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Abstract
Count data that are subject to both under and overdispersion at some hierarchical level cannot be readily accommodated by
classic models such as Poisson or negative binomial regression models. The mean-parameterised Conway–Maxwell–Poisson
distribution allows for both types of dispersion within the samemodel, but is doubly intractable with an embedded normalising
constant. We propose a look-up method where pre-computing values of the rate parameter dramatically reduces computing
times and renders the proposed model a practicable alternative when faced with such bidispersed data. The approach is
demonstrated and verified using a simulation study and applied to three datasets: an underdispersed small dataset on takeover
bids, a medium dataset on yellow cards issued by referees in the English Premier League prior to and during the Covid-19
pandemic, and a large Test match cricket bowling dataset, the latter two of which each exhibit over and underdispersion at
the individual level.

Keywords Count data · Overdispersion · Underdispersion · Conway–Maxwell–Poisson · Numerical look-up table

1 Introduction

Regression models for count data appear widely in the sta-
tistical (and other) literature, with classic treatise from Hilbe
(2011) and Cameron and Trivedi (2013). Count data are
commonly referred to as being overdispersed–relative to the
Poisson distribution–when the variance exceeds the mean,
and underdispersed when the mean exceeds the variance,
with the former phenomenon much more widespread and
typically handled via a negative binomial regression model,
or other choices, such as the log normal or inverse Gaus-
sian as mixing distributions for the underlying Poisson rate
parameter.

For the less common, and thus less studied, situation of
underdispersion, viablemodels are harder to come by and the
most ostensibly promising candidate distributions have some
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clear drawbacks: they are hampered by a restricted param-
eter space (generalised Poisson), are not parameterised in
such a way as to make standard inferences (gamma count
and Conway–Maxwell–Poisson) or are difficult to evaluate
(hyper-Poisson, Conway–Maxwell–Poisson and Poisson–
Tweedie) due to the nature of the likelihood; this issue is
naturally exacerbated in a Bayesian context.

Moreover, when dealing with hierarchical data, the two
types of dispersion often occur together at some granular
level (i.e. individuals), in what we refer to as bidispersion,
within the same dataset. Under this scenario, a Poissonmodel
is both conservative and anti-conservative for the cases of
overdispersion and underdispersion respectively, whereas a
negative binomial model will be anti-conservative for those
individuals that are underdispersed - what is required is a
model that can traverse the dispersion spectrum in either
direction (within the same model), whilst still allowing for
standard inferences and sufficiently small computational
overhead so as to encourage routine use.

TheConway–Maxwell–Poisson (CMP)distribution allows
for bidispersion, but contains an awkward normalising con-
stant and is not parameterised in terms of its mean. The
standard CMP model has probability mass function
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Pr(Y = y | λ, ν) = λy

(y!)ν
1

G(λ, ν)
(1)

where the normalising constant term G(λ, ν) = ∑∞
r=0

λr/(r !)ν ensures that the CMP distribution is proper, but
complicates analysis. The distribution is governed by a rate
parameter, λ (> 0) and a dispersion term, ν(≥ 0), that
allows for both over- (ν < 1) and underdispersion (ν > 1).
Despite being introduced almost sixty years ago, motivated
by a queueing problem (Conway and Maxwell 1962), the
CMP distribution has been mostly overlooked in the statis-
tical literature, although it has gained some popularity in
the last twenty years or so with a broad range of interest-
ing applications, from household consumer purchasing traits
(Boatwright et al. 2003), retail sales, lengths of Hungar-
ian words (Shmueli et al. 2005), road traffic accident data
(Lord et al. 2008, 2010), life history, spatial and community
ecology (Lynch et al. 2014), dispersion in positron emission
tomography (Santarelli et al. 2016) and forecasting tropical
cyclones (Mitchell and Camp 2021).

The wider applicability of the CMP distribution was
demonstrated by Guikema and Goffelt (2008) and Sellers
and Shmueli (2010), who illustrated that the CMP distribu-
tion can be incorporated into the generalised linearmodelling
framework for both Bayesian and frequentist settings respec-
tively, and through the development of an R package (Sellers
et al. 2019) in the case of the latter, to help facilitate rou-
tine use. Alternative methods to circumvent intractability for
the standard CMP model in the Bayesian setting have been
developed by Chanialidis et al. (2018), who used rejection
sampling based on a piecewise enveloping distribution and
more recently (Benson and Friel 2020), who developed a
faster method using a single, simple envelope distribution,
but these approaches do not routinely generalise to the mean-
parameterised CMP distribution introduced below.

The orthodox parameterisation in terms of a rate, λ, that
does not correspond to the mean, has restricted the wider
usage of the CMP regression model and has led to the
development of a mean-parameterised Conway–Maxwell–
Poisson (MPCMP) distribution (Huang 2017) whereby

μ =
∞∑

r=0

rλr

(r !)νG(λ, ν)
, (2)

where μ denotes the mean. This parameterisation comes at
a computational cost, however, since implementation of the
model now requires the solution of a polynomial equation
for λ of the form

∞∑

r=0

(r − μ)
λr

(r !)ν = 0. (3)

The probability mass function for the MPCMP distribution
replaces λ in (1) with the solution of (3)

Pr(Y = y | λ(μ, ν), ν) = λ(μ, ν)y

(y!)ν
1

G {λ(μ, ν), ν} , (4)

where λ(μ, ν) reflects the dependence of the rate parameter
onbothμ and νwhen solving the polynomial in (3).Adopting
this parameterisation brings all of the flexibility and interpre-
tation of a standard generalised linear model, including the
orthogonality of the mean and dispersion parameters (Huang
andRathouz 2017) and allows intuitive regressionmodels for
both the mean and dispersion components and the incorpo-
ration of offsets if required, placing it on a similar inferential
footing as classic count models.

