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Abstract
Sequential Monte Carlo squared (SMC2) methods can be used for parameter inference of intractable likelihood state-space
models. Thesemethods replace the likelihoodwith anunbiasedparticle filter estimate, similarly to particleMarkov chainMonte
Carlo (MCMC). As with particle MCMC, the efficiency of SMC2 greatly depends on the variance of the likelihood estimator,
and therefore on the number of state particles usedwithin the particle filter.We introduce novelmethods to adaptively select the
number of state particleswithin SMC2 using the expected squared jumping distance to trigger the adaptation, andmodifying the
exchange importance samplingmethod of Chopin et al. (J R Stat Soc: Ser B (StatMethod) 75(3):397–426, 2012) to replace the
current set of state particles with the new set of state particles. The resulting algorithm is fully automatic, and can significantly
improve current methods. Code for our methods is available at https://github.com/imkebotha/adaptive-exact-approximate-
smc.

Keywords Bayesian inference · State-space models · SMC · Pseudo-marginal · Particle MCMC

1 Introduction

We are interested in exact Bayesian parameter inference for
state-space models (SSMs) where the likelihood function of
the model parameters is intractable. SSMs are ubiquitous
in engineering, econometrics and the natural sciences; see
Cappé et al. (2005) and references therein for an overview.
They are used when the process of interest is observed indi-
rectly over time or space, i.e. they consist of a hidden or latent
process {Xt }t≥1 and an observed process {Yt }t≥1.

Particle Markov chain Monte Carlo (MCMC; Andrieu
et al. 2010;Andrieu andRoberts 2009)methods such as parti-
clemarginalMetropolis-Hastings (PMMH) or particle Gibbs
can be used for exact parameter inference of intractable like-
lihood SSMs. PMMH uses a particle filter estimator of the
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likelihoodwithin an otherwise standardMetropolis-Hastings
algorithm. Similarly, particle Gibbs uses a conditional parti-
cle filter to draw the latent states from their full conditional
distribution, then updates the model parameters conditional
on the latent states. Both PMMHand particleGibbs are simu-
lation consistent under mild conditions (Andrieu et al. 2010).

Chopin et al. (2012) and Duan and Fulop (2014) apply a
similar approach to sequentialMonte Carlo (SMC) samplers.
SMC methods for static models (Chopin 2002; Del Moral
et al. 2006) recursively sample through a sequence of distri-
butions using a combination of reweighting, resampling and
mutation steps. In the Bayesian setting, this sequence often
starts at the prior and ends at the posterior distribution. For
intractable likelihood SSMs, Chopin et al. (2012) and Duan
and Fulop (2014) replace the likelihood within the sequence
of distributions being traversed with its unbiased estimator.
Practically, this means that each parameter particle is aug-
mented with Nx state particles. Due to this nesting of SMC
algorithms and following Chopin et al. (2012), we refer to
these methods as SMC2. As with particle MCMC, for any
fixed number of state particles (Nx ), SMC2 targets the exact
posterior distribution (Duan and Fulop 2014).

We define an ‘exact’ method as one that converges to
the true posterior distribution as the number of parame-
ter samples (Nθ ) goes to infinity (with finite Nx ), with no
extra assumptions above those required for standard MCMC
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or SMC. While similar methods to SMC2 are available
for Bayesian parameter inference of intractable likelihood
SSMs, e.g. nested particle filters (Crisan and Míguez 2017,
2018) and ensemble MCMC (Drovandi et al. 2022), they are
not exact in general and so are not considered in this paper.
In particular, nested particle filters target the exact posterior
as Nθ → ∞ and Nx → ∞ subject to some assumptions
about the optimal filter and the parameter space. Similarly,
ensemble MCMC is guaranteed to be exact only when the
model is linear Gaussian.

The sampling efficiency of particle MCMC and SMC2

greatly depends on the number of state particles used within
the particle filter. In particle MCMC, Nx is generally tuned
manually, which can be time intensive. A significant advan-
tage of SMC2 over particle MCMC is that Nx can be adapted
automatically. Strategies to do this are proposed by Chopin
et al. (2012, 2015) and Duan and Fulop (2014); however,
these methods automate the adaptation of Nx at the expense
of other model-specific tuning parameters, which must then
be tunedmanually. Furthermore, the value of Nx can be diffi-
cult to choose in practice, and has a significant effect on both
the Monte Carlo error of the SMC approximation to the tar-
get distribution and the computation time. Current methods
require a moderate starting value of Nx to avoid poor values
in subsequent iterations, i.e. values that are too low and neg-
atively impact the accuracy of the samples, or unnecessarily
high values that increase the computation time.

Adaptation of the number of state particles is also studied
outside the SMC2 context. Bhadra and Ionides (2016) pro-
pose an optimal allocation method, which uses a meta-model
to estimate the variance of the incremental log-likelihood
estimators. This method allocates the number of particles to
be used for each timepoint in the particle filter. However,
it still requires the total number of state particles (over all
timepoints) to be known. Lee and Whiteley (2018) run suc-
cessive particle filters, doubling the number of state particles
each time, until the variance of the log-likelihood estimator
is below some threshold. In the SMC2 context, this approach
can be very expensive computationally, as it needs to be
applied to each parameter particle. Other methods adapt the
number of state particles within the particle filter itself (Fox
2003; Soto 2005; Elvira et al. 2017, 2021), leading to a ran-
dom number of state particles whenever the particle filter
is run. This is problematic in the context of particle MCMC
(and hence in themutation step of SMC2) as the dimension of
the augmented parameter space changes whenever the likeli-
hood is estimated.A key point of particleMCMC is that it can
be reformulated as standard MCMC on an augmented space
(Andrieu and Roberts 2009; Andrieu et al. 2010). To sample
from the posterior on a space of varying dimension requires
methods such as reversible jump MCMC (Green 1995).

Our article introduces a novel and principled strategy
to automatically tune Nx , while aiming to keep an opti-

mal balance between statistical and computational efficiency.
Compared to current methods, our approach has less tun-
ing parameters that require manual calibration. Notably, it
also allows Nx to decrease, which makes our approach more
robust to variability in the algorithm and the adaptation step.
We find that using the expected squared jumping distance
of the mutation step to adapt the number of state particles
generally gives the most efficient and reliable results. To fur-
ther improve the overall efficiency of the adaptation, we also
modify the exchange importance samplingmethod ofChopin
et al. (2012) to update the set of state particles once Nx is
adapted. This modified version introduces no extra variabil-
ity in the parameter particle weights, and outperforms the
current methods.

The rest of the paper is organized as follows. Section2
gives the necessary background on state-space models and
SMCmethods, including particle filters, SMC for staticmod-
els and SMC2. Section3 describes the current methods for
adapting the number of state particles in SMC2. Section4
describes our novel tuning methodology. Section5 shows the
performance of our methods on a Brownian motion model, a
stochastic volatility model, a noisy theta-logistic model and
a noisy Ricker model. Section6 concludes.

2 Background

This section contains the necessary background information
for understanding the novel methods discussed in Sect. 4.
It covers content related to exact Bayesian inference for
state-space models, particularly focussed on models with
intractable transition densities.

2.1 State-spacemodels

Consider a state-space model (SSM) with parameters θ ∈ �,
a hidden or latent process {Xt }t≥1 and an observed pro-
cess {Yt }t≥1. A key assumption of SSMs is that the process
{(Xt ,Yt ), t ≥ 1} is Markov, and we further assume that the
full conditional densities of Yt = yt and Xt = xt are

p(yt | xt , xt−1, yt−1, θ) = g(yt | xt , θ),

and

p(xt | xt−1, yt−1, θ) = f (xt | xt−1, θ),

where g(yt | xt , θ) and f (xt | xt−1, θ) are the observation
density and transition density respectively. The density of the
latent states at time t = 1 is μ(x1 | θ) and the prior density
of the parameters is p(θ).

Define zi : j := {zi , zi+1, . . . , z j } for j ≥ i . The distribu-
tion of θ conditional on the observations up to time t ≤ T

123



Statistics and Computing (2023) 33 :82 Page 3 of 22 82

is

p(θ | y1:t ) = p(θ)

p( y1:t )

∫
x1:t

p(x1:t , y1:t | θ)dx1:t , (1)

where

p(x1:t , y1:t | θ) = μ(x1 | θ)

t∏
i=2

f (xi | xi−1, θ)

t∏
i=1

g(yi | xi , θ).

(2)

The integral in (1) gives the likelihood function p( y1:t | θ).
This integral is often analytically intractable or prohibitively
expensive to compute, whichmeans that the likelihood is also
intractable. If the value of θ is fixed, a particle filter targeting
p(x1:t | y1:t , θ) gives an unbiased estimate of the likelihood
as a by-product, as described in Sect. 2.2.1. Similarly, a con-
ditional particle filter (Andrieu et al. 2010), i.e. a particle
filter that is conditional on a single state trajectory xk1:t , can
be used to unbiasedly simulate latent state trajectories from
p(· | xk1:t , y1:t , θ). Particle filters are SMC methods applied
to dynamic models.

2.2 Sequential Monte Carlo

SMC methods recursively sample from a sequence of distri-
butions, πd(zd) ∝ γd(zd), d = 0, . . . , D, where π0(z0) can
generally be sampled from directly and πD(zD) is the target
distribution (Del Moral et al. 2006).

These distributions are traversed using a combination of
resample, mutation and reweight steps. Initially, Nz samples
are drawn from π0(z0) and given equal weights {zn0,Wn

0 =
1/Nz}Nz

n=1. For each subsequent distribution, the particles are
resampled according to their weights, thus removing par-
ticles with negligible weights and duplicating high-weight
particles. The resampled particles are then mutated using
R applications of the mutation kernel K (znd−1, z

n
d), and

reweighted as

wn
d = N−1

z · γd(znd)L(znd , z
n
d−1)

γd−1(znd−1)K (znd−1, z
n
d)

, Wn
d = wn

d∑Nz
i=1 wi

d

,

where L(znd , z
n
d−1) is the artificial backward kernel of Del

Moral et al. (2006). Note that if the weights at iteration d
are independent of the mutated particles znd , the reweighting
step should be completed prior to the resample and mutation
steps. At each iteration d, theweighted particles {znd ,Wn

d }Nz
n=1

form an approximation ofπd(zd). SeeDelMoral et al. (2006)
for more details.

