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Abstract
Stochastic Gradient Algorithms (SGAs) are ubiquitous in computational statistics, machine learning and optimisation. Recent
years have brought an influx of interest in SGAs, and the non-asymptotic analysis of their bias is by now well-developed.
However, relatively little is known about the optimal choice of the random approximation (e.gmini-batching) of the gradient in
SGAs as this relies on the analysis of the variance and is problem specific. While there have been numerous attempts to reduce
the variance of SGAs, these typically exploit a particular structure of the sampled distribution by requiring a priori knowledge
of its density’s mode. In this paper, we construct a Multi-index Antithetic Stochastic Gradient Algorithm (MASGA) whose
implementation is independent of the structure of the target measure. Our rigorous theoretical analysis demonstrates that for
log-concave targets, MASGA achieves performance on par with Monte Carlo estimators that have access to unbiased samples
from the distribution of interest. In other words, MASGA is an optimal estimator from the mean square error-computational
cost perspective within the class of Monte Carlo estimators. To illustrate the robustness of our approach, we implement
MASGA also in some simple non-log-concave numerical examples, however, without providing theoretical guarantees on
our algorithm’s performance in such settings.

Keywords Stochastic gradient · Multi-level Monte Carlo · Langevin dynamics · Approximate sampling

1 Introduction

Variations of Stochastic Gradient Algorithms (SGAs) are
central in many modern machine learning applications such
as large scale Bayesian inference (Welling and Teh 2011),
variational inference (Hoffman et al. 2013), generative adver-
sarial networks (Goodfellow et al. 2014), variational autoen-
coders (Kingma and Welling 2013) and deep reinforcement
learning (Mnih et al. 2015). Statistical sampling perspec-
tive provides a unified framework to study non-asymptotic
behaviour of these algorithms, which is the main topic of this
work.More precisely, consider a data set D = (ξi )

m
i=1 ⊂ R

n ,
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with m ∈ N ∪ {∞} and the corresponding empirical mea-
sure νm := 1

m

∑m
i=1 δξi , where δ is a Dirac measure. Denote

by P(Rn) the space of all probability measures on R
n and

consider a potential V : Rd×P(Rn) → R.We are then inter-
ested in the problem of sampling from the (data-dependent)
probability distribution π on R

d , given by

π(x) ∝ exp
(
− 2

β2 V (x, νm)
)
dx (1.1)

for some fixed parameter β > 0. Under some mild assump-
tions on V , the measure π is a stationary distribution of
the (overdamped) Langevin stochastic differential equation
(SDE) and classical Langevin Monte Carlo (Dalalyan 2017)
algorithms utilise discrete-time counterparts of such SDEs to
provide tools for approximate sampling from π , which, how-
ever, require access to exact evaluations of∇V (·, νm). On the
other hand, SGAs take as input a noisy evaluation ∇V (·, νs)
for some s ∈ {1, . . .m}. The simplest example of ∇V (·, νs)
utilizes the subsampling with replacement method. Namely,
consider a sequence of i.i.d. uniformly distributed random
variables τ ki ∼ Unif({1, · · · ,m}) for k ≥ 0 and 1 ≤ i ≤ s
anddefine a sequence of randomdata batches Dk

s := (ξτ ki
)si=1

and corresponding random measures νks := 1
s

∑s
i=1 δξ

τki
for
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k ≥ 0. Fix a learning rate (time-step) h > 0. The correspond-
ing algorithm to sample from (1.1) is given by

Xk+1 = Xk − h∇x V (Xk, ν
k
s ) + β

√
hZk+1, (1.2)

where (Zi )
∞
i=1 are i.i.d. random variables with the standard

normal distribution. This method in its simplest form, with-
out mini-batching (i.e., when we use the exact evaluation
∇V (·, νm)) is known in computational statistics as the Unad-
justed Langevin Algorithm (ULA) (Durmus and Moulines
2017), but it has numerous more sophisticated variants and
alternatives (Brosse et al. 2018; Chatterji et al. 2018; Cornish
et al. 2019; Ma et al. 2019; Majka et al. 2020).

Numerical methods based on Euler schemes with inaccu-
rate (randomised) drifts such as (1.2) have recently become
an object of considerable interest in both the computational
statistics and themachine learning communities (Aicher et al.
2019; Chau and Rasonyi 2019; Deniz Akyildiz and Sabanis
2020; Gao et al. 2018;Ma et al. 2015; Nemeth and Fearnhead
2019; Raginsky et al. 2017; Zou et al. 2019). In partic-
ular, the Stochastic Gradient Langevin Dynamics (SGLD)
method for approximate sampling from invariant measures
of Langevin SDEs has been studied e.g. in Welling and Teh
(2011), Teh et al. (2016), Vollmer et al. (2016), Dubey et al.
(2016), Brosse et al. (2018), Barkhagen et al. (2020), Chau
et al. (2019), Zhang et al. (2019). Furthermore, recall that
under some mild assumptions on V , when β → 0, the
measure π concentrates on the set of minima of V , i.e., on
{x ∈ R

d : x = arg inf V (·, νm)}, cf. (Hwang 1980). Remark-
ably, no convexity of V is required for this to be true, which
makes SGAs good candidates for a tool for non-convex opti-
misation. We would like to stress that throughout the paper,
in our analysis of algorithm (1.2), we allow for β = 0 and
hence we cover also the Stochastic Gradient Descent (SGD)
(Moulines and Bach 2011; Dalalyan and Karagulyan 2019).

Despite the great success of algorithm (1.2) and its various
extensions, relatively little is known about how to optimally
choose s and whether sub-sampling (or mini-batching) is a
good idea at all (Nagapetyan et al. 2017). One of the reasons
is that performance analysis appears to be problem-specific
aswe shall demonstrate on a simple example below. It is clear
that subsampling increases the variance of the estimator and
induces an additional non-asymptotic bias, see e.g. (Brosse
et al. 2018; Nagapetyan et al. 2017). Therefore it is not clear
that the reduced computational cost of running the algorithm
compensates for these adverse effects. On the other hand, in
a big data regime it may be computationally infeasible to use
all data points at every step of the gradient algorithm and
hence subsampling becomes a necessity.

In the present paper we propose a solution to these
challenges by constructing a novel Multi-index Antithetic
Stochastic Gradient Algorithm (MASGA). In settings where
the measure π in (1.1) is log-concave, we will rigorously

demonstrate thatMASGAperforms on par withMonte Carlo
estimators having access to unbiased samples from the tar-
get measure, even though it consists of biased samples.
Remarkably, our numerical results in Sect. 3 demonstrate
that a good performance can be achieved even in some sim-
ple non-log-concave settings. To our knowledge, all current
state-of-the-art SGAs (Baker et al. 2019; Cornish et al. 2019)
require the user to a priori determine the mode of the tar-
get distribution and hence it is not clear how to implement
them in non-log-concave settings. This problem is absent
with MASGA, whose implementation is independent of the
structure of the target measure. Moreover, the analysis in
Cornish et al. (2019) is based on the Bernstein-von Mises
phenomenon, which describes the asymptotic behaviour of
the target measure as m → ∞, and hence their algorithm is
aimed explicitly at the big data regime, see Sect. 3 therein.
Meanwhile, as we will discuss below, MASGA works well
irrespectively of the size of the dataset.
Mean-square error analysis. In the present paper we are
studying the problem of computing

( f , π) := ∫
Rd f (x)π(dx),

for some f ∈ L2(π). This framework covers the tasks of
approximating minima of possibly non-convex functions or
the computation of normalising constants in statistical sam-
pling. To this end, theMarkov chain specified by (1.2) is used
to approximate ( f , π) with E[ f (Xk)] for large k > 0. More
precisely, one simulates N > 1 independent copies (Xi

k)
∞
k=0,

for i ∈ {1, . . . , N }, of (1.2), to compute the empirical mea-
sure μN ,k := 1

N

∑N
i=1 δXi

k
. The usual metric for measuring

the performance of such algorithms is the (root) mean square
error (MSE). Namely, for any f ∈ L2(π), k ≥ 1 and N ≥ 1,
we define

MSE(A f ,k,N ) :=
(
E
∣
∣( f , π) − ( f , μN ,k)

∣
∣2
)1/2

,

where A f ,k,N is the algorithm specified by the estimator
( f , μN ,k). Then, for a given ε > 0, we look for the optimal
number k of steps and the optimal number N of simulated
paths, such that for any fixed integrable function f we have
MSE(A f ,k,N ) < ε. Note that

MSE(A f ,k,N ) ≤ |( f , π)−( f ,Law(Xk))| +
(
N−1

V[ f (Xk)]
)1/2

.

(1.3)

If f is Lipschitz with a Lipschitz constant L , then the
Kantorovich duality representation of the L1-Wasserstein
distance W1, see (Villani 2009, Remark 6.5), allows us
to upper bound the first term of the right hand side by
LW1(Law(Xk), π). Hence it is possible to control the bias
by using the vast literature on such Wasserstein bounds (see
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e.g. Brosse et al. 2018; Cheng et al. 2018; Durmus and Eberle
2021; Majka et al. 2020 and the references therein). Control-
ling the variance, however, is amore challenging task. Before
we proceed, let us consider an example.
Motivational example In the context of Bayesian inference,
one is interested in sampling from the posterior distribution
π on R

d given by

π(dx) ∝ π0(dx)
∏m

i=1 π(ξi |x),

where the measure π0(dx) = π0(x)dx is called the prior and
(ξi )

m
i=1 are i.i.d. data pointswith densitiesπ(ξi |x) for x ∈ R

d .
Note that in this example, for convenience, we assume that
the data are conditionally independent given the parameters.
See Sect. 4 for more general settings. Taking β = √

2, the
potential V in (1.1) becomes

V (x, νm) := − logπ0(x) − m
∫

logπ(y|x)νm(dy)

= − logπ0(x) −
m∑

i=1

logπ(ξi |x). (1.4)

In stochastic gradient algorithms, one replaces the exact
gradient ∇V (·, νm) in (1.2) with an approximate gradi-
ent, constructed by sampling only s  m terms from
the sum in (1.4). This amounts to considering V (x, νs) =
− logπ0(x) − m

∫
logπ(y|x)νs(dy) = − logπ0(x) −

m
s

∑s
i=1 logπ(ξτ ki

|x), where τ ki ∼ Unif({1, . . . ,m}) for
i = 1, . . . , s are i.i.d. randomvariables uniformly distributed
on {1, . . . ,m}. Note that for any x ∈ R

d the noisy gradient
∇x V (x, νs) is an unbiased estimator of ∇x V (x, νm). If we
choose β = √

2 and the time-step h/(2m) in (1.2), we arrive
at the Markov chain

Xk+1 = Xk + 1

2
h

(
1

m
∇ logπ0(Xk)

+1

s

s∑

i=1

∇ logπ(ξτ ki
|Xk)

)

+ 1√
m

√
hZk+1. (1.5)

Note that the term in brackets in (1.5) is an unbiased estimator
of − 1

m∇V .
The main difficulty in quantifying the cost ofMonte Carlo

algorithms based on (1.5) stems from the fact that the vari-
ance is problem-specific and depends substantially on the
interplay between the parameters m, s, h and N . Hence, one
may obtain different costs (and thus different answers to the
question of profitability of using mini-batching) for different
models and different data regimes (Nagapetyan et al. 2017).

In Figs. 1 and 2 we present a numerical experiment for a
simple example of a Monte Carlo estimator ( f , μN ,k) based
on the chain (1.5) with the densities π(ξi |x) specified by a
Bayesian logistic regression model, cf. Sect. 3 for details.

We take m = 512, h = 10−2 and we simulate up to t = 2,
hence we have k = 200 iterations. On the left-hand side
of both figures we can see the estimated MSE for differ-
ent numbers of paths N and different numbers of samples
s ≤ m, for two different functions f . On the right hand
side we can see how the variance changes with s. Evidently,
subsampling/mini-batching works better for f (x) = log |x |
than for f (x) = exp(x), since in the former case it allows us
to obtain a small MSE by using just two samples, while in
the latter the minimal reasonable number of samples seems
to be 16. However, even in this simple example we see that
the optimal choice of s and N is far from obvious and very
much problem-specific. For an additional discussion on this
subject, see Appendix 2.

It has been observed in Nagapetyan et al. (2017), that
in some specific regimes there is no benefit of employing
the subsampling scheme. The authors of Nagapetyan et al.
(2017) also observed that a subsampling scheme utilizing
control variates can exhibit improved performance, but again
only in some specific regimes (see also Baker et al. 2019;
Brosse et al. 2018 for related ideas). Moreover, in order to
implement their scheme one has to know the mode of the
sampled distribution in advance and hence it is not clear how
to adapt it to non-convex settings.

The fact that the analysis of the variance of SGLD (and
hence of the computational cost of the algorithm A f ,k,N )
becomes cumbersome even in the simplest possible exam-
ples, clearly demonstrates the need for developing a different
algorithm, for which the benefits of subsampling could be
proven in a rigorous way for a reasonably large class of mod-
els. To this end, we turn towards theMulti-level Monte Carlo
(MLMC) technique.

2 Main result

In order to approximate the measure π , we consider a fam-
ily of (possibly random) measures (π�)�∈Nr , where N

r for
r ≥ 1 is the set of multi-indices � = (	1, · · · , 	r ), where
each 	i ≥ 0 corresponds to a different type of approxima-
tion. In thisworkwe focus on the case r = 2,with 	1 dictating
the number of subsamples at each step of the algorithm and
	2 the time discretisation error. Note that for any i ∈ N,
each possible value of 	i corresponds to a different level of
approximation within the given type of approximation, i.e.,
in our main example 	1 = k will correspond to the k-th level
of approximation with respect to the number of subsamples,
wherewe use, say, sk subsamples out of the total number ofm
samples. Note that for some types of approximation, 	i can
have the highest possible value (corresponding to the best
possible approximation), such as 	1 = m for the number of
subsamples, making the total possible number of approxima-
tion levels finite. However, for other types of approximation
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Fig. 1 MSE and Variance V[ f (Xk)] with f (x) = log |x |

Fig. 2 MSE and Variance V[ f (Xk)] with f (x) = exp(x)

(such as with respect to the time discretisation error), we can
keep refining the approximation parameter indefinitely and
hence have an infinite number of approximation levels.While
for a fixed � the samples are biased (if at least one type of
approximation has an infinite number of possible approxima-
tion levels), we work with methods that are asymptotically
unbiased in the sense that

lim�→∞ E( f , π�) = ( f , π), (2.1)

where � → ∞ means that mini∈1,...,r 	i → ∞. Note that
we need to take the expectation in (2.1) since the measures
π� can be random. Here we use the convention that if for a
given type of approximation 	i = (	

j
i )

∞
j=1, there is only a

finite number, say K , of possible approximation levels, then
for any j ≥ K we have 	

j
i = ∞, since then the bias with

respect to that particular type of approximation is eliminated.
We also remark that as the coordinates of � increase and
the bias decreases, the corresponding computational cost of
MLMC increases. One therefore faces an optimisation prob-
lem and tries to obtain the minimal computational cost for

a prescribed accuracy (or, equivalently, to minimise the bias
for a fixed computational budget).

It turns out, perhaps surprisingly, that aMulti-level Monte
Carlo estimator that consists of a hierarchy of biased approx-
imations can achieve computational efficiency of vanilla
Monte Carlo built from directly accessible unbiased sam-
ples (Giles 2008, 2015). In order to explain this approach,
let us define backward difference operators


sπ
� := π� − π�−es , �π� := (∏r

s=1 
s
)
π�,

where es is the unit vector in the direction s ∈ {1 . . . , r} and
∏r

s=1 
s denotes the concatenation of operators. The core
idea of MLMC is to observe that thanks to (2.1),

( f , π) = E
∑

�∈Nr ( f ,�π�), (2.2)

where we set π0−es := 0 for all unit vectors es , with
0 = (0, . . . , 0). The original MLMC (Giles 2015) has been
developed for r = 1, and the extension to an arbitrary r
(namedMulti-indexMonte Carlo, orMIMC) has been devel-
oped in Haji-Ali et al. (2016). In MIMC we approximate
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each term π� on the right-hand side of (2.2) using mutually
independent, unbiased Monte Carlo estimators π�,N� with
N� ≥ 1 samples each, and we choose a finite set of multi-
indices L ⊂ N

r to define

AL( f ) :=∑�∈L( f ,�π�,N�). (2.3)

Clearly, E( f ,�π�,N�) = E( f ,�π�) and hence AL( f )
is an asymptotically unbiased estimator of ( f , π) when L
increases to N

r . Moreover, we note that due to the inde-
pendence of π�,N� across levels, the variance of the MIMC
estimator satisfies V[AL( f )] =∑�∈LV[( f ,�π�,N�)].

In this work we develop an antithetic extension of the
MIMC algorithm. To this endwe define pairs (π+,�, π−,�) of
copies of π� in the sense that E[( f , π�)] = E[( f , π+,�)] =
E[( f , π−,�)] for all Lipschitz functions f , and


A
s π� := π� − 1

2 (π+,�−es + π−,�−es ), �Aπ� := (∏r
s=1 
A

s

)
π�.

(2.4)

The corresponding Antithetic MIMC estimator is given by

AA,L( f ) :=∑�∈L( f ,�Aπ�,N�). (2.5)

As we will see in the sequel, the reduction of the variance
of AA,L( f ) in comparison to AL( f ) can be achieved as a
consequence of an appropriately chosen coupling between
π�, π+,�−es and π−,�−es for each � ∈ L and s ∈ {1, . . . , r}.
Using the notation introduced in (1.2), we will apply (2.5) to
the specific case of � = (	1, 	2) and π� given as the law of
X	1,	2
k for some fixed k ≥ 1, where

X	1,	2
k+1 = X	1,	2

k − h	2∇x V (X	1,	2
k , νs	1 ) + β

√
h	2 Zk+1.

(2.6)

In this setting, we call the algorithm AA,L( f ) specified by
(2.5) the Multi-index Antithetic Stochastic Gradient Algo-
rithm (MASGA). Note that for a fixed t > 0 such that
t = kh	2 for some k ≥ 1, the chain (2.6) can be interpreted as
a discrete-time approximation, both in time with parameter
h but also in data with parameter s, of the SDE

dYt = −∇x V (Yt , ν
m)dt + βdWt , (2.7)

where (Wt )t≥0 is the standard Brownian motion inRd . Then,
MASGA with π� given as the law of X	1,	2

k , for any finite
subsetL ⊂ N

2 provides a biased estimator of ( f , πt ) (where
πt := Law(Yt ) with Yt given by (2.7)), where the bias stems
from the use of a finite number of levels. However, since π

given by (1.1) is the limiting stationary distribution of (2.7),
AA,L( f ) can be also interpreted as a biased estimator of
( f , π), with an additional bias coming from the difference

between ( f , π) and ( f , πt ) due to the simulation up to a
finite time.

Note that the construction ofMASGAdoes not require any
knowledge of the structure of the target measure, such as the
location of its modes (Baker et al. 2019; Brosse et al. 2018;
Nagapetyan et al. 2017), or any properties of the potential V .
However, in order to formulate the main result of this paper,
we will use the following set of assumptions.

Assumptions 2.1 Let the potential V : Rd × P(Rd) → R

be of the form V (x, νm) := v0(x) + ∫
Rk v(x, y)νm(dy) =

v0(x)+ 1
m

∑m
i=1 v(x, ξi ), where (ξi )

m
i=1 ⊂ R

k is the data and
the functions v0 : Rd → R and v : Rd × R

k → R are such
that

i) For all ξ ∈ R
k we have ∇v(·, ξ), ∇v0(·) ∈ C2

b (R
d ;Rd),

i.e., the gradients of v and v0 are twice continuously
differentiable with all partial derivatives of the first and
second order bounded (but the gradients themselves are
not necessarily bounded).

ii) There exists a constant K > 0 such that for all ξ ∈ R
k

and for all x , y ∈ R
d we have

〈x − y,∇xv(x, ξ) − ∇yv(y, ξ)〉 ≥ K |x − y|2 and

〈x − y,∇v0(x) − ∇v0(y)〉 ≥ K |x − y|2.

Note that the first condition above in particular implies that
the gradient ∇V (·, νm) of the potential is globally Lipschitz.
Furthermore, as a consequence of Assumption 2.1(i), for all
ξ ∈ R

k the gradients ∇v(·, ξ), as well as the gradient ∇v0(·)
satisfy a standard linear growth condition |∇xv(x, ξ)| ≤
c(1+ |x |) and |∇v0(x)| ≤ c(1+ |x |) with a constant c > 0.
Using a standard inequality (a + b)4 ≤ 8a4 + 8b4, we can
easily conclude that there exists a constant C > 0 such that
for all ξ ∈ R

k and for all x ∈ R
d we have

|∇xv(x, ξ)|4 ≤ C(1 + |x |4) and |∇v0(x)|4 ≤ C(1 + |x |4).

This growth condition will be important in our proofs in
Sect. 4. We further remark that Assumption 2.1(ii) implies
that π given via (1.1) is log-concave. Note also that the
Bayesian inference example given in (1.5) satisfies Assump-
tions 2.1 if the functions x �→ −∇ logπ(ξ |x) satisfy all the
respective regularity conditions. We remark that we formu-
late ourmain result in this section only for the specific formof
V given above just for convenience. Our result holds also for
a much more general class of potentials, but the assumptions
for the general case are more cumbersome to formulate and
hence we postpone their presentation to Sect. 4. Moreover,
we stress that assuming convexity of V is not necessary for
the construction of our algorithm and it is a choice we made
solely to simplify the proofs. By combining our approach
with the coupling techniques from (Majka et al. 2020), it
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should be possible to extend our results to the non-convex
case. This, however, falls beyond the scope of the present
paper and is left for futurework.Wehave the following result.

Theorem 2.2 Let Assumptions 2.1 hold. Let AA,L be the
MASGA estimator defined in (2.5) with π� given as the law
of X	1,	2

k , defined via (2.6) for some fixed k ≥ 1. Then there
exists a set of indices L and a sequence (N�)�∈L such that
for any ε > 0 and for any Lipschitz function f , the estima-
torAA,L( f ) requires the computational cost of order ε−2 to
achieve mean square error ε for approximating ( f , πt ) with
t = kh	2 , where πt := Law(Yt ) with Yt given by (2.7).

