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Abstract
We propose a variational inference-based framework for training a Gaussian process regression model subject to censored
observational data. Data censoring is a typical problem encountered during the data gathering procedure and requires spe-
cialized techniques to perform inference since the resulting probabilistic models are typically analytically intractable. In
this article we exploit the variational sparse Gaussian process inducing variable framework and local variational methods to
compute an analytically tractable lower bound on the true log marginal likelihood of the probabilistic model which can be
used to perform Bayesian model training and inference. We demonstrate the proposed framework on synthetically-produced,
noise-corrupted observational data, as well as on a real-world data set, subject to artificial censoring. The resulting predictions
are comparable to existing methods to account for data censoring, but provides a significant reduction in computational cost.

Keywords Gaussian process regression · Tobit regression · Bayesian statistics · Censored data · Variational inference · Local
variational methods

1 Introduction

Central to any data analysis procedure is data gathering. A
practical problem that typically arises during the data gath-
ering process is censoring, which occurs when we partially
observe ameasurement.An example of data censoring occurs
when the measured value falls outside the sensitivity range
of the measurement device (e.g. a temperature sensor). Spe-
cialized inference techniques are required to address the
problems that arise from censored data.

Tobit models are a popular class of censored regression
models, tracing back to the work of Tobin (1958). Subse-
quently, Amemiya (1984) provided a detailed survey and
taxonomy of the different parametric variations of Tobit
approaches. These models have been adapted and applied
to numerous settings. For example, Allik et al. (2016) use a
parametric type I Tobit model to develop a formulation of
the Kalman filter suitable for censored observations. Recent
censored regression frameworks have focused more on com-
bining censored models with flexible architectures that can
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capture the underlying nonlinear relationships in data. These,
for example, include deep neural networks (Wu et al. 2018),
random forests (Hutter et al. 2013; Li and Bradic 2020) and
Gaussian processmodels (Ertin 2007;Groot andLucas 2012;
Chen et al. 2013; Gammelli et al. 2020a, b).

Gaussian processes (GPs) provide a fully Bayesian non-
parametric approach for performing inference for nonlinear
functions and have become increasingly more popular in the
machine learning community (MacKay 2004; Rasmussen
and Williams 2006; Bishop 2009; Titsias and Lawrence
2010). Using the GP regression framework, we can derive
the full Bayesian predictive density for such functions, allow-
ing us to estimate a mean function and quantify uncertainty
around the mean estimate (Snelson et al. 2004; Groot and
Lucas 2012). In GP regression, point estimates for the
unknown kernel function parameters are often obtained by
maximizing the log marginal likelihood of the observed data
or, in variational methods, a lower bound on the log marginal
likelihood. However, the presence of the censored observa-
tionsmeans that thismarginal likelihood cannot be computed
in closed-form.

Ertin (2007) proposed a censored GP regression frame-
work, within the context of censored wireless sensor read-
ings, by treating the censored variable as a mixture of a
binary and a Gaussian random variable followed by defining
a GP prior over the latent function values. Ertin (2007) cir-
cumvents the analytical intractability of the posterior density
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and the marginal likelihood of this model by approximating
the posterior density with a Laplace approximation (Bishop
2009).

Groot and Lucas (2012) then extended the censored GP
regression framework to include the type I Tobit model
(see Amemiya 1984). They circumvent the analytically
intractable posterior density by applying expectation prop-
agation (Minka 2001a, b) with the goal to approximate the
type I Tobit likelihood terms by local likelihood factors using
non-normalized Gaussian density functions. This work has
been applied to wind power forecasting (Chen et al. 2013),
predicting clinical scores fromneuro-imaging data (Rao et al.
2016), andmodeling the demand for shared transport services
while allowing for time-varying detection limits (Gammelli
et al. 2020a).

Gammelli et al. (2020b) propose an extension of the
work of Groot and Lucas (2012) by {1} incorporating a
non-constant heteroskedastic observation model, {2} using a
multi-output GP prior to exploit information from potentially
correlated outputs to enable better modeling of the censored
data, and {3} circumventing the analytical intractability that
arises from the proposed framework by developing a vari-
ational lower bound on the log marginal likelihood which
they optimized with stochastic variational inference (Hoff-
man et al. 2013; Blei et al. 2017).

In this article, we provide a mathematical tool that allows
us to derive a closed-form variational lower bound on the
log marginal likelihood of the original probabilistic model
by applying variational sparse GP regression in conjunction
with local variational methods. Our proposed methodology
is closely related to the work of Ertin (2007) and Groot and
Lucas (2012) and, similar to Gammelli et al. (2020b), relies
on variational methods to perform approximate inference.

A key development in our approach is that we maximize
a secondary variational lower bound on the Tobit model
which relies on {1} the variational sparse GP regression
framework developed by Titsias (2008, 2009) and {2} local
variational methods which aim to lower bound the Tobit like-
lihood factors instead of approximating these factors (see
Jordan et al. 1999; Nickisch and Rasmussen 2008; Bishop
2009). The use of the variational sparseGP framework results
in a reduction in time complexity (Titsias 2009), thereby
enabling us to perform inference on larger censored data sets
previously intractable to an analysis by GP regression mod-
els. To the best of our knowledge, such an implementation
does not yet exist in the current censored Gaussian process
regression literature. We demonstrate that our variational
inference-based framework computationally outperforms the
competing benchmarks while maintaining comparable pre-
diction accuracy.
The remainder of the article is structured as follows. Sec-
tion2 focuses on the theoretical development of the Tobit
GP regression model and Section3 introduces the variational

approximations that allow us to derive a closed-form vari-
ational lower bound that can be used for Bayesian model
training and inference. In Section4 we derive the required
equations for the latent function predictive posterior den-
sity, while Section5 demonstrates the ability of the proposed
framework to learn a latent function representation from
observational data subject to artificial censoring. In Section6
we end with a discussion followed by making explicit some
of the limitations associated with the proposed framework.

2 The Tobit Gaussian Process Regression
Model

In this section, we briefly review the standard GP regression
model and then introduce the theoretical framework for Tobit
GP regression.

Supposewehave adata set consistingof pairs {(xi , yi )}Ni=1.
We assume that each observation yi is a noisy, independent
realization of an unknown latent function fi = f (xi ) at
scalar input xi , with additive noise from a zero mean Gaus-
sian density with unknown variance σ 2

y :

yi = fi + εi ; εi ∼ N (εi |0, σ 2
y ) (1)

This induces a joint Gaussian likelihood function of the form

p( y| f , σy) = N ( y| f , σ 2
y INN ) (2)

We denote with N (·) the Gaussian density function, y ∈
R

N×1 the vector of observed data, and f ∈ R
N×1 the vector

of latent function values at the training input locations x ∈
R

N×1. The matrix INN denotes the N × N identity matrix.
Next, we specify a zero mean GP prior with kernel function
k(xi , x j ) such that

f ∼ GP(0, k(xi , x j )) (3)

For the finite set of training input locations x associated
with f , the GP follows a multivariate Gaussian density
with covariance matrix K NN , the N × N covariance matrix
which is constructed using the user-specified kernel function
k(xi , x j ) on the training input locations:

p( f |θk) = N ( f |0, K NN ) (4)

where θk collectively denotes the typically unknown kernel
function parameters.

Point estimates for the unknown kernel parameters θk and
unknown noise variance σ 2

y , which we collectively denote by
the parameter vector θ , can be obtained by using gradient-
based optimization to maximize the log marginal likelihood
of the model which is given by
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ln p( y) = ln

⎡
⎢⎣
∫

f

p( y| f , σ 2
y )p( f |θk)d f

⎤
⎥⎦

For the Gaussian likelihood function in Eq. (2), the marginal
likelihood of the model can be computed analytically as

p( y|θ) = N ( y|0,CNN )

CNN = K NN + σ 2
y INN (5)

Refer to Rasmussen and Williams (2006) and Bishop (2009)
for a detailed overview of the Gaussian process regression
framework.

The Tobit Gaussian process regression model can be
thought of as an extended version of the standard GP regres-
sion model as applied to censored observational data. For
censored data, the standard GP regression likelihood func-
tion (see Eq. (2)) is no longer valid due to limitations that
arise from our measurement sensitivity range.

Suppose that the detection limits for the measurement of
interest are known in advance and constant with respect to
time. When we observe that yi = lb, where lb corresponds
to the lower detection limit, we only know an upper bound
on the corresponding observation for yi , i.e., yi ∈ (−∞, lb],
rendering the Gaussian assumption inappropriate (Groot and
Lucas 2012).

To account for the limitation associated with the sensi-
tivity range, we alter the way we construct our likelihood
function. In latent function regions where we observe data,
we retain the base GP architecture as outlined by Eqs. (1) to
(2). However, in latent function regions where, for example,
the measurement instrument/analysis procedure transforms
(or reports) the data as the corresponding censored detection
limit, we ask ourselves the following additional question:

What is the probability that the data, i.e., the random variable
Yi that is associated with marginal density p(yi | fi ), falls
either (scenario 1) above the upper detection limit ub or
(scenario 2) below the lower detection limit lb?

In other words, when we consider the marginal density asso-
ciated with the random variable Yi , we want to answer the
following two questions (subject towhich censoring scenario
we consider)

P(Yi ≥ ub) = 1 −
ub∫

−∞
p(yi | fi )dyi (6)

P(Yi ≤ lb) =
lb∫

−∞
p(yi | fi )dyi (7)

Note that P(·) denotes the probability value whereas p(·)
denotes the probability density function, associated with the
random variable Yi , which we derive from Eq. (1) as

p(yi | fi ) = N (yi | fi , σ 2
y ) (8)

From Eqs. (6), (7) and (8) we can construct a piece-wise
defined likelihood, i.e., a mixed-likelihood, which we will
denote with the symbol po(·), that accounts for data censor-
ing as follows

po(yi | fi ) =

⎧⎪⎨
⎪⎩

�(lb| fi , σ 2
y ) if yi = lb

N (yi | fi , σ 2
y ) if lb < yi < ub

1 − �(ub| fi , σ 2
y ) if yi = ub

(9)

We denote with �(·) the Gaussian cumulative distribution
function (cdf). Furthermore, note that we implicitly assumed
that the latent function is corrupted by noise and that the
noise-corrupted data value is then censored and reported
(Groot and Lucas 2012). For notational convenience we use
�(ub| fi , σ 2

y ) to imply �(
ub− fi

σy
).