An advantage of SMC methods is that an unbiased esti-
mate of the normalizing constant of the target distribution
can be obtained as follows (Del Moral et al. 2006)

∫
γD(zD)dz ≈

D∏
d=0

Nz∑
n=1

wn
d . (3)

This feature is exploited in the SMC2 methods described in
Sect. 2.3.

2.2.1 Particle filters

SMC methods for dynamic models are known as particle
filters. For fixed θ , the sequence of filtering distributions for
d = 1, . . . , T , is

πd(zd) := p(x1:d | y1:d , θ)

= μ(x1 | θ)

p( y1:d | θ)

d∏
i=2

f (xi | xi−1, θ)

d∏
i=1

g(yi | xi , θ).

The bootstrap particle filter of Gordon et al. (1993) uses
the transition density as the mutation kernel K (xd−1, xd) =
f (xd | xd−1, θ), and selects L(xd , xd−1) = 1 as the back-
ward kernel. The weights are then given by

wm
d = N−1

x g(yd | xd , θ), Wm
d = wm

d∑Nx
i=1 wi

d

,

for m = 1, . . . , Nx . Algorithm 1 shows pseudo-code for the
bootstrap particle filter (Gordon et al. 1993).

Define x1:Nx
1:d := {x1:Nx

1 , . . . , x1:Nx
d }, where d = 1, . . . , T .

The likelihood estimate with Nx state particles and d obser-
vations is then

p̂Nx ( y1:d | θ , x1:Nx
1:d ) =

d∏
i=1

Nx∑
m=1

wm
i

=
d∏

i=1

(
1

Nx

Nx∑
m=1

g(yi | xmi , θ)

)
.

(4)

Let ψ(x1:Nx
1:d ) be the joint distribution of all the random vari-

ables drawn during the course of the particle filter (Andrieu
et al. 2010). The likelihood estimate in (4) is unbiased in the

sense that E

ψ(x1:Nx1:d )

(̂
pNx ( y1:d | θ , x1:Nx

1:d )
)

= p( y1:d | θ)

(Section 7.4.2 of Del Moral, 2004; see also Pitt et al. 2012).
The notation

p̂Nx ( y1:d | θ) = p̂Nx ( y1:d , x
1:Nx
1:d | θ)

= p̂Nx ( y1:d | θ , x1:Nx
1:d )ψ(x1:Nx

1:d )

= 1

Nx

Nx∑
m=1

p̂Nx ( y1:d | θ , xm1:d), xm1:d ∼ ψ(xm1:d),

is used interchangeably throughout the paper.
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Algorithm 1 The bootstrap particle filter of Gordon et al.
(1993). The index (m) means ‘for all m ∈ {1, . . . , Nx }’

Input: data y1:d , number of state particles Nx and the static param-
eters θ .
Output: likelihood estimate p̂Nx ( y1:d | θ), set of weighted state
particles {x1:Nx

1:d ,W1:Nx
1:d }

/* Initialise (t=1) */
1: Initialise x1:Nx

1 ∼ μ(· | θ) and calculate the initial weights

w
(m)
1 = N−1

x · g(y1 | x (m)
1 , θ), W (m)

1 = w
(m)
1∑Nx

i=1 wi
1

/* Initialise likelihood estimate */
2: Initialise the likelihood estimate p̂Nx ( y1 | θ) = ∑Nx

m=1 wm
1

3: for t = 2 to d do
/* Resample */

4: Resample Nx particles from x1:Nx
t−1 with probability W1:Nx

t−1

/* Simulate forward */
5: Simulate the particles forward, x (m)

t ∼ f (· | x (m)
t−1, θ)

/* Reweight */
6: Re-weight the particles from πt−1(·) to πt (·)

w
(m)
t = 1

Nx
· g(yt | x (m)

t , θ), W (m)
t = w

(m)
t∑Nx

i=1 wi
t

/* Update likelihood estimate */
7: Update the likelihood estimate p̂Nx ( y1:t | θ) = p̂Nx ( y1:t−1 |

θ) · ∑Nx
m=1 wm

t

8: end for

2.2.2 SMC for static models

For static models, where inference on θ is of interest, the
sequence of distributions traversed by the SMC algorithm is
πd(θd) ∝ γd(θd), d = 0, . . . , D, where π0(θ0) = p(θ) is
the prior and πD(θD) = p(θ | y1:T ) is the posterior distribu-
tion. Assuming that the likelihood function is tractable, there
are at least two general ways to construct this sequence,

1. likelihood tempering, which gives πd(θ) ∝ p( y1:T |
θ)gd p(θ) for d = 0, . . . , D, and where 0 = g0 ≤ · · · ≤
gD = 1, and

2. data annealing (Chopin 2002), which gives πd(θ) ∝
p( y1:d | θ)p(θ) for d = 0, . . . , T , where T is the number
of observations and D = T .

Typically, SMC for static models uses a mutation ker-
nel which ensures that the current target πd(θ) remains
invariant. A common choice is to use R applications of
an MCMC mutation kernel along with the backward ker-
nel L(θd , θd−1) = γd(θd−1)K (θd−1, θd)/γd(θd) (Chopin
2002; Del Moral et al. 2006). The weights then become

wn
d = N−1

θ · γd(θ
n
d−1)

γd−1(θ
n
d−1)

, Wn
d = wn

d∑Nθ

i=1 wi
d

. (5)

Since the weights are independent of the mutated particles
θd , the reweighting step is completed prior to the resample
and mutation steps.

2.3 SMC2

Standard SMC methods for static models cannot be applied
directly to state-space models if the parameters θ are
unknown except when the integral in (1) is analytically
tractable. When the likelihood is intractable, SMC2 replaces
it in the sequence of distributions being traversed with a par-
ticle filter estimator. Essentially, each parameter particle is
augmented with a set of weighted state particles.

Since the likelihood is replaced with a particle filter esti-
mator, the parameter particles in SMC2 are mutated using
R applications of a particle MCMC mutation kernel K (·, ·).
Section2.4 describes the particle marginal Metropolis-
Hastings (PMMH) algorithm. As with SMC for static mod-
els, the parameter particle weights are given by (5).

Two general ways to construct the sequence of targets
for SMC2 are the density tempered marginalised SMC algo-
rithmofDuan andFulop (2014) and the data annealing SMC2

method of Chopin et al. (2012), which we refer to as den-
sity tempering SMC2 (DT-SMC2) and data annealing SMC2

(DA-SMC2) respectively. These are described in Sects. 2.3.1
and 2.3.2.

Algorithm 2 shows pseudo-code which applies to both
DT-SMC2 and DA-SMC2. The main difference between the
two methods is how the sequence of targets is defined. Sec-
tions2.3.1 and 2.3.2 describe the sequence of targets and the
reweighting formulas for DT-SMC2 and DA-SMC2 respec-
tively. For conciseness, we denote the set of weighted state
particles associatedwith parameter particle n, n = 1, . . . , Nθ

at iteration d as

x̃1:Nx ,n
d :=

{
{x1:Nx ,n

1:T , S1:Nx ,n
d }, for DT-SMC2,

{x1:Nx ,n
1:d , S1:Nx ,n

d }, for DA-SMC2,

where S1:Nx ,n
d is the set of normalised state particle weights.

The nth parameter particle with its attached set of weighted
state particles is denoted as ϑn

d = {θnd , x̃1:Nx ,n
d }, n =

1, . . . , Nθ .

2.3.1 Density tempering SMC2

The sequence of distributions for DT-SMC2 is

πd(θ) ∝ p(θ)
[̂
pNx ( y1:T | θ , x1:Nx

1:T )
]gd

ψ(x1:Nx
1:T ),

0 = g0 ≤ · · · ≤ gD = 1,
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which gives the weights from (5) as

wn
d = N−1

θ ·
[̂
pNx ( y1:T | θnd−1, x

1:Nx
1:T )

]gd−gd−1
,

Wn
d = wn

d∑Nθ

i=1 wi
d

. (6)

Due to the tempering parameter gd , DT-SMC2 is only exact
at the first and final temperatures, i.e. p(θ)p( y1:T | θ)gd /∫
p(θ)p( y1:T | θ)gd dθ is a marginal distribution of πd(θ)

only at g1 = 0 and gD = 1.

2.3.2 Data annealing SMC2

For DA-SMC2, the sequence of distributions is

πd(θ) ∝ p(θ )̂pNx ( y1:d | θ , x1:Nx
1:d )ψ(x1:Nx

1:d ), D = T ,

and the weights from (5) are

wn
d = N−1

θ · p̂Nx

(
yd | y1:d−1, θ

n
d−1

)
, Wn

d = wn
d∑Nθ

i=1 wi
d

,

(7)

where p̂Nx

(
yd | y1:d−1, θ

n
d−1

)
is obtained from iteration d of

a particle filter (see (4) and Algorithm 1). Unlike DT-SMC2,
DA-SMC2 admits p

(
θ | y1:d

)
as a marginal distribution of

πd(θ) for all d = 0, . . . , D.

2.4 Particle MCMCmutations

The simplest mutation of the parameter particles in SMC2

is a sequence of Markov move steps using the PMMH algo-
rithm; seeGunawan et al. (2021) for alternatives. The PMMH
method is a standard Metropolis-Hastings algorithm where
the intractable likelihood is replaced by the particle filter esti-
mate in (4). Algorithm 3 shows a single PMMH iteration.

While a PMMH mutation leaves the current target invari-
ant, its acceptance rate is sensitive to the variance of the
likelihood estimator (Andrieu et al. 2010). In practice, this
means that if the variance is too high, then some particles
may not be mutated during the mutation step—even with a
large number of MCMC iterations.

In the context of particle MCMC samplers, Andrieu et al.
(2010) show that Nx must be chosen as O(T ) to achieve
reasonable acceptance rates, i.e. reasonable variance of the
likelihood estimator. Pitt et al. (2012), Doucet et al. (2015)
and Sherlock et al. (2015) recommend choosing Nx such that
the variance of the log-likelihood estimator is between 1 and
3 when evaluated at, e.g., the posterior mean. This generally
requires a (potentially time-consuming) tuning process for
Nx before running the algorithm.