A hybrid bisection andNewton–Raphson approach to find
λ was proposed by Huang (2017), implemented in R pack-
age mpcmp (Fung et al. 2019)–buttressed by its subsequent
inclusion in the flexible glmmTMB package (Brooks et al.
2017) - and applied in small sampleBayesian settings (Huang
and Kim 2019), whereas Ribeiro et al. (2018) suggested an
asymptotic approximation ofG(λ, ν) to obtain a closed form
estimate for λ, again replete with an accompanying R pack-
age (Elias Ribeiro Junior 2021). The appeal of the former is
its more exact nature, but this can incur considerable com-
putational costs in large sample settings since the iterative
approach would be required at each MCMC iteration, and,
potentially, for a large number of (conditional) mean values.

The approximation used by Ribeiro et al. (2018) is con-
ceptually appealing due to its simplicity and computational
efficiency, but is likely to be inaccurate for some of the com-
binations of μ, ν encountered in general, and the level of
accuracy will also vary across these combinations. In par-
ticular, the approximation is less accurate for ν > 1, for
which counts are underdispersed and the Conway–Maxwell–
Poisson distribution may be most useful, and when λ < 10ν

(Bonat et al. 2017), which is likely to occur regularly in
real data settings with small counts; indeed, it is the case in
each application considered here. Irrespective of approach,
the infinite sum also needs to be approximated by a finite
sum–we return to this point in Sect. 3.1.

2 BayesianMPCMPmodels

We consider a general MPCMP model for an observed data
sample y1 . . . , yn of size n, where we adopt a log-linear
model for both the mean and dispersion parameters. Namely,
we have

logμi = xT1iβ
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and

log νi = xT2iγ

where β and γ are vectors of regression parameters of
length p and q with associated covariate vectors x1i and x2i
for the mean and dispersion components respectively and
i = 1, . . . , n in each case. Clearly, the models for the mean
and dispersion may, and are indeed likely, to have covari-
ates in common, but there is no requirement for this to be so.
Under general independent prior distributionsπ(β) andπ(γ )

for the regression parameters we can formulate the posterior
distribution as

π(β, γ | y) = π(β)π(γ )

n∏

i=1

f (yi | β, γ ) (5)

= π(β)π(γ ) ×
n∏

i=1

λi

(
ex

T
1iβ , ex

T
2i γ

)yi

(y!)exT2i γ G
{
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T
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T
2i γ

)
, ex

T
2i γ

}

Focusing on the mean parameters we have

π(β | γ , y) ∝ π(β) × ∏n
i=1

λi

(

ex
T
1i β ,ex

T
2i γ

)yi

(y!)ex
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2i vγ
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(6)

and we then work on the log-scale to circumvent possible
numerical issues when evaluating the above to obtain

log {π(β | γ , y)} ∝ log {π(β)} +
n∑

i=1

yi log
{
λi

(
ex

T
1i vβ , ex

T
2i γ

)}
(7)

− log
[
G

{
λi

(
ex

T
1iβ , ex

T
2i γ

)
, ex

T
2i γ

}]
.

In an analogous fashion, the log-posterior distribution of the
dispersion parameter vector γ is given by

log {π(γ | β, y)} ∝ log {π(γ )} +
n∑

i=1

yi log
{
λi

(
ex

T
1iβ , ex

T
2i γ

)}

− log
[
G

{
λi

(
ex

T
1iβ , ex

T
2i γ

)
, ex

T
2i γ

}]

− ex
T
2i γ log(x !), (8)

where additional dependence on the dispersion parameters is
captured through the final term.

From Eqs. (7) and (8) we can see that, in each case, eval-
uation of the log-posterior depends on λi , which itself is a
function of themean,μi and dispersion, νi in both the second
(directly) and third (since the normalising constant itself is
also a function of λi ) terms. We note that the posterior distri-
bution for the dispersion parameters depends additionally on
the (inexpensive to evaluate) log-factorial term involving the

data, which is not required in Poisson and negative binomial
models. In a model without covariates (in either component)
we would only require a scalar λ, but this is clearly unreal-
istic in any wider regression setting. As such, we typically
need to evaluate λi multiple times at each iteration, incurring
considerable computational costs.

3 Alternative approaches for MPCMPmodels

Since λ is positive, there is a single sign change in (3) when
μ > r , which, by Descartes’ rule of signs, informs us that
there is a solitary positive real root. Hence, a solution for
λ can be found without recourse to approximations or less
scaleable iterative methods and we can directly solve the kth

order polynomial using the R function polyroot, for some
suitably chosen k, which makes use of the Jenkins-Traub
algorithm.

This may in itself offer computational gains over previous
methods if incorporated as part of an iterative scheme, but
here we further propose to pre-compute a look-up table of λ

values (found using polyroot) which may offer more sub-
stantive reductions in computing time by front-loading some
of the computational cost. Hence, the aim of the proposed
approaches are to render theMPCMPmodel a practical alter-
native for count data that we would suggest as the de facto
approach when faced with bidispersed data. As such, the
two proposed methods are compared to the existing method
established in the literature (and implemented in software
packages) via a trio of simulation studies and associated
applications.

3.1 Computing the look-up table

We observe from Eq. (3) that the polynomial coefficients for
the λ terms depend on the parameters μ and ν. Considering
the mean μ is itself modelled via a log-link and that we are
typically interested in computing the log-likelihood rather
than the likelihood, we can generate sequences for both logμ

and ν to form a two-dimensional look-up table and solve the
polynomial in log λ for each unique choice of (logμ, ν).

Clearly, a coarse tablemay compromise accuracy,whereas
a finer tablewill take longer to compute.We find that, in prac-
tice, a step size of 0.01 forμ ranging between 0 and 32 (more
than thrice the largest observable count across the simulations
and applications) and ν ranging from 0 to 10, is sufficient
to ensure accuracy for our applications, in conjunction with
interpolation within the look-up table and extrapolation out-
side the table–see Sect. 3.2.
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Such a table takes around twenty seconds to compute
(usingRversion 4.2.2RCoreTeam2022on a2022MacBook
Pro), consisting of over 850K items. A further advantage of
this approach is that the calculations canbedone in parallel by
making use of the foreach (Microsoft and Weston 2020)
anddoParallel (Corporation andWeston2019) packages
across multiple cores–this gives considerable gains in this
case and such an approach would be even more beneficial for
a larger, or finer, table, or both. The code to generate the look-
up table is provided on https://github.com/petephilipson/
MPCMP_grid/blob/main/grid.R. The look-up table would
be supplied as a simple text file to users, something that will
be made use of in development of an R package.