The proof of Theorem 2.2 and an explicit description of
the sequence (N�)�∈L, as well as all the details of the relaxed
assumptions that can be imposed on V , will be given in
Sect. 4. Note that requiring computational cost of order ε−2

to achieve MSE < ε is the best performance that one can
expect from Monte Carlo methods, cf. (Giles 2015).

The twoquantities that feature in the optimization problem
formulated in Theorem 2.2 are the MSE and the compu-
tational cost (i.e., we want to optimize the cost given the
constraint MSE < ε for a fixed ε > 0). Note that the cost is
explicitly defined to be

cost(AA,L( f )) :=∑�∈L N	 C�, C� := th−1
	2

s	1 , (2.8)

where C� is the cost of each path at the level �, i.e., the prod-
uct of k = th−1

	2
steps and s	1 subsamples for a given level

� = (	1, 	2). On the other hand, from our discussion onMSE
(1.3) it is evident that in order to control MSE(AA,L( f )), it
is crucial to find upper bounds on the varianceV[( f ,�Aπ�)]
and the bias of the estimator at each level �. In our proof we
will in fact rely on the complexity analysis from (Haji-Ali
et al. 2016) (see also Giles 2015 and Theorem 4.12 below
for more details), which is concerned exactly with such opti-
mization problems.

For convenience, from now on we will assume that in
our MASGA estimator (2.5), both the number of subsamples
and the discretisation parameter are rescaled by two when
moving between levels. More precisely, for a fixed s0 ∈ N+
and h0 > 0, we assume that s	1 = 2	1s0 and h	2 = 2−	2h0
for all � = (	1, 	2) ∈ N

2. In this setting, the complexity
analysis from (Haji-Ali et al. 2016) tells us, roughly speaking
(with more details in Sect. 4 below) that in order to obtain
MSE(AA,L( f )) < ε with cost(AA,L( f )) < ε−2, we need
to have for each � ∈ N

2,

E[( f ,�Aπ�)2] � 2−〈β,�〉 and C� � 2〈γ ,�〉, (2.9)

where β = (β1, β2) and γ = (γ1, γ2) ∈ R
2 are such that

γ1 < β1 and γ2 < β2. Note that the bound onE[( f ,�Aπ�)2]
trivially implies a bound onV[( f ,�Aπ�)] of the same order
(i.e., with the same β), as well as the boundE[( f ,�Aπ�)] �

2−〈α,�〉 with α = β/2, which turns out to be crucial in the
complexity analysis from (Haji-Ali et al. 2016) and is the
reason why it suffices to verify (2.9), cf. also Theorem 2 in
Giles (2015) and Theorem 4.12 below. Since, straight from
the definition of C�, it is clear that in our setting we have
γ = (1, 1) (recall that C� � s	1h

−1
	2

� 2	1+	2 ), we can infer
that in order to prove Theorem 2.2 all we have to do is to find
an upper bound on E[( f ,�Aπ�)2] proportional to 2−〈β,�〉
with β = (β1, β2) such that β1 > 1 and β2 > 1. In the proof
of Theorem 2.2 we will in fact obtain β = (2, 2). However,
the crucial difficulty in our argument will be to ensure that
our upper bound is indeed of the product form, i.e., that we
obtain E[( f ,�Aπ�)2] � s−2

	1
h2	2 � 2−2	1−2	2 .

Further extensions
The assertion of Theorem 2.2 states that AA,L( f ), inter-

preted as an estimator of ( f , πt ), requires computational cost
of order ε−2 to achieve mean square error ε. Since the dif-
ference between ( f , πt ) and ( f , π) is of order O(e−λt ) for
some λ > 0 (cf. the discussion in Appendix 2), this means
that AA,L( f ) interpreted as an estimator of ( f , π), requires
computational cost of order ε−2 log(ε−1) to achieve mean
square error ε. However,AA,L( f ) could be further modified
in order to remove the log term, by employing the MLMC in
terminal time technique introduced in Giles et al. (2020), cf.
Sect. 2.3 and Remark 3.8 therein. This would involve taking
r = 3 in (2.5) and modifying the definition as

AA,L( f ) :=∑�∈L( f ,
A
1 
A

2 
3π
�,N�), (2.10)

i.e., we would take π� with � = (	1, 	2, 	3) to be the law of
X	1,	2
k	3

given by (2.6), hence we would introduce a sequence

of terminal times t := k	3h	2 for the chain (2.6), changing
at each level. However, in the definition (2.10) of AA,L( f )
we would use the antithetic difference operators 
A only
with respect to the subsampling level parameter 	1 and the
discretisation level parameter 	2, while applying the plain
difference operator 
 to the terminal time level parameter
	3. The details of how to construct the sequence of terminal
times t := k	3h	2 can be found in Giles et al. (2020).We skip
this modification in the present paper in the attempt to try to
keep the notation as simple as possible.

In the setting where the computational complexity is ε−2,
(as it is for MASGA), it is possible to easily modify the
biased estimatorAA,L( f ) to obtain its unbiased counterpart.
Indeed, let M = (M1, . . . , Mr ) be a random variable on Nr ,
independent of (�Aπ�,N�)�∈L. Define LM := {	 ∈ N

r :
	1 ≤ M1, · · · , 	r ≤ Mr } and

AU A,LM
( f ) :=∑�∈LM

( f ,�Aπ�,N� )
P(M≥�)

=∑�∈Nr 1{M≥�} ( f ,�Aπ�,N� )
P(M≥�)

,

where M ≥ � is understood component-wise. One can see
that AU A,LM

( f ) is then an unbiased estimator of ( f , π).
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Indeed,

E
[AU A,LM

( f )
] = E

[∑
�∈Nr ( f ,�Aπ�,N�)

] = ( f , π),

due to (2.2). It turns out that in order for the variance of
AU A,LM

( f ) to be finite, we need to be in the regime where
the computational complexity of the original estimator is ε−2.
We refer the reader to (Crisan et al. 2018; Rhee and Glynn
2015) for more details and recipes for constructing M. The
methods from (Rhee and Glynn 2015) have recently been
extended to more general classes of MCMC algorithms in
Jacob et al. (2020), which contains further discussion of the
benefits and costs of debiasing.
Literature review The idea of employing MLMC apparatus
to improve efficiency of stochastic gradient algorithms has
been studied before. In Giles et al. (2020) we introduced a
Multi-level Monte Carlo (MLMC) method for SGLD in the
global convexity setting, based on a number of decreasing
discretisation levels. We proved that under certain assump-
tions on the variance of the estimator of the drift, this
technique can indeed improve the overall performance of the
MonteCarlomethodwith stochastic gradients. InMajka et al.
(2020) we extended our approach to cover the non-convex
setting, allowing for sampling from probability measures
that satisfy a weak log-concavity at infinity condition. How-
ever, the computational complexity of such algorithms is
sub-optimal. As we will observe in Sect. 3 with numerical
experiments, the crucial insight of the present paper (and a
novelty compared to Giles et al. 2020; Majka et al. 2020)
is the application of MLMC with respect to the subsam-
pling parameter. Note that, in a different context, the idea
to apply MLMC to stochastic approximation algorithms has
been studied in Frikha (2016), see also (Dereich 2021; Dere-
ich and Müller-Gronbach 2019).

At the core of our analysis ofMulti-levelMonteCarlo esti-
mators lies the problem of constructing the right couplings
between Euler schemes (2.6) on different discretisation lev-
els. For Euler schemes with standard (accurate) drifts this is
done via a one-step analysis by coupling the driving noise in
a suitable way, cf. Sects. 2.2 and 2.5 in Majka et al. (2020)
and Sect. 2.4 in Eberle and Majka (2019). However, in the
case of SGLD, one is faced with an additional problem of
coupling the drift estimators used on different discretisation
levels. In both (Giles et al. 2020) and (Majka et al. 2020)
we addressed this issue in the simplest possible way, by
coupling the drift estimators independently. In the present
paper we show that by employing a non-trivial coupling we
can substantially reduce the variance of MLMC and thus
obtain the required bound V[( f ,�Aπ�)] � 2−2	1−2	2 as
explained above. We achieve this by utilising the antithetic
approach to MLMC as defined in (2.4). Related ideas for
antithetic multi-level estimators have been used e.g. in Giles
and Szpruch (2013), Giles and Szpruch (2014), Szpruch and

Tse (2019). However, in the present paper we apply this con-
cept for the first time to Euler schemes with inaccurate drifts.
We also remark that, due to our bounds on second moments,
we can easily derive confidence intervals for MASGA using
Chebyshev’s inequality. However, it would also be possible
to derive a Central Limit Theorem and corresponding con-
centration inequalities, in the spirit of BenAlaya andKebaier
(2015), BenAlaya et al. (2020), Jourdain andKebaier (2019),
Kebaier (2005).

The remaining part of this paper is organised as follows.
In Sect. 3 we present numerical experiments confirming
our theoretical findings. In Sect. 4 we present a more
general framework for the MASGA estimator, we explain
the intuition behind the antithetic approach to MLMC in
more detail (see Example 4.2) and we formulate the cru-
cial Lemma 4.13. We also explain how to prove Theorem 2.2
based on Lemma 4.13. In Sect. 5 we prove Lemma 4.13
in a few steps: we first discuss the antithetic estimator with
respect to the discretisation parameter, which corresponds to
taking r = 1 and � = 	2 in (2.5), then we consider the anti-
thetic estimator with respect to the subsampling parameter,
which corresponds to taking r = 1 and � = 	1 in (2.5) and,
finally, we explain how these approaches can be combined
in a multi-index estimator with r = 2 and � = (	1, 	2) to
prove Lemma 4.13. Several technical proofs are postponed
to Appendices.

3 Numerical experiments

We showcase the performance of the MASGA estimator in
Bayesian inference problems, combining different Bayesian
models andpriors. The code for all the numerical experiments
can be found at https://github.com/msabvid/MLMC-MIMC-
SGD.

In Sect. 3.1 we compare the MASGA estimator intro-
duced in Sect. 2 with an Antithetic Multi-level Monte Carlo
(AMLMC) estimator with respect to the subsampling param-
eter, corresponding to taking r = 1 and � = 	1 in (2.5).
We demonstrate that MASGA indeed achieves the optimal
computational complexity. Both these estimators are also
compared to a standard Monte Carlo estimator for reference.
As we shall see, while the performance of MASGA in our
experiments is always better than that of AMLMC, the differ-
ence is not substantial. This suggests that, from the practical
standpoint, the crucial insight of this paper is the application
of the antithetic MLMC approach with respect to the sub-
sampling parameter. Hence in our subsequent experiments
in Sects. 3.2 and 3.3, we will focus on the AMLMC estima-
tor, which is easier to implement than MASGA.

Note that this phenomenon is partially explained by our
computations,which show that the variance ofAMLMCwith
respect to subsampling is already of the optimal order in both
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parameters, i.e., O(h2s−2), see Sect. 5 for details. However,
based on the theory of MIMC, in order to prove the optimal
computational complexity, we need to use AMLMC with
respect to subsampling in conjunction with AMLMC with
respect to discretisation as a multi-index estimator.

In Sect. 3.2 we will check the performance of AMLMC
with respect to subsampling in both convex and non-convex
settings, whereas in Sect. 3.3 we will compare it to the
Stochastic Gradient Langevin Dynamics with Control Vari-
ates (SGLD-CV) method introduced in Baker et al. (2019).
More precisely, in Sect. 3.3 we present an example of a con-
vex setting in which AMLMC outperforms SGLD-CV. It is
worth pointing out, that the latter method can be applied only
to convex settings (similarly as the method from (Cornish
et al. 2019)), whereas AMLMC is free of such limitations.

We would like to remark that our main point in imple-
menting AMLMC in non-convex settings is to demonstrate
the robustness of our approach and show that AMLMC can
perform well in some simple examples where other methods
(Baker et al. 2019; Cornish et al. 2019) are not even imple-
mentable. However, we do not guarantee (and do not expect)
the optimal performance of AMLMC in such settings. We
believe that in order to ensure the optimal performance of
our algorithms in non-convex settings, we would have to re-
design MASGA by employing a different coupling. More
precisely, our current algorithm is based on coupling multi-
ple chains in a synchronous way, which is well-suited to the
convex setting, but not necessarily to non-convex settings.
Adapting our method to non-convex settings would require
a re-design of the algorithm by utilising a combination of
the maximal and the reflection couplings, as described for
ULA and SGLD in Eberle and Majka (2019), Majka et al.
(2020). This is, however, highly non-trivial (since MASGA
relies on coupling of multiple chains and not just two), and
will require a lot of additional work, hence falls beyond the
scope of the present paper.

3.1 MASGA and AMLMCwith respect to subsampling

Let us begin by introducing the Bayesian logistic regression
setting that we will use for our simulations. The data is mod-
elled by

p(yi |ιi , x) = g(yi xT ιi ) (3.1)

with g(z) = 1/(1 + e−z), z ∈ R, where x ∈ R
d are the

parameters of the model that need to be sampled from their
posterior distribution, ιi denotes an observation of the pre-
dictive variable in the data, and yi the binary target variable.
Given a dataset of size m, by Bayes’ rule, the posterior den-
sity of x satisfies

π(x) ∝ π0(x)
∏m

i=1 g(yi x
T ιi ). (3.2)

In our experiments, we will consider two different priors
π0, namely

i) a Gaussian prior π0 ∼ N (0, I ).
ii) a mixture of two Gaussians π0 ∼ 1

2N (0, I )+ 1
2N (1, I ).

We use Algorithm 1 to empirically calculate the cost of
approximating E( f (X)), for a function f : Rd → R, where
the law of X is the posterior π , by the MASGA estima-
tor AA,L

MASGA( f ) = AA,L( f ) defined in (2.5), such that its
MSE is under some threshold ε. Recall that in our notation
( f ,�Aπ�) denotes the integral of f with respect to the anti-
theticmeasure
Aπ� given by (2.4), whereπ� is specified by
the law of the Markov chain (2.6) with the potential V deter-
mined from (3.2) in an analogous way as in the Bayesian
inference example (1.4). More explicitly, we have

V (x, νm) = − logπ0(x) −∑m
i=1 log g(yi x

T ιi )

and

X	1,	2
k+1 = X	1,	2

k + 1
2h	2

(
1
m∇ logπ0(X

	1,	2
k )

+ 1

s	1

s	1∑

i=1

∇ log g
(
yτ ki

(X	1,	2
k )T ιτ ki

)
⎞

⎠+ 1√
m

√
h	2 Zk+1,

(3.3)

where τ ki for k ≥ 1 and i ∈ {1, . . . , s	1} can correspond
to subsampling either with or without replacement (in our
simulations we choose the latter).

Below we present the results of our experiments for
f (x) = |x |2 (we would like to remark that we obtained
similar conclusions for f (x) = |x | and hence we skip the
latter example to save space).

Furthermore, for the Bayesian Logistic regressions we use
the covertype dataset (Blackard and Dean 1999) which has
581 012 observations, and 54 columns1. We create a training
set containing 20% of the original observations.

On the other hand, for AMLMC with respect to subsam-
pling (denoted below by AA,L

MLMC ( f )) we take r = 1 and
� = 	1 in (2.5). This corresponds to using a fixed discretisa-
tionparameterh and applying the antitheticMLMCestimator
only with respect to the subsampling parameter.

Note that in our experiments we apply the estima-
tors AA,L

MASGA( f ) and AA,L
MLMC ( f ) to approximate ( f , πh

t ),

1 In order to performaBayesian logistic regression, the categorical vari-
able specifying the forest type designation is aggregated into a binary
variable and is used as the target variable yi in the model.
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Algorithm 1 MASGA
Initialisation: n, L , ε
Calculate n samples ( f ,�Aπ�)( j) of ( f ,�Aπ�) independently, j =
1, . . . , n for each multi-index level in L := {� = (	1, 	2) : 	1, 	2 =
0, . . . , L}.
Calculate the MASGA estimator AA,L( f ) as in (2.5) with N� = n,
i.e., AA,L( f ) = ∑

�∈L( f ,�Aπ�,n), where for each � ∈ L we take
( f ,�Aπ�,n) := n−1∑n

j=1( f ,�
Aπ�)( j).

while MSE > ε do
Calculate the number of paths in each level 	 given by

N	1,	2 = ε−2
(√

V[( f ,�Aπ(	1,	2))]
C(	1,	2)

∑
�∈L

√

V[( f ,�Aπ�)]C�

)

(see Theorem 4.11 for details) and calculate extra N	1,	2 − n sam-
ples in each multi-index level.
Update AA,L( f ) and estimate its bias (see Giles 2015; Haji-Ali
et al. 2016).
if bias estimate is less than ε/2 then

Set convergence=True, and stop.
else

Set L := L + 1, and calculate n samples of ( f ,�Aπ�) for
� = (	1, L), 	1 ≤ L and for � = (L, 	2), 	2 ≤ L .

end if
end while
return AA,L( f ) and the number of samples N	1,	2 in each level.

where πh
t is the law given by the chain Xk with t = kh,

defined by

Xk+1 = Xk + 1

2
h

(
1

m
∇ logπ0(Xk) + 1

m

m∑

i=1

∇ log g(yi X
T
k ιi )

)

+ 1√
m

√
hZk+1, (3.4)

with a fixed discretisation parameter h (i.e., we do not take
into account the error between ( f , πh

t ) and ( f , πt ) when
calculating the MSE, where πt is the law of the SDE (2.7)).
The value of this h is determined by the final level used in
MASGA, i.e., h = hL .

The experiment is organised as follows:

i) let L ≥ 1, and (	s, 	d) = (L, L) be the highest multi-
indices used in the calculation of AA,L

MASGA( f ).

ii) We measure the bias of AA,L
MASGA( f ) and set ε :=

√
2
(
E

[
|( f , πhL

t ) − AA,L
MASGA( f )|2

])1/2
.

iii) We then compare the cost ofAA,L
MASGA( f ) against the cost

of AA,L
MLMC ( f ) with fixed discretisation parameter h =

h	d = hL satisfyingE[(( f , πhL
t )−AA,L

MLMC ( f ))2] < ε2.

We repeat the above three steps for L = 1, . . . , 7, in order to
measure the cost for different values of ε.

We perform this comparison on two data regimes: first
on the covertype dataset with 100K observations and 54
covariates, and second on a smaller synthetic dataset with
1K observations and 5 covariates. Results are shown in

Fig. 3, where each ε corresponds to different values of L
(see Table 1).

As expected, the higher the accuracy (the lower the ε)
the better the cost of AA,L

MASGA( f ) compared to the cost of

AA,L
MLMC ( f ). Depending on the dataset size, it is necessary

to reach different levels of accuracy of the MSE to notice an
improvement on the cost. This comes from the amount of
variance added by the noise added in the chain X	1,	2

k (3.3)
that will decrease as the dataset size m increases.

3.2 AMLMCwith respect to subsampling in convex
and non-convex settings

In the subsequent experiments, we study the AMLMC
estimator with respect to subsampling, i.e., with a fixed dis-
cretisation parameter h. We simulate 10 × 24 steps of the
chain (3.3). We take X0 to be an approximation of the mode
of the posterior that we pre-compute using Stochastic Gradi-
ent Descent to replace the burn-in phase of theMarkov chain,
cf. (Baker et al. 2019). The number of steps and the step size
are chosen so as to be consistent with the finest discretisation
level of the MASGA experiment provided in the previous
section.

A summary of the AMLMC setting is provided in Table 2.
Plots in Fig. 4 correspond to the results where πh

t is the
approximationof the posterior of aBayesianLogisticRegres-
sion with Gaussian prior. Plots in Fig. 5 use a mixture of
Gaussians for the prior. The left plot shows the variance of
( f ,�Aπ�) and ( f , π�) per subsampling level. The right plot
displays the computational cost multiplied by ε2.

These figures indicate that the total cost of approximating
( f , πh

t ) by AA,L( f ) as described above, is O(ε−2), even
when the prior is not log-concave as is the case of a Mixture
of two Gaussians (Fig. 5).

3.2.1 Bayesian mixture of Gaussians

For our next experiment, we use the setting from Example
5.1 inWelling and Teh (2011) to consider a Bayesianmixture
of two Gaussians on a 2-dimensional dataset, in order to
make the posterior multi-modal. Given a dataset of size m,
by Bayes’ rule

π(x) ∝ π0(x)
∏m

i=1 g(ι1, ι2|x), (3.5)

where x = (x1, x2), g is the joint density of (ι1, ι2) where
each ιi ∼ 1

2N (x1, 5)+ 1
2N (x1 + x2, 5). For the experiment,

we consider a Gaussian prior N (0, I ) for π0(x), and we
create a synthetic dataset with 200 observations, by sampling
from ιi ∼ 1

2N (0, 5) + 1
2N (1, 5).

In this experimentwe again take r = 1 and � = 	1 in (2.5),
which corresponds to using a fixed discretisation param-
eter h and applying the antithetic MLMC estimator only

123



49 Page 10 of 37 Statistics and Computing (2023) 33 :49

Fig. 3 Comparison of MASGA cost against AMLMC cost for the standard Gaussian prior

Table 1 MASGA setting for
Bayesian Logistic Regression

AMLMC parameter Value

h0 (initial discretisation step size) 0.005

Number of steps in initial discretisation level 100

(dataset size, dataset dim) (116 202, 54), (1 000, 5)

s0 (initial subsample size) 4

X0 Approximation of the mode of the posterior

Table 2 AMLMC setting for
Bayesian Logistic Regression

AMLMC parameter Value

h (fixed discretisation step size) 0.005 × 2−4

Number of steps 100 × 24

(dataset size, dataset dim) (116 202, 54)

s0 (initial subsample size) 4

X0 Approximation of the mode of the posterior

with respect to the subsampling parameter. We then use the
same setting as before: we apply our estimator AA,L

MLMC ( f )
to approximate ( f , πh

t ), where πh
t is the law given by the

chain Xk defined in (3.4), with a fixed discretisation parame-
ter h = 1 (i.e., we do not take into account the error between
( f , πh

t ) and ( f , πt )when calculating theMSE).We simulate

2 × 105 steps of the chain (2.6), starting from X0 = 0 (see
Table 3).