Algorithm 2 The SMC2 Algorithm. The index (n) means
‘for all n ∈ {1, . . . , Nθ }’

Input: data y1:T , number of parameter particles Nθ , number of state
particles Nx , number of MCMC iterations R
Output: set of weighted particles {ϑ1:Nθ

D ,W1:Nθ

D }
/* Initialisation step (t=0) */

1: Initialise ϑ
1:Nθ

0 and set W (n)
0 = 1

Nθ

2: for d = 1 to D do
/* Reweight */

3: Re-weight the particles from πd−1(·) to πd (·) using (6) or (7).

/* Resample */
4: Resample Nθ particles from ϑ

1:Nθ

d with probability W1:Nθ

d

/* Mutate */
5: for r = 1 to R do
6: PMMH mutation ϑ

(n)
d ∼ K

(
ϑ

(n)
d , ·

)
(See Algorithm 3)

7: end for
8: end for

Algorithm 3 A single iteration of the particle marginal
Metropolis-Hastings algorithm.

Input: data y, proposal distribution q(·), current parameter value
θd , current likelihood estimate p̂Nx ( y | θd ). Note that y := y1:T
for DT-SMC2and y := y1:d for DA-SMC2. Optional: current set of
weighted state particles x̃1:Nx

d
Output: new parameter value θd , new likelihood estimate p̂Nx ( y |
θd ). Optional: new set of weighted state particles x̃1:Nx

d

1: Sample θ∗
d ∼ q(· | θd ),

2: Run Algorithm 1 to obtain p̂Nx ( y | θ∗
d ) and x̃1:Nx ,∗

d ,

3: Calculate acceptance probability

α(θd , θ
∗
d ) = min

(
1,

p̂Nx ( y | θ∗
d )p(θ

∗
d )

p̂Nx ( y | θd )p(θd )

q(θd | θ∗
d )

q(θ∗
d | θd )

)
. (8)

4: With probability α(θd , θ
∗
d ), set

θd = θ∗
d , p̂Nx ( y | θd ) = p̂Nx ( y | θ∗

d ), x̃1:Nx
d = x̃1:Nx ,∗

d ,

otherwise keep the current values of θd , p̂Nx ( y | θd ) and x̃1:Nx
d .

For SMC2, fewer particles may be required to achieve
reasonable acceptance rates in the early stages of the algo-
rithm. In DA-SMC2, Nx = O(t), where t = d, suggests
starting with a small Nx , and increasing it with each added
observation. Likewise, in DT-SMC2, a small gd will reduce
the impact of a highly variable log-likelihood estimator.
In addition, unlike particle MCMC methods, it is possible
to automatically adapt Nx within SMC2. The next section
describes the tuning strategies proposed by Chopin et al.
(2012, 2015) and Duan and Fulop (2014).
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3 Existingmethods to calibrate Nx within
SMC2

There are three main stages to adapting Nx : (1) triggering
the adaptation, (2) choosing the new number of particles N∗

x ,
and (3) replacing the current set of state particles x̃1:Nx ,1:Nθ

d

with the new set x̃
1:N∗

x ,1:Nθ

d . To simplify notation, we write

x̃1:Nx ,1:Nθ

d as x̃1:Nx
d .

Stage 1: Triggering the adaptation

It may be necessary to adapt Nx when the mutation step
no longer achieves sufficient particle diversity. Chopin et al.
(2012, 2015) and Duan and Fulop (2014) fix the number of
MCMC iterations (R) and change Nx whenever the accep-
tance rate of a singleMCMC iteration falls below some target
value. This approach has two main drawbacks. First, the
acceptance rate does not take the jumping distances of the
particles into account, and can be made artificially high by
making very local proposals. Second, both R and the target
acceptance rate must be tuned—even if the exact likelihood
is used, the acceptance rate may naturally be low, depend-
ing on the form of the posterior and the proposal function
used within the mutation kernel. Ideally, Nx and R should be
jointly adapted.

Stage 2: Choosing the new number of particles N∗
x

A new number of state particles (N∗
x ) is determined in

the second stage. Chopin et al. (2012) set N∗
x = 2 · Nx

(double), while Duan and Fulop (2014) set N∗
x = σ̂Nx

2 ·Nx

(rescale- var), where σ̂Nx
2 is the estimated variance of

the log-likelihood estimator using Nx state particles. The
variance is estimated from k independent estimates of the
log-likelihood (for the current SMC target) based on the sam-
ple mean of the parameter particles. This choice is motivated
by the results of Pitt et al. (2012), Doucet et al. (2015) and
Sherlock et al. (2015), who show that σ 2

Nx
∝ 1/Nx for any

number of state particles Nx . Setting σ 2
Nx

= α/Nx and rear-

ranging gives both α = σ 2
Nx

·Nx and Nx = α/σ 2
Nx
. Given Nx

and σ 2
Nx
, these expressions can be used to find a new num-

ber of state particles N∗
x such that σ 2

N∗
x

= 1, by noting that

N∗
x = α/σ 2

N∗
x

= α/1 = σ 2
Nx

· Nx .

We find that if the initial Nx is too small, then the double
scheme of Chopin et al. (2012) can take a significant num-
ber of iterations to set Nx to a reasonable value. It can also
increase Nx to an unnecessarily high value if the adaptation is
triggered when the number of state particles is already large.

While the rescale- var method of Duan and Fulop
(2014) is more principled, as it takes the variance of the
log-likelihood estimator into account, we find that it is also

sensitive to the initial number of particles. For a poorly cho-
sen initial Nx , the variance of the log-likelihood estimator
can be of order 102 or higher. In this case, scaling the cur-
rent number of particles by σ̂Nx

2 may give an extremely high
value for N∗

x .
Chopin et al. (2015) propose a thirdmethod; they set N∗

x =
τ/σ 2

Nx
, where τ is amodel-specific tuning parameter, andσ 2

Nx
is the variance of the log-likelihood estimator with Nx state
particles. This choice is motivated by the results fromDoucet
et al. (2012) (an earlier version of Doucet et al. (2015)); see
Chopin et al. (2015) for further details. Since the parameter
τ must be tuned manually, this approach is not included in
our numerical experiments in Sect. 5.

Stage 3: Replacing the state particle set

The final stage replaces the current set of state particles x̃1:Nx
d

by the new set x̃
1:N∗

x
d . Chopin et al. (2012) propose a reweight-

ing step for the parameter particles (reweight) using the
generalised importance sampling method of Del Moral et al.

(2006) to swap x̃1:Nx
d with x̃

1:N∗
x

d . The incremental weight
function for this step (for DA-SMC2) is

IW =
πd

(
θd , x

1:N∗
x

d | y1:d
)
Ld (x

1:N∗
x

d , x1:Nx
d )

πd

(
θd , x

1:Nx
d | y1:d

)
ψ(x

1:N∗
x

d )

= p(θd )̂pN∗
x
( y1:d | θd , x

1:N∗
x

d )ψ(x
1:N∗

x
d )Ld(x

1:N∗
x

d , x1:Nx
d )

p(θd )̂pNx ( y1:d | θd , x
1:Nx
d )ψ(x1:Nx

d )ψ(x
1:N∗

x
d )

= p̂N∗
x
( y1:d | θd , x

1:N∗
x

d )Ld(x
1:N∗

x
d , x1:Nx

d )

p̂Nx ( y1:d | θd , x
1:Nx
d )ψ(x1:Nx

d )
,

where Ld(x
1:N∗

x
d , x1:Nx

d ) is the backward kernel. They use the
following approximation to the optimal backward kernel (see
Proposition 1 of Del Moral et al. (2006))

Ld(x
1:N∗

x
d , x1:Nx

d ) = p̂Nx ( y1:d | θd , x
1:Nx
d )ψ(x1:Nx

d )

p( y1:d | θd)

≈ p̂Nx ( y1:d | θd , x
1:Nx
d )ψ(x1:Nx

d )

p̂Nx ( y1:d | θd , x
1:Nx
d )

= ψ(x1:Nx
d ), (9)

leading to

IWd = p̂N∗
x
( y1:d | θd , x

1:N∗
x

d )

p̂Nx ( y1:d | θd , x
1:Nx
d )

.
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For density tempering, this becomes

IWd =
(
p̂N∗

x
( y1:T | θd , x

1:N∗
x

d )

p̂Nx ( y1:T | θd , x
1:Nx
d )

)gd

.

The new parameter particle weights are then given by

wn
d = Wn

d−1 · IWn
d , Wn

d = wn
d∑Nθ

i=1 wi
d

.

While this method is relatively fast, it can significantly
increase the variance of the parameter particle weights (Duan
and Fulop 2014).

As an alternative to reweight, Chopin et al. (2012) pro-
pose a conditional particle filter (CPF) step to replace x̃1:Nx

d

with x̃
1:N∗

x
d . Here, the state particles and the likelihood esti-

mates are updated by running a particle filter conditional on
a single trajectory from the current set of state particles. The
incremental weight function of this step is 1, which means
that the parameter particle weights are left unchanged. The
drawbackof this approach is that all the state particlesmust be
stored, which can significantly increase theRAM required by
the algorithm. Chopin et al. (2015) propose two extensions of
the CPF approach which reduce the memory requirements of
the algorithm at the expense of increased computation time.
Their first proposal is to only store the state particles with
descendants at the final time-point, i.e. using a path storage
algorithm within the particle filter (Jacob et al. 2015). Their
second method is to store the random seed of the pseudo-
random number generator in such a way that the latent states
and their associated ancestral indices can be re-generated at
any point. Both variants still have a higher RAM requirement
and run time compared to the reweight method.

Duan and Fulop (2014) propose a reinitialisation scheme
to extend the particles (reinit). Whenever Nx is increased,
they fit a mixture model Q(·) informed by the current set of
particles, then reinitialise the SMC algorithm with N∗

x state
particles and Q(·) as the initial distribution. The modified
sequence of distributions for DT-SMC2 is

πd(θd , x
1:Nx
1:T | y1:T )

∝ [Q(θd)]1−gd [p(θd )̂pNx ( y1:T | θd , x
1:Nx
1:T )]gdψ(x1:Nx

1:T ),

0 = g0 ≤ · · · ≤ gD = 1.

The reinit method aims to minimize the variance of the
weights, but we find it can be very slow as the algorithm
may reinitialise numerous times before completion, each
time with a larger number of particles. This approach also
assumes that the distribution of the set of parameter particles
when reinit is triggered is more informative than the prior,
which is not necessarily the case if the adaptation is triggered
early.