The time to compute the look-up table is minimal in this
instance and is easily absorbed into the overall computing
time. If a finer table was found to be required then the time
taken will necessarily scale up; we find it takes around five
minutes for a step size of 0.001, where parallelisation is of
greater value.

However, this is a one-off procedure; realistically most
models are run several times while analysts add or remove
parameters, tune their MCMC models by monitoring and
tweaking acceptance rates and assessing convergence diag-
nostics amongst other things. As such, the total time taken
for analysis en bloc, even for a small dataset, is unlikely to be
substantially inflated even if a finer look-up table is required.
Indeed, for large enough datasets the computing cost of gen-
erating the look-up table will be absorbed even on a one-off
analysis when compared to existing methods.

In this work we truncated the infinite series in Eq. (3) at
around twice the maximum value of μ, μMAX , used in con-
structing the look-up table, i.e. k ≈ 60 and found this to be
suitable for the simulations and applications under consider-
ation; results were reassuringly robust to a choice of k ≈ 90.
This is likely due to the low counts (and moderate underdis-
persion) found in each of our real world settings, upon which
the generated synthetic data are based.

We note that when the counts have a truncated upper limit
(as in the third application) thenwe simply take k = yτ where
yτ denotes this truncation value. This, in turn, induces a finite
limit on the normalising constant and circumvents concerns
around defining the upper bound for the look-up table on μ.

3.2 Interpolation and extrapolation

To improve numerical accuracy of the look-up method, we
employ bilinear interpolation for values within the look-up
table. Explicitly, for any given input (μ, ν) the corresponding
log λ value is approximated by

log λ(μ, ν) ≈ log λ̃(μ, ν)

=
[
(1 − �μ)

�μ

]� [
log λ(μ1, ν1) log λ(μ1, ν2)

log λ(μ2, ν1) log λ(μ2, ν2)

] [
(1 − �ν)

�ν

]

where μ1, μ2 and ν1, ν2 are the floor and ceiling tabulated
values of themean anddispersion surrounding the given input
(μ, ν), respectively, and

�μ = logμ − logμ1

logμ2 − logμ1
, �ν = ν − ν1

ν2 − ν1

are the corresponding weights.
For input values that lie outside the pre-computed table,we

utilise bilinear extrapolation to obtain an approximation for
λ in an analogous way. We note that such extrapolation was
not required in the simulations and applications that follow,
though it acts as a safeguard for general deployment of this
approach. The fact that we do not need to extrapolate here
suggests that the look-up table boundaries are sensible.

An alternative approach to using a look-up table with
interpolation and extrapolation is via an associative array,
or hash table, where the μ and ν values would form a key-
pair that can be looked up to fetch the corresponding value
of λ. The advantage of an associative array (or hash table)
is that there are no pre-specified limits (unlike for a two-
dimensional matrix that represents our look-up table) and
keys that are not in the current table can be added ‘on-the-
fly’. The R package hashmap (Russell 2017) provides such
functionality and was considered here. However, the time
taken to perform the look-up was considerably larger than
using the proposed (fixed) look-up table of values augmented
with inter(extra)polation as necessary so this approach is not
considered further here.

4 Simulation studies

The mean-parameterised Conway–Maxwell–Poisson distri-
bution is not included (nor, for that matter, is the ortho-
dox CMP parameterisation) in mainstream ‘off-the-shelf’
Bayesian software such as rstan (Stan Development Team
2020) and jags (Plummer 2004) so bespoke code was writ-
ten in R to implement the models. The code is available on
GitHub at https://github.com/petephilipson/MPCMP_grid/
tree/main/Fitting. All simulations and applications were car-
ried out in R 4.2.2 (R Core Team 2022) on a 2022 MacBook
Pro with 16GB RAM.

We consider performance of the proposed look-up table
method, the method of solving the polynomial within the
MCMC scheme and the current de facto bisection method
under three simulation scenarios, with each foreshadowing
applications to three real-world datasets in Sect. 5; we refer to
the three approaches as ‘bisection’, ‘polynomial’ and ‘look-
up’ in the results that follow. The scenarios consider what we
regard as small (n = 150), moderate (n = 2000) and large
(n = 15000) sample sizes. The latter two scenarios also
consider individual level effects on the mean and dispersion
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owing to the nature of the applications upon which they are
based; for the small sample we consider scalar ν only.

In each simulation study we conduct N = 100 replicates,
each with K = 5000 MCMC iterations, and make use of the
R package mpcmp (Fung et al. 2019) to generate the simu-
lated counts in each case. We use the simulation scenarios
to demonstrate both the accuracy and speed of the proposed
method, the latter of which is shown via a comparison to
the previously used approach by Huang and Kim (2019);
to ensure fair comparisons, the code used is identical in all
regards apart from the evaluation of λ. The code to generate
the simulation scenarios is available at https://github.com/
petephilipson/MPCMP_grid/blob/main/sim_studies.R.

4.1 Simulation I

The first simulation scenario considers a small sample size
of n = 150 and is based on the takeover bids data which is
subsequently analysed in Sect. 5.1. In particular we consider
Yi ∼ MPCMP(μi , ν) where we have a log-linear model for
the mean rate

log(μi ) = xT1iβ.

Here, β is a parameter vector of length ten, comprising of an
intercept term and nine regression parameters. The covariate
vector x1i is made up of five binary covariates (generated
as Bernoulli random variables with p = 0.5 in each case)
and four further continuous covariates, one from the normal
distribution and two from the lognormal distribution, one
of which is also included in its squared form. The (scalar)
dispersion parameter is set as ν = 1.5, indicating moderate
underdispersion.