In this example there is the additional difficulty that the
posterior has two modes (Fig. 6). It is therefore necessary to
ensure that the number of steps is high enough so that the
chain has explored all the space (Fig. 7).

Fig. 4 AMLMC estimator AA,L( f ) with respect to subsampling for f (x) = |x |2, where the prior is the standard Gaussian
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Fig. 5 AMLMC estimator AA,L( f ) with respect to subsampling for f (x) = |x |2, where the prior is a mixture of two Gaussians

Table 3 AMLMC setting for Bayesian Mixture of Gaussians

AMLMC parameter Value

h (fixed discretisation step size) 1

Number of steps 200 000

(dataset size, dataset dim) (200, 2)

s0 (initial subsample size) 2

X0 (0, 0)

Results for this experiment are shown in Fig. 6, indicating
that the total cost of approximating ( f , πt ) by the MASGA
estimatorAA,L( f ) isO(ε−2). We obtain the following rates
of decay of the variance and the absolute mean of �Aπ�):

i) E[( f ,�Aπ�)]| � 2−1.01	, i i) V[( f ,�Aπ�)] � 2−1.82 	.

3.3 AMLMC and SGLDwith control variates

In this subsection we compare the AMLMC estimator
with respect to subsampling against the Stochastic Gradient
Langevin Dynamics method with control variates (SGLD-
CV) from Baker et al. (2019), Nagapetyan et al. (2017). We
work with the standard Gaussian prior π0. For SGLD-CV,

for a fixed time step size h, and for a fixed subsample size
s	1 , instead of the process (2.6) we use

X	1
k+1 = X	1

k − h
(
∇x V (x̂, νm) +

(
∇x V (X	1

k , νs	1 ) − ∇x V (x̂, νs	1 )
))

+β
√
h	2 Zk+1, (3.6)

where β = 1/
√
m and x̂ is a fixed value denoting an estimate

of themodeof the posteriorπ(x).Weundertake the following
steps:

1. We estimate themode of the posterior x̂ by using stochas-
tic gradient descent.

2. For each considered accuracy ε, we run AMLMC with
respect to subsampling (as described in Sect. 3.2) to get
the maximum subsample size s	1 necessary to achieve an
estimatorAA,L

MLMC ( f ) such thatMSE(AA,L
MLMC ( f )) � ε.

3. We use each pair (ε, s	1) from the previous step to calcu-
late the cost of SGLD-CV.

The AMLMC setting values are listed in Table 4 and
results are shown in Fig. 8.

The SGLD-CV method has been shown in Baker et al.
(2019), Nagapetyan et al. (2017) to reduce the variance (and

Fig. 6 AMLMC estimator AA,L( f ) with respect to subsampling for f (x) = |x |2, for a multi-modal posterior, where the prior π0 is the standard
Gaussian
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Fig. 7 Histogram of Xk = (Xk,1, Xk,2) sampled from (2.6)

hence improve the performance) compared to the standard
SGLD and the standard Monte Carlo methods. However, in
some numerical examples, as demonstrated in this subsec-
tion, this gain can be relatively small compared to the gain
from using AMLMC.

4 General setting for MASGA

Wewill work in amore general setting than the one presented
in Sect. 2. Namely, we consider an SDE

dXt = a(Xt )dt + βdWt , (4.1)

wherea : Rd → R
d ,β ∈ R+ and (Wt )t≥0 is ad-dimensional

Brownian motion. Furthermore, let (Zk)
∞
k=1 be i.i.d. random

variables in R
d with Zk ∼ N (0, I ) for k ≥ 1. For a fixed

discretisation parameter h > 0 we consider a discretisation
of (4.1) given by Xk+1 = Xk +ha(Xk)+β

√
hZk+1, as well

as its inaccurate drift counterpart

Xk+1 = Xk + hb(Xk,Uk) + β
√
hZk+1. (4.2)

Here b : Rd × R
n → R

d is an unbiased estimator of a in
the sense that (Uk)

∞
k=0 are mutually independent Rn-valued

random variables independent of (Zk)
∞
k=1 such that for any

k ≥ 0 we have

E[b(x,Uk)] = a(x) for all x ∈ R
d . (4.3)

Fig. 8 Comparison of AMLMC with respect to subsampling for
f (x) = |x |2 vs SGLD with control variate

Note that for each k, the random variable Xk is indepen-
dent of Uk and that E[b(Xk,Uk)|Xk] = a(Xk). Moreover,
note that the framework where the drift estimator b(x,U )

depends on a random variable U is obviously a generalisa-
tion of (1.2), since as a special case of (4.2) we can take
b(x,U ) = −∇x V (x,Law(U )), where Law(U ) denotes the
law of U . We use the name Stochastic Gradient Langevin
Dynamics (SGLD) (Dalalyan and Karagulyan 2019; Majka
et al. 2020; Nagapetyan et al. 2017) to describe (4.2) even in
the general abstract setting where b and a are not necessarily
of gradient form.

This setting, besides having the obvious advantage of
being more general than the one presented in Assump-
tions 2.1, allows us also to reduce the notational complexity
by replacing sums of gradients with general abstract func-
tions a and b. As a motivation for considering such a general
framework, let us discuss an example related to generative
models.

Example 4.1 Let ν denote an unknown data measure, sup-
ported on R

D , and let νm be its empirical approximation.
While D is typically very large, in many applications ν can
be well approximated by a probability distribution supported
on a lower dimensional space, sayRd , with d  D. The aim
of generative models (Goodfellow et al. 2014) is to map sam-
ples from some basic distribution μ supported on R

d , into
samples from ν.More precisely, one considers a parametrised
map G : Rd × � → R

D , with a parameter space � ⊆ R
p,

Table 4 AMLMC setting for
Bayesian Logistic Regression

AMLMC parameter Value

h (fixed discretisation step size) 0.5

Number of steps 100

(dataset size, dataset dim) (116 202, 54)

s0 (initial subsample size) 4

X0 Approximation of the mode of the posterior
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that transports μ into G(θ)#μ := μ(G(θ)−1(B)), B ∈ R
D .

One then seeks θ such that G(θ)#μ is a good approximation
of ν with respect to a user-specified metric. In this example
we consider f : Rd → R and � : R → R and define

dist(G(θ)#μ, νm) := �

(∫

f (x)(G(θ)#μ)(dx) −
∫

f (x)νm(dx)

)

.

A popular choice for the generator G is a neural network
(Goodfellow et al. 2014). In the case of a one-hidden-layer
network with θ = (α, β) ∈ R

p × R
p with the activation

function ψ : Rd → R
d , one takes

G(x, θ) := 1

p

p∑

i=1

βiψ(αi x).

With this choice of G, the authors of Hu et al. (2019) derived
a gradient flow equation that minimises suitably regularised
dist(G(θ)#μ, νm). The gradient flow identified in Hu et al.
(2019), when discretised, is given by

θk+1 = θk − h

(

b(θk, ν
m) − σ 2

2
∇U (θk)

)

+ σ
√
hZk+1,

(4.4)

withU : Rd → R being a regulariser, σ > 0 a regularisation
parameter, (Zk)

∞
k=1 a sequence of i.i.d. randomvariableswith

the standard normal distribution, and

b(θ, νm) = ∇x�

(∫

( f ◦ G)(x, θ)μ(dx)−
∫

f (x)νm(dx)

)

∫

∇θ ( f ◦ G)(x, θ)μ(dx).

We refer the reader to Hu et al. (2019) for more details and to
Jabir et al. (2019) for an extension to deep neural networks.
One can see that bmay depend on the data in a non-linearway
and hence the general setting of (4.2) becomes necessary for
the analysis of the stochastic gradient counterpart of (4.4).
An application of MASGA to the study of generative models
will be further developed in a future work.

In order to analyse the MASGA estimator (2.5), we need
to interpret the Markov chain

Xs,h
k+1 = Xs,h

k + hb(Xs,h
k ,Us

k ) + β
√
hZk+1 (4.5)

as characterized by two parameters: the discretisation param-
eter h > 0 and the drift estimation parameter s ∈ N

that corresponds to the quality of approximation of a(x) by
b(x,Us

k ), for some mutually independent random variables
(Us

k )
∞
k=0. We will now carefully explain how to implement

the antithetic MLMC framework from Sect. 2 in this setting.

To this end, suppose that we have a decreasing sequence
(h	)

L
	=0 ⊂ R+ of discretisation parameters and an increasing

sequence (s	)L	=0 ⊂ N+ of drift estimation parameters for
some L ≥ 1. For any 	1, 	2 ∈ {1, . . . , L} and any function
f : Rd → R, we define


�
s	1 ,h	2
f ,k :=

(
f (X

s	1 ,h	2
k ) − f (X

s	1 ,h	2−1

k )
)

−
(
f (X

s	1−1,h	2
k ) − f (X

s	1−1,h	2−1

k )
)

, (4.6)

and we also put 
�
s0,h0
f ,k := f (Xs0,h0

k ), 
�
s0,h1
f ,k :=

f (Xs0,h1
k ) − f (Xs0,h0

k ) and 
�
s1,h0
f ,k := f (Xs1,h0

k ) −
f (Xs0,h0

k ). Then we can define a Multi-index Monte Carlo
estimator

A :=
L∑

	1=0

L∑

	2=0

1

N	1,	2

N	1,	2∑

j=1


�
s	1 ,h	2 ,( j)
f ,k , (4.7)

where 
�
s	1 ,h	2 ,( j)
f ,k for j = 1, . . . , N	1,	2 are independent

copies of 
�
s	1 ,h	2
f ,k . Here N	1,	2 is the number of samples

at the (doubly-indexed) level � = (	1, 	2). Note that (4.7)
corresponds to the regular (non-antithetic) MLMC estima-
tor defined in (2.3) with r = 2 and with L levels for both
parameters.

We will now explain how to obtain theMASGA estimator
(2.5) by modifying (4.7) by replacing the difference operator


�
s	1 ,h	2
f ,k with its antithetic counterpart. To this end, we will

need to take a closer look at the relation between the chains
(4.5) on different levels. Fromnowon,we focus on sequences
of parameters h	 := 2−	h0 and s	 := 2	s0 for 	 ∈ {1, . . . , L}
and some fixed h0 > 0 and s0 ∈ N. Then, we observe that
for a fixed s	1 , the chain Xs	1 ,h	2 has twice as many steps as
the chain Xs	1 ,h	2−1 , i.e., for any k ≥ 0 we have

X
s	1 ,h	2
k+2 = X

s	1 ,h	2
k+1 + h	2b(X

s	1 ,h	2
k+1 ,U

s	1 ,h	2
k+1 ) + β

√
h	2 Zk+2

X
s	1 ,h	2
k+1 = X

s	1 ,h	2
k + h	2b(X

s	1 ,h	2
k ,U

s	1 ,h	2
k ) + β

√
h	2 Zk+1

X
s	1 ,h	2−1

k+2 = X
s	1 ,h	2−1

k + 2h	2b(X
s	1 ,h	2−1

k ,U
s	1 ,h	2−1

k )

+ β
√
2h	2 (Zk+2 + Zk+1).

(4.8)

Throughout the paper, we will refer to (X
s	1 ,h	2
k )k∈N as the

fine chain, and to (X
s	1 ,h	2−1

k )k∈2N as the coarse chain. Note

that for the chain (X
s	1 ,h	2−1

k )k∈2N we could in principle use

a sequence of standard Gaussian random variables (Ẑk)k∈2N
completely unrelated to the one that we use for (X

s	1 ,h	2
k )k∈N

(which is (Zk)k∈N). However, we choose Ẑk+2 := (Zk+1 +
Zk+2)/

√
2 for all k ≥ 0, which corresponds to using the

synchronous coupling between levels (which turns out to be
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a good choice in the global convexity setting as in Assump-
tions 2.1, cf. (Giles et al. 2020)). Moreover, note that since
the chain Xs	1 ,h	2 moves twice as frequently as Xs	1 ,h	2−1 , it
needs twice as many random variablesUs	1 ,h	2 as Xs	1 ,h	2−1

needsUs	1 ,h	2−1 . This can be interpreted as having to choose
how to estimate the drift a twice as frequently (at each step
of the chain).

The idea of the antithetic estimator (with respect to the
discretisation parameter) involves replacing f (Xs	1 ,h	2−1) in
(4.6) with a mean of its two independent copies, i.e., with

the quantity given by 1
2

(
f (Xs	1 ,h	2−1−) + f (Xs	1 ,h	2−1+)

)
,

where the first copy Xs	1 ,h	2−1− uses U
s	1 ,h	2
k and the other

copy Xs	1 ,h	2−1+ uses U
s	1 ,h	2
k+1 to estimate the drift, instead

of drawing their own independent copies of U
s	1 ,h	2−1

k , i.e.,

X
s	1 ,h	2−1−
k+2 = X

s	1 ,h	2−1−
k + 2h	2b(X

s	1 ,h	2−1−
k ,U

s	1 ,h	2
k )

+ β
√
2h	2(Zk+2 + Zk+1)

X
s	1 ,h	2−1+
k+2 = X

s	1 ,h	2−1+
k + 2h	2b(X

s	1 ,h	2−1+
k ,U

s	1 ,h	2
k+1 )

+ β
√
2h	2(Zk+2 + Zk+1).

Hence the term
(
f (X

s	1 ,h	2
k ) − f (X

s	1 ,h	2−1

k )
)
appearing in

(4.6)would be replacedwith the antithetic term
(
f (X

s	1 ,h	2
k )

− 1
2

(
f (Xs	1 ,h	2−1−) + f (Xs	1 ,h	2−1+)

))
and the same can

be done for any fixed s	1 . Let us explain the intuition behind
this approach on a simple example with f (x) = x and a
state-independent drift a.

Example 4.2 We fix s	1 and suppress the dependence on 	1
in the notation, in order to focus only on MLMC via dis-
cretisation parameter. Let ξ = (ξ1, . . . , ξm) be a collection
of m data points and let us consider a state-independent
drift a = 1

m

∑m
i=1 ξi and its unbiased estimator b(Us) :=

1
s

∑s
i=1 ξUs

i
for s ≤ m, where Us = (Us

1 , . . .U
s
s ) is such

that Us
j ∼ Unif{1, . . . ,m} for all j ∈ {1, . . . , s} (i.e., we

sample with replacement s data points from the data set ξ

of size m). Consider the standard MLMC estimator with the
fine X f and the coarse Xc schemes defined as

X f
k+1 = X f

k + hb(Us, f
k ) + β

√
hZk+1,

X f
k+2 = X f

k+1 + hb(Us, f
k+1) + β

√
hZk+2,

Xc
k+2 = Xc

k + 2hb(Us,c
k ) + β

√
2h Ẑk+2,

where Ẑk+2 := (Zk+1 + Zk+2)/
√
2 , β = 1/

√
m, with

Us, f
k , Us, f

k+1 and Us,c
k being independent copies of Us for

any k ≥ 0. Note that (X f
k )k∈N corresponds to (X

s	1 ,h	2
k )k∈N

in (4.8) whereas (Xc
k)k∈2N corresponds to (X

s	1 ,h	2−1

k )k∈2N
for some fixed 	1, 	2. Recall from the discussion in Sect. 2

that our goal is to find a sharp upper bound on the variance
(or the second moment) of X f

k − Xc
k for any k ≥ 1 (which

corresponds to bounding the variance of the standard, non-
antithetic MLMC estimator (4.7) for a Lipschitz function f ,
cf. the difference (4.6) taken only with respect to the time-
discretisation parameter h, with fixed s). We have

E

∣
∣
∣X

f
k+2 − Xc

k+2

∣
∣
∣
2 = E

∣
∣
∣X

f
k − Xc

k

∣
∣
∣
2 + E

〈
X f
k − Xc

k , hb(U
s, f
k )

+ hb(Us, f
k+1) − 2hb(Us,c

k )
〉

+ E

∣
∣
∣hb(U

s, f
k ) + hb(Us, f

k+1) − 2hb(Us,c
k )

∣
∣
∣
2 = E

∣
∣
∣X

f
k − Xc

k

∣
∣
∣
2

+ h2E
∣
∣
∣b(U

s, f
k ) + b(Us, f

k+1) − 2b(Us,c
k )

∣
∣
∣
2
,

where in the second step we used conditioning and the fact
that b is an unbiased estimator of a. Hence we can show
that, if we choose X f

0 = Xc
0, then for all k ≥ 1 we have

E

∣
∣
∣X

f
k − Xc

k

∣
∣
∣
2 ≤ Ch for some C > 0 and we get a variance

contribution of order h. On the other hand, if we want to
apply the antithetic approach as in (2.5), we can define

Xc−
k+2 = Xc−

k + 2hb(Us, f
k ) + β

√
2h Ẑk+2,

Xc+
k+2 = Xc+

k + 2hb(Us, f
k+1) + β

√
2h Ẑk+2

with β = 1/
√
m, and, putting X̄ c

k := 1
2

(
Xc−
k + Xc+

k

)
, we

obtain

X̄ c
k+2 = 1

2

(
Xc−
k + Xc+

k

)+ h
(
b(Us, f

k ) + b(Us, f
k+1)

)
+ β

√
2h Ẑk+2.

Then we have E

∣
∣
∣X

f
k+2 − X̄ c

k+2

∣
∣
∣
2 = E

∣
∣
∣X

f
k − X̄ c

k

∣
∣
∣
2
and,

choosing X f
0 = Xc−

0 = Xc+
0 , the variance contribution van-

ishes altogether.

In the general case, b(x,Us) is a nonlinear function of the
data and also depends on the state x . Therefore one should
not expect that the variance of the drift estimator can be com-
pletely mitigated. Nonetheless, careful analysis will allow us
to conclude that the application of the antithetic difference
operators on all levels in our MASGA estimator allows us to
obtain a desired upper bound on the variance as described in
Sect. 2.

Having explained the motivation behind the antithetic
approach to MLMC, let us now focus on the antithetic esti-
mator with respect to the drift estimation parameter s. To this
end, let us now fix h	2 and observe that for the chain Xs	1 ,h	2 ,
the value of the drift estimation parameter s	1 = 2s	1−1 is
twice the value for the chain Xs	1−1,h	2 . In the context of the
subsampling drift as in Assumptions 2.1, this corresponds
to the drift estimator in Xs	1 ,h	2 using twice as many sam-
ples as the drift estimator in Xs	1−1,h	2 . Hence, instead of
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using independent samples for Xs	1−1,h	2 , we can consider
two independent copies of Xs	1−1,h	2 , the first of which uses

the first half U
s	1 ,h	2 ,1
k of samples of Xs	1 ,h	2 and the other

uses the second half U
s	1 ,h	2 ,2
k , namely,

X
s	1−1−,h	2
k+1 := X

s	1−1−,h	2
k + h	2b(X

s	1−1−,h	2
k ,U

s	1 ,h	2 ,1
k )

+ β
√
h	2 Zk+1

X
s	1−1+,h	2
k+1 := X

s	1−1+,h	2
k + h	2b(X

s	1−1+,h	2
k ,U

s	1 ,h	2 ,2
k )

+ β
√
h	2 Zk+1.

(4.9)

Hence, using the antithetic approach, we could replace(
f (X

s	1 ,h	2
k ) − f (X

s	1−1,h	2
k )

)
in (4.6) with the difference

(
f (X

s	1 ,h	2
k ) − 1

2

(
f (X

s	1−1−,h	2
k ) + f (X

s	1−1+,h	2
k )

))
.

Combining the ideas of antithetic estimators both with
respect to the parameter s and h, we arrive at a nested anti-

thetic difference 
Ant�
s	1 ,h	2
f ,k , defined for any 	1, 	2 ∈

{1, . . . L} and any k ≥ 1 as


Ant�
s	1 ,h	2
f ,k :=

[

f (X
s	1 ,h	2
k ) − 1

2

(
f (X

s	1 ,h	2−1−
k )

+ f (X
s	1 ,h	2−1+
k )

)]

− 1

2

[(

f (X
s	1−1−,h	2
k ) − 1

2

(
f (X

s	1−1−,h	2−1−
k )

+ f (X
s	1−1−,h	2−1+
k )

))

+
(

f (X
s	1−1+,h	2
k ) − 1

2

(
f (X

s	1−1+,h	2−1−
k )

+ f (X
s	1−1+,h	2−1+
k )

)) ]

,

(4.10)

with the same convention as in (4.6) for the case of 	1 = 0 or
	2 = 0. We can now plug this difference into the definition
of a Multi-index Monte Carlo estimator (4.7) to obtain

AntA :=
L∑

	1=0

L∑

	2=0

1

N	1,	2

N	1,	2∑

j=1


Ant�
s	1 ,h	2 ,( j)
f ,k . (4.11)

Note that this corresponds to the Antithetic MIMC estima-
tor introduced in (2.5), based on the chain (2.6), with 	1
corresponding to the number of samples s and 	2 to the dis-
cretisation parameter h, but with a more general drift a and
its estimator b.

In order to formulate our result for the general setting
presented in this section, we need to specify the following
assumptions.

Assumptions 4.3 (Lipschitz condition and global contractiv-
ity of the drift) The drift function a : Rd → R

d satisfies the
following conditions:

i) Lipschitz condition: there is a constant L > 0 such that

|a(x) − a(y)| ≤ L|x − y| for all x, y ∈ R
d . (4.12)

ii) Global contractivity condition: there exists a constant
K > 0 such that

〈x − y, a(x)−a(y)〉 ≤ −K |x − y|2 for all x, y ∈ R
d .

(4.13)

iii) Smoothness: a ∈ C2
b (R

d;Rd) (where C2
b (R

d;Rd) is
defined as in Assumptions 2.1). In particular, there exist
constants Ca(1) , Ca(2) > 0 such that

|Dαa(x)| ≤ Ca(|α|) (4.14)

for all x ∈ R
d and for all multiindices α with |α| = 1, 2.

We remark that condition (4.14) could be easily removed
by approximating a non-smooth drift a with suitably cho-
sen smooth functions. This, however, would create additional
technicalities in the proof and hence we decided to work with
(4.14).

We now impose the following assumptions on the estima-
tor b of the drift a.