Gammelli et al. (2020b) draws an interesting connection
between heteroskedastic regression and censored observa-
tion models. The authors provide a qualitative understanding
of the reasons why they suggest the use of input-dependent
noise models and show, from a simulation-based perspective
and real-world data sets, how heteroskedasticity can allow
one tomore accuratelymodel the censoredobservations asso-
ciated with Tobit-based likelihood functions.
As noted by Gammelli et al. (2020b), the likelihood variance
parameter σ 2

y directly controls the slope of the Gaussian cdf
factors (see Eq. (9)) and would enforce the same amount
of overestimation for all of the censored observations (refer
to Appendix A, SectionA.1). However, the amount of over-
estimation can be regulated/adjusted with a heteroskedastic
parameterization for the variance. This would allow the Tobit
model to automatically tune the amount of overestimation
resulting in improved predictive performance. Consequently,
we augment each Gaussian cdf factor in Eq. (9) with an
additional variance parameter and construct an adjusted
mixed-likelihood, which we will denote with the symbol
pm(·), that assigns the following probability/density func-
tion portions conditioned on the training input location

pm (yi | fi ) =

⎧⎪⎨
⎪⎩

�(lb| fi , σ 2
y + σ 2

lb
) if yi = lb

N (yi | fi , σ 2
y ) if lb < yi < ub

1 − �(ub| fi , σ 2
y + σ 2

ub ) if yi = ub

(10)

Note that for training input locations associated with the
lower detection limit lb we assume a constant (with respect
to the input xi ) heteroskedastic noise model with a total
variance contribution which is the sum of the original mixed-
likelihood variance in Eq. (9) and a regulating variance
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parameter. A similar argument holds for the upper detection
limit ub (refer to Appendix A SectionA.2 for more details).
Note that the variance parameter for the uncensored obser-
vations remains the same as in Eq. (9). Given a censored data
set with a total of N entries, and assuming independence, we
can construct our mixed-likelihood function as follows

N∏
i=1

pm(yi | fi ) =
∏
yi=lb

[1 − �( fi |lb, σ 2
y + σ 2

lb )]

×
∏

lb<yi<ub

N (yi | fi , σ 2
y )

∏
yi=ub

�( fi |ub, σ 2
y + σ 2

ub ) (11)

We arrived at Eq. (11) by using Eq. (10) and the Gaussian
cdf property �(y|x, σ 2) = 1 − �(x |y, σ 2) (see Pishro-Nik
2014). Note that Eq. (11) is known as the Tobit likelihood
function, or the type I Tobit model, and comprises a mixture
of Gaussian density and Gaussian cdf likelihood terms (see
Amemiya 1984; Groot and Lucas 2012). From here on we
drop the dependence on any model parameters for notational
convenience. We also abuse notation and use the following
definition for notational convenience

pm( y| f ) =
N∏
i=1

pm(yi | fi ) (12)

Inference about the latent function proceeds along the same
line as for the standard GP regression model. We start with
our mixed-likelihood function, as given by Eq. (12), and
define a zero mean GP prior over f with kernel function
k(xi , x j ) (see Eqs. (3) and (4)). Using Bayes’ rule, we can
compute a posterior density as follows

p( f | y) = pm( y| f )p( f )
p( y)

(13)

Regardless of whether the factor pm(yi | fi ) or po(yi | fi ) is
used in the mixed-likelihood function, we refer to Eq. (13)
as theTobitGaussian process regression (T-GPR)model. The
marginal likelihood of the censored data set is given by

p( y) =
∫

f

pm( y| f )p( f )d f (14)

However, unlike the standard GP regression model, the
marginal likelihoodgivenbyEq. (14) is analytically intractable
due to themixture of Gaussian density andGaussian cdf like-
lihood terms (Ertin 2007; Groot and Lucas 2012).

3 Lower Bounding the LogMarginal
Likelihood

Next, we propose circumventing this analytical intractability
by adopting a variational inference-based framework, which
will allow us to compute an analytically tractable lower
bound on the true log marginal likelihood of the original
probabilistic model given by Eq. (13). This new lower bound
can then be used to perform Bayesian model training and
inference.

3.1 Applying theVariational Sparse Gaussian
Process Framework

The application of the standard GP regression model to large
data sets has always been challenging due to the need to
invert the N ×N covariance matrix CNN (see Eq. (5)) which
requires time complexity that scales asO(N 3)where N is the
number of data entries. For large data sets, the (numerical)
inversion process becomes prohibitively slow rendering the
standard GP regression model computationally intractable.
Consequently, practitioners have resorted to using approx-
imate or sparse methodologies to address the limitations
associated with the (numerical) inversion process. Much
research has primarily focused on advanced sparse GP
methodologies where a smaller set of M function points
are used as support/inducing variables. For example, see the
work of Csató and Opper (2002), Seeger et al. (2003) and
Snelson and Ghahramani (2005). For a detailed and unifying
view of sparse approximate GP regression, refer to the work
of Quiñonero-Candela and Rasmussen (2005).

The variational sparse GP regression framework proposed
by Titsias (2008, 2009) has sparked significant interest. The
proposed methodology, with time complexity that scales
as O(NM2), allows practitioners to circumvent the com-
putational demands associated with inverting the required
covariance matrix while also offering a formulation whereby
practitioners can maximize a variational lower bound to
select the inducing variable input locations and the model
hyperparameters. Although the variational sparse GP regres-
sion framework was originally proposed for computational
speedups, the framework has also been used as a mathemat-
ical tool to induce an analytically tractable lower bound for
various state-of-the-art probabilistic models such as {1} the
(B)GP-LVM (Titsias and Lawrence 2010; Damianou et al.
2016) and {2} deep Gaussian processes (Damianou and
Lawrence 2013).
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We adopt the variational sparse GP regression framework
developed by Titsias (2008, 2009) for the following reasons:
{1} We exploit the sparse framework for its original intent
which is to offer computational speedups for large data sets,
and {2} the sparse framework allows us to derive a vari-
ational lower bound on the log marginal likelihood of the
T-GPRmodel in Eq. (13) which remains intractable. We will
induce analytical tractability by exploiting local variational
methods which result in a framework that can be used for
model training and inference. Note that the variational lower
bound of our proposed framework can also be used as a step-
pingstone to gain access to the (B)GP-LVM (see Titsias and
Lawrence 2010; Damianou et al. 2016) as applied to cen-
sored observational data. It is worth pointing out that the
standard GP latent variable model (Lawrence 2004), as well
as the (B)GP-LVM counterpart (Titsias and Lawrence 2010),
are typically applied in the context of uncensored observa-
tional data. See, for example, the applications in Urtasun
et al. (2006), Lawrence (2007), Wang et al. (2008), Tit-
sias and Lawrence (2010), Campbell and Yau (2015) and
Zhang et al. (2017). However, we have yet to find any sparse
GP inducing variable-based or (B)GP-LVM frameworks that
explicitly incorporate the type I Tobit likelihood function
to account for censoring in regression settings. The clos-
est related literature we could find stems from the survival
analysis branch of statistics and includes the work of Barrett
and Coolen (2016), Saul et al. (2016), and Alaa and van der
Schaar (2017). Another related approach includes the work
of Lázaro-Gredilla (2012) who applied the Bayesian warped
GP framework to censored datawithout explicitly accounting
for the censoring mechanism in the likelihood function.

The synthesis of our proposed approach finds inspiration
in the work of Saul et al. (2016), which itself builds on the
ideas of Hensman et al. (2013) and Hensman et al. (2015).
However, instead of resorting to numerical integration to
address the intractability which arises from the non-Gaussian
likelihood function (which is the type I Tobit likelihood func-
tion in our case), we exploit local variational methods (see
Section3.2).

In principle, the variational sparse GP regression frame-
work developed by Titsias (2008, 2009) aims to minimize,
in the Kullback-Leibler (KL) divergence sense, the dissimi-
larity between the approximate posterior and exact posterior
density. Within the context of the Tobit GP regression model
in Eq. (13), we start by augmenting the prior density with
inducing variables u such that

p( f , u| y) = pm( y| f )p( f |u)p(u)

p( y)
(15)

Note that Eq. (15) is equivalent to the original T-GPR model
since we can recover Eq. (13) by marginalizing out the
inducing variables u. However, the reason we allow for the

augmented inducing variables u stems from the fact that
these variables allow us to produce analytically tractable
(and computationally efficient) approximations. Our goal is
to minimize the KL-divergence given by

KL[q( f , u)||p( f , u| y)]
=
∫∫

u f

q( f , u) ln
q( f , u)

p( f , u| y)d f du (16)

We expand Eq. (16) by using Eq. (15) to obtain

ln p( y) = KL[q( f , u)||p( f , u| y)]
+
∫∫

u f

q( f , u) ln
pm( y| f )p( f |u)p(u)

q( f , u)
d f du

Next, we recall that the KL-divergence satisfies Gibb’s
inequality (MacKay 2004), i.e.,

KL[q( f , u)||p( f , u| y)] ≥ 0

Therefore, we conclude that

ln p( y) ≥ F[q( f , u)] (17)

The quantity F[q( f , u)] is given by

F[q( f , u)] =
∫∫

u f

q( f , u) ln
pm( y| f )p( f |u)p(u)

q( f , u)
d f du

(18)

We refer to the quantity in Eq. (18) as the variational lower
bound. Other common names for this bound include the Evi-
dence Lower BOund (ELBO), see Blei et al. (2017), or the
variational free energy (MacKay 2004). Next, we note that
maximizing the variational lower bound given by Eq. (18) is
equivalent tominimizing theKL-divergence in Eq. (16). Fol-
lowing Titsias (2009), we select the following approximating
variational posterior density

q( f , u) = p( f |u)q(u) (19)