The time taken per iteration is considerably lower for the
look-up approach, as exhibited in the left panel of Fig. 1
where we have used the log-scale for better visual compar-
isons; results in terms of parameter estimation are included
in the Appendix–see Fig. 10. The mean (SD) time per itera-
tion is 0.027 (0.009), 0.017 (0.004) and 0.0002 (0.0006) for
the bisection, polynomial and look-up methods respectively,
with the proposed look-up table approach being some 135
and 85 times faster in this setting at the iteration level than
the bisection and polynomial methods respectively, which
are themselves broadly similar.

The right panel of Fig. 1 displays the cumulative run
time against iterations, where we have incorporated the pre-
calculation of the look-up table into the time to ensure
comparisons are fair. Upon completion of 940 iterations the
look-up method starts to outperform the bisection method,
and after around 1500 iterations the look-upmethod becomes
the fastest of the three methods. Hence, even in a small sam-
ple setting if a modest run of only 2000 iterations is desired
then the look-up method is the fastest.

However, notwithstanding these gains, when considering
the total time taken to perform 5000 iterations, we observe
that, whilst the look-up table method is appreciably quicker,
the bisection and polynomial approaches are not overly time-
consuming in this small sample scenario, with total times of
around 134 (bisection) and 85 (polynomial) seconds, com-
pared to the look-up table runtime of 24s. To this end, we
now consider two further settings with larger sample sizes
in order to investigate how the proposed method performs in
larger data settings.

4.2 Simulation II

In the second simulation we consider a sample size of
n = 2000 based on the data analysed in Sect. 5.2. In
this scenario the counts come from m = 20 individuals,
each with one hundred observations; note that this balanced
design is an artefact of the simulation and not a require-
ment. Hence, we now consider (repeated) count responses
Yi j ∼ MPCMP(μi j , νi ) where we have further introduced
an individual specific heterogeneity parameter νi to recog-
nise that the dispersion–along with the mean rate–may vary
between individuals. We adopt a log-linear model for the
mean rate for individual i at response j of the form

log(μi j ) = β0 + β1x1i j + β2x2i j + β3x1i j x2i j + θi

where both x1i j and x2i j are binary covariateswith associated
parameters β1 and β2, with their interaction further captured
by β3. The individual effects on the mean rate and disper-
sion are captured through θi and νi respectively, with i =
1, . . . , 20 in each case. In the simulation the true parameter
values are given by β = (1.00,−0.10,−0.20, 0.10) with θ ,
generated using a sequence, as (−0.475,−0.425, . . . , 0.425,
0.475)with magnitudes loosely based on the second applica-
tion. Finally, although the dispersions can vary by individual,
we simulate using two values for νi , one representing
overdispersion (νi = 0.8, i = 1, . . . , 10) and the other
underdispersion (ν = 1.25, i = 11, . . . , 20) for simplicity.

Figure2 displays boxplots of the time taken (on the log-
scale for clarity) per iteration across the 100 simulations.
We see that times are once again considerably higher using
the bisection and polynomial approaches than for the look-
up table method. The mean (SD) time per iteration is 1.206
(0.285), 0.897 (0.121) and 0.005 (0.005) for the three respec-
tivemethods, with the look-up table approach now exhibiting
a 250-fold decrease in CPU time per iteration (or a relative
difference of 99.6%) over the bisection method, and a near
180-fold decrease with the polynomial method, based on the
average iteration time.

The right panel of Fig. 2 displays the cumulative run time
against iterations, where, as before, we have absorbed the
pre-calculation of the look-up table into the total time for
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Fig. 1 Average time (in seconds) per iteration of the MCMC scheme
for the three methods for simulation I (left panel); cumulative time (in
seconds) to perform 5K iterations for each method (right panel) with
the solid line for bisection, long-dashed line for polynomial and short-

dashed line for look-up. The vertical dashed lines represent the iteration
number at which the total time for the look-up method is first less than
the other methods

Fig. 2 Average time (in seconds) per iteration of the MCMC scheme
for the three methods for simulation II (left panel); cumulative time (in
seconds) to perform 5K iterations for each method (right panel) with
the solid line for bisection, long-dashed line for polynomial and short-

dashed line for look-up. The vertical dashed lines represent the iteration
number at which the total time for the look-up method is first less than
the other methods

the look-up method. Upon completion of around only 30
iterations the look-up method starts to outperform the other
methods.

Boxplots of the posterior distrbutions for each of the fixed
effects, and for the individual effects on both the mean and
dispersion are presented in Figs. 11 and 12. In each case we
see that the method performs well in terms of estimating the
true parameter values.

4.3 Simulation III

The third simulation is for a larger sample size of n = 15000,
broadly based on the data analysed in Sect. 5.3. Here the
counts come fromm = 100 individuals, eachwith 150 obser-

vations, whereby Yi j ∼ MPCMP(μi j , νi ) in what amounts
to a direct extension of the second simulation, albeit with an
additional covariate. We adopt a log-linear model for

log(μi j ) = β0 + β1x1i j + β2x2i j + β3x3i j + β4x4i j + θi

where each xmi j ,m = 1, . . . , 4 is a binary covariate
with associated parameters βm . The individual effects on
the mean rate and dispersion are captured through θi and
νi respectively, with i = 1, . . . , 100 in each case. In
the simulation the true parameter values are given by
β = (1,−0.10, 0.05, 0.10, 0.15) with θ , generated using
a sequence from −0.475 to 0.475 with magnitudes loosely
based on the third application. Finally, we simulate the dis-
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persions using a sequence of values for νi , ranging from
overdispersion (νi = 0.8) through to underdispersion (ν =
1.25).

The time in seconds per iteration (on the log-scale) for
each method under simulation III are displayed in the left
panel of Fig. 3. We see that times are once again lowest for
the look-up table approach, followed by the polynomial and
bisection methods; the mean (SD) time per iteration is 3.56
(0.12), 3.08 (0.81) and 0.014 (0.006) for the three respective
methods. The look-up table approach now results in a more
than 99% decrease in CPU time per iteration compared to
both alternative methods.