Assumption 4.4 (Lipschitz condition of the estimator) There
is a constant L̄ > 0 such that for all x , y ∈ R

d and all random
variables Us such that E[b(x,Us)] = a(x) for all x ∈ R

d ,
we have

E|b(x,Us) − b(y,Us)| ≤ L̄|x − y|. (4.15)

Assumption 4.5 (Variance of the estimator) There exists a
constant σ > 0 of order O(s−1) such that for any x ∈ R

d

and any random variable Us such that E[b(x,Us)] = a(x)
for all x ∈ R

d , we have

E
∣
∣b(x,Us) − a(x)

∣
∣2 ≤ σ 2(1 + |x |2). (4.16)

Assumption 4.6 (Fourth centered moment of the estimator)
There exists a constant σ (4) ≥ 0 of order O(s−2) such that
for any x ∈ R

d and for any random variable Us such that
E[b(x,Us)] = a(x) for all x ∈ R

d , we have

E
∣
∣b(x,Us) − a(x)

∣
∣4 ≤ σ (4)(1 + |x |4). (4.17)

Note that obviously Assumption 4.6 implies Assump-
tion 4.5. However, we formulate these conditions separately
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in order to keep track of the constants in the proofs.Moreover,
with the same constant σ (4) as in (4.17), we impose

Assumption 4.7 The estimator b(x,U ) as a function of x
is twice continuously differentiable for any U and, for any
x ∈ R

d , we have E |∇b(x,Us) − ∇a(x)|4 ≤ σ (4)(1+|x |4).
Note that ∇a(x), ∇b(x,Us) ∈ R

d×d and we use the
matrix norm |∇a(x)|2 := ∑d

i, j=1 |∂i a j (x)|2, where a(x) =
(a1(x), . . . , ad(x)).

Assumptions 4.8 Partial derivatives of the estimator of the
drift are estimators of the corresponding partial derivatives of
the drift. More precisely, for any multi-index α with |α| ≤ 2
and for any random variable Us such that E[b(x,Us)] =
a(x) for all x ∈ R

d , we have E[Dαb(x,Us)] = Dαa(x) for
any x ∈ R

d .

Assumption 4.9 (Growth of the drift) There exists a constant
L(4)
0 > 0 such that for all x ∈ R

d we have

|a(x)|4 ≤ L(4)
0

(
1 + |x |4

)
. (4.18)

Finally, we have the following condition that specifies the
behaviour of the drift estimator b with respect to the random

variables U
s	1 ,h	2 ,1
k and U

s	1 ,h	2 ,2
k introduced in (4.9).

Assumption 4.10 For any x ∈ R
d we have b(x,U

s	1 ,h	2
k ) =

1
2b(x,U

s	1 ,h	2 ,1
k ) + 1

2b(x,U
s	1 ,h	2 ,2
k ).

Even though this set of conditions is long, the assumptions
are in fact rather mild and it is an easy exercise to verify that
when

a(x) := 1

m

m∑

i=1

∇xv(x, ξi ) and b(x,Us) := 1

s

s∑

i=1

∇xv(x, ξUs
i
),

where Us
i ∼ Unif({1, . . . ,m}) for i ∈ {1, . . . , s} are

i.i.d. random variables, uniformly distributed on {1, . . . ,m},
whereas v : R

d × R
k → R is the function satisfy-

ing Assumptions 2.1, then a and b satisfy all Assump-
tions 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10. The only
conditions that actually require some effort to be checked
are Assumptions 4.5 and 4.6, however, they can be veri-
fied by extending the argument from Example 2.15 in Majka
et al. (2020), where a similar setting was considered. As it
turns out, these conditions hold also for the case of subsam-
pling without replacement. All the details are provided in
Appendix 1.

We have the following result.

Theorem 4.11 UnderAssumptions 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9
and 4.10 on the drift a and its estimator b, the MASGA esti-
mator (4.11) achieves the mean square error smaller than

ε > 0 at the computational cost ε−2. Here, at each level
(	1, 	2) ∈ {0, . . . , L}2, the number of paths N	1,	2 is given by

ε−2
(√

V[( f ,�Aπ(	1,	2))]
C(	1,	2)

∑
�∈[L]2

√

V[( f ,�Aπ�)]C�

)

, where

[L]2 := {0, . . . , L}2, C� is defined via (2.8) and ( f ,�A

π(	1,	2)) := 
Ant�
s	1 ,h	2
f ,k given by (4.10).

As we explained in Sect. 2, the proof of Theorem 2.2 (and
its generalisation Theorem 4.11) relies on the MIMC com-
plexity analysis from (Haji-Ali et al. 2016) (see also Giles
2015).

Theorem 4.12 Fix ε ∈ (0, e−1). Let (α,β, γ ) ∈ R
3r be a

triplet of vectors in R
r such that for all k ∈ {1, . . . , r} we

have αk ≥ 1
2βk . Assume that for each � ∈ N

r

i) |E[( f ,�Aπ�)]| � 2−〈α,�〉, i i) V[( f ,�Aπ�)] � 2−〈β,�〉

i i i) C� � 2〈γ ,�〉.

If maxk∈[1,...,r ] (γk−βk )
αk

< 0, then there exists a set L ⊂ N
r

and a sequence (N�)�∈L such that the MLMC estimator
AA,L( f ) defined in (2.5) satisfies

E[(( f , π) − AA,L( f ))2] < ε2,

with the computational cost ε−2.

The key challenge in constructing and analysing MIMC
estimators is to establish conditions i)-iii) in Theorem 4.12
i.e., to show that the leading error bounds for the bias, vari-
ance and cost can be expressed in the product form. In fact,
there are very few results in the literature that present the anal-
ysis giving (i)–(iii), with the exception of (Giles 2015, Sect.
9) and Giles and Haji-Ali (2019). The bulk of the analysis in
this paper is devoted to the analysis of ii). We remark that the
optimal choice of L = [L]2 is dictated by the relationship
between (α,β, γ ), see (Haji-Ali et al. 2016).

The following lemma will be crucial for the proof of The-
orem 4.11.

Lemma 4.13 Let Assumptions 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9
and 4.10 hold. Then there is a constant h0 > 0 and a constant
C > 0 (independent of s and h) such that for any Lipschitz
function f : Rd → R, for any s ≥ 1, h ∈ (0, h0) and for
any k ≥ 1,

E|
Ant�s,h
f ,k |2 ≤ Ch2/s2.

As we already indicated in Sect. 2, once we have an upper
bound on the second moment (and thus on the variance)
of 
Ant�s,h

f ,k such as in Lemma 4.13, the proof of The-
orem 4.11 becomes rather straightforward.
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Proof of Theorem 4.11 Note that we have V[( f ,�Aπ�)] ≤
E[( f ,�Aπ�)2] � h2	2/s

2
	1

due to Lemma 4.13. Moreover,
the number of time-steps and the number of subsamples at
each level of MIMC is doubled (i.e., we have s	1 = 2	1s0
and h	2 = 2−	2h0 for all 	1, 	2 ∈ {0, . . . , L}) and hence
γ = (1, 1) andβ = (2, 2) in the assumption of Theorem4.12
(recall that C� � s	1h

−1
	2

). Finally, we have

|E( f ,�Aπ�)| ≤
(
E|( f ,�Aπ�)|2

)1/2
� h	2/s	1,

which implies that α = (1, 1). Hence the assumptions of
Theorem 4.12 are satisfied and the overall complexity of
MIMC is indeed ε−2. ��

Proof of Theorem 2.2 Under Assumptions 2.1, the function
a(x) := −∇v0(x) − 1

m

∑m
i=1 ∇xv(x, ξi ) and its estimator

b(x,Us) := −∇v0(x) − 1
s

∑s
i=1 ∇xv(x, ξUs

i
), where Us

i
are mutually independent random variables, uniformly dis-
tributedon {1, . . .m}, satisfy allAssumptions 4.3, 4.4, 4.5, 4.7,
4.8, 4.9, 4.6 and 4.10. Hence we can just apply Theorem 4.11
to conclude. ��

5 Analysis of AMLMC

The estimator we introduced in (2.5), see also (4.11), can be
interpreted as built from two building blocks: the antithetic
MLMC estimator with respect to the discretisation parame-
ter, which corresponds to taking r = 1 and � = 	2 in (2.5),
and the antithetic MLMC estimator with respect to subsam-
pling, which corresponds to taking r = 1 and � = 	1 in (2.5).
Let us begin our analysis by focusing on the former.

5.1 AMLMC via discretisation

We will analyse one step of the MLMC algorithm, for some
fixed level �. To this end, let us first introduce the following
fine (X f

k )k∈N and coarse (Xc
k)k∈2N chains

X f
k+1 = X f

k + hb(X f
k ,U f

k ) + β
√
hZk+1,

X f
k+2 = X f

k+1 + hb(X f
k+1,U

f
k+1) + β

√
hZk+2

Xc
k+2 = Xc

k + 2hb(Xc
k,U

c
k ) + β

√
2h Ẑk+2,

(5.1)

where h > 0 is fixed, (U f
k )∞k=0 and (Uc

k )∞k=0 are mutually

independent random variables such that for U ∈ {U f
k ,Uc

k }
we have E[b(x,U )] = a(x) for all x ∈ R

d and all k ≥ 0 and
(Zk)

∞
k=1 are i.i.d. random variables with Zk ∼ N (0, I ). We

also have Ẑk+2 := 1√
2

(Zk+1 + Zk+2).

In order to analyse the antithetic estimator, we also need
to introduce two auxiliary chains

Xc+
k+2 = Xc+

k + 2hb(Xc+
k ,U f

k ) + β
√
2h Ẑk+2

Xc−
k+2 = Xc−

k + 2hb(Xc−
k ,U f

k+1) + β
√
2h Ẑk+2.

(5.2)

Furthermore, we denote X̄ c
k = 1

2

(
Xc+
k + Xc−

k

)
.

Before we proceed, let us list a few simple consequences
of Assumptions 4.3. We have the following bounds:

|a(x)| ≤ L0(1 + |x |) for all x ∈ R
d , where L0 := max(L, |a(0)|).

(5.3)

Let M2 := 4L|a(0)|2/K 2 + 2|a(0)|2/K and M1 := K/2.
Then we have

〈x, a(x)〉 ≤ M2 − M1|x |2 for all x ∈ R
d . (5.4)

Finally, for all random variables U satisfying (4.3), we have

E|b(x,U )|2 ≤ L̄0(1 + |x |2) for all x ∈ R
d , (5.5)

where L̄0 := σ 2hα + 2max(L2, |a(0)|2). Note that (5.3)
is an immediate consequence of (4.12), (5.4) follows easily
from (4.12) and (4.13) (cf. the proof of Lemma 2.11 inMajka
et al. (2020)), whereas (5.5) is implied by (4.12) and (4.16),
cf. (2.40) in Majka et al. (2020). Throughout our proofs, we
will also use uniform bounds on the second and the fourth
moments of Euler schemes with time steps h and 2h, i.e., we
have

E|X f
k |2 ≤ CI Eul , E|Xc−

k |2 ≤ C (2h)
I Eul , E|X f

k |4 ≤ C (4)
I Eul and

E|Xc−
k |4 ≤ C (4),(2h)

I Eul ,

where the exact formulas for the constants CI Eul , C
(2h)
I Eul ,

C (4)
I Eul and C (4),(2h)

I Eul can be deduced from Lemma 7.1 in the

Appendix (for CI Eul , C
(2h)
I Eul see also Lemma 2.17 in Majka

et al. (2020)).
Wenowfix g ∈ C2

b (R
d ;R).Denote byCg(1) ,Cg(2) positive

constants such that |Dαg(x)| ≤ Cg(|α|) for all x ∈ R
d and all

multiindices α with |α| = 1, 2.
We begin by presenting the crucial idea of our proof. We

will use the Taylor formula to write

g(X̄ c
k) − g(Xc−

k ) = −
[ ∑

|α|=1

Dαg(X̄ c
k)
(
X̄ c
k − Xc−

k

)α

+
∑

|α|=2

∫ 1

0
(1 − t)Dαg

(
X̄ c
k + t

(
X̄ c
k − Xc−

k

))
dt
(
X̄ c
k − Xc−

k

)α
]
.

123



49 Page 18 of 37 Statistics and Computing (2023) 33 :49

We also express g(X̄ c
k)− g(Xc+

k ) in an analogous way. Note
that

X̄ c
k − Xc−

k = 1

2
Xc+
k − 1

2
Xc−
k = −(X̄ c

k − Xc+
k ) (5.6)

and hence we have

g(X f
k ) − 1

2

(
g(Xc−

k ) + g(Xc+
k )
) = g(X f

k ) − g(X̄ c
k)

+ 1

2

(
g(X̄ c

k) − g(Xc−
k ) + g(X̄ c

k) − g(Xc+
k )
)

= g(X f
k ) − g(X̄ c

k) − 1

2

∑

|α|=2

∫ 1

0
(1 − t)Dα

g
(
X̄ c
k + t

(
X̄ c
k − Xc−

k

))
dt
(
X̄ c
k − Xc−

k

)α

− 1

2

∑

|α|=2

∫ 1

0
(1 − t)Dα

g
(
X̄ c
k + t

(
X̄ c
k − Xc+

k

))
dt
(
X̄ c
k − Xc+

k

)α
,

i.e., the first order terms in the Taylor expansions cancel out.
Thus, using the inequalities

∑
|α|=2 D

αg(x)
(
X̄ c
k − Xc+

k

)α ≤
‖∇2g‖op|X̄ c

k − Xc+
k |2 and ‖∇2g‖op ≤ Cg(2) for all x ∈ R

d ,
where ‖∇2g‖op is the operator norm of the Hessian matrix,
we see that

E

∣
∣
∣
∣g(X

f
k )− 1

2

(
g(Xc−

k )+g(Xc+
k )
)
∣
∣
∣
∣

2

≤2E
∣
∣
∣g(X

f
k ) − g(X̄ c

k)

∣
∣
∣
2

+ 1

2
Cg(2)

(
E
∣
∣X̄ c

k − Xc−
k

∣
∣4 + E

∣
∣X̄ c

k − Xc+
k

∣
∣4
)

= 2E
∣
∣
∣g(X

f
k ) − g(X̄ c

k)

∣
∣
∣
2 + 1

16
Cg(2)E

∣
∣Xc+

k − Xc−
k

∣
∣4 .

(5.7)

Note that we purposefully introduced the term E
∣
∣Xc+

k

−Xc−
k

∣
∣4, since it will provide us with an improved rate in

h. Indeed, we have the following result.

Lemma 5.1 Let Assumptions 4.3, 4.5, 4.6 and 4.9 hold. If
Xc+
0 = Xc−

0 , then for all k ≥ 1 and for all h ∈ (0, h0) we
have

E|Xc+
k − Xc−

k |4 ≤ C̄1

c̄1
h2, (5.8)

where C̄1 := 721
ε
h2α0

(
1 + 2C (2h)

I Eul + C (4),(2h)
I Eul

)
σ 4 + 32

(
432

√
2 + 648 + 27h0

)
σ (4)(1+C (4),(2h)

I Eul )and c̄1, h0, ε > 0

are chosen such that

−8K + 72ε + 72h0L
2 + 432h30L

4 + 32h20

((
(1 + 432L4)216L4

)1/2

+1 + 1296L4

4

)

≤ −c̄1.

Note that the constant C̄1 above is of order O(s−2) due
to Assumptions 4.5 and 4.6. Hence the bound in (5.8) is in
fact of order O(h2s−2), which is exactly what is needed in
Lemma 4.13.

We remark that, in principle, it would be now possible
to bound also the first term on the right hand side of (5.7)
and hence to obtain a bound on the variance of the antithetic
MLMC estimator with respect to discretisation, correspond-
ing to taking r = 1 and � = 	2 in (2.5). However, such an
estimator does not perform on par with the MASGA esti-
mator (even though it is better than the standard MLMC)
and hence we skip its analysis. In this subsection, we present
only the derivation of the inequality (5.7) and we formulate
the lemma about the bound on the termE|Xc+

k −Xc−
k |4, since

they will be needed in our analysis of MASGA.
We remark that the proof of Lemma 5.1 is essentially

identical to the proof of Lemma 5.2 below (with different
constants) and is therefore skipped. The latter proof can be
found in the Appendix.

5.2 AMLMC via subsampling

As the second building block of our MASGA estimator,
we discuss a multi-level algorithm for subsampling that
involves taking different drift estimators (different numbers
of samples) at different levels, but with constant discretisa-
tion parameter across the levels.

We fix s0 ∈ N+ and for 	 ∈ {0, . . . , L} we define s	 :=
2	s0 and we consider chains

X f
k+1 = X f

k + hb(X f
k ,U f

k ) + β
√
hZk+1,

Xc
k+1 = Xc

k + hb(Xc
k,U

c
k ) + β

√
hZk+1, (5.9)

where U f
k is from a higher level (in parameter s) than Uc

k ,

i.e., we have b(x,U f
k ) = 1

2b(x,U
f ,1
k ) + 1

2b(x,U
f ,2
k ) and

U f ,1
k , U f ,1

k are both from the same level (in parameter s) as
Uc
k , cf. Assumption 4.10. In the special case of subsampling,

we have

b(x,U f
k ) := 1

2s

2s∑

i=1

b̂(x, θ
(U f

k )i
) and

b(x,Uc
k ) := 1

s

s∑

i=1

b̂(x, θ(Uc
k )i ),

whereas b(x,U f ,1
k ) := 1

s

∑s
i=1 b̂(x, θ(U f

k )i
) and b(x,U f ,2

k )

:= 1
s

∑2s
i=s b̂(x, θ(U f

k )i
), for some kernels b̂ : Rd × R

k →
R
d , where (U f

k )i , (Uc
k )i ∼ Unif({1, . . . ,m}). In order to

introduce the antithetic counterpart of (5.9), we will replace
the random variable Uc

k taken on the coarse level with the
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two components of U f
k . Namely, let us denote

Xc−
k+1 = Xc−

k + hb(Xc−
k ,U f ,1

k ) + β
√
hZk+1,

Xc+
k+1 = Xc+

k + hb(Xc+
k ,U f ,2

k ) + β
√
hZk+1. (5.10)

We also put X̄ c
k := 1

2

(
Xc−
k + Xc+

k

)
.

Following our calculations from the beginning of Sect. 5.1
we see that for any Lipschitz function g ∈ C2

b (R
d;R),

E

∣
∣
∣
∣g(X

f
k+1) − 1

2

(
g(Xc−

k+1) + g(Xc+
k+1)

)
∣
∣
∣
∣

2

≤ 2E
∣
∣
∣g(X

f
k+1) − g(X̄ c

k+1)

∣
∣
∣
2 + 1

16
C2
g(2)E

∣
∣Xc+

k+1 − Xc−
k+1

∣
∣4

(5.11)

and we need a similar bound as in Lemma 5.1.

Lemma 5.2 Let Assumptions 4.3, 4.5, 4.6 and 4.9 hold. For
Xc+
k and Xc−

k defined in (5.10), if Xc+
0 = Xc−

0 , then for any
k ≥ 1 and any h ∈ (0, h0) we have

E|Xc+
k − Xc−

k |4 ≤ C1

c1
h2,

whereC1 := 181
ε

(
1 + 2C (2h)

I Eul + C (4),(2h)
I Eul

)
σ 4+4

(
27

√
2+

54h0) σ (4)(1+C (4),(2h)
I Eul ) and c1, ε and h0 are chosen so that

−4h0K + 18h0ε + 18h20L
2 + 27h40L

4 + 4h30

((
1 + 27L4

2
27L4

)1/2

+1 + 81L4

4

)

≤ −c1h0.

Using the Lipschitz property of g, we see that in order to
deal with the first term on the right hand side of (5.11), we
need to bound E|X f

k − X̄ c
k |2. Indeed, we have the following

result.

Lemma 5.3 Let Assumptions 4.3, 4.5, 4.6, 4.7 and 4.9 hold.
For X f

k and X̄c
k defined in (5.10), if Xc+

0 = Xc−
0 , then for

any k ≥ 1 and any h ∈ (0, h0) we have

E|X f
k − X̄ c

k |2 ≤ C2

c2
h2,

where C2 := 3
4σ

(4)(1 + C (4)
I Eul) + C1

c1

(
1
4dCa(2)

1
ε1

+ 3
4

+ 3
8h0C

2
b(2)

)
with C1 and c1 given in Lemma 5.2, whereas c2,

ε1 andh0 are chosen so that−h0K+ 1
4dCa(2)ε1h0+ 3

2h
2
0 L̄

2 ≤
−c2h0.

Note that both C1 and C2 in Lemma 5.2 and Lemma 5.3
are of order O(s−2), which follows from the dependence

of both these constants on the parameters σ (4) and σ 2 and
Assumptions 4.5 and 4.6. The proofs of both these Lemmas
can be found in Appendix 4.

5.3 Proof of Lemma 4.13

Similarly as in Sects. 5.1 and 5.2, we will analyse our esti-
mator step-by-step. To this end, we first need to define nine
auxiliary Markov chains. In what follows, we will combine
the ideas for antithetic estimators with respect to the dis-
cretisation parameter and with respect to the subsampling
parameter.Wewill therefore need to consider fine and coarse
chains with respect to both parameters.We use the notational
convention X subsampling,discretisation, hence e.g. X f ,c would be
a chain that behaves as a fine chain with respect to the sub-
sampling parameter and as a coarse chain with respect to the
discretisation parameter. We define three chains that move as
fine chains with respect to the discretisation parameter

{

X f , f

k+2 = hb(X f , f
k+1,U

f
k+1) + β

√
hZk+2


X f , f
k+1 = hb(X f , f

k ,U f
k ) + β

√
hZk+1

{

Xc−, f

k+2 = hb(Xc−, f
k+1 ,U f ,1

k+1) + β
√
hZk+2


Xc−, f
k+1 = hb(Xc−, f

k ,U f ,1
k ) + β

√
hZk+1

{

Xc+, f

k+2 = hb(Xc+, f
k+1 ,U f ,2

k+1) + β
√
hZk+2


Xc+, f
k+1 = hb(Xc+, f

k ,U f ,2
k ) + β

√
hZk+1

and six chains that move as coarse chains


X f ,c−
k+2 = 2hb(X f ,c−

k ,U f
k ) + β

√
2h Ẑk+2,


X f ,c+
k+2 = 2hb(X f ,c+

k ,U f
k+1) + β

√
2h Ẑk+2


Xc−,c−
k+2 = 2hb(Xc−,c−

k ,U f ,1
k ) + β

√
2h Ẑk+2,


Xc−,c+
k+2 = 2hb(Xc−,c+

k ,U f ,1
k+1) + β

√
2h Ẑk+2


Xc+,c−
k+2 = 2hb(Xc+,c−

k ,U f ,2
k ) + β

√
2h Ẑk+2,


Xc+,c+
k+2 = 2hb(Xc+,c+

k ,U f ,2
k+1) + β

√
2h Ẑk+2.