From Eq. (19) we see that under the selected variational
approximation, the only free-form density we can optimize
for is q(u) since p( f |u) corresponds to the conditional GP
prior density under the augmented probability model (for
further details, see Titsias 2009). Furthermore, since p( f |u)

does not have an explicit dependence on the data y, the only
way for the data y to affect f is through the inducingvariables
u, i.e., u acts as a summary statistic, which is how we build
sparsity into the model since M � N (see Bui and Turner
2014). The symbol M denotes the number of user-specified
inducing variables.
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With Eq. (19) we can simplify Eq. (18) to obtain the fol-
lowing variational lower bound

F [q(u)] =
∫

u

q(u)

⎡
⎢⎣
∫

f

p( f |u) ln pm( y| f )d f + ln
p(u)

q(u)

⎤
⎥⎦ du

(20)

However, we note that Eq. (20) contains the following ana-
lytically intractable expectation

Ep( f |u)[ln pm( y| f )] =
∫

f

p( f |u) ln pm( y| f )d f

(21)

The analytical intractability (see Eqs. (22) and (23) below)
arises from the presence of the Gaussian cdf factors in the
likelihood function. We note that

Ep( f |u)[ln pm( y| f )]

=
∫

f

p( f |u) ln
N∏
i=1

pm(yi | fi )d f (22)

From Eqs. (11) and (22) we have that

Ep( f |u)[ln pm( y| f )]

=
∫

f lb

p( f lb |u) ln

⎧⎨
⎩
∏
yi=lb

[1 − �( fi |lb, σ 2
y + σ 2

lb
)]
⎫⎬
⎭d f lb

+
∫

f un

p( f un |u) ln

⎧⎨
⎩

∏
lb<yi<ub

N (yi | fi , σ 2
y )

⎫⎬
⎭d f un

+
∫

f ub

p( f ub |u) ln

⎧⎨
⎩

∏
yi=ub

�( fi |ub, σ 2
y + σ 2

ub )

⎫⎬
⎭d f ub (23)

Note that we used the marginalization property of the mul-
tivariate Gaussian density to arrive at Eq. (23). We denote
with symbol f lb the vector of latent function values associ-
atedwith the lower bound lb censored observations.A similar
argument holds for the latent function vector f ub . Symbol
f un denotes the vector associated with the uncensored obser-
vations.

3.2 Local Variational Methods: Lower Bounding the
CensoredVariables

We circumvent the analytical intractability in Eq. (23) by
implementing an alternative ‘local’ lower bounding strategy
that shares similarities with the variational framework we

have been working with. The variational inference frame-
work we have been considering, within the context of the
work of Titsias (2008, 2009), and in general, can be inter-
preted as a ‘global’ method in the sense that we directly seek
an approximation to the entire posterior density over all the
model random variables of interest. ‘Local’ variational meth-
ods provide an alternative approach and involve finding local
bounds (either upper or lower) on functions over individual
or groups of variables within the model (Gibbs and MacKay
2000 and Bishop 2009).

From Eq. (23) we see that the functions of interest, i.e.,
the functions that result in the expectation being analytically
intractable, correspond to theGaussian cdf likelihood factors.
If we can construct local lower bounds for each Gaussian
cdf factor present in Eq. (23), we can use the corresponding
local lower bounds, in conjunction with Eq. (20), to develop
a secondary variational lower bound on the logmarginal like-
lihood, which we can use for Bayesian model training and
inference about the latent function of interest. Following the
approach outlined in Nickisch and Rasmussen (2008), we
propose the following quadratic local lower bound on each
Gaussian cdf likelihood factor in the logarithmic domain.
Here we provide an example for the censored variables asso-
ciated with lb.

ln [1 − �( fi |lb, σ 2
y + σ 2

lb )]
≥ 1

σ 2
y + σ 2

lb

[
−1

2
f 2i + bi ( fi − lb) + ci

]
(24)

We compute the required local likelihood lower bound
parameters bi and ci by requiring that, at some arbitrary
(and freely optimizable variational) point ζi , the following
conditions must hold

ln [1 − �( fi |lb, σ 2
y + σ 2

lb )]
∣∣∣
fi=ζi

= 1

σ 2
y + σ 2

lb

[
−1

2
f 2i + bi ( fi − lb) + ci

]∣∣∣∣∣
fi=ζi

d

d fi

(
ln [1 − �( fi |lb, σ 2

y + σ 2
lb )]

)∣∣∣∣
fi=ζi

= d

d fi

(
1

σ 2
y + σ 2

lb

[
−1

2
f 2i + bi ( fi − lb) + ci

])∣∣∣∣∣
fi=ζi

(25)

Using Eqs. (24) to (25) we can show that

1 − �( fi |lb, σ 2
y + σ 2

lb )

≥ exp

{
1

σ 2
y + σ 2

lb

[
−1

2
f 2i + bi ( fi − lb) + ci

]}
(26)

bi = ζi − (σ 2
y + σ 2

lb )
N (ζi |lb, σ 2

y + σ 2
lb
)

1 − �(ζi |lb, σ 2
y + σ 2

lb
)

(27)
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Fig. 1 The black curve depicts the Gaussian cdf factor associated with the upper detection limit ub, viewed as a function of f , together with the
local likelihood lower bound (depicted in blue, see Eqs. (29) to (30)) for various values of the freely optimizable variational parameter ζ (blue
cross). The black dot represents the Gaussian cdf factor output at the latent function test point ( ft = 2). We see that by adjusting the parameter ζ

we can control the quality of the local likelihood lower bound output (blue dot). We also note that the local lower bound output becomes tight, i.e.,
exact, when ζ = ft . (Color figure online)

ci = 1

2
ζ 2
i − bi (ζi − lb)

+ (σ 2
y + σ 2

lb ) ln [1 − �(ζi |lb, σ 2
y + σ 2

lb )] (28)

Note that a similar argument holds for theGaussian cdf factor
associated with �( fi |ub, σ 2

y + σ 2
ub ). We can show that

�( fi |ub, σ 2
y + σ 2

ub )

≥ exp

{
1

σ 2
y + σ 2

ub

[
−1

2
f 2i + bi ( fi − ub) + ci

]}
(29)

bi = ζi + (σ 2
y + σ 2

ub )
N (ζi |ub, σ 2

y + σ 2
ub )

�(ζi |ub, σ 2
y + σ 2

ub )

ci = 1

2
ζ 2
i − bi (ζi − ub)

+ (σ 2
y + σ 2

ub ) ln�(ζi |ub, σ 2
y + σ 2

ub ) (30)

Refer to Fig. 1 for an illustration of the proposed local like-
lihood lower bound approach as applied to the Gaussian cdf
factor associated with the upper detection limit ub (see Eqs.
(29) to (30)). Observe that the local lower bound parameters
bi and ci only depend on the freely optimizable parameter
ζi . In other words, we can merely adjust the parameter ζi
to improve the quality of the local lower bound. Next, we
observe from Eqs. (11) and (26) to (30) that

∏
yi=lb

[1 − �( fi |lb, σ 2
y + σ 2

lb )] ≥ g( f lb |ζ lb , lb, σ
2
y , σ 2

lb )

(31)∏
yi=ub

�( fi |ub, σ 2
y + σ 2

ub ) ≥ g( f ub |ζ ub , ub, σ
2
y , σ 2

ub )

(32)

We note that

g( f lb |ζ lb , lb, σ
2
y , σ 2

lb ) =

exp

{
1

σ 2
y + σ 2

lb

[
−1

2
f Tlb f lb + bTlb ( f lb − lb1lb ) + cTlb1lb

]}

(33)
g( f ub |ζ ub , ub, σ

2
y , σ 2

ub ) =

exp

{
1

σ 2
y + σ 2

ub

[
−1

2
f Tub f ub + bTub ( f ub − ub1ub ) + cTub1ub

]}

(34)

We denote with Nlb the number of censored lower bound
observations. The Nlb × 1 vectors blb and clb collect the
element-wise entries, as calculated using Eqs. (27) and (28),
for each element of the vector f lb (each of which is associ-
atedwith a freely optimizable variational parameter ζi , which
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we collectively denote by the Nlb ×1 vector ζ lb ). The symbol
1lb denotes the Nlb × 1 vector of ones. A similar argument
holds for f ub . Next, from Eqs. (21), (31) and (32) we can
show that
∫

f

p( f |u) ln pm( y| f )d f

≥
∫

f

p( f |u) ln pl( y| f )d f (35)

We denote with pl( y| f ) the following

pl ( y| f ) = g( f lb |ζ lb , lb, σ 2
y , σ 2

lb
)

×
⎡
⎣ ∏
lb<yi<ub

N (yi | fi , σ 2
y )

⎤
⎦ g( f ub |ζ ub , ub, σ 2

y , σ 2
ub ) (36)

Observe that by our local likelihood lower bound design, we
have that ln g( f lb |ζ lb , lb, σ

2
y , σ 2

lb
) and ln g( f ub |ζ ub , ub, σ

2
y , σ 2

ub )

are quadratic in the logarithmic domain. Consequently, we
can analytically evaluate each Gaussian expectation on the
right-hand side of the inequality in Eq. (35), circumventing
the original analytical intractability that arose in Eq. (21) as a
result of the presence of the Gaussian cdf likelihood factors.
Using Eqs. (17) to (20) and (35) we also observe that

ln p( y) ≥ F [q(u)]

≥
∫

u

q(u)

⎡
⎢⎣
∫

f

p( f |u) ln pl ( y| f )d f + ln
p(u)

q(u)

⎤
⎥⎦ du (37)

From Eq. (37) we see that by lower bounding each Gaussian
cdf factor we have implicitly developed a secondary varia-
tional lower bound to the original lower bound F[q(u)] (see
Eq. (20)) stemming from the Kullback–Leibler divergence
framework (which is itself a lower bound to the log marginal
likelihood of the original probabilistic model). We denote
our secondary variational lower bound as follows

F∗[q(u)]

≥
∫

u

q(u)

⎡
⎢⎣
∫

f

p( f |u) ln pl( y| f )d f + ln
p(u)

q(u)

⎤
⎥⎦ du

(38)

3.3 Deriving the Optimal q(u)Density and the
‘Collapsed’ Lower Bound

Next, we analytically maximize our secondary lower bound
in Eq. (38) and note that we have the following integral con-
straint