The right panel of Fig. 3 displays the cumulative run time
against iterations, where, as before, we have absorbed the
pre-calculation of the look-up table into the total time for
the look-up method. After only 8 and 9 iterations the look-
up method starts to outperform the bisection and polynomial
methods respectively, suggesting the look-up method offers
better gains in terms of reduced computational times as the
sample size increases. Boxplots of the posterior distrbutions
for the covariates, β and individual level means and disper-
sions are given in Figs. 13 and 14.

4.4 Comparison of computing times for simulations

Wenowcompare the computing times per iteration across the
sample sizes governing the simulations to allow an insight
into the scaleability of the proposed look-up method vis a vis
the other methods under consideration.

The right-hand panel of Fig. 4 allows an assessment of the
scaleability with sample size for each approach, where each
method is relatively compared in terms of mean time taken
to perform an iteration with the smallest sample size setting
of simulation I.

The look-up approach takes 23% longer as we move from
n = 150 to n = 2000, with a further three-fold increase
when we consider n = 15, 000. For the bisection method,
the mean time taken for an iteration is around forty times
longer when n = 2000 compared to n = 150, with a further
three-fold increase as we move to n = 150, 00. For the poly-
nomialmethod, there is near fifty-fold increase in the average
iteration time as we go from n = 150 to n = 2000 and an
approximate three-fold increase for the largest sample size.
We note here that this serves only as a guide since the pos-
tulated model changes across the simulations; in particular,
we consider only a scalar disperson in simulation I.

Across the three simulations we can clearly see from the
left panel of Fig. 4 that the look-up table approach offers
considerable computational gains, to the extent that the mean
time per iteration is lower for the look-up method with a
sample size of n = 150, 00 than using the other methods
with the smallest sample size of n = 150.

Table 1 Approximate effective sample sizes for the look-up method
across the three simulations

Simulation Comparison method me (SD)

I Bisection 998 (0.31)

Polynomial 999 (0.20)

II Bisection 995 (1.86)

Polynomial 995 (1.86)

III Bisection 999 (2.43)

Polynomial 999 (2.21)

4.5 Effective sample sizes for look-upmethod in
simulations

In order to quantify the error induced by the proposed
method, we consider the approximate effective sample size
when compared to both the bisection method and solving
the polynomial directly. Based on Eq. (5) we can find the
approximate posterior, based on the approximate value of λ

from the interpolated look-up table, as:

π̃(β, γ | y) ∝ π(β)π(γ )

n∏

i=1

λ̃i (μi , νi )
yi

yi !νi G(λ̃i (μi , νi ), νi )

where λ̃ is the interpolated value from the look-up table. We
can then form the ratio

r(β, γ ) := π(β, γ | y)
π̃(β, γ | y) (9)

where the numerator is given in Eq. (5). Here we consider
both the bisection method and the polynomial as the numera-
tor in Eq. 9. We then define the approximate effective sample
size (Owen 2013) as

me =
(∑K

i=1 r(β, γ )
)2

∑K
i=1 r(β, γ )2

where K is the number of MCMC samples under considera-
tion.

We calculate the approximate effective sample size under
each simulation scenario based on N = 100 replicates (this
allows us to quantify the uncertainty in the estimate). In each
casewe consider the approximate effective sample size based
on a reference value of K = 1000, with results–rounded to
the nearest integer - presented in Table 1. We see that the
look-up table gives approximate effective sample sizes that
are very close to the nominal K = 1000 value, indicating
that the interpolated λ values are very close to their more
exact counterparts found under the bisection and polynomial
methods.We note that this procedure, whilst having some
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Fig. 3 Average time (in seconds) per iteration of the MCMC scheme
for the three methods for simulation III (left panel); cumulative time (in
seconds) to perform 5K iterations for each method (right panel) with
the solid line for bisection, long-dashed line for polynomial and short-

dashed line for look-up. The vertical dashed lines represent the iteration
number at which the total time for the look-up method is first less than
the other methods

Fig. 4 Average time (in seconds) per iteration of theMCMCscheme for
each method (bisection–dark grey, polynomial–medium grey, look-up–
light grey) across the three simulation settings (left panel); times are on

the log-scale for clarity. Ratio of mean time taken for an iteration when
compared to simulation I (right panel) for eachmethod (bisection–solid,
polynomial–long dash, look-up–short dash)

overlap with the standard ESS calculation, is a comparison
between the look-up table and both the bisection and poly-
nomial approaches and does not imply that the ESS values
would be this high, as measured in the usual way (i.e. as the
number of independent realisations from the target distribu-
tion based on a sample of 1000 values).

5 Applications

The proposed method is illustrated on three data analy-
sis examples, a small sample exhibiting underdispersion,
and both medium and large datasets, which each exhibit

underdispersion and overdispersion due to individual level
heterogeneity–the latter two datasets are available at https://
github.com/petephilipson/MPCMP_grid. In each case we
first obtain the MLE of the model parameters using the
mpcmp package (Fung et al. 2019) to provide starting val-
ues and, moreover, to find the estimated covariance matrix
for some of the model parameters that require block updates.
For analysis, four MCMC chains were run in parallel with
1000 warm-up iterations followed by 5000 further iterations.
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5.1 Takeover bids data

In this first applicationwe revisit the underdispersed takeover
bids data first presented in Cameron and Johansson (1997)
and subsequently analysed via a hyper-Poisson model (Sáez-
Castillo and Conde-Sánchez 2013) and anMPCMPmodel in
both a frequentist and Bayesian setting (Huang 2017; Huang
and Kim 2019). In particular we focus on the latter analysis
and compare the proposed look-up approach with this pre-
vious analysis–full details of the dataset are given in both of
the former two references and the data are publicly available
from the R packages Ecdat (Croissant and Graves 2020)
and mpcmp (Fung et al. 2019).

The regression model for the log mean rate is formulated
as

log(μi ) = β0 + β1xi1 + . . . + β9xi9

for i = 1, . . . 126. Some background details on the explana-
tory variables x1, . . . , x9 are given in the supplementary
materials. The dispersion parameter, ν, is considered to be a
scalar for these data to match previous analyses, but covari-
ates could be incorporated in practice.