4 Methods

This section describes our proposed approach for each of
the three stages involved in adapting the number of state
particles.

4.1 Triggering the adaptation

Instead of using the acceptance rate tomeasure particle diver-
sity, we use the expected squared jumping distance (ESJD),
which accounts for both the acceptance rate (the probability
that the particles will move) and the jumping distance (how
far they will move). See Pasarica and Gelman (2010), Fearn-
head and Taylor (2013), Salomone et al. (2018) and Bon et al.
(2021) for examples of this idea outside the SMC2 context.
The ESJD at iteration d is defined as

ESJDd = E

[∥∥θ∗
d − θd

∥∥2]

where
∥∥θ∗

d − θd
∥∥2 is the squared Mahalanobis distance

between the current value of the parameters (θd ) and the
proposed value (θ∗

d ). The ESJD of the r th MCMC iteration
of the mutation step at iteration d (steps 5–7 of Algorithm 2)
can be estimated as

̂ESJDd,r = 1

Nθ

Nθ∑
n=1

(θnd,r − θ
n,∗
d,r )

�
̂−1(θnd,r − θ
n,∗
d,r )α(θnd,r , θ

n,∗
d,r ),

where θnd,r is the nth parameter particle at the start of the
r th MCMC iteration, θn,∗

d,r is the proposed parameter particle
at the r th MCMC iteration, 
̂ is the covariance matrix of
the current parameter particle set, and α(θnd,r , θ

n,∗
d,r ) is the

acceptance probability in (8). The total estimated ESJD for
iteration d is ̂ESJDd = ∑R

r=1
̂ESJDd,r .

Algorithm 4 outlines how Nx and R are adapted. To sum-
marise, the adaptation is triggered in iteration d if ̂ESJDd−1 is
below some target value (stage 1). Once triggered, the num-
ber of particles is adapted (stage 2) and the particle set is
updated (stage 3). A single MCMC iteration is then run with
the new number of particles, and the results from this step are
used to determine how many MCMC iterations are required
to reach the target ESJD, i.e. R is given by dividing the target
ESJD by the estimated ESJD of the single MCMC itera-
tion and rounding up. Once the adaptation is complete, the
remaining MCMC iterations are completed. This approach
gives a general framework which can be implemented with
any of the stage 2 and stage 3 methods described in Sect. 3,
as well as our novel methods in Sects. 4.2 and 4.3.
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Algorithm 4 Novel method to adapt the number of state
particles and mutate the parameter particles for SMC2.

Input: the estimated ESJD from the previous iteration (̂ESJDd−1),
the target ESJD for each iteration (̂ESJDtarget) and the current set of

particles ϑ
1:Nθ

d

Output: new number of state particles Nx , estimated ESJD (̂ESJDd )
and mutated set of particles ϑ

1:Nθ

d

/* Trigger the adaptation */
1: adapt = ̂ESJDd−1 < ̂ESJDtarget

2: if adapt then
/* Adapt Nx */

3: Set new Nx and update the particle set using any combination
of the stage 2 and stage 3 methods described in
Sections 3, 4.2 and 4.3

4: end if

/* Initial mutation step with updated Nx (if applicable) */
5: PMMH mutation ϑ

1:Nθ

d,1 ∼ K (ϑ
1:Nθ

d , ·), calculate ̂ESJDd,1

6: if adapt then
/* Adapt R */

7: Set R =
⌈

̂ESJDtarget/ ̂ESJDd,1

⌉
8: end if

/* Remaining mutation steps */
9: for r = 2 to R do
10: PMMH mutation ϑ

1:Nθ

d,r ∼ K (ϑ
1:Nθ

d,r−1, ·)
11: end for

12: Set ϑ1:Nθ

d = ϑ
1:Nθ

d,R

4.2 Choosing the new number of particles N∗
x

To set the new number of state particles N∗
x , we build on

the rescale- varmethod of Duan and Fulop (2014), which
adapts the number of state particles as follows:

1. Calculate θ̄d , the mean of the current set of parameter
samples θ

1:Nθ

d .
2. Run the particle filter with Nx state particles k times to

get k estimates of the log-likelihood evaluated at θ̄d .
3. Calculate σ̂Nx

2, the sample variance of the k log-
likelihood estimates.

4. Set the new number of state particles to N∗
x = σ̂Nx

2 · Nx .

Recall from Sect. 3, that rescale- var is based on the rela-
tion σ 2

Nx
∝ 1/Nx (Pitt et al. 2012; Doucet et al. 2015;

Sherlock et al. 2015). In practice, we find that it changes
Nx too drastically from one iteration to the next for two
reasons. First, the sample variance may itself be highly vari-
able, especially when Nx is small. Second, the sample mean
of the parameter particles changes throughout the iterations,
meaning that the number of state particles needed to reach
a variance of 1 also changes throughout the iterations. The
sample mean may also be a poor value at which to estimate
the likelihood if the current target is multimodal or if the
current set of parameter particles offers a poor Monte Carlo

approximation to the current target distribution. The latter
may occur if the number of parameter particles Nθ is too
low.

Our first attempt to overcome some of these problems is to
scale the number of state particles by the standard deviation
instead of the variance, i.e. we set N∗

x = σ̂Nx ·Nx and call this
method rescale- std. A variance of 1 is still the overall tar-
get, however,moremoderate values of Nx are proposedwhen
σ̂Nx

2 �= 1. At any given iteration, the new target variance
is the current standard deviation, i.e. N∗

x is chosen such that

σ̂N∗
x

2 = σ̂Nx . Themain drawback of rescale- std is that the
variance at the final iteration may be too high, depending on
the initial value of Nx and the variability of the sample vari-
ance between iterations, i.e. it may approach a variance of 1
too slowly. In our numerical experiments in Sect. 5, however,
we find that the final variance of the rescale- std method
is generally between 1 and 1.22, which is fairly conservative.
In their numerical experiments, Doucet et al. (2015) found
that the optimal Nx generally gives a variance that is between
1.22 = 1.44 and 1.52 = 2.25.

Our second method (which we refer to as novel- var)
aims to improve upon rescale- var by estimating the vari-
ance at different values of Nx . To obtain our set of candidate
values, N x,1:M , we scale Nx by different fractional powers
of σ̂Nx

2/σ 2
target, where σ 2

target is the target variance. Note that

the candidate values N x,1:M will be close to Nx if σ̂Nx
2 is

close to σ 2
target. To avoid unnecessary computation, the cur-

rent Nx is left unchanged if σ̂Nx
2 falls within some range

σ 2
min < σ 2

target < σ 2
max. We also round the candidate number

of state particles up to the nearest 10, which ensures that there
is at least a difference of 10 between each Nx,m ∈ N x,1:M .
Once N x,1:M has been obtained, the variance is estimated for
each Nx,m ∈ N x,1:M , and the new number of state particles
is set to the Nx,m that has the highest variance less than or
equal to σ 2

max. In our numerical experiments in Sect. 5, we
set

N x,1:3 =
⌈
Nx ·

{
s0.5, s0.75, s

}ᵀ⌉
, s = σ̂Nx

2

σ 2
target

,

which gives candidate values ranging from rescale- std
(s0.5 · Nx ) to rescale- var (s1 · Nx ). The target, minimum
and maximum variances are σ 2

target = G · 1, σ 2
min = G ·

0.952 and σ 2
max = G · 1.052 respectively, where G = 1

for DA-SMC2 and G = 1/max (0.62, g2d) for DT-SMC2.
These values are fairly conservative and aim to keep the final
variance between 0.952 ≈ 0.9 and 1.052 ≈ 1.1.

The parameter G is used to take advantage of the
effect of the tempering parameter on the variance, i.e.
var(log (̂pNx ( y | θ)gd )) = g2 · var(log (̂pNx ( y | θ))). Cap-
ping the value of G is necessary in practice, since aiming
for an excessive variance is difficult due to the variabil-
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ity of the variance estimate when Nx is low. By setting
G = 1/max (0.62, g2d), the highest variance targeted is 1/
0.36 ≈ 2.8. In general, we recommend not aiming for a
variance that is greater than 3 (Sherlock et al. 2015). Note
that including the tempering parameter in this way is infea-
sible for rescale- var or rescale- std. For the former,
changing the target variance only exacerbates the problem of
too drastic changes of Nx between iterations. This is largely
due to the increased variability of the sample variance when
gd < 1. While the variability of σ̂Nx

2 is less of a problem
for rescale- std, this method struggles keeping up with the
changing variance target.

Compared to rescale- var, we find that both rescale-
std and novel- var are significantly less sensitive to the
initial number of state particles, sudden changes in the
variance arising from changes in the sample mean of the
parameter particles, and variability in the estimated variance
of the log-likelihood estimator. The novel- var method is
also more predictable in what variance is targeted at each
iteration compared to rescale- std.

Our final method (novel- esjd) also compares different
values of Nx , but using theESJD instead of the variance of the
log-likelihood estimator. As before, the choice of candidate
values N x,1:M is flexible; in the numerical experiments in
Sect. 5, we set

N x,1:4 =
⌈
Nx ·

{
1, 2, s0.5, s1

}ᵀ⌉
, s = σ̂Nx

2

G
, (10)

where G = 1 for DA-SMC2 and G = 1/max (0.62, g2d)
for DT-SMC2. Again, each Nx,m ∈ N x,1:M is rounded up
to the nearest 10. A score is calculated for a particular
Nx,m ∈ N x,1:M by first doing a mutation step with Nx,m

state particles, then calculating the number of MCMC iter-
ations (Rm) needed to reach the ESJD target; the score for
Nx,m is (Nm · Rm)−1. Algorithm 5 describes the adaptive
mutation step when using novel- esjd. Since the candidate
Nx values are tested in ascending order (see step 2 of Algo-
rithm 5), it is unnecessary to continue testing the values once
the score starts to decrease (steps 8–17 of Algorithm 5).

This method does not target a particular variance, but
instead aims to select the Nx having the cheapest mutation
while still achieving the ESJD target. Compared to double
and the variance-based methods, we find that novel- esjd
is consistent between independent runs, in terms of the run
time and the adaptation for Nx . It is also relatively insensitive
to the initial number of state particles, as well as variability
in the variance of the likelihood estimator.