Here 
X f , f
k+2 = X f , f

k+2 − X f , f
k+1, 
X f , f

k+1 = X f , f
k+1 − X f , f

k ,


X f ,c−
k+2 = X f ,c−

k+2 − X f ,c−
k and likewise for other chains,

whereas
√
2h Ẑk+2 = √

hZk+1+√
hZk+2. In order to prove

Lemma 4.13, we will first show that for any k ≥ 1 we have
E|
Ant�s,h

g,k |2 ≤ C̃E|
Ant�s,h
k |2 + C̄h2, where C̃ , C̄ are

positive constants and C̄ is of orderO(s−2). Here
Ant�s,h
k

corresponds to taking
Ant�s,h
g,k with g(x) = x the identity

function.
Then we will show that for all k ≥ 1 we have

E|
Ant�s,h
k+2|2 ≤ (1− ch)E|
Ant�s,h

k |2 +Ch3 for some
constants c, C > 0, where C is of orderO(s−2). Finally, we
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will conclude that for all k ≥ 1 we have E|
Ant�s,h
k |2 ≤

C1h2/s2 for some C1 > 0, which will finish the proof.
In order to simplify the notation, we define here one step

of the MASGA estimator as

�k :=
[

X f , f
k − 1

2

(
X f ,c−
k + X f ,c+

k

)]

− 1

2

[(

Xc−, f
k − 1

2

(
Xc−,c−
k + Xc−,c+

k

))

+
(

Xc+, f
k − 1

2

(
Xc+,c−
k + Xc+,c+

k

))]

.

Let us first focus on the analysis of

E|�g
k |2 := E

∣
∣
∣
∣

[

g(X f , f
k ) − 1

2

(
g(X f ,c−

k ) + g(X f ,c+
k )

)]

− 1

2

[(

g(Xc−, f
k ) − 1

2

(
g(Xc−,c−

k ) + g(Xc−,c+
k )

))

+
(

g(Xc+, f
k ) − 1

2

(
g(Xc+,c−

k ) + g(Xc+,c+
k )

)) ]∣∣
∣
∣

2

for g : Rd → R Lipschitz. To this end, we will introduce
three additional chains

X̄ f ,c
k = 1

2

(
X f ,c−
k +X f ,c+

k

)
, X̄ c−,c

k = 1

2

(
Xc−,c−
k +Xc−,c+

k

)
and

X̄ c+,c
k = 1

2

(
Xc+,c−
k + Xc+,c+

k

)
.

Observe that in the expression E|�g
kh |2 above we have

three rows of the same structure as the antithetic estimator via
discretisation, hencewe can proceed exactly as in Sect. 5.1 by

adding and subtracting g
(
X̄ f ,c
k

)
, g
(
X̄ c−,c
k

)
and g

(
X̄ c+,c
k

)
,

respectively in each row, and then applying Taylor’s formula
in points X̄ f ,c

k , X̄ c−,c
k and X̄ c+,c

k , respectively in each row
(note that the first order terms will cancel out) to get

E|�g
k |2 = E

∣
∣
∣
∣

[
g(X f , f

k ) − g
(
X̄ f ,c
k

)
+ T

(
X f ,c−
k − X f ,c+

k

)]

−1

2

[ (
g(Xc−, f

k ) − g
(
X̄ c−,c
k

)
+ T

(
Xc−,c−
k − Xc−,c+

k

))

+
(
g(Xc+, f

k ) − g
(
X̄ c+,c
k

)
+ T

(
Xc+,c−
k − Xc+,c+

k

)) ]∣∣
∣
∣

2

,

where

T (X f ,c−
k − X f ,c+

k ) := − 1

4

∑

|α|=2

∫ 1

0
(1 − t)Dαg

(
X̄ f ,c
k + t

(
X f ,c−
k − X̄ f ,c

k

))
dt

(
X f ,c−
k − X f ,c+

k

)α

− 1

4

∑

|α|=2

∫ 1

0
(1 − t)Dαg

(
X̄ f ,c
k + t

(
X f ,c+
k − X̄ f ,c

k

))
dt
(
X f ,c+
k − X f ,c−

k

)α

,

where we used X f ,c+
k − X̄ f ,c

k = 1
2

(
X f ,c+
k − X f ,c−

k

)
=

−
(
X f ,c−
k − X̄ f ,c

k

)
and T is defined analogously for other

terms, and hence |T (x)|2 ≤ C |x |4 for some C > 0 and for
any x ∈ R

d . Using (a + b)2 ≤ 2a2 + 2b2 for E|�g
kh |2 we

can separate the terms involving T (·) and, due to Lemma 5.1,
we see that we have the correct order in h and s for all the
terms expressed as T (·). Hence the remaining term whose
dependence on s and hwe still need to check can be expressed
as

E

∣
∣
∣
∣

[

g(X f , f
k ) − 1

2

(
g(Xc−, f

k ) + g(Xc+, f
k )

)]

−
[

g
(
X̄ f ,c
k

)
− 1

2

(
g
(
X̄ c−,c
k

)
+ g

(
X̄ c+,c
k

))]∣∣
∣
∣

2

.

We will now need yet another auxiliary chain X̄ c, f
k :=

1
2

(
Xc−, f
k + Xc−, f

k

)
. We repeat our argument from the

previous step by adding and subtracting g
(
X̄ c, f
k

)
and

g
(
1
2

(
X̄ c−,c
k + X̄ c+,c

k

))
, respectively, to the first and the sec-

ond term in square brackets above, respectively, and applying

Taylor’s formula in points X̄ c, f
k and 1

2

(
X̄ c−,c
k + X̄ c+,c

k

)
,

respectively (the first order terms again cancel out), to obtain

E

∣
∣
∣
∣

[
g(X f , f

k ) − g
(
X̄ c, f
k

)
+ T

(
Xc−, f
k − Xc+, f

k

)]

−
[

g
(
X̄ f ,c
k

)
− g

(
1

2

(
X̄ c−,c
k + X̄ c+,c

k

))

+ T
(
X̄ c−,c
k − X̄ c+,c

k

)] ∣∣
∣
∣

2

,

where again |T (x)|2 ≤ C |x |4 for some C > 0 and for any

x ∈ R
d . Due to Lemma 5.2 we see that E

∣
∣
∣X

c−, f
k − Xc+, f

k

∣
∣
∣
4

has the correct order in s and h. Moreover, we have X̄ c−,c
k −

X̄ c+,c
k = 1

2

(
Xc−,c−
k − Xc+,c−

k

)
+ 1

2

(
Xc−,c+
k − Xc+,c+

k

)

and hence, after using (a + b)4 ≤ 8a4 + 8b4, Lemma 5.2

applies also to E

∣
∣
∣X̄ c−,c

k − X̄ c+,c
k

∣
∣
∣
4
. Hence we only need to

deal with

I := E

∣
∣
∣g(X

f , f
k ) − g

(
X̄ c, f
k

)
− g

(
X̄ f ,c
k

)

+g

(
1

2

(
X̄ c−,c
k + X̄ c+,c

k

))∣∣
∣
∣

2

.

We can now add and subtract g
(
X̄ f ,c
k + X̄ c, f

k − 1
2

(
X̄ c−,c
k

+X̄ c+,c
k

))
, and, using the Lipschitz property of g (which we

assume it satisfies with a Lipschitz constant, say, Lg > 0),
we see that

I ≤ 3LgE

∣
∣
∣
∣X

f , f
k − X̄ f ,c

k − X̄ c, f
k + 1

2

(
X̄ c−,c
k + X̄ c+,c

k

)∣∣
∣
∣

2
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+6LgE

∣
∣
∣
∣X̄

f ,c
k − 1

2

(
X̄ c−,c
k + X̄ c+,c

k

)∣∣
∣
∣

2

.

However, observe that E

∣
∣
∣X

f , f
k − X̄ f ,c

k − X̄ c, f
k +

1
2

(
X̄ c−,c
k + X̄ c+,c

k

)∣
∣
∣
2 = E|�k |2 and, moreover,

X̄ f ,c
k − 1

2

(
X̄ c−,c
k + X̄ c+,c

k

)
= 1

2

(
X f ,c−
k + X f ,c+

k

)

− 1

4

(
Xc−,c−
k + Xc−,c+

k + Xc+,c−
k + Xc+,c+

k

)

= 1

2

(

X f ,c−
k − 1

2

(
Xc−,c−
k + Xc+,c−

k

))

+ 1

2

(

X f ,c+
k − 1

2

(
Xc−,c+
k + Xc+,c+

k

))

.

Note that both terms on the right hand side above corre-
spond to antithetic estimators via subsampling, hence from

Lemma 5.3 we infer that E
∣
∣
∣X̄

f ,c
k − 1

2

(
X̄ c−,c
k + X̄ c+,c

k

)∣
∣
∣
2

has the correct order in s and h. We have thus demonstrated
that for any k ≥ 1 we have E|�g

k |2 ≤ C1E|�k |2 + C2h2/s2

for some constants C1, C2 > 0. Therefore, in order to fin-
ish the proof, it remains to be shown that E|�k |2 has the
correct order in h and s. As explained above, this will be
achieved by proving that there exist constants c,C > 0 (with
C being of order O(s−2)) such that for any k ≥ 1 we have
E|�k+2|2 ≤ (1−ch)E|�k |2+Ch3. The idea for dealingwith
E|�k+2|2 is to group the terms in a specific way, add and sub-
tract certain drifts in order to set up appropriate combinations
of drifts for a Taylor’s formula application and then to can-
cel out some first order terms. As we have already seen, the
remaining second order terms should then be of the correct
order in h and s. To this end, we denote

�1
k := hb(X f , f

k ,U f
k ) − hb(X f ,c−

k ,U f
k ) − hb(X f ,c+

k ,U f
k+1)

�2
k := hb(Xc−, f

k ,U f ,1
k ) − hb(Xc−,c−

k ,U f ,1
k ) − hb(Xc−,c+

k ,U f ,1
k+1)

�3
k := hb(Xc+, f

k ,U f ,2
k ) − hb(Xc+,c−

k ,U f ,2
k ) − hb(Xc+,c+

k ,U f ,2
k+1)

�k := �1
k − 1

2

(
�2

k + �3
k

)
and ϒk := hb(X f , f

k+1,U
f
k+1)

− 1

2
hb(Xc−, f

k+1 ,U f ,1
k+1) − 1

2
hb(Xc+, f

k+1 ,U f ,2
k+1)

and hence, observing that all the noise variables cancel
out, we can write �k+2 = �k + �k + ϒk . Thus we
have E |�k+2|2 = E |�k |2 + 2E〈�k, �k〉 + 2E〈�k, ϒk〉 +
E |�k + ϒk |2. We will bound E|�k + ϒk |2 ≤ 2E|�k |2 +
2E|ϒk |2 and we will first deal with the terms involving ϒk .
We will need an additional auxiliary Markov chain (moving
as a fine chain with respect to the discretisation parameter)
defined as

Xk+2 = Xk+1 + ha(Xk+1) + β
√
hZk+2,

Xk+1 = Xkh + ha(Xk) + β
√
hZk+1.

Using b(x,U ) = 1
2b(x,U

1) + 1
2b(x,U

2), we have

ϒk = hb(X f , f
k+1,U

f
k+1) − hb(Xk+1,U

f
k+1)

− 1

2
h
(
b(Xc−, f

k+1 ,U f ,1
k+1) − b(Xk+1,U

f ,1
k+1)

)

− 1

2
h
(
b(Xc+, f

k+1 ,U f ,2
k+1) − b(Xk+1,U

f ,2
k+1)

)
.

First, in order to deal with E〈�k, ϒk〉, we use Taylor’s for-
mula to write

ϒk = h

( ∑

|α|=1

Dαb(Xk+1,U
f
k+1)

(
X f , f
k+1 − Xk+1

)α

+
∑

|α|=2

∫ 1

0
(1 − t)Dαb

(
Xk+1 + t

(
X f , f
k+1 − Xk+1

)
,U f

k+1

)
dt

(
X f , f
k+1 − Xk+1

)α
)

−1

2
h

( ∑

|α|=1

Dαb(Xk+1,U
f ,1
k+1)

(
Xc−, f
k+1 − Xk+1

)α

+
∑

|α|=2

∫ 1

0
(1 − t)Dαb

(
Xk+1 + t

(
Xc−, f
k+1 − Xk+1

)
,U f ,1

k+1

)
dt

(
Xc−, f
k+1 − Xk+1

)α
)

−1

2
h

( ∑

|α|=1

Dαb(Xk+1,U
f ,2
k+1)

(
Xc+, f
k+1 − Xk+1

)α

+
∑

|α|=2

∫ 1

0
(1 − t)Dαb

(
Xk+1 + t

(
Xc+, f
k+1 − Xk+1

)
,U f ,2

k+1

)
dt

(
Xc+, f
k+1 − Xk+1

)α
)

.

Hence, using Assumptions 4.7 and 4.8, we have

E〈�k , ϒk〉 = hE〈�k ,
∑

|α|=1

Dαa(Xk+1)

(

X f , f
k+1 − 1

2
Xc−, f
k+1 − 1

2
Xc+, f
k+1

)α

〉

+h〈�k ,
∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
Xk+1 + t

(
X f , f
k+1 − Xk+1

))
dt

(
X f , f
k+1 − Xk+1

)α〉

+h〈�k ,
∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
Xk+1 + t

(
Xc−, f
k+1 − Xk+1

))
dt

(
Xc−, f
k+1 − Xk+1

)α〉

+h〈�k ,
∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
Xk+1 + t

(
Xc+, f
k+1 − Xk+1

))
dt

(
Xc+, f
k+1 − Xk+1

)α〉.
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Nowwe can use Young’s inequality for each term above with
some ε1, ε2, ε3, ε4 > 0 respectively and, using Assump-
tion 4.3 (condition (4.14)), we get

E〈�k, ϒk〉 ≤ 1

2
hε1Ca(1)E |�k |2

+ 1

2
h
1

ε1
Ca(1)E

∣
∣
∣
∣X

f , f
k+1 − 1

2
Xc−, f
k+1 − 1

2
Xc+, f
k+1

∣
∣
∣
∣

2

+ 1

2
hε2Ca(2)E |�k |2 + 1

2
h
1

ε2
Ca(2)E

∣
∣
∣X

f , f
k+1 − Xk+1

∣
∣
∣
4

+ 1

2
hε3Ca(2)E |�k |2 + 1

2
h
1

ε3
Ca(2)E

∣
∣
∣X

c−, f
k+1 − Xk+1

∣
∣
∣
4

+ 1

2
hε4Ca(2)E |�k |2 + 1

2
h
1

ε4
Ca(2)E

∣
∣
∣X

c+, f
k+1 − Xk+1

∣
∣
∣
4
.

Now note that the second term on the right hand side above
is of order O(h2/s2) due to Lemma 5.3. For the other three
terms, we need the following auxiliary result.

Lemma 5.4 Let Assumptions 4.3, 4.5, 4.6 and 4.9 hold.
Assuming X f , f

0 = X0, there exists a constant C > 0 such
that for all k ≥ 1,

E

∣
∣
∣X

f , f
k − Xk

∣
∣
∣
4 ≤ C

1

s2
h2.

The proof is similar to the proof of Lemma 5.2 and can be
found in Appendix 5.

The reasoning in the proof of Lemma 5.4 applies also
to Xc−, f

k and Xc+, f
k in place of X f , f

k . Hence we see that
E〈�k, ϒk〉 is bounded from above by an expression of the
form C1(ε1 + ε2 + ε3 + ε4)hE|�k |2 + C2h, where εi for
i ∈ {1, . . . 4} can be chosen as small as necessary and the
constant C2 is of the correct order in s and h, i.e., of order
O(h2/s2).Wewill explain later how to handle the other terms
and how to choose the values of εi for i ∈ {1, . . . 4}. Now in
order to deal with E|ϒk |2 we use a different decomposition
for ϒk , namely we write

ϒk = 1

2
hb(X f , f

k+1,U
f ,1
k+1) + 1

2
hb(X f , f

k+1,U
f ,2
k+1)

− 1

2
hb(Xc−, f

k+1 ,U f ,1
k+1) − 1

2
hb(Xc+, f

k+1 ,U f ,2
k+1)

= 1

2
hb(X f , f

k+1,U
f ,1
k+1) − 1

2
hb(X̄ c, f

k+1,U
f ,1
k+1)

+ 1

2
hb(X̄ c, f

k+1,U
f ,1
k+1) − 1

2
hb(Xc−, f

k+1 ,U f ,1
k+1)

+ 1

2
hb(X f , f

k+1,U
f ,2
k+1) − 1

2
hb(X̄ c, f

k+1,U
f ,2
k+1)

+ 1

2
hb(X̄ c, f

k+1,U
f ,2
k+1) − 1

2
hb(Xc+, f

k+1 ,U f ,2
k+1),

where X̄ c, f
k+1 := 1

2

(
Xc−, f
k+1 + Xc+, f

k+1

)
. Hence, using (4.15)

we obtain

E |ϒk |2 ≤ 3

4
h2 L̄2

E

∣
∣
∣X

f , f
k+1 − X̄ c, f

k+1

∣
∣
∣
2 + 3

4
h2 L̄2

E

∣
∣
∣X

f , f
k+1 − X̄ c, f

k+1

∣
∣
∣
2

+ 3

4
h2E

∣
∣
∣b(X̄

c, f
k+1,U

f ,1
k+1) − b(Xc−, f

k+1 ,U f ,1
k+1)

+b(X̄ c, f
k+1,U

f ,2
k+1) − b(Xc+, f

k+1 ,U f ,2
k+1)

∣
∣
∣
2
.

The first two terms on the right hand side above are identical
and have the correct order in s and h due to Lemma 5.3. On
the other hand, the third term can be dealt with by one more
application of Taylor’s formula (cf. the calculation for the
term J33 in the proof of Lemma 5.3 in Appendix 4 for more
details).

The terms involving�k can be handled using similar ideas
as above. In particular, for E|�k |2 we have the following
result.

Lemma 5.5 Let Assumptions 4.3, 4.5, 4.6, 4.7 and 4.9 hold.
Assuming all the auxiliary chains introduced above are initi-
ated at the same point, there exists a constant C1,� > 0 such
that for all k ≥ 1,

E|�k |2 ≤ C1,�
1

s2
h2.

The proof of Lemma 5.5 can be found in Appendix 5. The
last term to deal with is E〈�k, �k〉. We have the following
result.

Lemma 5.6 Let Assumptions 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9
and 4.10 hold. Assuming all the auxiliary chains introduced
above are initiated at the same point, there exist constants
C2,�, C3,� and C4,� > 0 such that for all k ≥ 1,

E〈�k, �k〉 ≤ (C2,�ε − C3,�)hE|�k |2 + C4,�
1

s2
h2,

where ε > 0 can be chosen arbitrarily small.

The crucial insight about the bound in Lemma 5.6 is
that, thanks to the special structure of the term �k =
�1

k − 1
2 (�

2
k + �3

k), we can extract from E〈�k, �k〉, after
a few applications of Taylor’s formula, a term of the form
hE〈�k,

∑
|α|=1 D

αa(Xk)(�k)
α〉, which, due to Assump-

tions 4.3, can be bounded from above by −KhE|�k |2. This
gives us the termwith the constantC3,� in Lemma 5.6. Then,
after combining all our estimates and choosing all the εi > 0
small enough, we can indeed conclude that for any k ≥ 1 we
have E|�k+2|2 ≤ (1 − ch)E|�k |2 + Ch3 with C of order
O(s−2), which, as explained above, finishes the proof.

The proof of Lemma 5.6 is lengthy and tedious but ele-
mentary and hence is moved to Appendix 5.
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Appendix: Bounds onmoments of
subsampling estimators

In this section we present bounds both for subsampling with
and without replacement (Welling and Teh 2011; Shamir
2016). We fix s, m ∈ N such that s < m. Let θi ∈ R

d ,
for i = 1, . . . ,m. Moreover, letU = (Ui )i=1...,s be a collec-
tion of s independent randomvariables, uniformly distributed
over the set {1, . . . ,m}. We define

a(x) = 1

m

m∑

i=1

b̂(x, θi ) and b(x,U ) = 1

s

s∑

i=1

b̂(x, θUi ).

(6.1)

Here b̂ : R
d × R

k → R
d is a kernel such that for any x ,

y ∈ R
d and any θ ∈ R

k we have

|b̂(x, θ) − b̂(y, θ)| ≤ L|x − y| and

〈x − y, b̂(x, θ) − b̂(y, θ)〉 ≤ −K |x − y|2. (6.2)

for some L , K > 0. Hence b is an unbiased estimator of
a that corresponds to sampling with replacement s terms
from the sum of m terms defining a, cf. Example 2.15 in
Majka et al. (2020). Moreover, Assumptions 4.3 and 4.4 are
satisfied with constants L , K and L̄ = L . We will now verify
Assumptions 4.5 and 4.6.

Note that related calculations for second moments of sub-
sampling estimators were carried out in Majka et al. (2020)
(see Example 2.15 therein) for the drift a and its estimator
b in (6.1) rescaled by m, that is, for a(x) = ∑m

i=1 b̂(x, θi )
and b(x,Uk) = m

s

∑s
i=1 b̂(x, θUi ). Hence, obviously, all the

upper bounds on second moments obtained in Majka et al.
(2020) still hold for a and b given by (6.1), after rescaling by
1/m2.