The vector of parameters β = (β1, . . . , β9) is jointly
updated with a proposal covariance matrix based on the esti-
mate obtained using the mpcmp package. For consistency,
the (vague) priors are the same as those used in Huang and
Kim (2019):

β ∼ N (0, 105 I9)

ν ∼ LN (0, 105).

5.1.1 Results

Boxplots of the posterior parameter estimates for the takeover
bids data are given in Fig. 5 under each approach. Results are
near identical across the three approaches and are in keeping
with those presented in Huang andKim (2019). These results
can be interpreted multiplicatively on the mean rate–as in
classic count data models–by exponentiating, but we do not
go in to detail here. Broadly, though, firms who were open
to friendly third-party bids had a higher average count of
bids, whereas firms with a lower price and holding less stock
had a lower average count of bids. For other parameters, the
highest posterior density interval covered zero.

We also monitor the CPU time taken to perform a sin-
gle iteration of the MCMC scheme under each approach,
allowing us to investigate the mean and standard deviation.
The mean (SD) times (in seconds) to complete a single itera-
tion were 0.0002 (0.0007) and 0.017 (0.007) for the look-up
and bisection methods respectively, with the look-up method
being almost 100 times faster on average–see the conclusion
of Sect. 5. The polynomial method performed very similarly

Fig. 5 Posterior distributions of estimated parameters (on the log-scale)
for the takeover bids data for the bisection and look-up methods

to the bisection method in this case, albeit with a smaller
standard deviation.

5.2 Yellow cards shown by English Premier League
match referees

Weconsider data on the number of yellowcards shownby ref-
erees in the men’s English Premier League between seasons
2018/19 and 2020/21. This gives a dataset of 1140 matches
and we have two observations for each match (one each for
the home and away team) to give a dataset of size n = 2280
comprising ofm = 25 referees. The original data are publicly
available at https://www.football-data.co.uk/. We consider
individual level effects for both components of the model
alongside the effect of being at home and on whether the
absence of fans due to theCOVID-19 pandemicmade amate-
rial difference to the number of cards shown, andwhether this
was different for nominal home and away teams in matches
played. Hence we model the log mean rate for the number
of yellow cards given by referee i in their j th match to the
home (k = 1) or away (k = 2) team as

log(μi jk) = β0 + β1 I (Homei jk = 1) + β2 I (NoFansi jk = 1)

+ β3 I (Homei jk = 1) × I (NoFansi jk = 1) + θi

whereβ is the vector of parameters for the intercept, the effect
of home advantage, the effect of no fans and the interaction
betweenhomeadvantage and there beingno fans present. The
individual referee effects (on the mean) are captured through
θi , i = 1, . . . 25. We consider dispersion at the individual
(referee) level in this application through νi , i = 1, . . . , 25.

As way of motivation, we plot the observed variance
against the observed mean for each referee in Fig. 6. Points
below the line represent referees for whom the raw data are
underdispersed, with points above showing overdispersion.
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Fig. 6 Observed variance against observed mean for each referee data;
the dashed red line represents equidispersion

We observe that many of the referees exhibit underdisper-
sion, but that some may also be overdispersed, motivating
use of a model that can handle both types.

The vectors of mean parameters β = (β0, β1, β2, β3) and
individual effects θ = (θ1, . . . , θ25) are each jointly updated
with proposal covariance matrices based on the estimates
obtained using the mpcmp package. The priors are chosen
to reflect that large differences–considered to be a doubling
or halving of the rate at which cards are issued–in referees
and in home and behind closed doors conditions are thought
to be unlikely, with a 5% chance of being outside this range.
This leads to the choices

β ∼ N (0, 0.5 log 2 × I9)

and

θ ∼ N (0, 0.5 log 2 × I25)

Theheterogeneity parameters have component-wise updates,
via a normal random walk on the log-scale through the intro-
duction of αi = log(νi ). We adopt a prior with a mean of
equidispersion (on the log-scale), namely αi ∼ N (0, 0.25)
for i = 1, . . . , 25 for the heterogeneity parameters.

5.2.1 Results

We find evidence that fewer yellow cards were administered
on average behind closed doors with a posterior mean for β2

of−0.12 (−0.22,−0.03), suggesting that matches are played
with less physical intensity, or that there is an overall crowd
effect. Furthermore, whilst more yellow cards are tradition-
ally given to the away team with a posterior mean for β1 of
−0.07 (−0.13, −0.01), likely owing to crowd pressure on
the referee, where this is ameliorated in the absence of fans,
with the posterior mean for β3 of 0.04 (−0.06, 0.14).

At the referee level,we see fromFig. 7 that a handful of ref-
erees issue more yellow cards on average, led by Mike Dean

with a posterior mean of 1.38 (1.22–1.52) and one referee,
Andre Marriner, issues significantly fewer yellow cards on
average with a posterior mean of 0.88 (0.76–0.99). In terms
of dispersion, we see that the majority of referees exhibit
underdispersion when looking at their posterior mean values
(which mostly lie above one), although the levels of uncer-
tainty are quite broad. Interestingly, Mike Dean also has the
largest posterior mean for undersdispersion of 1.41 (1.05–
1.77). A comparison of computing times for this application
is given in Fig. 9 at the end of the section.

5.3 Test match cricket bowling data

In this third application we consider Test match cricket bowl-
ing data. In particular we focus on the n = 115 players
who have taken more than 150 wickets in their Test career;
the data are available from http://www.howstat.com/cricket/
home.asp. We define Yi j to represent the number of wick-
ets taken by player i in during his j th bowling performance,
and let ni denote the number of observations in the career
of player i . Using this notation, we have the model Yi j ∼
MPCMP(μi j , νi ) with i = 1, . . . , 115 and j = 1, . . . , ni .