∫

u

q(u)du = 1 (39)

We construct our Lagrangian, subject to the integral con-
straint in Eq. (39), as follows (for more details, see Logan
2006)

L[q(u), λ] = q(u)

[
�(u) + ln

p(u)

q(u)

]
+ λq(u) (40)

We denote with symbol λ the Lagrange multiplier. Further-
more, we define �(u) as follows

�(u) =
∫

f

p( f |u) ln pl( y| f )d f

According to the Euler–Lagrange equation, the stationary
condition for the optimal density q(u) satisfies

∂L[q(u), λ]
∂q(u)

= 0 (41)

From Eqs. (40) and (41) we can show that the optimal q(u)

corresponds to

q(u) = p(u) exp {�(u)}∫
u
p(u) exp {�(u)}du (42)

We back-substitute Eq. (42) into Eq. (38) to derive the cor-
responding optimal ‘collapsed’ secondary lower bound as

F∗(θ) = ln
∫

u

p(u) exp {�(u)}du (43)

Note that after marginalizing over the inducing variables
u, the resulting ‘collapsed’ secondary lower bound depends
on the remaining model parameters, which we collectively
denote by the parameter vector θ . From Eq. (42) we can ana-
lytically derive the optimal q(u) and show that the density
corresponds to a multivariate Gaussian parameterized by

q(u) = N (u|μu, Su)

μu = KMM Q−1K l
MN�−1

yl yl

Su = KMM Q−1KMM

Q = KMM + K l
MN�−1

yl K l
NM (44)

The matrix KMM , which stems from the augmented proba-
bilitymodel inEq. (15), requires evaluating the user-specified
kernel function between the freely optimizable inducing
input locations. Furthermore, we note that
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yl =
⎡
⎣
blb
yo
bub

⎤
⎦ ; K l

NM =
⎡
⎣
K Nlb M

K Nyo M

K Nub M

⎤
⎦

�yl = diag

⎡
⎣

(σ 2
y + σ 2

lb
)INlb Nlb

σ 2
y INyo Nyo

(σ 2
y + σ 2

ub )INub Nub

⎤
⎦ (45)

We denote with Eq. (45) the block diagonal matrix �yl .
The symbol Nub refers to the number of censored upper
bound observations. The symbol Nyo denotes the number
of noise-corrupted observations, collectively denoted by the
vector yo ∈ R

Nyo×1, that are not censored. The matrix
K Nlb M

requires evaluating the user-specified kernel func-
tion between the training input locations associated with
the vector f lb and the freely optimizable inducing input
locations. A similar argument holds for matrix K Nub M

.
The matrix K Nyo M requires evaluating the kernel function
between the training input locations associated with the vec-
tor f un and the inducing input locations. We also note that
K l

MN = (K l
NM )T . After some algebraic manipulation of

Eq. (43), we arrive at the following secondary variational
lower bound

F∗(θ) = ln

⎧⎨
⎩

|KMM | 12
(2π)

Nyo
2 (σ 2

y )
Nyo
2 |Q| 12

exp {AF∗}
⎫⎬
⎭

−1

2
tr
{
�−1

yl

[
K l

N N − K l
NM K−1

MM K l
MN

]}

AF∗ = −1

2
yl

T Ayl + 1

2
bT�−1

c b

+ cT�−1
c 1∗ − bT�−1

c d (46)

Refer to SectionA.3 in Appendix A for details on the deriva-
tion of the secondary variational lower bound. Recall that
θ collectively denotes the model parameters, which include
the kernel function parameters, the variance parameters from
the adjustedmixed-likelihood function, the inducing variable
input locations, and the local likelihood lower bound param-
eters. Matrices A, �c and K l

N N can be computed as follows

A = �−1
yl − �−1

yl K l
NM Q−1K l

MN�−1
yl

�c = diag

[
(σ 2

y + σ 2
lb
)INlb Nlb

(σ 2
y + σ 2

ub )INub Nub

]
(47)

K l
N N = diag

⎡
⎣
K Nlb Nlb

K Nyo Nyo

K Nub Nub

⎤
⎦ (48)

We denote with Eqs. (47) and (48) the block diagonal matri-
ces �c and K l

N N , respectively. Vectors b, c, 1∗ and d are

defined as follows

b =
[
blb
bub

]

c =
[
clb
cub

]

1∗ =
[
1lb
1ub

]

d =
[

(lb) × 1lb
(ub) × 1ub

]

Furthermore, we note that Eq. (46) is a valid secondary vari-
ational lower bound on the log marginal likelihood of the
probabilistic model (see Eq. (15)) which can be maximized,
using gradient-based optimization, to find point estimates
for θ . This allows us to perform variational Bayesian model
training and inference. We, therefore, refer to our pro-
posedmethodology as theVariational TobitGaussian process
regression (VT-GPR) framework.

It is worth pointing out that one common criticism of
KL-divergence-based variational inference (see Eq. (16))
is its tendency to underestimate the posterior density vari-
ance (Blei et al. 2017). However, simulation-based studies
performed by Titsias (2009, see Figures 1 and 2) indicate
that with enough inducing/support variables, the variational
sparse GP framework is able to match the standard GPmodel
prediction results. In this regard,KL-divergence-based vari-
ational inference does not necessarily underestimate the
posterior density variance. Furthermore,whenwe setM = N
inducing variables and place them at the training input loca-
tions, i.e., u = f , the variational sparse GP framework of
Titsias (2008, 2009) reduces to the standard GP regression
framework (Hensman et al. 2013). However, due to the pres-
ence of censored observations,we do expect that theVT-GPR
framework will display deteriorated prediction performance
in censored latent function regions as a result of our proposed
local variational method providing limited domain support
for each Gaussian cdf factor (see Fig. 1).

Note that for a numerically stable implementation of the
secondary variational lower bound, we propose following the
idea outlined in Titsias (2008) which relies on the addition of
“jitter” to the main diagonal elements of matrix KMM to sta-
bilize the optimization routine. Furthermore, it is also worth
pointing out that in the absence of any censored observations,
our proposed secondary variational lower bound reduces to
the variational sparse GP lower bound derived in Titsias
(2008, 2009).

4 VT-GPRModel Predictions

Model predictions about the latent function f , which we
collectively denote with the latent prediction vector f ∗, at
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unsampled locations x∗ are in line with the framework pro-
posed by Titsias (2008, 2009). Starting from the joint density
we have that

p( f ∗| y) =
∫∫

u f

p( f ∗, f , u| y)d f du

p( f ∗| y) =
∫∫

u f

p( f ∗| f , u, y)p( f , u| y)d f du

Given that f ∗ is conditionally independent of f and y given
u we have that

p( f ∗| y) =
∫∫

u f

p( f ∗|u)p( f , u| y)d f du

From our variational approximation in Eq. (19), we know
that

p( f , u| y) ≈ p( f |u)q(u)

Therefore, we have that

p( f ∗| y) ≈
∫∫

u f

p( f ∗|u)p( f |u)q(u)d f du

p( f ∗| y) ≈ q( f ∗) =
∫

u

p( f ∗|u)q(u)du (49)

We note that

p( f ∗|u) = N ( f ∗|K N∗M K−1
MMu,�)

� = K N∗N∗ − K N∗M K−1
MM KMN∗ (50)

From Eqs. (44), (49) and (50) we can show that the latent
function predictive density q( f ∗) takes the form of a multi-
variate Gaussian density parameterized by

q( f ∗) = N ( f ∗|μ f ∗ ,� f ∗)

μ f ∗ = K N∗M Q−1K l
MN�−1

yl yl

� f ∗ = K N∗N∗ − K N∗M K−1
MM KMN∗

+ K N∗M Q−1KMN∗

5 Experiments

To demonstrate the VT-GPR framework, we now consider its
application to two synthetic examples and a real-world data
set. For each synthetic example, we generate noise-corrupted
observational data, which is then subjected to artificial cen-
soring. Furthermore, throughout all our experiments we use

the exponentiated quadratic kernel function (see Eq. (51))
with signal variance σ 2

f and length scale l.

k(xi , x j ) = σ 2
f exp

{−(x j − xi )2

2l2

}
(51)

5.1 Synthetic Data: Example 1

In our first experiment, we reproduce the artificial example
outlined in the work of Groot and Lucas (2012). They cre-
ated a data set consisting of 30 equally spaced inputs on the
interval [0, 1] and generated latent function outputs from

f (x) = (6x − 2)2 sin (2(6x − 2)) (52)

The data is then artificially contaminated by adding zero
mean Gaussian distributed noise with variance σ 2

y = 0.1.
Groot and Lucas (2012) censor 40% of the observations by
calculating the 40th percentile of the data and use the cor-
responding value as the lower detection limit lb. We repeat
this procedure for a randomly generated data set, using the
available implementation of Groot and Lucas (2012).

We then train the T-GPR model on the censored data set
using {1} expectation propagation (EP) (Groot and Lucas
2012), {2} the Laplace approximation (LA) (Ertin 2007)
and {3} our proposed VT-GPR framework using gradient-
based optimization. We used an in-house implementation
of {1}, and {2} we use the implementation in the publicly
available GPstuff MATLAB toolbox (Vanhatalo et al. 2013).
For the VT-GPR training procedure we fixed (i.e., implic-
itly assumed) 15 as the number of inducing variables (see
SectionB.1 in Appendix B for more details).

