

> ζT ,d , which has

already been proven in (A9). Therefore, (A14) holds and
(A13) is restricted to |b∗ − r1|

(

�
q1
1

)2
> C3 log T , which

implies (A10). Therefore, necessarily

|b1 − r1|
(

�
q1
1

)2 ≤ C3 log
(

Td
1
4

)

. (A15)

Scenario 2, L(·) = L2(·): We will find γT > 0 such that for
any b∗ ∈ {

1, . . . , crk∗ − 1
}

with |b∗ − r1| L2
2(�1) > γT , it

holds that

L2
2

(

X̃ r1
1,crk∗

)

> L2
2

(

X̃ b∗
1,crk∗

)

. (A16)

Proving (A16) and using the definition of b1 we can conclude
that |b1 − r1|L2

2(�1) ≤ γT . Now, since in our model, Xt =
ft + εt , then (A16) can be expressed as

L22

(

f̃
r1
1,cr

k∗

)

− L22

(

f̃ b
∗

1,cr
k∗

)

> L22

(

ε̃b
∗

1,cr
k∗

)

− L22

(

ε̃
r1
1,cr

k∗

)

+ 2

d

d
∑

j=1

〈

ψb∗
1,cr

k∗
〈 f j ,ψb∗

1,cr
k∗

〉 − ψ
r1
1,cr

k∗
〈 f j ,ψ r1

1,cr
k∗

〉, ε j

〉

. (A17)

As in Scenario 1 earlier, w.l.o.g. assume that b∗ ≥ r1 and
a similar approach as below holds when b∗ < r1. Using
Lemma 4 in the online supplementary material of Bara-
nowski et al. (2019), gives for the left-hand side of the
inequality in (A17) that

L2
2

(

f̃ r11,crk∗

)

− L2
2

(

f̃ b
∗

1,crk∗

)

= |b∗ − r1| r1
|b∗ − r1| + r1

L2
2(�1)

:= �. (A18)

For the terms on the right-hand side of (A17), since we are
working under A∗

T as in (A1), we obtain that

L22

(

ε̃b
∗

1,cr
k∗

)

− L22

(

ε̃
r1
1,cr

k∗

)

≤ max
s≤b<e

{

L22

(

ε̃b
1,cr

k∗

)}

= max
s≤b<e

{

L22

(

X̃ b
1,cr

k∗
− f̃ b

1,cr
k∗

)}

≤ 8 log

(

Td
1
4

)

,

while from (A5) and Lemma 4 from the online supplemen-
tary material of Baranowski et al. (2019),

2

d

d
∑

j=1

〈

ψ b∗
1,crk∗

〈 f j ,ψ b∗
1,crk∗

〉 − ψ
r1
1,crk∗

〈 f j ,ψ r1
1,crk∗

〉, ε j

〉

≤ 2

d

d
∑

j=1

‖ψ b∗
1,crk∗

< f j ,ψ b∗
1,crk∗

>−ψ
r1
1,crk∗

< f j ,ψ
r1
1,crk∗

>‖2
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×
√

8 log
(

Td
1
4

)

= 2

d

√

8 log
(

Td
1
4

) d
∑

j=1

√

( f̃ r1, j1,crk∗
)2 − ( f̃ b

∗, j
1,crk∗

)2

= 2

d

√

8 log
(

Td
1
4

) d
∑

j=1

√

|b∗ − r1|r1
|b∗ − r1| + r1

(�
j
1)

2

= 2

d

√

8 log
(

Td
1
4

)
√

|b∗ − r1|r1
|b∗ − r1| + r1

d
∑

j=1

�
j
1

≤ 2

√

8 log
(

Td
1
4

)
√

|b∗ − r1|r1
|b∗ − r1| + r1

L2(�1)

= 2

√

8� log
(

Td
1
4

)

,

where for the last inequality, we used the mean-dominance
norm property as given in p.190 of Carlstein (1988). There-
fore (A17) is satisfied if the stronger inequality � >

8 log
(

Td1/4
) + 2

√

8� log
(

Td1/4
)

is satisfied, which has
solution

� > (2
√
2 + 4)2 log

(

Td
1
4

)

.