The other main aspect of the data to note is that they are
aggregated counts for each bowler. Alongside the wickets
there are data available on the venue (home or away, coded as
0/1 respectively), the (within)match innings (coded ordinally
as 1–4) and on the number of runs conceded for each count
of wickets taken. These are all considered as covariates in
the model. We also have data on the identity of the player, so
allow for individual heterogeneity. This gives the model

logμi j = β0 + β1 I (Homei j = 1)

+ β2 I (Inningsi j = 2) + β3 I (Inningsi j = 3)

+ β4 I (Inningsi j = 4) + β5Runsi j + θi

where β is the vector of parameters for the intercept, the
effect of playing away from home and the effects of bowling
in match innings two, three and four (hence bowling at home
and in the first innings are set as the reference groups in this
model) and for the continuous covariate runs.; some context
for the covariates is given in the supplementarymaterials. The
individual player effects (on the mean) are captured through
θi , i = 1, . . . 115. Here, recognising that we may have both
under and overdispersion at the individual level, we opt for a
player-specific dispersion term νi , i = 1, . . . 115. Naturally,
this couldbe extended to include covariates, particularly runs,
but this facet of the model is not pursued further here.

We note in passing that the counts are truncated at ten in
this application since there are a maximum of ten wickets
to take in a given match innings, thereby circumventing any
concerns about the range of μ in defining the look-up table
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Fig. 7 Posterior HDIs for
individual referee effects (left
panel) and for individual referee
dispersions (right panel) in
descending mean order; the
dashed, vertical line indicates
the average rate or
equidispersion accordingly

and about the point at which to truncate the now finite series,
which is truncated at ten.

A Metropolis-within-Gibbs algorithm is used in the
MCMCscheme,with component-wise updates for all param-
eters except for those related to the game-specific effects, β.
For these parameters a block update was used to circum-
vent the poor mixing seen when deploying one-at-a-time
updates. A sum-to-zero constraint was used for the player
ability effects, θ . The priors are

β ∼ N (0, 0.5 log 2I6)

θ ∼ N (0, 0.5 log 2I115)

ν ∼ N (0, 0.5 log 3I115).

5.3.1 Results

In the traditional cricket bowling average the number of runs
conceded per wicket is reported, i.e. runs/wickets. since this
places the metric on the same scale as the batting average.
Statistically, however, it makes more sense to consider the
reciprocal of this, with wickets as a count. Formulating this
in a log-linear model would neccesitate the inclusion of the
log(Runs) terms as an offset. As such, we can assess the
validity of the traditional average by inspecting the poste-
rior distribution of β5 which has mean (HDI interval) 0.41
(0.38–0.43)–this is a long way away from one, indicating
that a proper treatment of the bowling average might con-
sider a nonlinear relationship–in this case the expected count
of wickets would be proportional to runs raised to the power

of 0.41; we note that we have used a sample of Test bowlers
so this result may not hold across all players.

The posterior mean for eβ1 is 0.90 (0.88–0.92) suggests
that there is a definite home advantage effect, to the extent
that bowlers take 10% fewer wickets on average playing
away from home. The posterior distribution for the second
and third innings effects (β2 and β3 respectively) have 95%
intervals that include one, indicating there is no change to
the rate at which wickets are taken in these innings. For
the fourth innings, however, the posterior mean (for eβ4 ) is
0.88 (0.84–0.92), which is counter to conventional wisdom
about bowling being easier as the pitch gets older. However,
these estimates are adjusted for the nonlinear form of runs
mentioned above, under which (relatively) more wickets are
expected to be taken for lower values of runs that are more
common in the fourth innings.

Plots of the individual bowlers posterior highest density
intervals for both their mean ability and dispersion parame-
ters are given in Fig. 8. We find that around 10% of players
have a posterior mean value for νi that is consistent with
underdispersion, reflecting that a model capable of handling
dispersion in either direction is required here in order to
accurately model these data. The top ten bowlers (ranked
by posterior mean values of θ ) are presented in Table 2.

5.4 Comparison of computing times for applications

Comparing the computing times per iteration across the
applications allows an insight into the scaleability of the pro-
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Fig. 8 Ordered posterior HDIs for individual bowler means θ (left) and dispersions ν (right) in the Test match bowling application

Table 2 Top ten bowlers from
application III, ranked by
posterior mean values of θi

Rank Player (country) E(θ, | ν, y) E(ν | β, θ, y)

1 SF Barnes (England) 1.63 (0.13) 0.67 (0.15)

2 M Muralitharan (Sri Lanka) 1.41 (0.05) 0.86 (0.09)

3 CV Grimmett (Australia) 1.30 (0.09) 0.85 (0.15)

4 Sir RJ Hadlee (New Zealand) 1.27 (0.07) 0.66 (0.10)

5 MD Marshall (West Indies) 1.21 (0.06) 0.85 (0.12)

6 AA Donald (South Africa) 1.20 (0.06) 1.06 (0.13)

7 Yasir Shah (Pakistan) 1.19 (0.09) 0.68 (0.14)

8 DK Lillee (Australia) 1.18 (0.06) 0.91 (0.12)

9 R Ashwin (India) 1.18 (0.07) 0.78 (0.12)

10 DW Steyn (South Africa) 1.17 (0.06) 0.81 (0.11)

Table 3 Mean time in seconds
required to perform a single
iteration of the respective
MCMC schemes for each
method across the three
applications

Application Method Mean time (SD) per iter in seconds

Takeover bids Bisection 0.017 (0.007)

Polynomial 0.017 (0.004)

Look-up 0.0003 (0.0005)

Yellow cards Bisection 0.932 (0.046)

Polynomial 0.813 (0.016)

Look-up 0.003 (0.002)

Test bowlers Bisection 4.105 (1.401)

Polynomial 4.866 (0.046)

Look-up 0.010 (0.006)

posed look-up method in real settings. The results echo the
earlier findings from the simulation study, namely comput-
ing times are substantially lower when using the look-up
approach (see Fig. 9) with mean (SD) times per iteration
given across the applications in Table 3

In turn, these confer total fitting times in seconds–unless
stated otherwise–based on 5000 iterations, after taking the
pre-computation of the look-up table into account of: 87.35
(bisection), 82.57 (polynomial) and 24.53 (look-up) for the
bids application; 4661.14 (bisection; 77.69min), 4064.11

(polynomial; 67.74min) and 36.64 s (look-up) for the yel-
low cards application and 20526.06 (bisection; 342.10min),
24330.88 (polynomial; 405.52min) and 71.56 (look-up).