To compare the T-GPR frameworks, we simulated 1000
additional independent data sets and trained the LA and
EP-based T-GPR frameworks, as well as our VT-GPR frame-
work, on each data set. For all data sets, we calculate the
40th percentile and use the corresponding value as the lower
detection limit lb. We report {1} the root mean squared
error (RMSE, Eq. (53)), {2} the mean absolute error (MAE,
Eq. (54)), and {3} the mean negative log-loss (MNLL,
Eq. (55)) to compare the model predictions from the various
T-GPR frameworks to the true latent function. For all three
criteria, smaller values imply better performance. We define
the error measures as follows (see Rasmussen and Williams
2006; Lázaro-Gredilla et al. 2010; Groot and Lucas 2012):

RMSE( f ,μ f ∗) =
√√√√ 1

N∗
N∗∑
i=1

(
fi − (

μ f ∗
)
i

)2
(53)

MAE( f ,μ f ∗) = 1

N∗
N∗∑
i=1

∣∣∣ fi − (
μ f ∗

)
i

∣∣∣ (54)
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MNLL( f ,μ f ∗)

= 1

N∗
N∗∑
i=1

⎡
⎢⎣1

2
ln (2πσ 2

i ) +
(
fi − (

μ f ∗
)
i

)2

2σ 2
i

⎤
⎥⎦ (55)

The symbol N∗ denotes the total number of predicted latent
function values. We denote with symbol fi = f (xi ) the true
underlying latent function value (see Eq. (52)), as indexed by
xi , whereas the vector μ f ∗ denotes the mean model predic-
tion. The symbol σ 2

i denotes themarginal predictive variance
associated with

(
μ f ∗

)
i
.

To illustrate the scalability of the proposed VT-GPR
framework, we carry out a further experiment by training
{1} the standard GP, {2} the LA-based, {3} the EP-based,
and {4} the VT-GPR frameworks on increasingly larger data
sets, holding fixed the other aspects of the example described
above. For each data set and proposed framework, we ini-
tiate 10 randomly generated parameter starting points and
then calculate the average run time per starting point. This
procedure was repeated 10 times for each data set size, fol-
lowed by averaging across the average computational run
times.

Figure 2 shows the results from the reproduced example
in Groot and Lucas (2012), where we censored based on a
lower bound of lb = −0.1185. Qualitatively, from Fig. 2,
we observe that all three T-GPR frameworks have the abil-
ity to learn an underlying representation that is consistent
with the original latent function given by Eq. (52) from the
censored data set. The interested reader is referred to the
work of Groot and Lucas (2012, Figure 2) for comparisons
of the LA and EP-based T-GPR frameworks against the stan-
dard GPR model (see Section2) when the censored data are
either treated asmissing values or as uncensored observations
exactly equal to the detection limit.

In Fig. 3 we depict and compare the distribution of the
generated RMSE, MAE and MNLL results across the 1000
data sets using box plots. The additional dashed red line
in Fig. 3 depicts the mean value of the generated results.
Qualitatively, for the RMSE (left panel) and MAE (mid-
dle panel) results in Fig. 3, we observe that there is no
significant difference in the predictive performance results
across theT-GPR frameworks.Arguably,we can state that the
Laplace-based T-GPR framework marginally outperforms
the EP-based and VT-GPR frameworks. However, when
we consider the MNLL performance measure results (right
panel) we observe that the proposed VT-GPR framework
performs worse when compared to the LA and EP-based
frameworks.

To understand the discrepancy in the predictive perfor-
mance behaviour we observe in Fig. 3, we stratify the error
measures, relative to the underlying latent function values

calculated from Eq. (52), by the lower detection limit lb such
that

MSE( f ,μ f ∗) = 1

N∗
∑

f (x)≤lb

(
fi − (

μ f ∗
)
i

)2

+ 1

N∗
∑

f (x)>lb

(
fi − (

μ f ∗
)
i

)2

Note that instead of using the RMSE we opted for the MSE
(mean squared error) for convenience. This stratification
procedure partitions each error measure into two different
contributing error components. The first stratified error com-
ponent considers the predictive performance in lower bound
censored latent function regions, whereas the second error
component considers predictive performance in uncensored
latent function regions. The MAE andMNLL stratified error
measures are constructed in a similar fashion.Thebold values
in Tables 1, 2, and, 3 indicate the best-performing framework,
for each performance measure, for the example under con-
sideration.

Table 1 summarises the mean error component contribu-
tions for each of the stratified error measures across the 1000
additional independently generated data sets. We observe
that, in the lower bound censored latent function regions, the
quantitative performance measure contributions for the VT-
GPR framework are, on average, larger when compared to
the LA and EP-based frameworks, indicating worse predic-
tive performance. The deteriorated performance is especially
noticeable from the MNLL performance measure. We sus-
pect that the worse performance is a result of the single
regulating variance parameter (σ 2

lb
) that we introduced in the

adjusted mixed-likelihood (refer to Appendix B SectionB.2
for more details).

However, in the uncensored latent function regions, the
VT-GPR framework provides predictive performance results
that are, on average, comparable to the LA and EP-based
frameworks. Table 1 also highlights that, on average, for
the example under consideration, the Laplace-based T-GPR
framework outperforms the EP-based and VT-GPR frame-
works.

Turning our attention to the scalability results, in Fig. 4 we
depict and compare the average computational run time for
the various frameworks, across the 10 repeated experiments,
together with error bars corresponding to three standard
deviations. From Fig. 4 we see a clear separation, i.e., no
overlapping error bars, between the computational run times
for the standard GP and the VT-GPR framework at a data set
size of approximately 3500 points. Thus, at a data set size
of approximately 3500 data points, the VT-GPR framework
becomes computationally less demanding and starts outper-
forming the standard GP model. We also observe that after
approximately 1500 data points, the VT-GPR framework
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Fig. 2 Tobit Gaussian process regression results with lb set to the 40th percentile of the uncensored observational data. Left Panel: T-GPR latent
function predictive results using theLaplace approximation.Middle Panel: T-GPR latent function predictive results using the expectation propagation
framework. Right Panel: VT-GPR latent function predictive results. Additional Information: The black ‘×’-sign denotes the observational data
(noisy and/or censored), the red line denotes the underlying latent function (see Eq. (52)) while the blue curve denotes the mean model prediction
(model MAP estimate). The corresponding grey shaded area depicts the 99% point-wise credibility interval. Furthermore, the blue ‘+’-sign at the
bottom of the right panel depicts the initial inducing input locations, which we initialized to evenly spaced input points across the function domain,
while the optimized inducing input locations are depicted at the top of the right panel. We arbitrarily selected 15 as the number of inducing variables
for our VT-GPR implementation (see SectionB.1 in Appendix B for more details). (Color figure online)

Fig. 3 Box plot visualization for the generated RMSE (left panel), MAE (middle panel) and MNLL (right panel) results, respectively, for each
T-GPR framework. The dashed red line depicts the mean value for each quantitative performance measure across the 1000 additional independently
generated data sets. The interquartile range is denoted at the bottom whisker of each box plot . (Color figure online)
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Table 1 Summary of the mean contributions to each quantitative per-
formance measure for the various T-GPR frameworks for Example 1

Tobit GP (LA) Tobit GP (EP) VT-GPR

Stratify by: f (x) ≤ lb

Mean MSE 0.2062 0.2418 0.2603

Mean MAE 0.2096 0.2347 0.2458

Mean MNLL 0.3267 0.3694 0.5162

Stratify by: f (x) > lb

Mean MSE 0.0312 0.0339 0.0338

Mean MAE 0.1047 0.1083 0.1084

Mean MNLL −0.0558 − 0.0345 0.0041

starts to computationally outperform the LA and EP-based
approaches.

5.2 Synthetic Data: Example 2

For our second experiment, we expand the example outlined
in the work of Groot and Lucas (2012) by introducing an
upper detection limit based on the 90th percentile of the
uncensored observational data, thereby increasing the per-
centage of censored observations from 40% (Example 1) to
50%.

We create a data set consisting of 30 equally spaced inputs
on the interval [0, 1.15] and generate latent function outputs
from Eq. (52). Following this, we artificially contaminate

the latent function outputs by adding zero mean Gaussian
distributed noise with variance σ 2

y = 0.1. We censor the
observations by calculating a lower detection limit lb equal
to the 40th percentile of the data and the upper detection limit
ub is calculated from the 90th percentile of the uncensored
observational data.

Plots of the latent function predictive results from the
single simulation, as well as box plots comparing the per-
formance metrics across 1000 independently generated data
sets, for the variousT-GPR frameworks, are shown inFigs. 11
and 12, respectively, in SectionB.3 of Appendix B. Note
that, similar to Example 1, we fixed the number of induc-
ing variables to 15 for all the VT-GPR training procedures.
As in Example 1, all the T-GPR frameworks have the abil-
ity to learn a good underlying representation of the latent
function from the censored data. However, the LA and EP-
based T-GPR frameworks produce more conservative, i.e.,
larger, credibility intervals compared to our proposed VT-
GPR framework. Contrasting the results from Example 1,
the VT-GPR framework marginally outperforms the LA and
EP-based frameworks in terms of RMSE andMAE; however,
we again see that the VT-GPR framework performs worse on
the MNLL.

As before, we stratify the error measures, relative to the
underlying latent function values calculated from Eq. (52),
by the lower detection limit lb and the upper detection limit
ub. Refer to Table 2 for a summary themean error component
contributions for each of the stratified error measures across
the 1000 additional independently generated data sets.

Fig. 4 Average optimization run time for {1} the standard GPmodel (black), {2} the LA-based T-GPR framework (red), {3} the EP-based approach
(magenta), and {4} the VT-GPR framework (blue). The various curves depict and compare the average log (base 10) computational run time for
the different frameworks, across the 10 repeated experiments, together with three standard deviation error bars. (Color figure online)
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Table 2 Summary of the mean contributions to each quantitative per-
formance measure for the various T-GPR frameworks for Example 2

Tobit GP (LA) Tobit GP (EP) VT-GPR

Stratify by: f (x) ≤ lb

Mean MSE 0.4758 0.5530 0.4224

Mean MAE 0.3271 0.3434 0.3071

Mean MNLL 0.5323 0.5781 0.5976

Stratify by: lb < f (x) < ub

Mean MSE 0.0470 0.0641 0.0509

Mean MAE 0.1154 0.1278 0.1167

Mean MNLL 0.0596 0.1236 0.1846

Stratify by: f (x) ≥ ub

Mean MSE 0.0643 0.0742 0.0557

Mean MAE 0.0668 0.0732 0.0617

Mean MNLL 0.1124 0.1232 0.1366

From Table 2 we observe that, on average, for the exam-
ple under consideration, the VT-GPR framework seems to
provide slightly better mean model prediction results (see
the mean MSE and MAE) in the censored latent function
regions and comparable results in the uncensored latent func-
tion regions. However, similar to Example 1, we observe
that the MNLL error measure contributions for the VT-GPR
framework are largerwhen compared to theLAandEP-based
frameworks, indicating worse predictive performance. This
arises due to the less conservative credibility intervals pro-
duced by the proposed VT-GPR framework relative to the
competing benchmarks.