Ideally, the adaptation algorithm (Algorithm 4 or Algo-
rithm 5) will only be triggered if Nx or R is too low (or
too high, as mentioned in Sect. 5). In practice, the ESJD is
variable, so the adaptation may be triggered more often than
necessary. Allowing the number of state particles to decrease

helps to keep the value of Nx reasonable. Also, if the esti-
mated variance is close to the target variance, one of the
candidate Nx values will be close in value to the current Nx .
See Table 1 for an example of the possible values of Nx for
the different methods.

Algorithm 5 Novel method to adapt the number of state
particles and mutate the parameter particles for SMC2 when
using novel- esjd.

Input: the estimated ESJD from the previous iteration (̂ESJDd−1),
the target ESJD for each iteration (̂ESJDtarget) and the current set of

particles ϑ
1:Nθ

d

Output: new number of state particles Nx , estimated ESJD (̂ESJDd )
and mutated set of particles ϑ

1:Nθ

d

1: if ̂ESJDd−1 < ̂ESJDtarget then
/* Adapt Nx and R */

2: Calculate the set of candidate values, N x,1:M (e.q. using (10)),
and sort in ascending order, such that Nx,1 < Nx,2 < . . . <

Nx,M . Set m∗ = M .

3: for Nx,m ∈ N x,1:M do

4: Replace the current set of state particles with x̃1:Nx,m
d using

the method described in Section 4.3

5: PMMH mutation ϑ
1:Nθ

d,m ∼ K (ϑ
1:Nθ

d , ·), calculate ̂ESJDd,m

6: Calculate Rm =
⌈

̂ESJDtarget/ ̂ESJDd,m

⌉

7: Calculate score zm = (Nx,m · Rm)−1

/* If more than one value has been tested */
8: if m > 1 then

/* If the current score is worse than the previous one */
9: if zm/zm−1 < 1 then
10: Set m∗ = m − 1

11: Replace the current set of state particles with x̃
1:Nx,m∗
d

using the method described in Section 4.3

12: Break

/* If the current score is equal to the previous one */
13: else if zm/zm−1 = 1 then
14: Set m∗ = m

15: Break

16: end if
17: end if
18: end for

/* Update Nx and R */
19: Set Nx = Nx,m∗ and R = Rm∗
20: else

/* Initial mutation step */
21: PMMH mutation ϑ

1:Nθ

d,1 ∼ K (ϑ
1:Nθ

d , ·), calculate ̂ESJDd,1
22: end if

/* Remaining mutation steps */
23: for r = 2 to R do
24: PMMH mutation ϑ

1:Nθ

d,r ∼ K (ϑ
1:Nθ

d,r−1, ·)
25: end for

26: Set ϑ1:Nθ

d = ϑ
1:Nθ

d,R
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Table 1 Possible values of the
number of state particles Nx if
Nx is currently 100 and G = 1,
where G accounts for the
tempering parameter in
DT-SMC2

σ̂Nx
2 Candidate values N x

double rescale- var rescale- std novel- var novel- esjd

0.5 200 50 71 50, 60, 71 50, 71, 100, 200

1 200 100 100 100 100, 200

1.5 200 150 123 123, 136, 150 100, 123, 150, 200

50 200 5000 708 708, 1881, 5000 100, 200, 708, 5000

Note that we allow the number of particles to decrease with rescale- var. The new Nx will be one of the
possible values listed, e.g. if σ̂Nx

2 = 1, novel- esjd will set Nx to 100 or 200 depending on which value is
predicted to give the cheapest mutation. If there is only 1 possible value, then that is the new number of state
particles

4.3 Replacing the state particle set

Our final contribution (denoted replace) is a variation of the
reweight scheme of Chopin et al. (2012). Both reweight
and replace consist of three steps. First, a particle filter
(Algorithm 1) is run with the new number of state parti-

cles to obtain p̂N∗
x
( y1:d | θd , x

1:N∗
x

1:d ) and x
1:N∗

x
1:d . Second, the

parameter particle weights are reweighted using

wn
d = Wn

d · IWn
d , Wn

d = wn
d∑Nθ

i=1 wi
d

,

where IWn
d is the incremental weight for parameter particle

n, n = 1, . . . , Nθ at iteration d; then the previous likeli-
hood estimate and set of state particles are discarded. Note
that prior to this reweighting step, the parameter particles are
evenly weighted as the adaptation of Nx is performed after
the resampling step, i.e. Wn

d = 1/Nθ , for n = 1, . . . , Nθ .
With the reweight method, the incremental weights for

DA-SMC2 are obtained by replacing p( y1:d | θd) with
p̂Nx ( y1:d | θd , x

1:Nx
1:d ) to approximate the optimal backward

kernel, giving

IWd = p̂N∗
x
( y1:d | θd , x

1:N∗
x

1:d )

p̂Nx ( y1:d | θd , x
1:Nx
1:d )

;

see Sect. 3 for details. ForDT-SMC2, the incrementalweights
are

IWd = p̂N∗
x
( y1:T | θd , x

1:N∗
x

1:T )gd

p̂Nx ( y1:T | θd , x
1:Nx
1:T )gd

.

The replace method uses a different approximation to the
optimal backward kernel. For DA-SMC2, instead of using
p( y1:d | θd) ≈ pNx ( y1:d | θd , x

1:Nx
1:d ), we use p( y1:d |

θd) ≈ pN∗
x
( y1:d | θd , x

1:N∗
x

1:d ), which gives the backward

kernel

Ld(x
1:N∗

x
1:d , x1:Nx

1:d ) = p̂Nx ( y1:d | θd , x
1:Nx
1:d )ψ(x1:Nx

1:d )

p( y1:d | θd)

≈ p̂Nx ( y1:d | θd , x
1:Nx
1:d )ψ(x1:Nx

1:d )

p̂N∗
x
( y1:d | θd , x

1:N∗
x

1:d )
.

Using this backward kernel, the incremental weights are

IWd =
πd

(
θd , x

1:N∗
x

1:d | y1:d
)
Ld(x

1:N∗
x

1:d , x1:Nx
1:d )

πd

(
θd , x

1:Nx
1:d | y1:d

)
ψ(x

1:N∗
x

1:d )

= p̂N∗
x
( y1:d | θd , x

1:N∗
x

1:d )Ld(x
1:N∗

x
1:d , x1:Nx

1:d )

p̂Nx ( y1:d | θd , x
1:Nx
1:d )ψ(x1:Nx

1:d )
= 1.

Similarly, forDT-SMC2, the approximation p( y1:T | θd)
gd ≈

p̂N∗
x
( y1:T | θd , x

1:N∗
x

1:T )gd gives the backward kernel

Ld(x
1:N∗

x
1:T , x1:Nx

1:T ) = p̂Nx ( y1:T | θd , x
1:Nx
1:T )gdψ(x1:Nx

1:T )

p( y1:T | θd)gd

≈ p̂Nx ( y1:T | θd , x
1:Nx
1:T )gdψ(x1:Nx

1:T )

p̂N∗
x
( y1:T | θd , x

1:N∗
x

1:T )gd
.

leading to incremental weights

IWd =
πd

(
θd , x

1:N∗
x

1:T | y1:T
)
Ld(x

1:N∗
x

1:T , x1:Nx
1:T )

πd

(
θd , x

1:Nx
1:T | y1:T

)
ψ(x

1:N∗
x

1:T )

= p̂N∗
x
( y1:T | θd , x

1:N∗
x

1:T )gd Ld(x
1:N∗

x
1:T , x1:Nx

1:T )

p̂Nx ( y1:T | θd , x
1:Nx
1:T )gdψ(x1:Nx

1:T )
= 1.

Since the incremental weights reduce to 1, the replace
approach introduces no extra variability in the parameter
particle weights. Hence, replace leads to less variability
in the mutation step compared to the reweight method
of Chopin et al. (2012), i.e. the parameter particles remain
evenly weighted throughout the mutation step. We also find
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that it is generally faster than the reinitmethod of Duan and
Fulop (2014).

4.4 Practical considerations

The framework introduced in this section has a number of
advantages over the existing methods. Most notably, the
adaptation of R is automated, the stage 2 options (rescale-
std, novel- var and rescale- esjd) are less sensitive to
variability in the estimated variance of the log-likelihood esti-
mator, and the parameter particle weights are unchanged by
adapting Nx .

Two tuning parameters remain to be specified for this
method: the target ESJD (ESJDtarget) and the number of sam-
ples to usewhen estimating the variance of the log-likelihood
estimator (k). Our numerical experiments in Sect. 5 use
ESJDtarget = 6 and k = 100, which both give reasonable
empirical results. The target ESJD has little effect on the
value of Nx , due to the structure of the updates described in
Sect. 4.2, but it directly controls R. Likewise, k controls the
variability of σ̂Nx

2. Recall that σ̂Nx
2 is the estimated variance

of the log-likelihood estimator with Nx state particles eval-
uated at the mean of the current set of parameter particles
(θ̄d ). Ideally, the value of k should change with Nx and θ̄d ;
however, it is not obvious how to do this. In general, we find
that if σ 2

Nx
≈ σ̂Nx

2 is high, then the variance of σ̂Nx
2 also

tends to be high.
Determining optimal values of ESJDtarget and k is beyond

the scope of this paper, but a general recommendation is
to follow Salomone et al. (2018) and set ESJDtarget to the
weighted average of the Mahalanobis distance between the
parameter particles immediately before the resampling step.
We also recommend choosing k such that the variance of
σ̂Nx

2 is low (< 0.1) when σ̂Nx
2 ≈ 1, i.e. the estimate of

σ̂Nx
2 should have low variance when it is around the target

value. This value of k may be difficult to obtain, but again,
we find that k = 100 gives reasonable performance across
all the examples in Sect. 5. To mitigate the effect of a highly
variable σ̂Nx

2, it is also helpful to set a lower bound on the
value of Nx , as well as an upper bound if a sensible one is
known. An upper bound is also useful to restrict the amount
of computational resources that is used by the algorithm.