From (A18) and since

|b∗ − r1| r1
|b∗ − r1| + r1

≥ 1

2
min

{∣
∣b∗ − r1

∣
∣ , r1

}

,

we deduce that (A16) is implied by

min
{∣
∣b∗ − r1

∣
∣ , r1

}

>

2(2
√
2 + 4)2 log

(

Td
1
4

)

L22(�1)

=
C3 log

(

Td
1
4

)

L22(�1)
. (A19)

However,

min
{

r1, c
r
k∗ − r1

}

> C3

log
(

Td
1
4

)

L2
2(�1)

(A20)

and this is because if we assume that min
{

r1, crk∗ − r1
} ≤

C3 log
(

Td
1
4

)

/L2
2(�1), then

Cb1
1,crk∗

= L2(|X̃ b1
1,crk∗

|) = L2(|X̃ b1
1,crk∗

− f̃ b11,crk∗
+ f̃ b11,crk∗

|)

≤
√

8 log
(

Td
1
4

)

+ L2(| f̃ b11,crk∗
|)

≤
√

8 log
(

Td
1
4

)

+ L2(| f̃ r11,crk∗ |)

=
√

8 log
(

Td
1
4

)

+
√

r1(crk∗ − r1)

crk∗
L2(�1)

≤
√

8 log
(

Td
1
4

)

+
√

min
{

crk∗ − r1, r1
}

L2(�1)

≤
(√

C3 + √
8
)

√

log
(

Td
1
4

)

= C1

√

log
(

Td
1
4

)

≤ ζT ,d .

This comes to a contradiction to Cb1
1,crk∗

> ζT ,d , which has

already been proven in (A9). Therefore, (A20) holds and
(A19) is restricted to |b∗ − r1| L2

2(�1) > C3 log T , which
implies (A16). Therefore, necessarily

|b1 − r1| L2
2(�1) ≤ C3 log

(

Td
1
4

)

. (A21)

So far, for λT ≤ δT /3, we have proven in STEPS 3.1 and 3.2
that working under the assumption that A∗

T (which implies
that AT also holds) and BT hold, there will be an interval
[1, crk∗ ], with Cb1

1,crk∗
> ζT ,d , where b1 = argmax

1≤t<crk∗
Ct
1,crk∗

is an

estimation of r1 that satisfies (A15) for L(·) = L inf(·) and
(A21) for L(·) = L2(·).
STEP 3.3: After detecting the first change-point, MID fol-
lows the same process as in STEPS 3.1 and 3.2, but now in
the set [crk∗ , T ], which contains the change-points r2, . . . , rN .
We do not check for possible change-points the interval
[b1 + 1, crk∗). However, this does not create any issues
because:

M.1 There is no change-point in [b1 + 1, crk∗ ), apart from maybe the
already detected r1;

M.2 crk∗ is at a location which allows for detection of r2.

For M.1: We will split the explanation into two cases with
respect to the location of b1.
Case 1: b1 < r1 < crk∗ . With q1 as in Scenario 1 of STEP
3.2, we denote by

α1 :=
{

�
q1
1 , when L(·) = L∞(·)

L2(�1), when L(·) = L2(·)
,

using (A15) or (A21) (depending on the mean-dominant
norm under consideration) with

δT > 3C3

log
(

Td
1
4

)

α2 , (A22)

then since crk ∈ I R1 , we have that

crk∗ − b1 ≤ crk − b1 = crk − r1 + r1 − b1

< 2
δT

3
+ r1 − b1
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≤ 2
δT

3
+

C3 log
(

Td
1
4

)

α2 < δT .

Since r2 − r1 ≥ δT and r1 is already in [b1 + 1, crk∗), then
there is no other change-point in [b1 + 1, crk∗) apart from r1.
Case 2: r1 ≤ b1 < crk∗ . By construction crk∗ − r1 < 2δT /3,
whichmeans that apart from r1 there is no other change-point
in [r1, crk∗). With r1 ≤ b1, then [b1 + 1, crk∗) does not have
any change-point.