5.3 Real-World Data: Example 3

Our third experiment focuses on the application of the T-
GPR frameworks on a real-world data set. We sourced an
electrical conductivity (EC) data set, for the Vaal River at
Groot Vadersbosch/Buffelsfontein, from the Department of
Water and Sanitation, South Africa (DWS 2019). The electri-
cal conductivity of water is a measure of its ability to conduct
electrical current and is affected by the presence of positively
and negatively charged ions from dissolved salts and other
chemicals.

Water bodies, like the Vaal River, tend to have a constant
EC range. Once the EC range has been established, it can
be used as a baseline for comparison with future EC mea-
surements. If we observe significant changes in the electrical
conductivity, relative to the baseline, it can be an indica-
tor that some source of pollution has entered the water body.
Thus, we can think of EC as a useful measure of water quality
where, generally speaking, lower EC values indicate better
water quality (EPA 2022).

The Vaal River EC data, measured in milli-siemens per
meter (mS/m), was collected between 03 January 1984 and
11 July 1997, with a manual EC sample taken from Monday
to Friday (excluding holidays). To perform our regression
analysis, we convert the EC measurement dates into serial
numbers, where, by default, 01 January 1900 corresponds to
serial number 1. We then subtract the serial number associ-
ated with 03 January 1984 such that the first EC entry in the
Vaal River data set corresponds to taking an ECmeasurement
on day 0 (our reference time stamp).

We create our data set by extracting the last 150 EC
measurements and the corresponding time stamps. Next, we
calculate the 10th and 90th percentile of the 150 data points
and use the calculated values as the artificial lower detection
limit lb and upper detection limit ub, respectively. For the 150
EC data points, we find that lb = 26.5 mS/m and ub = 43.5
mS/m. From an implementation perspective, recall that we
used the publicly availableGPstuffMATLABtoolbox to train
the LA-based T-GPR framework. We selected the 150 EC
measurements as this resulted in a numerically stable imple-
mentation for each of the T-GPR frameworks. Furthermore,
the 150 measurements also capture enough interesting latent
function behaviour to provide a fair predictive performance
comparison.

Next, we train the following regression frameworks on
the artificially censored EC data: {1} the standard Gaus-
sian process regression (GPR) model, {2} the standard GPR
model with the censored observations treated as missing
(i.e., removing the censored data), {3} the LA-based T-GPR
framework, {4} the EP-based approach, and {5} theVT-GPR
framework. The latent function predictive results are shown
in Fig. 5.

From Fig. 5 we qualitatively observe that the T-GPR
frameworks (c, d, and e) produce fairly similar prediction
results. Interestingly enough, the standard GPR model (a)
produces prediction results that are in line with the results
obtained from the various T-GPR frameworks in the uncen-
sored latent function regions.

However, the standard model appears to directly interpo-
late the censored observations (note how the MAP estimate
peaks at the censored limits, also see panel (f) for this
behaviour) in the censored latent function regions. This
behaviour arises due to the censored observational data form-
ing part of the observation vector y (see Section2) which is
a direct consequence of the standard GPR model’s inability
to account for the data censoring mechanism.

The standard missing data GP regression model (b) also
produces prediction results that are quite consistent with the
various T-GPR frameworks but, contrasting the previous GP
model depicted in (a), directly interpolates the missing data
values. We also observe that the interpolating behaviour is
accompanied by more conservative, i.e., larger, point-wise
credibility intervals indicating that themodel is less confident
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Fig. 5 Gaussian process regression results with lb (grey dashed line) and ub (grey dotted line) set to the 10th and 90th percentile of the EC
observational data, respectively. For panels (a) to (e) the blue curve denotes the mean model prediction (model MAP estimate) whereas the grey
shaded area depicts the 99% point-wise credibility interval. The black ‘×’-sign denotes the noisy uncensored EC data whereas the red ‘×’-sign
denotes the noisy uncensored EC data that is artificially censored during the model training procedures. Note that for panel (b) the artificially
censored observations are treated as missing values. Panel (f) depicts the mean model prediction for the various regression frameworks shown in
panels (a) to (e). We arbitrarily selected 35 as the number of inducing variables for our VT-GPR implementation. (Color figure online)

Table 3 Summary of the mean
quantitative performance
measures for the various
Gaussian process regression
frameworks for Example 3

RMSE MAE MNLL

Standard GP Regression 3.9479 ±0.0013 2.3243 ±0.0017 7.6342 ±0.0326

Missing Data GP Regression 5.0758 ±0.0034 2.9115 ±0.0023 4.7436 ±0.0139

Tobit GP (LA) 3.3753 ±0.0007 1.8683 ±0.0010 4.1794 ±0.0025

Tobit GP (EP) 3.5169 ±0.0062 1.9598 ±0.0078 4.1218 ±0.0038

VT-GPR 3.4454 ±0.0076 1.9226 ±0.0046 4.2958 ±0.0349

about the behaviour of the underlying latent function in the
missing data regions. For a visual comparison of the mean
model estimates across the various GPR frameworks, refer
to panel (f) in Fig. 5.

Table 3 reports the mean quantitative performance mea-
sures for each of the 5 regression frameworks, together with
three standard deviation error bars, obtained from 10 inde-
pendent training runs where each training run was optimized
across 1000 randomly generated parameter starting points.
From an error measure perspective, we observe that the T-
GPR frameworks outperform the standard GPR models. We
also observe that the VT-GPR MNLL is higher when com-
pared to the LA and EP-based frameworks.

This, again, emphasizes that the proposedVT-GPR frame-
work produces less conservative, i.e., smaller, credibility
intervals relative to the competing LA and EP-based bench-

marks. However, when we consider the mean model pre-
diction results (see panel (f), the RMSE, and the MAE),
we observe that the T-GPR frameworks produce quite com-
parable performance results with the LA-based framework
slightly outperforming the EP-based and VT-GPR frame-
works.

6 Discussion and Limitations

In this article, we introduced a variational inference-based
framework for training a GP regressionmodel subject to cen-
sored data. Our proposed framework relies on the variational
sparse GP inducing variable framework and local variational
methods which allow us to variationally integrate out the
latent function values associated with the Gaussian cdf fac-
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tors (which would otherwise be analytically intractable). We
demonstrated the proposed VT-GPR framework on synthet-
ically produced, as well as a real-world, data set subject to
artificial censoring and found that the framework can produce
results comparable to other methodologies presented in the
literature. However, the proposed VT-GPR framework com-
putationally outperforms the standard GPR model, as well
as the competing benchmarks, for larger data sets (refer to
Fig. 4).

Furthermore, the proposed framework can also be used
as a mathematical tool to gain access to the Tobit-based
(B)GP-LVMwith uncertainmodel inputs, i.e., x in our frame-
work, if we restrict the uncertain inputs to have Gaussian
prior densities (Titsias and Lawrence 2010; Damianou et al.
2016). This would allow us to extend the (B)GP-LVM to
the censored data regime which can prove very useful in
many real-world applications where practitioners typically
collect noise-corrupted observations for themodel inputs and
outputs (where the output data can be subjected to some cen-
soring mechanism).
Note that the VT-GPR framework’s biggest limitation arises
from the proposed ‘local’ lower bounding strategy we intro-
duced in Section3.2. Recall that the local likelihood lower
bound parameters bi and ci can be expressed in terms of a
single freely optimizable parameter ζi . However, due to con-
straints imposedby asymptotics, the parameterai is restricted
to the value (− 1

2 ). Consequently, the local lower bound is
unable to adjust its width (i.e., the function domain support)
since the parameter ai is fixed and not a function of ζi . This
directly influences the VT-GPR framework’s approxima-
tion performance (Nickisch and Rasmussen 2008). Despite
the introduction of the additional variance parameters in an
attempt to regulate the local lower bound support, the VT-
GPR framework still tends to underestimate the predictive
variance, relative to the competing frameworks, in the cen-
sored latent function regions (see the MNLL error measure
scores for the various illustrative examples).

Furthermore, due to the imposed local lower bounding
strategy and the limitation associated with parameter ai , the
optimal, and only free-form variational density, q(u) must
obey certain restrictions, i.e., the optimal density q(u) must
obey the restrictions associated with each local lower bound
to ensure that we have a valid secondary variational lower
bound, which can result in worse approximation/prediction
performance (Nickisch and Rasmussen 2008).

Another limiting feature worth pointing out is the tight-
ness of the secondary lower bound. Recall that we are free
to choose the parameters ζi , which we do by finding the
values of ζi that maximize our lower bound. The resulting
secondary variational lower bound value then represents the
tightest bound within the entire family of bounds that can
be used as an approximation to ln p( y). However, the opti-
mized bound will in general not be exact. Despite being able

to exactly optimize the local lower bound for each Gaussian
cdf factor, the required value for ζi depends on the value of
fi . Therefore, the local lower bound is tight for only one
value of fi (refer to Fig. 1). However, note that the quantity
F∗(θ) is obtained by integrating over all possible values of
the latent vector f , followed by integrating over all possible
values of the inducing variable vector u. Consequently, the
values of ζi that maximize our secondary variational lower
bound represent a compromise, as weighted by the varia-
tional posterior densities p( f |u) and q(u), which directly
influences the predictive performance of the proposed VT-
GPR framework (Bishop 2009).

For future work, we would like to explore the idea of
allowing each censored observation to have its own unique
regulating variance parameter which, from a theoretical
standpoint, should increase the VT-GPR’s regulating capac-
ity, resulting in improved approximation and prediction
performance. This would be in line with the ideas initially
proposed by Gammelli et al. (2020b).

Furthermore, since the values of ζi represent a compro-
mise, as weighted by the posterior densities, we can consider
using some form of regularizer to encourage better point
estimates for ζi in an attempt to improve the approximation
performance. Alternatively, we could dispense with the local
lower bound approach introduced in Section3.2 and follow
the ideas outlined in Hensman et al. (2015, Section 4) where
we use numerical integration to circumvent the intractabili-
ties that arise from the presence of the Gaussian cdf terms in
the likelihood function.
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Appendix A

In this Appendix, we provide supplementary information
such that the reader can gain further insights into the proposed
VT-GPR framework. We also provide additional mathemati-
cal steps to aid in the derivation of the VT-GPR lower bound.