Another advantage of our approach is that Nx can
also be reduced. In general, we would expect Nx to
increase at each iteration, based on the results Nx =
O(t) (Andrieu et al. 2010) and var(gd log (̂pNx ( y | θ))) =
g2dvar(log (̂pNx ( y | θ))). The former relates to DA-SMC2

and suggests that Nx should increase as the length of the
time series increases. The second result relates to DT-
SMC2. In this case, to obtain g2dvar(log (̂pNx ( y | θ))) = 1,
var(log (̂pNx ( y | θ))) must decrease (i.e. Nx must increase)
as gd increases. If the value of Nx is too high however, e.g.
due to variability in the adaptation step at a previous iteration

or if the initial value is higher than necessary, it is possible
for Nx to decrease in subsequent iterations. Note that it is
not feasible to allow Nx to decrease when using double or
reinit.

5 Examples

5.1 Implementation

The methods are evaluated on a simple Brownian motion
model, the one-factor stochastic volatility (SV) model in
Chopin et al. (2012), and two ecological models: the theta-
logistic model (Peters et al. 2010; Drovandi et al. 2022) and
the noisy Ricker model (Fasiolo et al. 2016).

The code is implemented in MATLAB and is available at
https://github.com/imkebotha/adaptive-exact-approximate-
smc. The likelihood estimates are obtained using the boot-
strap particle filter (Algorithm 1) with adaptive multinomial
resampling, i.e. resampling is done whenever the effective
sample size (ESS) drops below Nx/2. The results for all
models, except for the Ricker model, are calculated from
50 independent runs, each with Nθ = 1000 parameter sam-
ples. Due to time and computational constraints, the Ricker
model results are based on 20 independent runs, each with
Nθ = 400 parameter samples.

For DT-SMC2, the temperatures are set adaptively using
the bisection method (Jasra et al. 2010) to aim for an ESS
of 0.6 · Nθ . Similarly, the resample-move step is run for
DA-SMC2 if the ESS falls below 0.6 · Nθ . As discussed in
Sect. 4.4, a target ESJD of 6 is used and the sample variance
σ̂Nx

2 for rescale- var, rescale- std, novel- var, and
novel- esjd is calculated using k = 100 log-likelihood esti-
mates. For all methods except reinit and double, we also
trigger the adaptation whenever ̂ESJDt−1 > 2 · ̂ESJDtarget—
this allows the algorithm to recover if the values of Nx and/or
R are set too high at any given iteration, which may occur
e.g. with DA-SMC2 if there are outliers in the data. When
the reinitmethod is used, a mixture of three Gaussians is fit
to the current sample when reinitialising the algorithm.

The methods are compared based on the mean squared
error (MSE) of the posterior mean averaged over the param-
eters, where the ground truth is taken as the posterior mean
from a PMMHchain of length 1million. As the gold standard
(GS), DT-SMC2 and DA-SMC2 are also run for each model
with a fixed number of state particles, while still adapting R.
For each of these runs, the number of state particles is tuned
such that σ̂Nx

2 ≈ 1 for the full dataset, and the extra tuning
time is not included in the results.

We use the MSE and the total number of log-likelihood
evaluations (denoted TLL) of a givenmethod as a measure of
its accuracy and computational cost respectively. Note that
each time the particle filter is run for a particular parameter
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particle, TLL is incremented by Nx × t , where t is the current
number of observations. The MSE multiplied by the TLL of
a particular method gives its overall efficiency. Scores for
the accuracy, computational cost and overall efficiency of a
given method relative to the gold standard are calculated as

Zmethod,MSE := MSEGS

MSEmethod
, Zmethod,TLL := TLLGS

TLLmethod
,

Zmethod := Zmethod,MSE × Zmethod,TLL.

Higher values are better.
The adaptive mutation step in Algorithm 4 is used for

all methods except novel- esjd, which uses the adaptive
mutation step in Algorithm 5. The options for stage 2 are
double, rescale- var, rescale- std, novel- var and
novel- esjd. Likewise, the options for stage3 arereweight,
reinit, and our novel method replace. Since the aim of
the novel- var method is to regularly increase the number
of state particles throughout the iterations, the combination
novel- var with reinit is not tested. Similarly, due to the
number of times Nx is updatedwhenusingnovel- esjd, only
the combination novel- esjdwith replace is tested. For all
combinations (excluding double and reinit), we allow the
number of state particles to decrease. Due to computational
constraints, we also cap the number of state particles at 5
times the number of state particles used for the the gold stan-
dard method. Note that the doublemethod cannot decrease
Nx , and reinit assumes increasing Nx throughout the itera-
tions as the entire algorithm is reinitialised whenever Nx is
updated.

To compare the different stage 2 methods, we also plot
the evolution of Nx for each example. Recall that Nx =
O(t) for DA-SMC2 and var(log (̂pNx ( y | θ)gd )) = g2 ·
var(log (̂pNx ( y | θ))) for DT-SMC2. Based on these two
results, a roughly linear increase in Nx is desired—linear in
time for DA-SMC2 and linear in g2 for DT-SMC2. Section
A of the Appendix shows marginal posterior density plots.
Section B in the Appendix has extra results for the stochastic
volatility model with Nθ = 100 and Nθ = 500, to test the
methodswith fewer parameter particles.Wefind that the vari-
ability of the adaptation of Nx increases with lower values
of Nθ , which affects ZMSE in particular. Based on the results
in Section B, we recommend setting Nθ as high as possible
subject to the available computational budget. There is also
some evidence to suggest that higher values of Nx in the
earlier iterations of DA-SMC2 may be beneficial.

5.2 Brownianmotionmodel

The first example is a stochastic differential equation with
constant drift and diffusion coefficients,

dXt =
(

β − γ 2

2

)
dt + γ dBt ,

where Bt is a standard Brownian motion process ( Øksendal
2003, p. 44). The observation and transition densities are

g(yt | xt , θ) = N (xt , σ
2),

f (xt | xt−1, θ) = N
(
xt−1 + β − γ 2

2
, γ 2

)
.

One hundred observations are generated from this model
using θ := (x0, β, γ, σ ) = (1, 1.2, 1.5, 1) and the priors
assigned are N (x0 | 3, 52), N (β | 2, 52), Half-Normal(γ |
22), and Half-Normal(σ | 22), respectively.

Results for all stage 2 and stage 3 combinations are
obtained for initial Nx values of 10 and 100. The variance of
the log-likelihood estimator is around 95 for Nx = 10 and
around 2.7 for Nx = 100. The gold standard method is run
with 240 state particles.

Table 2 shows the scores averaged over the two initial val-
ues of Nx for the three stage 3 options (reweight, reinit and
replace). Note that these scores are relative to reweight
instead of the gold standard. Apart from DT-SMC2 with
double—where reinit is faster than replace—replace
consistently outperforms reweight and reinit in terms of
statistical and computational efficiency. Interestingly, reinit
generally outperforms reweight with rescale- std and
rescale- var, but not with double. The performance of
reinit greatly depends on the number of times the algorithm
is reinitialised and the final number of state particles, and this
is generally reflected in the computation time.

Tables 3 and 4 show the scores relative to the gold stan-
dard for all the replace combinations. novel- esjd has the
best overall score followed by novel- var for DT-SMC2,
and rescale- var for DA-SMC2. double performs well
on DT-SMC2, but poorly on DA-SMC2—it has good statis-
tical efficiency, but is much slower than the other methods.
Interestingly, the computational efficiency is generally higher
for the adaptive methods than for the gold standard, but their
accuracy forDA-SMC2 is generally lower.Thismaybedue to
high variability in the variance of the log-likelihood estima-
tor and the mean of the parameter particles during the initial
iterations of DA-SMC2. Since fewer observations are used to
estimate the likelihood in these early iterations (t < T ), the
mean of the parameter particles can change drastically from
one iteration to the next, leading to similarly drastic changes
in the sample variance of the log-likelihood estimator.

Figure1 shows the evolution of Nx for replace and an
initial Nx of 10. Based on these plots, double, novel- var
and novel- esjd have the most efficient adaptation for DT-
SMC2, and novel- esjd has the most efficient adaptation for
DA-SMC2, which corresponds with the results for ZTLL and
Z in Tables 3 and 4.
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Table 2 Scores for the accuracy
(ZMSE), computational cost
(ZTLL) and overall efficiency
(Z ) for the stage 3 options for
the Brownian motion
model—higher values are
preferred

Method DT-SMC2 DA-SMC2

ZMSE ZTLL Z ZMSE ZTLL Z

double reweight 1.00 1.00 1.00 1.00 1.00 1.00

double reinit 0.61 2.68 1.61 0.11 0.69 0.06

double replace 1.18 1.17 1.46 1.86 1.68 2.99

rescale- var reweight 1.00 1.00 1.00 1.00 1.00 1.00

rescale- var reinit 3.03 1.06 3.64 1.65 1.02 1.68

rescale- var replace 2.97 4.76 17.46 10.59 1.91 19.49

rescale- std reweight 1.00 1.00 1.00 1.00 1.00 1.00

rescale- std reinit 5.56 1.93 11.34 1.04 1.30 1.47

rescale- std replace 6.83 5.45 35.28 5.10 1.61 8.66

The results are averaged over the two starting values of Nx and are relative to the reweight method

Table 3 Scores for the accuracy (ZMSE), computational cost (ZTLL)
and overall efficiency (Z ) for DT-SMC2 for the Brownianmotionmodel
using the replace method—higher values are preferred

Method DT-SMC2

Initial Nx 10 100

ZMSE ZTLL Z ZMSE ZTLL Z

gold standard 1.00 1.00 1.00 1.00 1.00 1.00

double 4.31 3.24 20.00 7.07 0.57 5.93

rescale- var 3.32 1.21 6.24 3.68 1.21 6.71

rescale- std 4.82 2.47 18.30 4.96 1.44 10.96

novel- var 4.21 3.26 21.01 3.89 2.43 14.41

novel- esjd 1.95 8.75 26.34 3.58 2.42 13.16

The gold standard refers to SMC2 with a fixed number of state particles

Table 4 Scores for the accuracy (ZMSE), computational cost (ZTLL) and
overall efficiency (Z ) for DA-SMC2 for the Brownian motion model
using the replace method—higher values are preferred

Method DA-SMC2

Initial Nx 10 100

ZMSE ZTLL Z ZMSE ZTLL Z

gold standard 1.00 1.00 1.00 1.00 1.00 1.00

double 1.13 0.37 0.53 1.42 0.12 0.17

rescale- var 1.11 2.09 1.93 0.68 2.10 1.53

rescale- std 0.50 2.52 1.36 0.58 2.27 1.44

novel- var 0.76 1.93 1.47 0.73 1.68 1.13

novel- esjd 0.74 2.95 2.49 0.71 2.75 1.95

The gold standard refers to SMC2 with a fixed number of state particles

5.3 Stochastic volatility model

Our second example is the one-factor stochastic volatility
model used in Chopin et al. (2012),

yt ∼ N (μ + βvt , vt ),

zt = exp (−λ)zt−1 +
k∑
j=1

exp (−λ(t − c j ))e j ,

z0 ∼ Gamma(ξ2/ω2, ξ/ω2)

vt = 1

λ

⎡
⎣zt−1 − zt +

k∑
j=1

e j

⎤
⎦ , xt = {vt , zt },

k ∼ Poisson(λξ2/ω2), c1:k
iid∼ Uniform(t − 1, t),

e1:k
iid∼ Exponential(ξ/ω2).