Cases 1 and 2 above show that no matter the location
of b1, there is no change-point in [b1 + 1, crk∗) other than
possibly the previously detected r1. Similarly to the approach
in STEPS 3.1 and 3.2, our method applied now in [s, e] =
[crk∗ , T ], will first isolate, and then detect, r2 or rN depending
on whether r2 − crk∗ is smaller or larger than T − rN . If
T − rN < r2 − crk∗ then rN will get isolated first in a left-
expanding interval and the procedure to show its detection is
exactly the same as for the detection of r1 in STEPS 3.1 and
3.2. Therefore, for the sake of showing M.2 let us assume
that r2 − crk∗ ≤ T − rN .
For M.2: By construction, there exists a right expanding
point crk2 ∈ I R2 , with I Rj defined in (A7). We will show that
r2 gets detected in [crk∗ , crk∗

2
], for k∗

2 ≤ k2 and its detec-

tion is b2 = argmaxcrk∗≤t<cr
k∗2
Ct
crk∗ ,cr

k∗2
, which, for q2 :=

argmax j=1,2,...,d

∣
∣
∣
∣
X̃b2, j
crk∗ ,cr

k∗2

∣
∣
∣
∣
, satisfies

C3 log
(

Td1/4
)

≥
{

|b2 − r2|
(

�
q2
2

)2
, when L(·) = L∞(·)

|b2 − r2| L2
2(�2), when L(·) = L2(·)

.

Following similar steps as in (A9), we have that

Cb2
crk∗ ,cr

k∗2
> ζT ,d .

Now, with

α2 :=
{

�
q2
2 , when L(·) = L∞(·)

L2(�2), when L(·) = L2(·)
,

it is straightforward to show, following the same process
as in STEPS 3.1 and 3.2 of the proof, that |b2 − r2| α2

2 ≤
C3 log

(

Td1/4
)

. Having detected r2, then our algorithm will
proceed in the interval [s, e] = [crk∗

2
, T ] and all the change-

points will get detected one by one since STEPS 3.1−3.3will
be applicable as long as there are undetected change-points
in [s, e].

Denoting by r̂ j the estimation of r j as we did in the
statement of the theorem and for [s∗, e∗] being the inter-
val where the isolation and detection of r j occurs (in the way
that we explained in STEPS 3.1−3.3) allow us to denote by

q j := argmaxm=1,2,...,d

∣
∣
∣X̃

r̂ j ,m
s∗,e∗

∣
∣
∣. Then, STEPS 3.1−3.3 have

shown that MID will detect all the change-points one by one
and, ∀ j ∈ {1, . . . , N },

C3 log
(

Td1/4
)

≥
⎧

⎨

⎩

∣
∣r̂ j − r j

∣
∣

(

�
q j
j

)2
, when L(·) = L∞(·)

∣
∣r̂ j − r j

∣
∣ L2

2(� j ), when L(·) = L2(·)
. (A23)

STEP4:The arguments given inSTEPS1-3hold in A∗
T ∩BT .

At the beginning of the algorithm, s = 1, e = T and for N ≥
1, there exist k1 ∈ {1, . . . , K } such that sk1 = s, ek1 ∈ I R1
and k2 ∈ {1, . . . , K } such that sk2 ∈ I LN , ek2 = e. As in our
previous steps, w.l.o.g. assume that r1 ≤ T − rN and r1 gets
isolated and detected first in an interval [s, crk∗ ], where crk∗
is less than or equal to ek1 . Then, r̂1 = argmaxs≤t<crk∗

Ct
s,crk∗

is the estimated location for r1, which satisfies (A23). After
this, the method continues in [crk∗ , T ] and keeps detecting
all the change-points as explained in STEPS 3.1−3.3. There
will not be any double detection issues because naturally, at
each step of the algorithm, the new interval [s, e] does not
include any previously detected change-points. Once all the
change-points have been detected one by one, then [s, e]will
contain no other change-points. Our method will of course
keep checking for possible change-points in right- and left-
expanding intervals denoted by [s∗, e∗]. However, MID will
not detect anything in [s∗, e∗] because ∀b ∈ [s∗, e∗),

Cb
s∗,e∗ ≤ Db

s∗,e∗ +
√

8 log
(

Td
1
4

)

=
√

8 log
(

Td
1
4

)

< C1

√

log
(

Td
1
4

)

≤ ζT ,d .

After not detecting anything in all intervals of the above form,
then the algorithm concludes that there are not any more
change-points to be detected and stops. ��
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