This serves to emphasise that the look-up table method
is fast even in large data settings, whereas the other meth-
ods do not scale well. For small datasets, the gains in speed,
while appreciable,wouldnot benefit the practitioner to a great
extent but as we move to a moderate sample size, and reit-
erating that, oftentimes, models will be run multiple times,
we see a meaningful difference of an order of magnitude as
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Fig. 9 Cumulative time (in
seconds, on the log-scale) taken
to perform 5K iterations for
each method and application.
The solid line represents the
bisection method, the
long-dashed line is for the
polynomial with the
short-dashed line for the look-up
approach

we move from tens of seconds to tens of minutes and this is
exacerbated in the larger sample settingwherewe the look-up
approach produces results in little more than a minute whilst
the other approaches each take several hours.

We also calculated the approximate effective sample size
under the look-up table method compared to both the bisec-
tion and polynomial methods in each application, in the same
manner as for the simulations–see Sect. 4.5. For a notional
sample size of N = 1000, we found value of me of 998,
996 and 996 for the takeover bids, yellow cards and bowl-
ing applications; results were the same when using either the
bisection or polynomial approach as the comparison.

6 Discussion

In this work we presented a fast look-up table Bayesian
implementation of an MPCMP model capable of handling
both under and overdispersion. The proposed model may
have broader use in other fields where there may be bidis-
persed data, for example modelling goals scored in football
matches–stronger and weaker teams are likely to exhibit
underdispersion; hockey, ice-hockey and baseball all have
small counts as outcomes of interest with bidispersion likely
at the team or player level, or both.

Moving away from sports to other fields, the MPCMP
model could be used to model parity, which is known to
vary widely across countries with heavy underdispersion
in more developed countries (Barakat 2016) and for lon-
gitudinal counts with volatile (overdispersed) and stable
(underdispersed) profiles at the patient level, where the level
of variability may be related to an outcome of interest in

a joint modelling setting. Spatial models with small counts
may also benefit from deployment of an MPCMP model (Li
and Dey 2021) in place of the commonly adopted Poisson
mixed with a lognormal distribution.

Classic count models are not capable of handling under-
dispersed data. However, there are alternative count models
capable of handling both under- and overdispersion which
may perform equally well, such as those based on the
Poisson–Tweedie (Bonat et al. 2018), gamma count (Zeviani
et al. 2014) and generalised Poisson (Consul and Famoye
1992) distributions; these models all have some restrictions
(in estimation, interpretation and a restricted parameter space
respectively) in handling underdispersion and were not pur-
sued further here, but would benefit from future research.

The approach presented in this work may prove useful
for other count data models (and beyond) where routine
implementation is hampered by a normalising constant or
where the mean is not a closed form function of the rate
parameter such as the hyper-Poisson model of Sáez-Castillo
and Conde-Sánchez (2013) and extensions (Chakraborty
and Imoto 2016) and generalisations (Imoto 2014) of the
Conway–Maxwell–Poisson distribution.

One drawback of theMPCMPmodel is that it is limited to
geometric overdispersion, which proved more than sufficient
for the range of applications considered here but may be a
restriction in other settings. As such, future research to iden-
tify and implement an appropriate count data model capable
of handling arbitrarily large over and underdispersion, whilst
preserving standard inference and retaining computational
feasibility, would offer complete flexibility for regression
modelling of count data.

123



81 Page 14 of 16 Statistics and Computing (2023) 33 :81

Avenues for future work are in the development of robust
heuristics or theoretical bounds for the choices of k and upper
limit of μ to pre-specify the number of terms involved in
approximating the underlying polynomial and in the specifi-
cation of the dimensions of the look-up table for the general
case. The range of likely values forμ can be informed by the
location of the count responses as is done here in an ad hoc
manner, but for the dispersion it may be informative to repa-
rameterise using the variance, which may also be preferable
for inferential reasons.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Further details on datasets used
in the application section

Here we give further information and background for the
covariates used in the takeover bids and Test match cricket
bowling applications in Sect. 5

Background on takeover bids data

The following descriptions of the explanatory variables are
taken from Sáez-Castillo and Conde-Sánchez (2013) and
Huang and Kim (2019):

– Defensive actions taken by management of target firm:
indicator variable for legal defense by lawsuit (x1), pro-

Fig. 10 Boxplots of posterior distributions under simulation I for the
look-up table approach–the red dots indicate the true values

posed changes in asset structure (x2), proposed change in
ownership structure (x3) and management invitation for
friendly third-party bid (x4).

– Firm-specific characteristics: bid price divided by price
14working days before bid (x5), percentage of stock held
by institutions (x6), total book value of assets in billions
of dollars (x7) and book value squared (x8).

– Intervention by federal regulators: an indicator variable
for Department of Justice intervention (x9).

Background on test match cricket bowling data

The covariates included in the third application are game-
specific, allowing for home advantage and pitch degradation
(via thematch innings effects).Homeadvantage is ubiquitous
in sport (Pollard and Pollard 2005), and it is widely believed
that it is easier to bowl as a match progresses to the third and
fourth innings due to pitch degradation.

Results from simulation studies

Boxplots of posterior distributions for each simulation are
included here.

Simulation I

We see fromFig. 10 that the proposed look-up table approach
performs very well in terms of estimating the regression
parameters and the heterogeneity parameter, even in this
small sample setting.

Simulation II

Fig. 11 Boxplots of posterior distributions for β under simulation II
for the look-up table approach; the red dots indicate the true values

Simulation III
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Fig. 12 Boxplots of posterior distributions for θ (left) and ν (right) under simulation II for the look-up table approach; the red dots indicate the
true values

Fig. 13 Boxplots of posterior distributions for β under simulation III
for the look-up table approach; the red dots indicate the true values

Fig. 14 Boxplots of posterior distributions for θ (left) and ν under simulation III for the look-up table approach; the red dashed line indicates the
true values
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