A.1 Heteroskedasticity and Censored Regression
Models

The primary motivation for the ideas discussed below can be
found in the preprint of Gammelli et al. (2020b). Refer to
Fig. 6 and Eq. (9) in the article.

When we, from a maximum likelihood perspective, con-
sider the candidate mean values the left panel in Fig. 6 shows
that all candidate mean values parameterize a Gaussian den-
sity that fits the uncensored observation, i.e., the observed
value can be a potential sample from each Gaussian density.
However, out of the 3 candidate mean values, the candidate
mean value associated with the red Gaussian density is less
likely to be a contender.

Refer to the right panel in Fig. 6. We now assume that the
observed value (black cross) has been upper bound censored
(magenta cross). We see that, from a maximum likelihood
perspective, we favour the candidate mean value associ-
ated with the red Gaussian cdf. This, in turn, implies that
we favour the red Gaussian density (left panel) as the most
likely contender from which the observation was generated
before censoring. However, based on our previous argu-
ment we know we are selecting the candidate mean value
that corresponds to a Gaussian density that is less likely
to have generated the uncensored observation (see the left
panel). From this perspective, we can argue that we are
overestimating the candidate mean value which translates
to overestimating the latent function value of interest.

Since Eq. (9) in the article depends on a constant noise
variance parameter, we would enforce the same amount of
overestimation for all the observations (a similar observation
is also made by Gammelli et al. 2020b). Gammelli et al.
(2020b) suggest bypassing the overestimation phenomena
by allowing the Tobit-based likelihood function to account
for input-dependent noise, i.e., allowing for a heteroskedastic
observation model. Refer to Fig. 7.

When we consider the right panel in Fig. 7, we observe
that, from a maximum likelihood perspective, there are 3
candidate mean values that give rise to the same likelihood
contribution (black dot, right panel) for the upper bound
censored observation. These 3 candidate mean values cor-
respond to the yellow, red, and magenta Gaussian densities
(left panel), respectively.

Note that for the magenta Gaussian cdf to contribute the
same likelihood value as the red Gaussian cdf, we require the
magentaGaussian densitywith higher variance (left panel) to
have a higher candidate mean value. Similarly, for the yellow
Gaussian cdf, we require the yellow Gaussian density with
a smaller variance (left panel) to have a smaller candidate
mean value.

Hence, we observe that the variance parameter directly
controls the slope of the Gaussian cdf. In other words, if
we regulate/adjust the variance parameter of the Gaussian
cdf, the model can automatically tune the amount of over-
estimation associated with the candidate mean values. This
translates to automatically tuning the amount of overesti-
mation associated with the latent function value of interest
resulting in better predictive performance. It is this obser-
vation that gave rise to the heteroskedastic-based variance
parameterization that was suggested and implemented by
Gammelli et al. (2020b). Note that a similar argument holds
when we consider lower bound censored observations.

A.2 The AdjustedMixed-Likelihood

Here we provide a qualitative understanding for our use
of the adjusted mixed-likelihood which extends beyond the
heteroskedastic-based motivation outlined above. At the end
of Section2, aswell as in Section3 of the article,we show that
exact inference for the Tobit-based Gaussian process regres-
sionmodel is not possible due to the presence of theGaussian
cdf terms that arise as a result of censoring. Consequently,
we need to resort to approximate inference techniques. In
Section3.1 of the article, we introduce and motivate the
use of the variational sparse GP framework. However, the
resulting variational lower boundwhichwe obtain as a conse-
quence of using the variational sparseGP framework remains
intractable due to the presence of the Gaussian cdf terms.
More specifically, the intractability arises due to the inability
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Fig. 6 Likelihood contribution, relative to the dashed lines, for an uncensored observation (left panel) and an upper bound censored observation
(right panel) viewed as a function of ub. The black cross denotes the assumed position for the uncensored observation and the magenta cross denotes
the assumed position for the upper bound censored observation associated with the uncensored observation (black cross). The triangles correspond
to 3 candidate mean values for f (latent function value of interest). Note that the Gaussian density variance associated with all candidate mean
values have been fixed to 0.52. Figure 6 has been reproduced and adjusted from the preprint of Gammelli et al. (2020b). (Color figure online)

to analytically calculate the expectation of the log Gaussian
cdf factor with respect to a Gaussian density function.
In Section3.2 we induce tractability by exploiting ‘local’
variational methods (Jordan et al. 1999; Gibbs and MacKay
2000; Bishop 2009). The local variational-based approach
allows us to locally lower bound each log Gaussian cdf
factor with a quadratic function (Nickisch and Rasmussen
2008). This, in turn, allows us to lower bound the analytically
intractable expectation with an expectation of a quadratic
function under a Gaussian density (which is analytically
tractable). However, within the context of our approach, we
do pay a price when we use the proposed ‘local’ variational-
based method.

BasedonEq. (9), andwithout loss of generality,wepresent
the quadratic function that locally lower bounds the logGaus-
sian cdf factor for an upper bound censored observation (refer
to Eqs. (56) to (57)).

ln�( fi |ub, σ 2
y )

≥ 1

σ 2
y

[
ai f

2
i + bi ( fi − ub) + ci

]

∴ �( fi |ub, σ 2
y )

≥ exp

{
1

σ 2
y

[
ai f

2
i + bi ( fi − ub) + ci

]}
(56)

Asymptotic behaviour ⇒ ai = −1

2

bi = ζi + (σ 2
y )

N (ζi |ub, σ 2
y )

�(ζi |ub, σ 2
y )

ci = 1

2
ζ 2
i − bi (ζi − ub)

+(σ 2
y ) ln�(ζi |ub, σ 2

y ) (57)

We observe that the local lower bound parameters bi and
ci can be expressed in terms of a single freely optimizable
variational parameters ζi . Details on how to calculate these
parameters can be found in Section3.2 of the article. How-
ever, due to constraints imposed by asymptotic behaviour, the
local lower boundparameterai is restricted to the value (− 1

2 ).
Observe that the parameter ai does not depend on the freely
optimizable variational parameter ζi . Consequently, the local
lower bound is unable to adjust its width (i.e., the function
domain support) since the parameter ai is fixed and not a
function of ζi (Nickisch and Rasmussen 2008). This implies
that the local lower boundwill only be able to provide support
for a small region of the log Gaussian cdf domain which, in
turn, influences the quality of the expectation of the quadratic
function with respect to the Gaussian density. However, we
can leverage the heteroskedastic-based parameterization in
SectionA.1 to help us circumvent this limitation. Refer to
Fig. 8.
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Fig. 7 Likelihood contribution, relative to the dashed lines, for an uncensored observation (left panel) and an upper bound censored observation
(right panel), viewed as a function of ub, with two additional proposal Gaussian densities (yellow and magenta). The yellow Gaussian density
has a smaller (in numerical value) variance parameter, while the magenta Gaussian has a higher (in numerical value) variance parameters, when
compared to the Gaussian densities in Fig. 6 (left panel). The black cross denotes the assumed position for the uncensored observation and the
magenta cross denotes the assumed position for the upper bound censored observation associated with the uncensored observation (black cross).
The black dot denotes a shared likelihood contribution value. The triangles correspond to 5 candidate mean values for f (latent function value of
interest). Figure7 has been reproduced and adjusted from the preprint of Gammelli et al. (2020b). (Color figure online)

Fig. 8 Likelihood contribution for an upper bound censored observation (magenta cross, Fig. 7 - right panel) viewed as a function of f . The
triangles correspond to the 3 candidate mean values (red, magenta and yellow) depicted in Fig. 7 (right panel) with a shared likelihood contribution
value (black dot). The freely optimizable variational parameter for each local lower bound (dashed red, magenta and yellow curve) has been set to
the corresponding candidate mean value to ensure the bound is tight, i.e., exact. (Color figure online)
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Observe from Fig. 8 that for the same likelihood contribu-
tion value (black dot) the heteroskedastic parameterization
associated with a Gaussian cdf factor with an increased vari-
ance corresponds to a local lower bound that provides support
for a larger region of the Gaussian cdf domain (middle panel,
Fig. 8). In other words, despite the asymptotic behaviour
which limits the local lower bound support, we can use the
increase in the variance parameter which arises from the het-
eroskedastic parameterization to regulate/tune the support
of the local lower bound. This, in turn, affects the quality
of the expectation of the quadratic function with respect
to the Gaussian density. Note that one drawback of this
approach stems from the fact that we are implicitly selecting
the magenta Gaussian density (left panel, Fig. 7) as the most
likely contender from which the observation was generated
before censoring. However, themagenta density corresponds
to a candidatemean value that can overestimate the true latent
function value of interest (refer back to the arguments out-
lined in Sect.A.1).

Based on our previous discussion, we propose augment-
ing each Gaussian cdf factor in Eq. (9) with an additional
variance parameter in an attempt to regulate/adjust the local
lower bound support. Note that for training input locations
associated with the upper detection limit ub we assume a
constant (with respect to the input xi ) heteroskedastic noise
model with a total variance contribution which is the sum of
the original mixed-likelihood variance σ 2

y in Eq. (9) and a
regulating variance parameter σ 2

ub .