Based on the calculations in Majka et al. (2020), we
know that if we assume that for all θ and x we have

|b̂(x, θ)|2 ≤ C(1 + |x |2) with some constant C > 0,
then E|b(x,U ) − a(x)|2 ≤ 1

s C(1 + |x |2), which veri-
fies Assumption 4.5 for the subsampling with replacement
scheme. Let us now define a new estimator bwor (x,U ) :=
1
s

∑m
j=1 b̂(x, θ j )Z j , where (Z j )

m
j=1 are correlated random

variables such thatP(Z j = 1) = s
m ,P(Z j = 0) = 1− s

m and

P(Zi = 1, Z j = 1) = (m−2
s−2

)
/
(m
s

)
for any i , j ∈ {1, . . . ,m}

such that i �= j . Note that this definition of bwor corresponds
to sampling s terms from the sum of m terms defining a in
(6.1) without replacement, see Example 2.15 in Majka et al.
(2020). It is immediate to check that this estimator of a is
indeed unbiased. In order to bound the variance, we can first

check that Cov(Zi , Z j ) = s(s−1)
m(m−1) − s2

m2 = − s(1− s
m )

m(m−1) . We
have

E|bwor (x,U ) − a(x)|2

= E

∣
∣
∣
∣
∣
∣

1

s

m∑

j=1

b̂(x, θ j )Z j − 1

s

m∑

j=1

s

m
b̂(x, θ j )

∣
∣
∣
∣
∣
∣

2

= 1

s2
E

∣
∣
∣
∣
∣
∣

m∑

j=1

b̂(x, θ j )(Z j − s

m
)

∣
∣
∣
∣
∣
∣

2

= 1

s2

⎛

⎝E

m∑

j=1

b̂(x, θ j )
2
(
Z j − s

m

)2

+E

m∑

i, j=1,i �= j

b̂(x, θ j )
(
Z j − s

m

)
b̂(x, θi )(Zi − s

m
)

⎞

⎠ .

Note now that we have

E

(
Zi − s

m

) (
Z j − s

m

)

= E

(

Zi Z j − s

m
Zi − s

m
Z j + s2

m2

)

=
(m−2
s−2

)

(m
s

) − 2
s2

m2 + s2

m2

= s(s − 1)

m(m − 1)
− s2

m2 = − s(m − s)

m2(m − 1)
.

Hence we can easily check that E|bwor (x,U ) − a(x)|2 ≤
1
s (1 − s

m )C(1 + |x |2). Thus we see that the upper bound on
the variance of the estimator bwor that we obtained is equal to
the upper bound on the variance of b multiplied by (1− s

m ).
In particular, this confirms that Assumption 4.5 holds also
for the subsampling without replacement scheme.

Let us now explain how to estimate the fourth centered
moments required for Assumption 4.6, based on the assump-
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tion that for all θ and x we have |b̂(x, θ)|4 ≤ C(1 + |x |4).
We have

E|b(x,U ) − a(x)|4 = 1

s4
E

∣
∣
∣
∣
∣

s∑

i=1

(b̂(x, θUi ) − a(x))

∣
∣
∣
∣
∣

4

= 1

s4

s∑

i=1

E

∣
∣
∣b̂(x, θUi ) − a(x)

∣
∣
∣
4

+ 4
1

s4

s∑

i, j=1,i< j

E

(
b̂(x, θUi ) − a(x)

)3 (
b̂(x, θUj ) − a(x)

)

+ 6
1

s4

s∑

i, j=1,i< j

E

(
b̂(x, θUi ) − a(x)

)2 (
b̂(x, θUj ) − a(x)

)2

+ 24
1

s4

s∑

i, j,k,l=1,i< j<k<l

E

(
b̂(x, θUi ) − a(x)

)

(
b̂(x, θUj ) − a(x)

) (
b̂(x, θUk ) − a(x)

)

×
(
b̂(x, θUl ) − a(x)

)

+ 12
1

s4

s∑

i, j,k=1,i< j<k

E

(
b̂(x, θUi ) − a(x)

)2

(
b̂(x, θUj ) − a(x)

) (
b̂(x, θUk ) − a(x)

)
.

Since (b̂(x, θUi )−a(x)) are mutually independent, centered
random variables, we see that

E|b(x,U ) − a(x)|4 = 1

s4

s∑

i=1

E

∣
∣
∣b̂(x, θUi ) − a(x)

∣
∣
∣
4

+ 6
1

s4

s∑

i, j=1,i< j

E

(
b̂(x, θUi ) − a(x)

)2 (
b̂(x, θUj ) − a(x)

)2
.

(6.3)

We can now compute for any i = 1, . . . ,m

E

∣
∣
∣b̂(x, θUi ) − a(x)

∣
∣
∣
4 =

m∑

i=1

(
b̂(x, θi ) − a(x)

)4 1

m

≤ 1

m

m∑

i=1

(
b̂(x, θi )

4 − 4b̂(x, θi )
3a(x) + 6b̂(x, θi )

2a(x)2
)

≤ C(1 + |x |4),

where we used the linear growth conditions for a(x) and
for b̂(x, θ). Hence we see that the first term on the right
hand side of (6.3) can be bounded by 1

s3
C(1 + |x |4). On

the other hand, using E

(
b̂(x, θUi ) − a(x)

)2 ≤ C(1 + |x |2)
we see that the second term on the right hand side of (6.3)
can be bounded by 1

s4
(s
2

)
C(1 + |x |4) and hence we obtain

E|b(x,U ) − a(x)|4 ≤ 1
s2
C(1 + |x |4). By analogy, for the

estimator without replacement bwor we have

E|bwor (x,U ) − a(x)|4 = 1

s4
E

∣
∣
∣
∣
∣

m∑

i=1

b̂(x, θi )
(
Zi − s

m

)
∣
∣
∣
∣
∣

4

= 1

s4

m∑

i=1

E

∣
∣
∣b̂(x, θi )

(
Zi − s

m

)∣
∣
∣
4

+ 4
1

s4

m∑

i, j=1,i< j

E

(
b̂(x, θi )

(
Zi − s

m

))3 (
b̂(x, θ j )

(
Z j − s

m

))

+ 6
1

s4

m∑

i, j=1,i< j

E

(
b̂(x, θi )

(
Zi − s

m

))2 (
b̂(x, θ j )

(
Z j − s

m

))2

+ 24
1

s4

m∑

i, j,k,l=1,i< j<k<l

E

(
b̂(x, θi )

(
Zi − s

m

))

(
b̂(x, θ j )

(
Z j − s

m

)) (
b̂(x, θk)

(
Zk − s

m

))

×
(
b̂(x, θl)

(
Zl − s

m

))

+ 12
1

s4

m∑

i, j,k=1,i< j<k

E

(
b̂(x, θi )

(
Zi − s

m

))2

(
b̂(x, θ j )

(
Z j − s

m

)) (
b̂(x, θk)

(
Zk − s

m

))
.

(6.4)

Recall that the random variables Zi are not independent and
hence we need to compute all the terms in the sum above.
We have

1

s4

m∑

i=1

E

∣
∣
∣b̂(x, θi )

(
Zi − s

m

)∣
∣
∣
4

= 1

s4

m∑

i=1

|b̂(x, θi )|4
[( s

m

)4 (
1 − s

m

)
+
(
1 − s

m

)4 s

m

]

= 1

s4

m∑

i=1

|b̂(x, θi )|4 s(m − s)

m4 (3s2 − 3ms + m2)

≤ 1

s3

(
1 − s

m

)
C(1 + |x |4).

Let us now focus on the fourth term on the right hand side of
(6.4). We have

(
Zi − s

m

) (
Z j − s

m

) (
Zk − s

m

) (
Zl − s

m

)
= Zi Z j Zk Zl

− s

m

(
Zi Z j Zk + Zi Zk Zl + Z j Zk Zl + Zi Z j Zl

)

+ s2

m2

(
Zi Zk + Z j Zk + Z j Zl + Zi Z j + Zi Zl + Zk Zl

)

− s3

m3

(
Zi + Z j + Zk + Zl

)+ s4

m4
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and hence, using the definition of the random variables Zi ,

E

(
Zi − s

m

) (
Z j − s

m

) (
Zk − s

m

) (
Zl − s

m

)

=
(
m − 4

s − 4

)

/

(
m

s

)

− 4
s

m

(
m − 3

s − 3

)

/

(
m

s

)

+ 6
s2

m2

(
m − 2

s − 2

)

/

(
m

s

)

− 4
s3

m3

s

m
+ s4

m4

= (s − 2)(s − 1)s

(m − 2)(m − 1)m

(
s − 3

m − 3
− s

m

)

+ 3
(s − 1)s2

(m − 1)m2

(
s

m
− s − 2

m − 2

)

+ 3
s3

m3

(
s − 1

m − 1
− s

m

)

.

Some straightforward computations allow us then to con-
clude that the fourth term on the right hand side of (6.4) is
bounded by 1

s2
(1− s

m )C(1+ |x |4). Dealing in a similar way
with the remaining terms, by tedious by otherwise simple
computations we can conclude that

E|bwor (x,U ) − a(x)|4 ≤ 1

s2
(1 − s

m
)C(1 + |x |4).

Appendix: On the advisability of
subsampling: a simple example

In this sectionwe illustrate the issues that arise in the analysis
of the dependence of the cost of SGAs on the parameters m
and s. Let us begin by discussing the MSE estimates (1.3) in
more detail.

In order to disentangle various approximation errors in
our analysis, it is useful to consider the SDE

dYt = − 1
2m∇V (Yt , νm)dt + 1√

m
dWt , (7.1)

where (Wt )t≥0 is the standard Brownian motion in R
d .

We remark that (7.1) is the time-changed SDE dȲt =
−∇V (Ȳt , νm)dt+√

2dWt and they both have the same limit-
ing stationary distribution π , cf. (Durmus et al. 2017; Xifara
et al. 2014). In the analysis of the mean square error, for
t = kh, we can estimate

MSE(A f ,k,N ) ≤ |( f , π) − ( f ,Law(Yt ))|
+ |( f ,Law(Yt ))−( f ,Law(Xk))|+

(
N−1

V[ f (Xk)]
)1/2

,

(7.2)

where Xk+1 = Xk − h
2m∇V (Xk, ν

s) + √
h/mZk+1 with

i.i.d. (Zk)
∞
k=1 with the standard normal distribution. The three

terms above are, in order, bias (due to the simulation up to
a finite time t > 0), weak time discretisation error and the
MonteCarlo variance.We choose toworkwith theSDE (7.1),

to mitigate the effect of m on the Lipschitz and convexity
constants that play the key role in the first two errors in (7.2),
see the discussion inNagapetyan et al. (2017). Consequently,
we focus on the last term in (7.2), i.e., the variance ofA f ,k,N ,
in our analysis.

For convenience we assume that h = 1/n for some n ≥ 1,
which corresponds to taking n steps in each unit time inter-
val. There are numerous results in the stochastic analysis
literature for bounding the first term on the right hand side
of (7.2) by a quantity of order O(e−t ), under fairly gen-
eral assumptions on ∇V , see e.g. (Eberle 2016; Eberle et al.
2019). Moreover, in our previous paper (Majka et al. 2020)
we carried out the weak error analysis (see Theorem 1.5
therein) that provides an upper bound for the second term in
(7.2) of order O(h). Hence, for any algorithm A f ,k,N based
on the chain (Xk)

∞
k=0 given above, we have

MSE(A f ,k,N ) � e−λt + 1
n + 1√

�(s,m)N
, (7.3)

for some λ > 0 (which is the exponential rate of conver-
gence in the L1-Wasserstein distance of the SDE (7.1) to
π ). Here �(s,m) is a quantity whose exact value depends
on the properties of V and the function f , cf. the dis-
cussion below. Fix ε > 0 and set MSE(A f ,k,N ) � ε.

This enforces the following choice of the parameters t ≈
λ−1 log(ε−1), �(s,m)N ≈ ε−2, n ≈ ε−1. The cost of
simulation of our algorithm is defined as the product of the
number of paths N , the number of iterations k of each path
and the number of data points s in each iteration. Since t = kh
and h = 1/n, we have

cost(A f ,k,N ) = tnNs ≈ s
�(s,m)

log(ε−1)ε−3. (7.4)

The main difficulty in quantifying the cost of such Monte
Carlo algorithms stems from the fact that the value of�(s,m)

is problem-specific and depends substantially on the inter-
play between parameters m, s and h. Hence, one may obtain
different costs (and thus different answers to the question of
profitability of using mini-batching) for different models and
different data regimes (Nagapetyan et al. 2017).

In order to gain some insight into possible values of
�(s,m), we consider a simple example of an Ornstein-
Uhlenbeck Markov chain (Xk)

∞
k=0 given by

Xk+1 = Xk − αXkh +
(
1

m

m∑

i=1

ξi

)

h +√h/mZk+1, (7.5)

whereα > 0 and (ξi )
m
i=1 are data points inR

k , and its stochas-
tic gradient counterpart (X̄k)

∞
k=0 given by

X̄k+1 = X̄k −α X̄kh +
(
1

s

s∑

i=1

ξUk
i

)

h +√h/mZk+1, (7.6)
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where for all i ∈ {1, . . . , s} and for all k ≥ 0 we have
Uk
i ∼ Unif({1, . . . ,m}) and all the random variables Uk

i
are mutually independent. Denoting b := 1

m

∑m
i=1 ξi and

b̄k := 1
s

∑s
i=1 ξUk

i
, we easily see that

Xk = (1 − αh)k X0 +
k∑

j=1

(1 − αh)k− j (bh +√h/mZ j )

and X̄k = (1 − αh)k X̄0 + ∑k
j=1(1 − αh)k− j (b̄ j−1h +√

h/mZ j ). Since V[Z j ] = 1 for all j ≥ 1, we observe
that

V[Xk] = (1 − αh)2kV[X0] + h

m

k∑

j=1

(1 − αh)2(k− j). (7.7)

Moreover, V[X̄k] = (1 − αh)2kV[X̄0] + ∑k
j=1(1 −

αh)2(k− j)
(
h2V[b̄ j−1] + h

m

)
. Following the calculations in

Example 2.15 in Majka et al. (2020), we see that for any
j ≥ 1

V[b̄ j ] = 1

s

⎡

⎢
⎣
1

m

m∑

j=1

ξ2j −
⎛

⎝ 1

m

m∑

j=1

ξ j

⎞

⎠

2
⎤

⎥
⎦ ,

which, assuming X̄0 = X0, shows

V[X̄k] = V[Xk]

+ h2

s

⎡

⎢
⎣
1

m

m∑

j=1

ξ2j −
⎛

⎝ 1

m

m∑

j=1

ξ j

⎞

⎠

2
⎤

⎥
⎦

k∑

j=1

(1 − αh)2(k− j).

(7.8)

Since the sum
∑k

j=1(1−αh)2(k− j) is of order 1/h, we infer

thatV[Xk] is of order 1/m, whereasV[X̄k] is of order 1/m+
h/s. Note that this corresponds to taking f (x) = x inA f ,k,N

and demonstrates that even in this simple case it is not clear
whether the algorithm A f ,k,N based on X̄k is more efficient
than the one based on Xk , since the exact values of their costs
(7.4) depend on the relation between m, s and h. Note that
our analysis in this case is exact, since we used equalities
everywhere.

Let us also consider the case of f (x) = x2, which turns
out to be more cumbersome. We first assume that X̄0 = X0

and observe that then E[X̄k] = E[Xk] for all k ≥ 0 and
hence it is sufficient to compare the variances of the centered
versions of X̄k and Xk . More precisely, in our analysis of
the algorithmA f ,k,N we want to look at V[ f (Xk −E[Xk])]
and V[ f (X̄k − E[X̄k])] with f (x) = x2 and hence we will
compare their respective upper bounds E|Xk −E[Xk]|4 and

E|X̄k − E[X̄k]|4. First we observe that

E|Xk − E[Xk]|4 = E

∣
∣
∣(1 − αh)k(X0 − E[X0])

+
k∑

j=1

(1 − αh)k− j

√
h√
m
Z j

∣
∣
∣
∣
∣
∣

4

. (7.9)

Hencewe can expand the fourth power of the sumas in Sect. 1
and, after taking into account all the cross-terms, we see that
E|Xk − E[Xk]|4 is of order h/m2. On the other hand, using
(a + b)4 ≤ 8a4 + 8b4 we get

E|X̄k − E[X̄k]|4 ≤ 8E|Xk − E[Xk]|4

+8E

∣
∣
∣
∣
∣
∣

k∑

j=1

(1 − αh)k− j (b̄ j−1 − E[b̄ j−1])h
∣
∣
∣
∣
∣
∣

4

. (7.10)

Now the analysis follows again Sect. 1 in expanding the
fourth power of the sum. Note that similarly as in (6.3) the
terms involvingE(b̄ j−1−E[b̄ j−1]) andE(b̄ j−1−E[b̄ j−1])3
vanish and hence we are left with the terms involving
E(b̄ j−1 − E[b̄ j−1])2 and E(b̄ j−1 − E[b̄ j−1])4, for which
we can use the bounds obtained in Example 2.15 in Majka
et al. (2020) and in Sect. 1, to conclude that the second term
on the right hand side of (7.10) is of order h3/s2. Hence we
conclude that for the case f (x) = x2 the algorithm based
on Xk has the variance of order h/m2, while the algorithm
based on X̄k has the variance of order h/m2 + h3/s2.

Finally, let us analyse f (x) = √
x . To this end, we

again use centered versions and compare E|Xk − E[Xk]|
with E|X̄k − E[X̄k]|. Similarly as in (7.9) we observe
that E|Xk − E[Xk]| is of order 1/

√
hm (remembering that

∑k
j=1(1 − αh)k− j is of order 1/h). Moreover, similarly as

in (7.10) we have

E|X̄k − E[X̄k]| ≤ E|Xk − E[Xk]|

+E

∣
∣
∣
∣
∣
∣

k∑

j=1

(1 − αh)k− j (b̄ j−1 − E[b̄ j−1])h
∣
∣
∣
∣
∣
∣
. (7.11)

Hence, recalling once again from Example 2.15 in Majka
et al. (2020) thatE(b̄ j−E[b̄ j ])2 is of order 1/s for any j ≥ 1,
we can use Jensen’s inequality to conclude thatE(b̄ j−E[b̄ j ])
is of order 1/

√
s and, consequently, that the second term on

the right hand side of (7.11) is also of order 1/
√
s (after can-

cellation of h with the sum
∑k

j=1(1− αh)k− j which, as we
already pointed out, is of order 1/h). Hence for f (x) = √

x
we observe that Xk leads to the variance of order 1/

√
hm,

whereas X̄k leads to the variance of order 1/
√
hm + 1/

√
s.

Again, in all these cases, determining which term is the lead-
ing one depends on the interplay between m, s and h.
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Appendix:Uniformboundson fourthmoments
of SGLD

Lemma 7.1 Let Assumptions 4.3, 4.6 and 4.9 hold. Then
there exists a constant C (4)

I Eul > 0 such that for the Markov
chain (Xk)

∞
k=0 given by

Xk+1 = Xk + hb(Xk,Uk) + β
√
hZk+1

with pairwise independent (Uk)
∞
k=0 satisfying (4.3) and

(Zk)
∞
k=0 i.i.d., Zk ∼ N (0, I ) and independent of (Uk)

∞
k=0,

we have

E|Xk |4 ≤ C (4)
I Eul

for all k ≥ 1 and h ∈ (0, h0), where C
(4)
I Eul := E|X0|4+ C(4)

ult
c

with C (4)
ult > 0 given by (7.13) and c, h0 > 0 determined by

(7.12).

Proof By a standard computation, we have

E|Xk+1|4 ≤ E|Xk |4 + h4E|b(Xk,Uk)|4
+ β4h2E|Zk+1|4 + 6h2E|Xk |2|b(Xk,Uk)|2
+ 6β2hE|Xk |2|Zk+1|2 + 6β2h3E|b(Xk,Uk)|2|Zk+1|2
+ 4hE|Xk |2〈Xk, b(Xk,Uk)〉
+ 4β

√
hE|Xk |2〈Xk, Zk+1〉

+ 4h3E|b(Xk,Uk)|2〈b(Xk,Uk), Xk〉
+ 4βh3E|b(Xk,Uk)|2〈b(Xk,Uk), Zk+1〉
+ 4β3h3/2E|Zk+1|2〈Zk+1, Xk〉
+ 4β3h3/2E|Zk+1|2〈Zk+1, b(Xk,Uk)〉
+ 6βh3/2E|Xk |2〈b(Xk,Uk), Zk+1〉
+ 6βh5/2E|b(Xk,Uk)|2〈Xk, Zk+1〉

+ 6β2h2E|Zk+1|2〈Xk, b(Xk,Uk)〉 =:
15∑

j=1

Ĩ j .

By conditioning on Xk and Uk and using properties of the
multivariate normal distribution, we see that Ĩ8 = Ĩ10 =
Ĩ11 = Ĩ12 = Ĩ13 = Ĩ14 = 0. Hence we have

E|Xk+1|4 ≤ E|Xk |4 + h4E|b(Xk ,Uk)|4 + β4h2E|Zk+1|4
+ 6h2E|Xk |2|b(Xk ,Uk)|2
+ 6β2hE|Xk |2|Zk+1|2 + 6β2h3E|b(Xk ,Uk)|2|Zk+1|2
+ 4hE|Xk |2〈Xk , b(Xk ,Uk)〉
+ 4h3E|b(Xk ,Uk)|2〈b(Xk ,Uk), Xk〉

+ 6β2h2E|Zk+1|2〈Xk , b(Xk ,Uk)〉 =:
9∑

j=1

I j .

Now observe that due to Assumptions 4.9 and 4.6 we have
E|b(x,U )|4 ≤ L̄(4)

0 (1 + |x |4), where

L̄(4)
0 := 8(σ (4) + L(4)

0 ).

Indeed, we have

E|b(x,U )|4 = E|b(x,U ) − a(x) + a(x)|4
≤ 8E|b(x,U ) − a(x)|4 + 8E|a(x)|4.

Moreover, we have
(
E|b(x,U )|3)4/3 ≤ E

(|b(x,U )|3)4/3
= E|b(x,U )|4 ≤ L̄(4)

0 (1 + |x |4) and hence

E|b(x,U )|3 ≤
(
L̄(4)
0

)3/4 (
1 + |x |4

)3/4

≤
(
L̄(4)
0

)3/4 (
1 + |x |3

)
.

These auxiliary estimates allow us to bound I2 ≤ h4 L̄(4)
0(

1 + E|Xk |4
)
and

I8 ≤ 4h3E|b(Xk,Uk)|3|Xk |
≤ 4h3

(
L̄(4)
0

)3/4 (
C1/2
I Eul + E|Xk |4

)
.