The transition density of this model cannot be evaluated
point-wise, but it can be simulated from.

We use a synthetic dataset with 200 observations, which
is generated using θ := (ξ, ω2, λ, β, μ) = (4, 4, 0.5, 5, 0).
The priors are Exponential(ξ | 0.2), Exponential(ω2 | 0.2),
Exponential(λ | 1), N (β | 0, 2) and N (μ | 0, 2).

Results for all stage 2 and stage 3 combinations are
obtained for initial Nx values of 300 and 600. The variance
of the log-likelihood estimator is around 7 for 300 state par-
ticles and around 3 for 600 state particles. The gold standard
method is run with 1650 state particles.

Table 5 shows the scores for the three stage 3 options, rela-
tive to reweight and averaged over the two initial Nx values.
replace consistently outperforms reweight and reinit in
terms of overall efficiency.

Tables 6 and 7 show the scores for all the replace com-
binations. All methods perform similarly for this model. In
terms of accuracy (measured by the MSE), the optimal vari-
ance of the log-likelihood estimator seems to be smaller for
this model than for the others. However, the efficiency of
a smaller variance coupled with the increased computation
time is fairly similar to the efficiency of a larger variancewith
cheaper computation. In this example, novel- esjd has the
highest MSE, but the lowest computation time.
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Fig. 1 Evolution of Nx for replace and a low initial Nx for the Brownian motion model. Each coloured line represents an independent run of the
given method. The maximum Nx is 1200

Table 5 Scores for the accuracy
(ZMSE), computational cost
(ZTLL) and overall efficiency
(Z ) for the stage 3 options for
the stochastic volatility
model—higher values are
preferred

Method DT-SMC2 DA-SMC2

ZMSE ZTLL Z ZMSE ZTLL Z

double reweight 1.00 1.00 1.00 1.00 1.00 1.00

double reinit 1.07 0.88 0.83 0.71 0.41 0.17

double replace 1.38 1.15 1.48 5.09 1.10 4.31

rescale- var reweight 1.00 1.00 1.00 1.00 1.00 1.00

rescale- var reinit 4.41 1.49 7.06 0.78 0.65 0.42

rescale- var replace 2.92 5.40 17.24 5.06 1.07 4.60

rescale- std reweight 1.00 1.00 1.00 1.00 1.00 1.00

rescale- std reinit 7.33 2.07 16.21 0.26 0.44 0.13

rescale- std replace 4.49 5.07 24.12 1.93 1.04 1.91

The results are averaged over the two starting values of Nx and are relative to the reweight method

Figure2 shows the evolution of Nx for replace and an
initial Nx of 300. Based on these plots, double and novel-
esjd have the most efficient adaptation for DT-SMC2, and all
methods except double have good results for DA-SMC2.
These methods correspond to those with the quickest run
time (lowest TLL), but not to the ones with the best overall
efficiency.

5.4 Theta-logistic model

The theta-logistic ecological model (Peters et al. 2010) is

g(yt | xt , θ) = N (yt | a · (xt ), σ
2),

xt+1 = xt + β0 + β1 exp (β2xt ) + zt , zt ∼ N (0, γ 2).

We fit the model to the first 100 observations of female
nutria populationsmeasured atmonthly intervals (Peters et al.
2010; Drovandi et al. 2022), using the priors N (β0 | 0, 1),

N (β1 | 0, 1), N (β2 | 0, 1), Half-Normal(exp (x0) | 10002),
Exponential(γ | 1), Exponential(σ | 1) and N (a | 1, 0.52).

Scores for the accuracy, computational cost and overall
efficiency are obtained for initial Nx values of 700 and 2400.
The variance of the log-likelihood estimator is around 40
for 700 state particles and around 3 for 2400 state particles.
The gold standard method is run with 4600 state particles.
Due to time constraints, results for the doublemethod with
reweight and initial Nx = 700 are not available for DA-
SMC2.

Table 8 shows the scores for the three stage 3 options,
averaged over the initial Nx values and relative to reweight.
Except for doublewithDA-SMC2, bothreinit and replace
outperform reweight, but the results for reinit and replace
aremixed. The performance of reinit greatly depends on the
number of times the adaptation is triggered. On average, the
algorithm is reinitialised fewer times for rescale- std for
this example than for the others.
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Table 6 Scores for the accuracy (ZMSE), computational cost (ZTLL)
and overall efficiency (Z ) for DT-SMC2 for the stochastic volatility
model using the replace method—higher values are preferred

Method DT-SMC2

Initial Nx 300 600

ZMSE ZTLL Z ZMSE ZTLL Z

gold standard 1.00 1.00 1.00 1.00 1.00 1.00

double 1.16 2.04 2.82 1.63 1.02 1.78

rescale- var 1.73 0.86 1.52 1.68 0.79 1.40

rescale- std 1.26 1.66 2.20 1.35 1.27 1.75

novel- var 1.16 1.89 2.23 1.15 1.59 1.88

novel- esjd 0.52 3.82 2.03 0.82 2.09 1.73

The gold standard refers to SMC2 with a fixed number of state particles

Tables 9 and 10 show the scores for all the replace
combinations relative to the gold standard. In this exam-

Table 7 Scores for the accuracy (ZMSE), computational cost (ZTLL)
and overall efficiency (Z ) for DA-SMC2 for the stochastic volatility
model using the replace method—higher values are preferred

Method DA-SMC2

Initial Nx 300 600

ZMSE ZTLL Z ZMSE ZTLL Z

gold standard 1.00 1.00 1.00 1.00 1.00 1.00

double 1.43 0.51 0.74 1.53 0.37 0.56

rescale- var 0.80 1.34 1.06 0.71 1.33 0.96

rescale- std 0.77 1.40 1.08 0.63 1.41 0.91

novel- var 0.75 1.38 1.05 0.91 1.38 1.28

novel- esjd 0.63 1.35 0.89 0.67 1.31 0.88

The gold standard refers to SMC2 with a fixed number of state particles

ple, novel- esjd outperforms all other methods, followed by
novel- var and rescale- var. Unlike the previous exam-
ples, double and rescale- std perform poorly here. The

Fig. 2 Evolution of Nx for replace and a low initial Nx for the stochastic volatility model. Each coloured line represents an independent run. The
maximum Nx is 8250

Table 8 Scores for the accuracy
(ZMSE), computational cost
(ZTLL) and overall efficiency
(Z ) for the stage 3 options for
the theta-logistic model—higher
values are preferred

Method DT-SMC2 DA-SMC2

ZMSE ZTLL Z ZMSE ZTLL Z

double reweight 1.00 1.00 1.00 1.00 1.00 1.00

double reinit 0.18 7.89 1.31 0.09 1.80 0.16

double replace 1.18 0.94 1.11 0.85 1.09 0.89

rescale- var reweight 1.00 1.00 1.00 1.00 1.00 1.00

rescale- var reinit 0.98 6.84 7.28 0.99 1.78 1.67

rescale- var replace 1.02 2.41 1.91 0.71 3.46 2.64

rescale- std reweight 1.00 1.00 1.00 1.00 1.00 1.00

rescale- std reinit 0.99 4.14 4.24 0.76 2.42 1.78

rescale- std replace 1.36 1.75 3.75 0.69 3.73 2.51

The results are averaged over the two starting values of Nx and are relative to the reweight method
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Fig. 3 Evolution of Nx for replace and a low initial Nx for the theta-logistic model. Each coloured line represents an independent run. The
maximum Nx is 23000

Table 9 Scores for the accuracy (ZMSE), computational cost (ZTLL)
and overall efficiency (Z ) for DT-SMC2 for the theta-logistic model
using the replace method—higher values are preferred

Method DT-SMC2

Initial Nx 700 2400

ZMSE ZTLL Z ZMSE ZTLL Z

gold standard 1.00 1.00 1.00 1.00 1.00 1.00

double 1.35 0.38 0.52 1.32 0.28 0.37

rescale- var 0.16 5.32 1.14 0.16 5.43 0.89

rescale- std 0.13 11.23 1.49 0.14 4.39 0.76

novel- var 0.09 20.00 1.87 0.09 9.50 1.00

novel- esjd 0.06 34.78 2.11 0.06 19.37 1.14

The gold standard refers to SMC2 with a fixed number of state particles

gold standard and double have the best MSE for this exam-
ple, but the worst computation time. The remaining methods
have a poor MSE, which is mostly due to the parameter σ as
Fig. 7 in SectionA of the Appendix shows. The gold standard
is the only method that achieves a good result for σ .

Figure3 shows the evolution of Nx for replace and an
initial Nx of 700.novel- esjd seem to have the least variable
evolution for both DT-SMC2 andDA-SMC2 compared to the
other methods. Again, this is reflected in the values of ZTLL,
particularly in Tables 9 and 10.

5.5 Noisy Ricker model

Our final example is the noisyRicker populationmodel (Fasi-
olo et al. 2016),

g(yt | xt , θ) = Poisson(yt | φxt ),

xt+1 = r · xt exp (−xt + zt ), zt ∼ N (0, σ 2).