A.3 Deriving the Secondary Variational Lower
Bound

Here we provide further details on how to derive the opti-
mal ‘collapsed’ secondary variational lower bound that can
be used for Bayesian model training and inference. Recall
Eq. (43) in the article which is given by

F∗(θ) = ln
∫

u

p(u) exp {�(u)}du (58)

We start with our definition of �(u) by noting that

�(u) =
∫

f

p( f |u) ln pl( y| f )d f (59)

Next, we recall Eq. (36) and observe from Eq. (59) that

�(u) =
∫

f

p( f |u) ln pl( y| f )d f

pl( y| f ) = g( f lb | · · · )

×
⎡
⎣ ∏
lb<yi<ub

N (yi | fi , σ 2
y )

⎤
⎦ g( f ub | · · · ) (60)

Note that the definitions for functions g( f lb | · · · ) and
g( f ub | · · · ) are given by Eqs. (33) and (34), respectively.
Using properties of the natural logarithm, as well as the
marginalization property of the multivariate Gaussian den-
sity function, we can show that Eq. (60) decomposes into the
sum of the following expectations

�(u) =
∫

f lb

p( f lb |u) ln g( f lb | · · · )d f lb

+
∫

f un

p( f un |u) lnN ( yo| f un · · · )d f un

+
∫

f ub

p( f ub |u) ln g( f ub | · · · )d f ub

N ( yo| f un · · · ) =
∏

lb<yi<ub

N (yi | fi , σ 2
y )

We can analytically evaluate�(u) and show that exp {�(u)}
corresponds to

exp {�(u)}
= exp

{
−1

2
ρT
l �−1

yl ρl

}

× exp

{
1

2
bTlb�

−1
lb

blb + 1

2
bTub�

−1
ub bub + B

}

ρl = yl − K l
NM K−1

MMu

The definitions for yl , K
l
NM , �yl , blb and bub are given in

the article. We define �lb , �ub and B as follows

�lb =
(
σ 2
y + σ 2

lb

)
INlb Nlb

�ub =
(
σ 2
y + σ 2

ub

)
INub Nub

B = −Nyo

2
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2
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−1
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2
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�−1
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We denote with the symbol tr(·) the matrix trace operator.
We define �yo as follows

�yo = σ 2
y INyo Nyo

Next, we require evaluating the term p(u) exp {�(u)}. The
multivariate normal density p(u) takes the following form
(for more details, see Titsias 2008, 2009)

p(u) = N (u|0, KMM )

We then have that

p(u) exp {�(u)} = c exp

{
−1

2

[
ρT
l �−1

yl ρl + uT K−1
MMu

]}

(61)

We define the constant c associated with Eq. (61) as follows

c = 1

(2π)
M
2

1

|KMM | 12
× exp

{
1

2
bTlb�

−1
lb

blb + 1

2
bTub�

−1
ub bub + B

}

We denote with the symbol | · | the matrix determinant. After
completing the multivariate square of Eq. (61) with respect
to u we can show that

p(u) exp {�(u)} = d exp

{
−1

2

(
u − μu

)T S−1
u

(
u − μu

)}

(62)

The definitions for vector μu and matrix Su are given in the
main text of the article. We define the constant d as follows

d = c exp

{
−1

2

[
−μT

u S
−1
u μu + yTl �−1

yl yl
]}

Next, we substitute Eq. (62) into Eq. (58) to obtain

F∗(θ) = ln
∫

u

d exp

{
−1

2
Au
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)T S−1
u

(
u − μu

)

F∗(θ) = ln

⎡
⎣d

∫

u
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{
−1

2
Au

}
du

⎤
⎦ (63)

We recognize the integral in Equation (63) as the normaliza-
tion constant for a multivariate Gaussian density. Hence, we
have that

F∗(θ) = ln
[
d(2π)

M
2 |Su | 12

]
(64)

We expand Eq. (64) by noting that

F∗(θ) = ln d + ln (2π)
M
2 + ln |Su | 12
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Note that to arrive at Eq. (65) we used the fact that

μT
u S

−1
u μu = yTl �−1

yl K l
NM Q−1K l

MN�−1
yl yl

Furthermore, the definition for Q is given in the article.Using
the definition for Su in the article and properties of thematrix
determinant, we can simplify Eq. (65) to obtain
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The definition for A is given in the article.We can further sim-
plify Eq. (66) by rewriting the local likelihood lower bound
contributions, as well as the trace term contributions, into a
compact format such that

F∗(θ) = ln |KMM | 12 − ln |Q| 12
−Nyo

2
ln (2π) − Nyo

2
ln (σ 2
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+ 1
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2
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{
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(67)
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The definitions for vectors b, c, 1∗ and d, as well as for the
matrices �c and K l

N N , are given in the article. We arrive at
the optimal ‘collapsed’ secondary variational lower bound
(refer to Eq. (46) in the article) by rewriting Equation (67) to
obtain

F∗(θ)

= ln

⎧⎨
⎩

|KMM | 12
(2π)

Nyo
2 (σ 2

y )
Nyo
2 |Q| 12

exp {AF∗}
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2
tr
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yl
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]}

AF∗ = −1

2
yl

T Ayl + 1

2
bT�−1

c b

+ cT�−1
c 1∗ − bT�−1

c d

Appendix B

Here we provide supplementary simulation-based results for
Section5.

B.1 Selecting the Number of InducingVariables:
Example 1

In this subsection, we give some insight into howwe selected
the number of inducing variables for our VT-GPR implemen-
tation in Example 1. For our randomly generated data set,
we selected 7 inducing variables followed by running our
gradient-based optimizer to find point estimates for θ . From
an implementation perspective, we minimized the negative
secondary variational lower bound (seeEq. (46) in the article)
using fmincon, in conjunction with the MultiStart algorithm,
in MATLAB.

The MultiStart algorithm allows users to explore multiple
starting points for θ and we arbitrarily selected 1000 start-
ing points. The algorithm returns multiple point estimates
for θ , each associated with a local minimum, ranked accord-
ing to the objective function value. We recorded the lowest
objective function value which corresponds to the best local
minimum found by the optimizer. The same procedure is
then repeated but we incrementally increase the number of
inducing variables until we reach 20 inducing variables.

Refer to Fig. 9 for a plot of the objective function value
against the number of inducing variables. We see that as the
number of inducing variables increases, the objective func-
tion value decreases until it stabilizes around (roughly) 15
inducing variables. This indicates that the secondary varia-
tional lower bound has reached a point where it is sufficiently
tight (formore details, see Titsias, 2008, 2009) andwewould
gain no further benefit from increasing the number of induc-
ing variables. We will point out that our proposed approach

Fig. 9 Plot of the negative secondary variational lower bound (see
Eq. (46) in the article) as the number of inducing variables are incre-
mentally increased from 7 to 20. (Color figure online)

for selecting the number of inducing variables is not necessar-
ily practical, especially in an online setting or when limited
computational resources and time are available. The inter-
ested reader is referred to the work of Galy-Fajou and Opper
(2021) and Uhrenholt et al. (2021) for recent approaches on
selecting the number of inducing variables.

B.2 DeterioratedMNLL Performance: Example 1

In order to investigate the worse MNLL performance, we
simulated three additional independently generated data sets
which highlight some key features of the proposed VT-GPR
framework. From the right panels in Fig. 10 we observe
that the VT-GPR framework tends to overestimate the true
latent function in the lower bound censored regions (see Sec-
tions.A.1 and A.2 ), relative to the mean model prediction,
and also produces less conservative credibility intervals, i.e.,
smaller credibility intervals, when compared to the LA and
EP-based frameworks.

When looking at the functional form of the MNLL error
measure (see Eq. (55) in the article) we observe that the
overestimating mean model prediction and the less conser-
vative credibility intervals inflate the MNLL performance
measure, especially in the lower bound censored latent func-
tion regions (see, for example, the stratified results in Table 1
of the article).
We attribute this behaviour to the adjusted mixed-likelihood
which has a single regulating variance parameter that must
regulate/tune {1} the amount of overestimation associated
with the latent function value (see SectionA.1) and {2} reg-
ulate/adjust the local likelihood lower bound support (see
SectionA.2) for all of the lower bound censored observa-
tions. We postulate that, despite having a single regulating
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Fig. 10 Tobit Gaussian process regression results obtained from 3 independently generated data sets with lb set to the 40th percentile of the
uncensored observational data. Left Panels: T-GPR latent function predictive results using the Laplace approximation. Middle Panels: T-GPR
latent function predictive results using the expectation propagation framework. Right Panels: VT-GPR latent function predictive results. Additional
Information: The black ‘×’-sign denotes the observational data (noisy and/or censored), the red line denotes the underlying latent function (see Eq.
(52) in the article) while the blue curve denotes the mean model prediction (model MAP estimate). The corresponding grey shaded area depicts the
99% point-wise credibility interval. Furthermore, the blue ‘+’-sign at the bottom of the right panels depict the initial inducing input locations while
the optimized inducing input locations are depicted at the top of the right panels. We arbitrarily selected 15 as the number of inducing variables for
our VT-GPR implementation (see SectionB.1 for more details). (Color figure online)

variance parameter, the VT-GPR framework does not have
enough regulating capacity for all the lower bound censored
observations, i.e., the single regulating variance parameter
does not provide sufficient regulating/tuning capacity. This
limitation can potentially be circumvented by allowing each
lower bound censored observation to have a unique regulat-
ing variance parameter.

B.3 Additional Figures for Example 2

Plots of the latent function predictive results (Fig. 11) from
the single simulation, as well as box plots (Fig. 12) com-
paring the performance metrics across 1000 independently
generated data sets, for the various T-GPR frameworks from
Example 2. For the data in Fig. 11, we calculate that the
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Fig. 11 Tobit Gaussian process regression results with lb and ub set to the 40th and 90th percentile of the uncensored observational data, respectively.
Left Panel: T-GPR latent function predictive results using the Laplace approximation. Middle Panel: T-GPR latent function predictive results using
the expectation propagation framework. Right Panel: VT-GPR latent function predictive results. Additional Information: The black ‘×’-sign denotes
the observational data (noisy and/or censored), the red line denotes the underlying latent function (see Eq. (52)) while the blue curve denotes the
mean model prediction (model MAP estimate). The corresponding grey shaded area depicts the 99% point-wise credibility interval. Furthermore,
similar to Fig. 2, the blue ‘+’-sign denotes the inducing input locations. (Color figure online)

Fig. 12 Box plot visualization for the generated RMSE (left panel), MAE (middle panel) and MNLL (right panel) results, respectively, for each
T-GPR framework. The dashed red line depicts the mean value for each quantitative performance measure across the 1000 additional independently
generated data sets. The interquartile range is denoted at the bottom whisker of each box plot. (Color figure online)

lower and upper limits of detection are lb = −0.0239 and
ub = 11.3555, respectively.
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