Moreover, by conditioning, we get

I3 = β4h2(d2 + 2d)

I4 ≤ 6h2 L̄0

(
E|Xk |2 + E|Xk |4

)
≤ 6h2 L̄0CI Eul + 6h2 L̄0E|Xk |4

I5 = 6β2hdE|Xk |2 ≤ 6β2hdCI Eul

I6 = 6β2h3dE|b(Xk ,Uk)|2 ≤ 6β2h3d L̄0(1 + E|Xk |2)
≤ 6β2h3d L̄0(1 + CI Eul)

I7 = 4hE|Xk |2〈Xk , a(Xk)〉 ≤ 4hM2E|Xk |2 − 4hM1E|Xk |4
I9 ≤ 6β2h2dM2 − 6β2h2dM1E|Xk |2,

where in I4 and I6 we used (5.5) and in I7 and I9 we used
(5.4). Hence we obtain

E|Xk+1|4 ≤ −4hM1E|Xk |4

+
(

1 + h4 L̄(4)
0 + 6h2 L̄0 + 4h3

(
L̄(4)
0

)3/4
)

E|Xk |4

+ β4h2(d2 + 2d) + 6β2h2dM2

+ 4h3
(
L̄(4)
0

)3/4
C1/2
I Eul + 4hM2CI Eul

+ 6β2h3d L̄0(1 + CI Eul)

+ 6β2hdCI Eul + 6h2 L̄0CI Eul + h4 L̄(4)
0 .

We can now choose constants c, h0 > 0 such that for all
h ∈ (0, h0) we have

h4 L̄(4)
0 + 6h2 L̄0 + 4h3

(
L̄(4)
0

)3/4 − 4hM1 ≤ −ch (7.12)
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holds for all h ∈ (0, h0). Then, putting

C (4)
ult := β4h0(d

2 + 2d) + 6β2h0dM2

+ 4h20
(
L̄(4)
0

)3/4
C1/2
I Eul + 4M2CI Eul

+ 6β2h20d L̄0(1 + CI Eul) + 6β2dCI Eul

+ 6h0 L̄0CI Eul + h30 L̄
(4)
0

(7.13)

we get E|Xk+1|4 ≤ (1 − ch)E|Xk |4 + C (4)
ult h for all h ∈

(0, h0), and hence

E|Xk+1|4 ≤ (1 − ch)k+1
E|X0|4 +

k∑

j=0

C (4)
ult (1 − ch) j h

≤ (1 − ch)k+1
E|X0|4 + C (4)

ult

c
.

��

Appendix: Proofs for AMLMC via subsam-
pling

Proof of Lemma 5.2

Proof We have

E
∣
∣Xc+

k+1 − Xc−
k+1

∣
∣4 = E

∣
∣
∣Xc+

k + hb(Xc+
k ,U f ,2

k )

−Xc−
k − hb(Xc−

k ,U f ,1
k )

∣
∣
∣
4

≤ E
∣
∣Xc+

k − Xc−
k

∣
∣4

+ 4E
∣
∣Xc+

k − Xc−
k

∣
∣2
〈
Xc+
k − Xc−

k ,

hb(Xc+
k ,U f ,2

k ) − hb(Xc−
k ,U f ,1

k )
〉

+ 6E

[
∣
∣Xc+

k − Xc−
k

∣
∣2
∣
∣
∣hb(Xc+

k ,U f ,2
k ) − hb(Xc−

k ,U f ,1
k )

∣
∣
∣
2
]

+ 4E
〈
Xc+
k − Xc−

k , hb(Xc+
k ,U f ,2

k ) − hb(Xc−
k ,U f ,1

k )
〉

∣
∣
∣hb(Xc+

k ,U f ,2
k ) − hb(Xc−

k ,U f ,1
k )

∣
∣
∣
2

+ E

∣
∣
∣hb(Xc+

k ,U f ,2
k ) − hb(Xc−

k ,U f ,1
k )

∣
∣
∣
4

=: B1 + B2 + B3 + B4 + B5.

We obtain B2 ≤ −4hKE|Xc+
k − Xc−

k |4 by conditioning on
Xc+
k and Xc−

k and using Assumption 4.3(ii). In order to deal
with B5 we write

b(Xc+
k ,U f ,2

k ) − b(Xc−
k ,U f ,1

k )

= b(Xc+
k ,U f ,2

k ) − a(Xc+
k ) + a(Xc−

k ) − a(Xc+
k )

+ a(Xc−
k ) − b(Xc−

k ,U f ,1
k ).

(7.14)

We will now use the inequality
(∑n

j=1 a j

)k ≤ nk−1

(∑n
j=1 a

k
j

)
, which holds for all a j ≥ 0 and all integers

k ≥ 2 and n ≥ 1 due to the Hölder inequality for sums.
Hence we have (a + b + c)4 ≤ 27(a4 + b4 + c4) and we
obtain

B5 ≤ 27h4
(
E

∣
∣
∣b(Xc+

k ,U f ,2
k ) − a(Xc+

k )

∣
∣
∣
4

+ E
∣
∣a(Xc+

k ) − a(Xc−
k )
∣
∣4

+ E

∣
∣
∣b(Xc−

k ,U f ,1
k ) − a(Xc−

k )

∣
∣
∣
4 )

.

Hence, due to Assumption 4.6, we get B5 ≤ 27h4(
2σ (4)(1 + C (4),(2h)

I Eul ) + L4
E
∣
∣Xc+

k − Xc−
k

∣
∣4
)
. Using the

Cauchy-Schwarz inequality, we now have

B4 ≤ 4h3
(

E
∣
∣Xc+

k − Xc−
k

∣
∣2
∣
∣
∣b(Xc+

k ,U f ,2
k ) − b(Xc−

k ,U f ,1
k )

∣
∣
∣
2
)1/2

×
(

E

∣
∣
∣b(Xc+

k ,U f ,2
k ) − b(Xc−

k ,U f ,1
k )

∣
∣
∣
4
)1/2

≤ 4h3
((

E
∣
∣Xc+

k − Xc−
k

∣
∣4
)1/2

(

E

∣
∣
∣b(Xc+

k ,U f ,2
k ) − b(Xc−

k ,U f ,1
k )

∣
∣
∣
4
)1/2

)1/2

×
(
27
(
2σ (4)(1 + C (4),(2h)

I Eul ) + L4
E
∣
∣Xc+

k − Xc−
k

∣
∣4
))1/2

.

Hence, after applying the inequalities ab ≤ 1
2a

2 + 1
2b

2 and
(a + b)1/2 ≤ a1/2 + b1/2 several times, we obtain

B4 ≤ 4h3
(
1

2
E
∣
∣Xc+

k − Xc−
k

∣
∣4 + 1

2
E

∣
∣
∣b(Xc+

k ,U f ,2
k ) − b(Xc−

k ,U f ,1
k )

∣
∣
∣
4
)1/2

×
((

54σ (4)(1 + C (4),(2h)
I Eul )

)1/2 +
(
27L4

E
∣
∣Xc+

k − Xc−
k

∣
∣4
)1/2

)

≤ 4h3
(
1

2
E
∣
∣Xc+

k − Xc−
k

∣
∣4 + 27

2
L4

E
∣
∣Xc+

k − Xc−
k

∣
∣4

+54

2
σ (4)(1 + C (4),(2h)

I Eul )

)1/2

×
((

54σ (4)(1 + C (4),(2h)
I Eul )

)1/2 +
(
27L4

E
∣
∣Xc+

k − Xc−
k

∣
∣4
)1/2

)

≤ 4h3
((1 + 27L4

2
27L4

)1/2

E
∣
∣Xc+

k − Xc−
k

∣
∣4

+
(
1 + 27L4

2
E
∣
∣Xc+

k − Xc−
k

∣
∣4
)1/2 (

54σ (4)(1 + C (4),(2h)
I Eul )

)1/2

+ 27
√
2σ (4)(1 + C (4),(2h)

I Eul ) +
(
27σ (4)(1 + C (4),(2h)

I Eul )
)1/2

(
27L4

E
∣
∣Xc+

k − Xc−
k

∣
∣4
)1/2 )

≤ 4h3
((

1 + 27L4

2
27L4

)1/2

+ 1 + 81L4

4

)

E
∣
∣Xc+

k − Xc−
k

∣
∣4

+ 4h3
(

27
√
2 + 81

2

)

σ (4)(1 + C (4),(2h)
I Eul ).
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In order to deal with B3, we again use the decomposi-
tion (7.14). Then, conditioning on Xc+

k and Xc−
k , and using

Assumption 4.5, we get

B3 ≤ 6h2
(
3E
(∣
∣Xc+

k − Xc−
k

∣
∣2 σ 2(1 + |Xc+

k |2)
)

+ 3L2
E
∣
∣Xc+

k − Xc−
k

∣
∣4

+ 3E
(∣
∣Xc+

k − Xc−
k

∣
∣2 σ 2(1 + |Xc−

k |2)
) )

.

Now, using the Cauchy-Schwarz inequality and ab ≤ 1
2a

2 +
1
2b

2, we have

E

(∣
∣Xc+

k − Xc−
k

∣
∣2 σ 2(1 + |Xc+

k |2)h2
)

≤
(
E
∣
∣Xc+

k − Xc−
k

∣
∣4 hε

)1/2
(

σ 4
E(1 + |Xc+

k |2)2h3 1
ε

)1/2

≤ 1

2
E
∣
∣Xc+

k − Xc−
k

∣
∣4 hε + 1

2ε
h3E

(
1 + |Xc+

k |2)2 σ 4

≤ 1

2
E
∣
∣Xc+

k − Xc−
k

∣
∣4 hε + 1

2ε
h3
(
1 + 2C (2h)

I Eul + C (4),(2h)
I Eul

)
σ 4

for some ε > 0 to be specified later. Hence

B3 ≤ 18E
∣
∣Xc+

k − Xc−
k

∣
∣4 hε + 18

1

ε
h3

(
1 + 2C (2h)

I Eul + C (4),(2h)
I Eul

)

σ 4 + 18h2L2
E
∣
∣Xc+

k − Xc−
k

∣
∣4 .

Note that here σ 4 = (σ 2)2, where σ 2 is given in Assump-
tion 4.5, whereas σ (4) appearing in the bounds on B4 and
B5 is possibly a different quantity, given in Assumption 4.6.
Combining all our estimates together, we obtain

E
∣
∣Xc+

k+1 − Xc−
k+1

∣
∣4 ≤ C1h

3

+
(
1 − 4hK + 18hε + 18h2L2 + 27h4L4

+4h3
((

1 + 27L4

2
27L4

)1/2

+ 1 + 81L4

4

))

× E
∣
∣Xc+

k − Xc−
k

∣
∣4 ,

where

C1 := 18
1

ε

(
1 + 2C (2h)

I Eul + C (4),(2h)
I Eul

)
σ 4

+4
(
27

√
2 + 54h0

)
σ (4)(1 + C (4),(2h)

I Eul ). (7.15)

Hence, choosing h, c1, ε such that

−4hK + 18hε + 18h2L2 + 27h4L4

+4h3
((

1 + 27L4

2
27L4

)1/2

+1 + 81L4

4

)

≤ −c1h, (7.16)

we obtain, for any k ≥ 1, E
∣
∣Xc+

k+1 − Xc−
k+1

∣
∣4 ≤ (1 −

c1h)kE
∣
∣Xc+

0 − Xc−
0

∣
∣4 + ∑k

j=0 C1(1 − c1h) j h3. Taking

Xc+
0 = Xc−

0 and bounding the sum above by an infinite

sum gives E
∣
∣Xc+

k − Xc−
k

∣
∣4 ≤ (C1/c1)h2 for all k ≥ 1 and

finishes the proof. ��

Proof of Lemma 5.3

Proof Using b(X f
k ,U f

k ) = 1
2b(X

f
k ,U f ,1

k )+ 1
2b(X

f
k ,U f ,2

k ),
we have

E

∣
∣
∣X

f
k+1 − X̄ c

k+1

∣
∣
∣
2 = E

∣
∣
∣X

f
k − X̄ c

k

∣
∣
∣
2

+ 2hE

〈

X f
k − X̄ c

k ,
1

2
b(X f

k ,U f ,1
k ) + 1

2
b(X f

k ,U f ,2
k )

−1

2
b(Xc−

k ,U f ,1
k ) − 1

2
b(Xc+

k ,U f ,2
k )

〉

+ h2E

∣
∣
∣
∣
1

2
b(X f

k ,U f ,1
k ) + 1

2
b(X f

k ,U f ,2
k ) − 1

2
b(Xc−

k ,U f ,1
k )

−1

2
b(Xc+

k ,U f ,2
k )

∣
∣
∣
∣

2

=: J1 + J2 + J3.

(7.17)

We begin by bounding J2. We have

J2 = hE
〈
X f
k − X̄ c

k, b(X
f
k ,U f ,1

k ) − b(X̄ c
k,U

f ,1
k )

〉

+ hE
〈
X f
k − X̄ c

k, b(X̄
c
k,U

f ,1
k ) − b(Xc−

k ,U f ,1
k )

〉

+ hE
〈
X f
k − X̄ c

k, b(X
f
k ,U f ,2

k ) − b(X̄ c
k,U

f ,2
k )

〉

+ hE
〈
X f
k − X̄ c

k, b(X̄
c
k,U

f ,2
k ) − b(Xc+

k ,U f ,2
k )

〉

=: I1 + I2 + I3 + I4.

By conditioning on X f
k , X

c+
k and Xc−

k and using Assump-
tion 4.3 (specifically condition (4.13)) we get I1 = I3 =
hE
〈
X f
k − X̄ c

k, a(X f
k ) − a(X̄ c

k)
〉

≤ −hKE

∣
∣
∣X

f
k − X̄ c

k

∣
∣
∣
2
,

while for the other termswe have I2 = hE
〈
X f
k − X̄ c

k, a(X̄ c
k)
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−a(Xc−
k )
〉
and I4 = hE

〈
X f
k − X̄ c

k, a(X̄ c
k) − a(Xc+

k )
〉
. We

now use the Taylor formula for a and (5.6) to write

I2 + I4 = hE
〈
X f
k − X̄ c

k ,−
∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
X̄ c
k

+t
(
X̄ c
k − Xc−

k

))
dt
(
X̄ c
k − Xc−

k

)α

−
∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
X̄ c
k + t

(
X̄ c
k − Xc+

k

))
dt
(
X̄ c
k − Xc+

k

)α
〉

≤ hCa(2)E|X f
k − X̄ c

k | · |X̄ c
k − Xc−

k |2
+ hCa(2)E|X f

k − X̄ c
k | · |X̄ c

k − Xc+
k |2

= 1

2
Ca(2)E

[
|X f

k − X̄ c
k |h1/2 · |Xc+

k − Xc−
k |2h1/2

]

≤ 1

2
Ca(2)

(
E|X f

k − X̄ c
k |2ε1h

)1/2 ·
(

E|Xc+
k − Xc−

k |4 1

ε1
h

)1/2

≤ 1

4
Ca(2)E|X f

k − X̄ c
k |2ε1h + 1

4
Ca(2)E|Xc+

k − Xc−
k |4 1

ε1
h,

for some ε1 > 0 whose exact value will be specified later,
where we used the Cauchy-Schwarz inequality and the ele-
mentary inequality ab ≤ 1

2 (a
2 + b2).

We now come back to (7.17) and deal with J3. We have

J3 = 1

4
h2E

∣
∣
∣b(X

f
k ,U f ,1

k ) − b(X̄ c
k,U

f ,1
k ) + b(X̄ c

k,U
f ,1
k )

− b(Xc−
k ,U f ,1

k )

+ b(X f
k ,U f ,2

k ) − b(X̄ c
k,U

f ,2
k ) + b(X̄ c

k,U
f ,2
k )

− b(Xc+
k ,U f ,2

k )

∣
∣
∣
2

≤ 3

4
h2 L̄2

E

∣
∣
∣X

f
k − X̄ c

k

∣
∣
∣
2 + 3

4
h2 L̄2

E

∣
∣
∣X

f
k − X̄ c

k

∣
∣
∣
2

+ 3

4
h2E

∣
∣
∣b(X̄ c

k,U
f ,1
k ) − b(Xc−

k ,U f ,1
k ) + b(X̄ c

k,U
f ,2
k )

−b(Xc+
k ,U f ,2

k )

∣
∣
∣
2 =: J31 + J32 + J33,

where we used the Lipschitz condition (4.15). Note that we

have J31 + J32 = 3
2h

2 L̄2
E

∣
∣
∣X

f
k − X̄ c

k

∣
∣
∣
2
. On the other hand,

in order to deal with J33, we use the Taylor theorem to write

b(X̄ c
k,U

f ,1
k ) − b(Xc−

k ,U f ,1
k )

= −
[ ∑

|α|=1

Dαb(X̄ c
k,U

f ,1
k )

(
X̄ c
k − Xc−

k

)α

+
∑

|α|=2

∫ 1

0
(1 − t)Dαb

(
X̄ c
k + t

(
X̄ c
k − Xc−

k

)
,

U f ,1
k

)
dt
(
X̄ c
k − Xc−

k

)α
]
.

Hence we have

b(X̄ c
k ,U

f ,1
k ) − b(Xc−

k ,U f ,1
k ) + b(X̄ c

k ,U
f ,2
k ) − b(Xc+

k ,U f ,2
k )

= 1

2

∑

|α|=1

(
Dαb(X̄ c

k ,U
f ,1
k ) − Dαa(X̄ c

k) + Dαa(X̄ c
k)

−Dαb(X̄ c
k ,U

f ,2
k )

) (
Xc+
k − Xc−

k

)α

+ 1

4

∑

|α|=2

∫ 1

0
(1 − t)Dαb

(
X̄ c
k + t

(
X̄ c
k − Xc−

k

)
,U f ,1

k

)
dt

(
Xc+
k − Xc−

k

)α

− 1

4

∑

|α|=2

∫ 1

0
(1 − t)Dαb

(
X̄ c
k + t

(
X̄ c
k − Xc+

k

)
,U f ,2

k

)
dt

(
Xc+
k − Xc−

k

)α
.

Recall that we assume (in Assumption 4.7) thatE |∇b(x,U )

−∇a(x)|4 ≤ σ (4)(1 + |x |4) and that |Dαb(x,U )| ≤ Cb(2)

for all multiindices α with |α| = 2. Hence we have

J33 ≤ 3

4
h2E

[∣
∣
∣∇b(X̄ c

k ,U
f ,1
k ) − ∇a(X̄ c

k)

∣
∣
∣
2 ∣
∣Xc+

k − Xc−
k

∣
∣2
]

+ 3

4
h2E

[∣
∣
∣∇a(X̄ c

k) − ∇b(X̄ c
k ,U

f ,2
k )

∣
∣
∣
2 ∣
∣Xc+

k − Xc−
k

∣
∣2
]

+ 3

8
h2C2

b(2)E
∣
∣Xc+

k − Xc−
k

∣
∣4

≤ 3

4
h3σ (4)(1 + E|X̄ c

k |4) + 3

4
hE
∣
∣Xc+

k − Xc−
k

∣
∣4

+ 3

8
h2C2

b(2)E
∣
∣Xc+

k − Xc−
k

∣
∣4 ,

where in the second inequality we used Young’s inequal-
ity. Combining all our estimates together, we see that if we
choose h, c2 and ε1 > 0 such that

−hK + 1

4
dCa(2)ε1h + 3

2
h2 L̄2 ≤ −c2h, (7.18)

thenwe obtainE
∣
∣
∣X

f
k+1 − X̄ c

k+1

∣
∣
∣
2 ≤ (1−c2h)E

∣
∣
∣X

f
k − X̄ c

k

∣
∣
∣
2

+ C2h3, where

C2 := 3

4
σ (4)(1 + C (4)

I Eul)

+C1

c1

(
1

4
dCa(2)

1

ε1
+ 3

4
+ 3

8
h0C

2
b(2)

)

. (7.19)

We can now finish the proof exactly as we did in Lemma 5.2.
��

Appendix: Proofs for MASGA

Proof of Lemma 5.4 The argument is very similar to the proof
of Lemma 5.2 and in fact even simpler as here we have only
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one inaccurate drift. For completeness, we give here an out-
line of the proof anyway. We have

E

∣
∣
∣X

f , f
k+1 − Xk+1

∣
∣
∣
4

= E

∣
∣
∣X

f , f
k − Xk + hb(X f , f

k ,U f
k ) − ha(Xk)

∣
∣
∣
4

≤ E

∣
∣
∣X

f , f
k − Xk

∣
∣
∣
4 + 4E

∣
∣
∣X

f , f
k − Xk

∣
∣
∣
2

〈
X f , f
k − Xk, hb(X

f , f
k ,U f

k ) − ha(Xk)
〉

+ 6E
∣
∣
∣X

f , f
k − Xk

∣
∣
∣
2 ∣∣
∣hb(X

f , f
k ,U f

k ) − ha(Xk)

∣
∣
∣
2

+ 4E
〈
X f , f
k − Xk, hb(X

f , f
k ,U f

k ) − ha(Xk)
〉

∣
∣
∣hb(X

f , f
k ,U f

k ) − ha(Xk)

∣
∣
∣
2

+ E

∣
∣
∣hb(X

f , f
k ,U f

k ) − ha(Xk)

∣
∣
∣
4

=: B1 + B2 + B3 + B4 + B5.

By conditioning and Assumption 4.3, we have B2 ≤
−4hKE

∣
∣
∣X

f , f
k − Xk

∣
∣
∣
4
. Furthermore,

B5 ≤ h4E
∣
∣
∣b(X

f , f
k ,U f

k ) − a(X f , f
k ) + a(X f , f

k ) − a(Xk)

∣
∣
∣
4

≤ 8h4E
∣
∣
∣b(X

f , f
k ,U f

k ) − a(X f , f
k )

∣
∣
∣
4

+ 8h4E
∣
∣
∣a(X f , f

k ) − a(X f , f
k )

∣
∣
∣
4

≤ 8h4σ (4)(1 + C (4)
I Eul) + 8h4L4

E

∣
∣
∣X

f , f
k − Xk

∣
∣
∣
4
,

where we used Assumptions 4.6, 4.3 and Lemma 7.1. It is
now clear that the terms B3 and B4 can be dealt with exactly
as the corresponding terms in the proof of Lemma 5.2 andwe
obtain essentially the same estimates with sligthly different
constants, which are, however, of the same order in s and h.