Table 10 Scores for the accuracy (ZMSE), computational cost (ZTLL)
and overall efficiency (Z ) for DA-SMC2 for the theta-logistic model
using the replace method—higher values are preferred

Method DA-SMC2

Initial Nx 700 2400

ZMSE ZTLL Z ZMSE ZTLL Z

gold standard 1.00 1.00 1.00 1.00 1.00 1.00

double 1.33 0.22 0.33 1.45 0.15 0.30

rescale- var 0.25 2.17 1.09 0.24 1.86 1.00

rescale- std 0.17 2.48 0.31 0.19 2.37 0.83

novel- var 0.24 1.87 0.67 0.21 2.18 1.04

novel- esjd 0.13 13.42 2.05 0.12 12.38 1.76

The gold standard refers to SMC2 with a fixed number of state particles

The Ricker model, and its variants, is typically used to rep-
resent highly non-linear or near-chaotic ecological systems,
e.g. the population dynamics of sheep blowflies (Fasiolo et al.
2016). Fasiolo et al. (2016) show that the likelihood function
of the noisy Ricker model exhibits extreme multimodality
when the process noise is low, making it difficult to estimate
the model.

We draw 700 observations using θ := (log (φ), log (r),
log (σ )) = (log (10), log (44.7), log (0.6)). Following Fasi-
olo et al. (2016), we assign uniform priors to the log-
parameters, U(log (φ) | 1.61, 3), U(log (r) | 2, 5) and
U(log (σ ) | −1.8, 1), respectively.

Scores for the accuracy, computational cost and overall
efficiency are obtained for initial Nx values of 1000 and
20000. The variance of the log-likelihood estimator is around
13 for 1000 state particles and around 2.3 for 20000 state
particles. The gold standard method is run with 90000 state
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Table 11 Scores for the accuracy (ZMSE), computational cost (ZTLL)
and overall efficiency (Z ) for DT-SMC2 for the noisy Ricker model
using the replace method—higher values are preferred

Method DT-SMC2

Initial Nx 1000 20000

ZMSE ZTLL Z ZMSE ZTLL Z

gold standard 1.00 1.00 1.00 1.00 1.00 1.00

double 0.26 12.76 3.59 – – –

rescale- var 0.45 4.17 2.10 0.77 3.34 2.82

rescale- std 0.33 12.79 4.62 0.54 4.28 2.40

novel- var 0.38 10.76 4.03 0.37 7.16 2.90

novel- esjd 0.12 46.19 5.63 0.24 10.51 2.65

The gold standard refers to SMC2 with a fixed number of state particles

Table 12 Scores for the accuracy (ZMSE), computational cost (ZTLL)
and overall efficiency (Z ) for DA-SMC2 for the noisy Ricker model
using the replace method—higher values are preferred

Method DA-SMC2

Initial Nx 1000 20000

ZMSE ZTLL Z ZMSE ZTLL Z

gold standard 1.00 1.00 1.00 1.00 1.00 1.00

double – – – – – –

rescale- var 0.56 2.04 1.24 0.78 2.11 1.82

rescale- std 0.47 3.33 1.63 0.41 3.09 1.28

novel- var 0.87 2.00 1.78 1.02 2.29 2.47

novel- esjd 0.32 6.17 2.16 0.43 5.38 2.46

The gold standard refers to SMC2 with a fixed number of state particles

particles. Due to time constraints, the ground truth for the
posterior mean is based on a PMMH chain of length 200000.

Anexperimentwas stopped if its run time exceeded9days.
Hence, a full comparison of the stage 3 options cannot be
made. Of the experiments that finished, replace had the best
results in terms of overall efficiency. On average, replace
outperformed reinit and reweight by at least a factor of 2.
In a number of cases, the gold standard and replacewere the
onlymethods tofinishwithin the time frame.Tables 11 and12
show the scores for the replace combinations. novel- var
and novel- esjd have the best overall results across bothDT-
SMC2 and DA-SMC2 for this example, while rescale- std
and rescale- var perform similarly.

Figure4 shows the evolution of Nx for replace and an
initial Nx of 1000. Allmethods show a fairly smooth increase
in Nx over the iterations.

6 Discussion

We introduce an efficient SMC2 algorithm which automat-
ically updates the number of state particles throughout the
algorithm. Of the methods used to select the new number of
state particles, novel- esjd gives the most consistent results
across allmodels, choice of initial Nx and betweenDT-SMC2

and DA-SMC2. This method uses the ESJD to determine
which Nx from a set of candidate values will give the cheap-
est mutation—this value is selected as the new number of
state particles. novel- esjd generally outperforms the other
methods in terms of the computational and overall efficiency.
A significant advantage of novel- esjd is that the adaptation
of Nx is consistent across independent runs of the algorithm

Fig. 4 Evolution of Nx for replace and a low initial Nx for the Ricker model. Each coloured line represents an independent run. The maximum
Nx is 450000
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(i.e. when starting at different random seeds), substantially
more so than the other methods.

Similarly, the replace method typically shows great
improvement over reweight and reinit. replacemodifies
the approximation to the optimal backward kernel used by
reweight. This modification means that, unlike reweight,
replace leaves the parameter particle weights unchanged.
We also find that replace is generally more reliable than
reinit.

Our novel SMC2 algorithm has three tuning parameters
that must be set: the target ESJD for the mutation step, the
number of log-likelihood evaluations for the variance estima-
tion (k) and the initial number of state particles. Determining
optimal values of the target ESJD and k is beyond the scope
of this paper, but tuning strategies are discussed in Sect. 4.4.
While any initial number of state particles can be used, a
small value yields the most efficient results. Compared to the
currently available methods, the new approach requires min-
imal tuning, gives consistent results and is straightforward to
use with both data annealing and density tempering SMC2.
We also find that the adaptive methods generally outperform
the gold standard, despite the latter being pre-tuned.

An interesting extension to the current work would be to
assess the effect of the target ESJD, the target ESS and the
target variance of the log-likelihood estimator when SMC2

is used for model selection. Another area of future work is
extending themethod for application tomixed effectsmodels
(Botha et al. 2021); for these models, it may be possible to
obtain significant gains in efficiency by allowing the number
of state particles to (adaptively) vary between subjects. The
new method can also be used as the proposal function within
importance sampling squared (Tran et al. 2020).

One area of future work is to adapt the number of parame-
ter particles, e.g. using the adaptive particle filters of Bhadra

and Ionides (2016) and Elvira et al. (2017). Another area of
future work is to adapt the number of parameter particles
(Nθ ) for a specific purpose, e.g. estimation of a particular
parameter or subset of parameters. This may reduce the com-
putational resources needed, and applies to SMCmethods in
general.
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AMarginal posterior plots

This section shows the marginal posterior density plots for
the examples in Sects. 5.2–5.5. Figures5, 6, 7 and 8 are
the marginal posterior density plots for each example and
method. Note that the results shown are for replace using
the combined samples from the independent runs, i.e. the

Fig. 5 Marginal posterior density plots for the Brownian motion model. Dashed lines are the DA-SMC2 results and dotted lines of the same colour
are the corresponding DT-SMC2 results
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Fig. 6 Marginal posterior density plots for the stochastic volatility model. Dashed lines are DA-SMC2 results and dotted lines of the same colour
are the corresponding DT-SMC2 results

marginal posteriors are based on 50 × 1000 samples for
the Brownian motion, stochastic volatility and theta-logistic
models and 20 × 400 samples for the Ricker model. The
results shown are for a low initial Nx . The plots show that the
marginal posterior densities are similar between the adaptive
methods. The biggest difference in densities is between DT-
SMC2 and DA-SMC2, not between the adaptive methods.
Figures5, 6 and 8 show marginal posteriors from SMC2 that
are very similar to the marginal posteriors fromMCMC. Fig-
ure7 shows similar marginal posteriors for the theta-logistic
model from SMC2 and MCMC for all of the parameters
except for log (σ ). This parameter corresponds to the log
of the measurement error in the nutria population data (see
Sect. 5.4 of the main paper). Here, the adaptive SMC2 meth-
ods struggle to accurately capture the left tail of log (σ ).
SMC2 with a higher, fixed number of state particles (the gold
standard method) does not have the same issue, suggesting
that the number of state particles is perhaps not adapted high
enough in any of the methods for this example.

B Extra results for the stochastic volatility
model

This section shows extra results for the stochastic volatility
model. Figure9 shows the difference in the scores for the
three values of Nθ . Interestingly, ZTLL is fairly constant for
all methods, but ZMSE is variable. The latter is generally
at its highest when Nθ = 1000 for DT-SMC2, and when
Nθ = 100 for DA-SMC2. Recall that ZMSE is relative to
the gold standard. DA-SMC2 has the highest ZMSE when
Nθ = 100, but also the highest ZTLL. We find, on average,
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Fig. 7 Marginal posterior density plots for the theta-logistic model. Dashed lines are the DA-SMC2 results and dotted lines of the same colour are
the corresponding DT-SMC2 results

Fig. 8 Marginal posterior
density plots for the Ricker
model. Dashed lines are the
DA-SMC2 results and dotted
lines of the same colour are the
corresponding DT-SMC2 results

that the value of Nx is higher in the initial stages ofDA-SMC2

when Nθ is small compared to when Nθ is larger. This may
be due to extra variability in the adaptation of Nx resulting
from a small Nθ . However, these results indicate that a higher
number of state particles may be beneficial for DA-SMC2 at
earlier iterations—something between double and the other
methods.

Figure10 shows the (non-relative) MSE and computation
cost (TLL) of the methods. For all methods, including the
gold standard, there is a large improvement in theMSEwhen

increasing Nθ from100 to 500, but only a slight improvement
when Nθ is increased from 500 to 1000. Based on the results
shown in Figs. 9 and 10, we recommend setting Nθ as high
as possible subject to the available computational budget.
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Fig. 9 Scores for the overall efficiency (Z ), accuracy (ZMSE) and com-
putational cost (ZTLL) for Nθ = 100, 500, 1000 (left to right). The solid
and dashed lines correspond to Nx = 300 and Nx = 600 respectively.
The first row of plots gives the results for density tempering SMC2,

and the bottom row of plots gives the results for data annealing SMC2.
These results are relative to the gold standard (solid blue at y = 1),
meaning that higher values are preferred

Fig. 10 Values for the error (MSE) and computation cost (TLL) for
Nθ = 100, 500, 1000. The solid and dashed lines correspond to
Nx = 300 and Nx = 600 respectively. The first row of plots gives

the results for density tempering SMC2, and the bottom row of plots
gives the results for data annealing SMC2. The solid blue line represents
the gold standard. Lower values are preferred
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