��
Proof of Lemma 5.5 We denote

�A
k := h

(

b(X f , f
k ,U f

k ) − 1

2

(
b(Xc−, f

k ,U f ,1
k ) + b(Xc+, f

k ,U f ,2
k )

))

�B
k := h

(

b(X f ,c−
k ,U f

k ) − 1

2

(
b(Xc−,c−

k ,U f ,1
k ) + b(Xc+,c−

k ,U f ,2
k )

))

�C
k := h

(

b(X f ,c+
k ,U f

k+1) − 1

2

(
b(Xc−,c+

k ,U f ,1
k+1) + b(Xc+,c+

k ,U f ,2
k+1)

))

and we have �k = �A
k − �B

k − �C
k . Then, using b(x,U ) =

1
2b(x,U

1) + 1
2b(x,U

2), we have

�A
k = 1

2
hb(X f , f

k ,U f ,1
k ) − 1

2
hb(X̄ c, f

k ,U f ,1
k )

+1

2
hb(X̄ c, f

k ,U f ,1
k )

−1

2
hb(Xc−, f

k ,U f ,1
k )

+1

2
hb(X f , f

k ,U f ,2
k ) − 1

2
hb(X̄ c, f

k ,U f ,2
k )

+1

2
hb(X̄ c, f

k ,U f ,2
k )

−1

2
hb(Xc+, f

k ,U f ,2
k )

and hence

E|�A
k |2 ≤ 3

4
hL̄E

∣
∣
∣X

f , f
k − X̄ c, f

k

∣
∣
∣
2 + 3

4
hL̄E

∣
∣
∣X

f , f
k − X̄ c, f

k

∣
∣
∣
2

+ 3

4
hE
∣
∣
∣b(X̄

c, f
k ,U f ,1

k ) − b(Xc−, f
k ,U f ,1

k )

+b(X̄ c, f
k ,U f ,2

k ) − b(Xc+, f
k ,U f ,2

k )

∣
∣
∣
2
.

Note that the first two terms on the right hand side above
are identical and have the correct order in s and h due to
Lemma 5.3. Furthermore, the last term can be dealt with by
applying Taylor’s formula twice in X̄ c, f

k and using the argu-
ment from the proof of Lemma 5.3 for the term J33 therein.
Bounds for E|�B

k |2 and E|�C
k |2 can be obtained in exactly

the same way. ��
Proof of Lemma 5.6 We need to introduce an auxiliary chain

Xc
k+2 = Xc

k + 2ha(Xc
k) + β

√
2h Ẑk+2.

Let us begin with bounding E〈�k, �
1
k〉. Recall that X̄ f ,c

k =
1
2

(
X f ,c−
k + X f ,c+

k

)
. We denote

�
1,1
k := hb(X f ,c−

k ,U f
k ) − hb(X̄ f ,c

k ,U f
k ) + hb(X f ,c+

k ,U f
k )

−hb(X̄ f ,c
k ,U f

k )

�
1,2
k := hb(X f , f

k ,U f
k ) − hb(Xk ,U

f
k ),

�
1,3
k := hb(X̄ f ,c

k ,U f
k ) − hb(Xc

k ,U
f
k )

�
1,4
k := hb(X̄ f ,c

k ,U f
k+1) − hb(Xc

k ,U
f
k+1)

and we see that �1
k = −�

1,1
k + �

1,2
k − �

1,3
k − �

1,4
k +

hb(Xk,U
f
k ) − hb(Xc

k,U
f
k ) − hb(Xc

k,U
f
k+1). By analogy,

we define

�
2,1
k := hb(Xc−,c−

k ,U f ,1
k ) − hb(X̄ c−,c

k ,U f ,1
k )

+hb(Xc−,c+
k ,U f ,1

k ) − hb(X̄ c−,c
k ,U f ,1

k )

�
2,2
k := hb(Xc−, f

k ,U f ,1
k ) − hb(Xk ,U

f ,1
k ),

�
2,3
k := hb(X̄ c−,c

k ,U f ,1
k ) − hb(Xc

k ,U
f ,1
k )

�
2,4
k := hb(X̄ c−,c

k ,U f ,1
k+1) − hb(Xc

k ,U
f ,1
k+1)

�
3,1
k := hb(Xc+,c−

k ,U f ,2
k )

−hb(X̄ c+,c
k ,U f ,2

k ) + hb(Xc+,c+
k ,U f ,2

k ) − hb(X̄ c+,c
k ,U f ,2

k )

�
3,2
k := hb(Xc+, f

k ,U f ,2
k ) − hb(Xk ,U

f ,2
k ),

123



49 Page 32 of 37 Statistics and Computing (2023) 33 :49

�
3,3
k := hb(X̄ c+,c

k ,U f ,2
k ) − hb(Xc

k ,U
f ,2
k )

�
3,4
k := hb(X̄ c+,c

k ,U f ,2
k+1) − hb(Xc

k ,U
f ,2
k+1)

and hence, since �k = �1
k − 1

2

(
�2

k + �3
k

)
, we see that

�k = −
(

�
1,1
k − 1

2

(
�

2,1
k + �

3,1
k

))

+
(

�
1,2
k − 1

2

(
�

2,2
k + �

3,2
k

))

−
(

�
1,3
k − 1

2

(
�

2,3
k + �

3,3
k

))

−
(

�
1,4
k − 1

2

(
�

2,4
k + �

3,4
k

))

+ Rh,

R = b(Xk ,U
f
k ) − 1

2

(
b(Xk ,U

f ,1
k ) + b(Xk ,U

f ,2
k )

)

−b(Xc
k ,U

f
k )

+1

2

(
b(Xc

k ,U
f ,1
k ) + b(Xc

k ,U
f ,2
k )

)

−b(Xc
k ,U

f
k+1) + 1

2

(
b(Xc

k ,U
f ,1
k+1) + b(Xc

k ,U
f ,2
k+1)

)
= 0,

since b(x,U ) = 1
2b(x,U

1) + 1
2b(x,U

2). We now write

�
1,1
k = h

∑

|α|=1

Dαb(X̄ f ,c
k ,U f

k )
(
X f ,c−
k − X̄ f ,c

k

)α

+h
∑

|α|=2

∫ 1

0
(1 − t)Dαb

(
X̄ f ,c
k + t

(
X f ,c−
k − X̄ f ,c

k

)
,U f

k

)
dt

(
X f ,c−
k − X̄ f ,c

k

)α

+h
∑

|α|=1

Dαb(X̄ f ,c
k ,U f

k+1)
(
X f ,c+
k − X̄ f ,c

k

)α

+h
∑

|α|=2

∫ 1

0
(1 − t)Dαb

(
X̄ f ,c
k + t

(
X f ,c+
k − X̄ f ,c

k

)
,U f

k+1

)
dt

(
X f ,c+
k − X̄ f ,c

k

)α

.

Note that X f ,c−
k − X̄ f ,c

k = −
(
X f ,c+
k − X̄ f ,c

k

)
= 1

2(
X f ,c+
k − X f ,c−

k

)
. Hence

E〈�k, �
1,1
k 〉 = hE〈�k,

∑

|α|=1

Dαa(X̄ f ,c
k )

(
X f ,c−
k − X̄ f ,c

k

)α

+
∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
X̄ f ,c
k + t

(
X f ,c−
k − X̄ f ,c

k

))

dt
(
X f ,c−
k − X̄ f ,c

k

)α +
∑

|α|=1

Dαa(X̄ f ,c
k )

(
X f ,c+
k − X̄ f ,c

k

)α

+
∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
X̄ f ,c
k + t

(
X f ,c+
k − X̄ f ,c

k

))

dt
(
X f ,c+
k − X̄ f ,c

k

)α〉 = hE〈�k,
∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
X̄ f ,c
k + t

(
X f ,c−
k − X̄ f ,c

k

))

dt
(
X f ,c−
k − X̄ f ,c

k

)α +
∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
X̄ f ,c
k + t

(
X f ,c+
k − X̄ f ,c

k

))

dt
(
X f ,c+
k − X̄ f ,c

k

)α〉 ≤ 2hCa(2)ε5E|�k |2

+1

8
hCa(2)

1

ε5
E

∣
∣
∣X

f ,c+
k − X f ,c−

k

∣
∣
∣
4
,

where we used Young’s inequality with some ε5 > 0
to be specified later. From Lemma 5.1 we know that

E

∣
∣
∣X

f ,c+
k − X f ,c−

k

∣
∣
∣
4
has the correct order in s and h. Simi-

larly, we can show

E〈�k, �
2,1
k 〉 ≤ 2hCa(2)ε6E|�k |2

+ 1

8
hCa(2)

1

ε6
E

∣
∣
∣Xc−,c+

k − Xc−,c−
k

∣
∣
∣
4

E〈�k, �
3,1
k 〉 ≤ 2hCa(2)ε7E|�k |2

+ 1

8
hCa(2)

1

ε7
E

∣
∣
∣Xc+,c+

k − Xc+,c−
k

∣
∣
∣
4

for some ε6, ε7 > 0 and we also conclude that the second
terms on the right hand side above have the correct order in s
and h. Note that in order to deal with the terms�

1,1
k ,�2,1

k and

�
3,1
k we did not use the structure of our estimator and we just

dealt with each of them separately. This will be different in

the case of the expression
(
�

1,2
k − 1

2

(
�

2,2
k + �

3,2
k

))
, where

we will use its structure in order to produce an additional

antithetic term X f , f
k − 1

2

(
Xc−, f
k + Xc+, f

k

)
on the right hand

side of E〈�k, �
1,2
k − 1

2

(
�

2,2
k + �

3,2
k

)
〉 below. Indeed, we

first write

�
1,2
k = h

∑

|α|=1

Dαb(Xk ,U
f
k )
(
X f , f
k − Xk

)α

+ h
∑

|α|=2

∫ 1

0
(1 − t)Dαb

(
Xk + t

(
X f , f
k − Xk

)
,U f

k

)
dt
(
X f , f
k − Xk

)α
.

Then, expanding �
2,2
k and �

3,2
k in an analogous way, we see

that

E〈�k , �
1,2
k − 1

2

(
�

2,2
k + �

3,2
k

)
〉

= hE〈�k ,
∑

|α|=1

Dαa(Xk)

(

X f , f
k − 1

2

(
Xc−, f
k + Xc+, f

k

))α

+
∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
Xk + t

(
X f , f
k − Xk

))
dt
(
X f , f
k − Xk

)α

− 1

2

∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
Xk + t

(
Xc−, f
k − Xk

))
dt
(
Xc−, f
k − Xk

)α

− 1

2

∑

|α|=2

∫ 1

0
(1 − t)Dαa

(
Xk + t

(
Xc+, f
k − Xk

))
dt
(
Xc+, f
k − Xk

)α〉
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=: hE〈�k ,
∑

|α|=1

Dαa(Xk)

(

X f , f
k − 1

2

(
Xc−, f
k +Xc+, f

k

))α

〉+hE〈�k , �̂
2
k 〉.

Using Young’s inequality with some ε8 > 0, we can now
bound

E〈�k, �̂
2
k〉 ≤ 3ε8Ca(2)E|�k |2 + 1

ε8
Ca(2)

[

E

∣
∣
∣X

f , f
k − Xk

∣
∣
∣
4

+E

∣
∣
∣X

c−, f
k − Xk

∣
∣
∣
4 + E

∣
∣
∣X

c+, f
k − Xk

∣
∣
∣
4
]

,

whereas the remaining antithetic termwill be used later. Note
that all the fourth moments above have the correct order in s
and h due to Lemma 5.4.

Now we turn our attention to
(
�

1,3
k − 1

2

(
�

2,3
k + �

3,3
k

))
.

We start with �
1,3
k by writing

�
1,3
k = h

∑

|α|=1

Dαb(Xc
k,U

f
k )
(
X̄ f ,c
k − Xc

k

)α

+ h
∑

|α|=2

∫ 1

0
(1 − t)Dαb

(
Xc
k+t

(
X̄ f ,c
k −Xc

k

)
,U f

k

)
dt

(
X̄ f ,c
k − Xc

k

)α =: �
1,3,1
k + �

1,3,2
k .

Note that E〈�k, �
1,3,2
k 〉 ≤ hε9Ca(2)E|�k |2 + hε−1

9 Ca(2)E
∣
∣
∣X̄

f ,c
k − Xc

k

∣
∣
∣
4
for some ε9 > 0. We have

Lemma 7.2 Under the assumptions of Lemma 5.4, there is a
constant C > 0 such that for all k ≥ 1,

E

∣
∣
∣X̄

f ,c
k − Xc

k

∣
∣
∣
4 ≤ C

1

s2
h2.

Proof We notice that

E

∣
∣
∣X̄

f ,c
k − Xc

k

∣
∣
∣
4 = E

∣
∣
∣
∣
1

2

(
X f ,c−
k − Xc

k + X f ,c+
k − Xc

k

)∣∣
∣
∣

4

≤ 1

2
E

∣
∣
∣X

f ,c−
k − Xc

k

∣
∣
∣
4 + 1

2
E

∣
∣
∣X

f ,c+
k − Xc

k

∣
∣
∣
4

and then use an analogue of Lemma 5.4 for the coarse chain.
��

On the other hand,

E〈�k, �
1,3,1
k 〉 = hE〈�k,

∑

|α|=1

Dαa(Xc
k)
(
X̄ f ,c
k − Xc

k

)α〉

= hE〈�k,
∑

|α|=1

Dαa(Xk)
(
X̄ f ,c
k − Xk

)α〉

+ hE〈�k,
∑

|α|=1

(
Dαa(Xc

k)
(
X̄ f ,c
k − Xc

k

)α

−Dαa(Xk)
(
X̄ f ,c
k − Xk

)α)〉
=: E〈�k, �

1,3,1,1
k 〉 + E〈�k, �

1,3,1,2
k 〉.

Now observe that

E〈�k, �
1,3,1,2
k 〉 = hE〈�k,

∑

|α|=1

(
Dαa(Xc

k)
(
X̄ f ,c
k − Xc

k

)α

−Dαa(Xk)
(
X̄ f ,c
k − Xc

k

)α)〉
+ hE〈�k,

∑

|α|=1

(
Dαa(Xk)

(
X̄ f ,c
k − Xc

k

)α

−Dαa(Xk)
(
X̄ f ,c
k − Xk

)α)〉
= hE〈�k,

∑

|α|=1

(
Dαa(Xc

k)

−Dαa(Xk)
) (

X̄ f ,c
k − Xc

k

)α〉
+ hE〈�k,

∑

|α|=1

Dαa(Xk)
(
Xk − Xc

k

)α〉.

(7.20)

Recall that we are dealing now with the group −
(
�

1,3
k

− 1
2

(
�

2,3
k + �

3,3
k

))
. Similarly as above, for �

2,3
k and �

3,3
k ,

we have the terms

�
2,3,2
k = h

∑

|α|=2

∫ 1

0
(1 − t)Dα

b
(
Xc
k + t

(
X̄ c−,c
k − Xc

k

)
,U f ,1

k

)
dt
(
X̄ c−,c
k − Xc

k

)α

�
3,3,2
k = h

∑

|α|=2

∫ 1

0
(1 − t)Dα

b
(
Xc
k + t

(
X̄ c+,c
k − Xc

k

)
,U f ,2

k

)
dt
(
X̄ c+,c
k − Xc

k

)α

for which

E〈�k , �
2,3,2
k 〉 ≤ hε10Ca(2)E|�k |2 + h

1

ε10
Ca(2)E

∣
∣
∣X̄ c−,c

k − Xc
k

∣
∣
∣
4

E〈�k , �
3,3,2
k 〉 ≤ hε11Ca(2)E|�k |2 + h

1

ε11
Ca(2)E

∣
∣
∣X̄ c+,c

k − Xc
k

∣
∣
∣
4
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for some ε10, ε11 > 0, and we can again apply Lemma 7.2
to conclude that the fourth moments above have the correct
order in s and h. On the other hand, repeating the analysis
for �

1,3,1
k above, we see that

E〈�k, �
2,3,1,1
k 〉 = hE〈�k,

∑

|α|=1

Dαa(Xk)
(
X̄ c−,c
k − Xk

)α〉

E〈�k, �
3,3,1,1
k 〉 = hE〈�k,

∑

|α|=1

Dαa(Xk)
(
X̄ c+,c
k − Xk

)α〉,

whereas

E〈�k, �
2,3,1,2
k 〉 = hE〈�k,

∑

|α|=1

(
Dαa(Xc

k) − Dαa(Xk)
)

(
X̄ c−,c
k − Xc

k

)α〉
+ hE〈�k,

∑

|α|=1

Dαa(Xk)
(
Xk − Xc

k

)α〉

E〈�k, �
3,3,1,2
k 〉 = hE〈�k,

∑

|α|=1

(
Dαa(Xc

k) − Dαa(Xk)
)

(
X̄ c+,c
k − Xc

k

)α〉
+ hE〈�k,

∑

|α|=1

Dαa(Xk)
(
Xk − Xc

k

)α〉.

(7.21)

Recall that

E〈�k,−
(

�
1,3
k − 1

2

(
�

2,3
k + �

3,3
k

))

〉

= E〈�k,−
(

�
1,3,1
k − 1

2

(
�

2,3,1
k + �

3,3,1
k

))

〉

+E〈�k,−
(

�
1,3,2
k − 1

2

(
�

2,3,2
k + �

3,3,2
k

))

〉

and, due to our discussion above, E〈�k,−
(
�

1,3,2
k

− 1
2

(
�

2,3,2
k + �

3,3,2
k

))
〉 is of the correct order in s and h.

Hence we focus on

E〈�k ,−
(

�
1,3,1
k − 1

2

(
�
2,3,1
k + �

3,3,1
k

))

〉

= −hE〈�k ,
∑

|α|=1

Dαa(Xk)

(

X̄ f ,c
k − 1

2

(
X̄c−,c
k + X̄c+,c

k

))α

〉

− hE〈�k ,
∑

|α|=1

(
Dαa(Xc

k) − Dαa(Xk)
) (

X̄ f ,c
k

−1

2

(
X̄c−,c
k + X̄c+,c

k

))α

〉,

where the first term on the right hand side above comes

from the expression E〈�k, �
1,3,1,1
k 〉 − 1

2

(
E〈�k, �

2,3,1,1
k 〉

+E〈�k, �
3,3,1,1
k 〉

)
and the second term comes from

E〈�k, �
1,3,1,2
k 〉 − 1

2

(
E〈�k, �

2,3,1,2
k 〉 + E〈�k, �

3,3,1,2
k 〉

)
.

(7.22)

Note that each term in (7.22) was a sum of two terms,
however, all the second terms in (7.22) cancelled out, since
they were all of the same form, cf. (7.20) and (7.21). Now
we will combine the first term on the right hand side of

E〈�k,−
(
�

1,3,1
k − 1

2

(
�

2,3,1
k + �

3,3,1
k

))
〉 with a term from

a previous group. To this end, recall that

E〈�k , �
1,2
k − 1

2

(
�
2,2
k + �

3,2
k

)
〉

= hE〈�k ,
∑

|α|=1

Dαa(Xk)

(

X f , f
k − 1

2

(
Xc−, f
k + Xc+, f

k

))α

〉

+ hE〈�k , �̂
2
k〉,

where hE〈�k, �̂
2
k〉 is of the correct order in s and h, and

notice that we have

hE〈�k ,
∑

|α|=1

Dαa(Xk)

(

X f , f
k − 1

2

(
Xc−, f
k + Xc+, f

k

))α

〉

−hE〈�k ,
∑

|α|=1

Dαa(Xk)

(

X̄ f ,c
k − 1

2

(
X̄ c−,c
k + X̄ c+,c

k

))α

〉

= hE〈�k ,
∑

|α|=1

Dαa(Xk)

(

X f , f
k − 1

2

(
Xc−, f
k + Xc+, f

k

)

−
(

X̄ f ,c
k − 1

2

(
X̄ c−,c
k + X̄ c+,c

k

)))α

〉

= hE〈�k ,
∑

|α|=1

Dαa(Xk) (�k)
α〉 ≤ −KhE|�k |2.

In the inequality above we used the fact that Assumption 4.3
implies that for all x , y ∈ R

d wehave 〈y,∑|α|=1 D
αa(x)yα〉 ≤

−K |y|2. On the other hand, the first terms in (7.22) give

hE〈�k ,
∑

|α|=1

(
Dαa(Xc

k) − Dαa(Xk)
)
(

X̄ f ,c
k − 1

2

(
X̄ c−,c
k + X̄ c+,c

k

))α

〉

≤ 2hε12Ca(1)E|�k |2 + 2h
1

ε12
Ca(1)E

∣
∣
∣
∣X̄

f ,c
k − 1

2

(
X̄ c−,c
k + X̄ c+,c

k

)∣∣
∣
∣

2

for some ε12 > 0 to be chosen later. Now we use

Lemma 7.3 Under the assumptions of Lemma 5.3, there

is a C > 0 such that for all k ≥ 1 we have E

∣
∣
∣X̄

f ,c
k

− 1
2

(
X̄ c−,c
k + X̄ c+,c

k

)∣
∣
∣
2 ≤ Ch2/s2.
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Proof Notice that

E

∣
∣
∣
∣X̄

f ,c
k − 1

2

(
X̄ c−,c
k + X̄ c+,c

k

)∣∣
∣
∣

2

≤ 1

2
E

∣
∣
∣
∣X

f ,c−
k − 1

2

(
Xc−,c−
k + Xc+,c−

k

)∣∣
∣
∣

2

+ 1

2
E

∣
∣
∣
∣X

f ,c+
k − 1

2

(
Xc−,c+
k + Xc+,c+

k

)∣∣
∣
∣

2

and that both terms above correspond to antithetic estima-
tors with respect to subsampling for coarse chains, hence
Lemma 5.3 applies. ��
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,

for some ε13, ε14, ε15, ε16 > 0. Using Lemmas 7.2 and 7.3,
we see that all the fourth moments above have the correct
order in s and h. This concludes our estimates forE〈�k, �k〉.
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